WO2015176604A1 - 一种电动仿肌肉牵引组织 - Google Patents

一种电动仿肌肉牵引组织 Download PDF

Info

Publication number
WO2015176604A1
WO2015176604A1 PCT/CN2015/078228 CN2015078228W WO2015176604A1 WO 2015176604 A1 WO2015176604 A1 WO 2015176604A1 CN 2015078228 W CN2015078228 W CN 2015078228W WO 2015176604 A1 WO2015176604 A1 WO 2015176604A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
tissue
muscle
electric muscle
unit
Prior art date
Application number
PCT/CN2015/078228
Other languages
English (en)
French (fr)
Inventor
赵德政
Original Assignee
赵德政
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵德政 filed Critical 赵德政
Publication of WO2015176604A1 publication Critical patent/WO2015176604A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the invention relates to the field of transmission for manufacturing robot manufacturing, electromechanical technology and driving mode requiring linear traction drive, in particular to an electric muscle-like traction organization.
  • the manufacturing method adopts a traction rope fixed on a traction shaft, realizes bidirectional shrinkage winding under the rotation of the traction shaft, generates a linear traction force of bidirectional contraction, and manufactures a basic traction unit, which is clustered by the traction unit. Collaborate to form an electric muscle-like traction tissue. It can play a traction function that mimics the contraction movement of animal muscle tissue. It can be used in the field of fully simulated humanoid robots or other limbs machinery to create humanoid robots or other extremities, and to control various movements to make it more convenient. Flexible and flexible. It can also be applied to power devices that require line-driven traction in existing machinery and transmissions. The control of motion can easily control the motion stroke by the number of on-off traction units.
  • the technical solution adopted by the invention is: an electric muscle-like traction tissue, which is connected by a basic traction unit and a traction rope into an electric muscle-like traction organization, and the traction unit is composed of an electric motor, a gear set, a casing and a relaxation spring.
  • the low torque and high speed rotation of the motor in the traction unit housing is converted into the low speed and high torque required by the external gear through the shift gear set, so that the work done by the motor is transmitted to the winding shaft, and the traction rope is fixed on the winding shaft.
  • the biaxial shrinkage winding is realized during the rotation of the shaft, and the kinetic energy of the motor is converted into a linear traction force of two-headed contraction.
  • the traction rope can be fixed at one end or the shell can be fixed to the bone or foundation.
  • the traction and traction effect of the traction rope can better simulate the traction movement of the animal muscles, and realize the line-driven muscle traction.
  • the diastolic springs at both ends of the unit prevent the traction rope from being tangled and knotted at the same time as the motor is powered off or reversely rotated, and play a role in relaxing the motor when the motor is powered off or reversely rotated to relax the tissue.
  • One end of one traction unit and the other end of the other traction unit are connected by a traction rope to form a long chain structure.
  • Each traction unit can pull its own unit under the action of its own internal traction and cause its own traction displacement.
  • the long chain structure formed by the traction ropes is superimposed to form an electric muscle-like traction tissue.
  • the power supply of the motor can be connected to an external power supply lead or a battery pack and a charge and discharge control circuit inside the unit. Wireless control and wireless charging are implemented through internal circuitry.
  • the beneficial effects of the present invention are: an electric muscle-like traction tissue connected by a basic traction unit and a traction rope into tissue.
  • the winding shaft is rotated, and the traction rope is fixed on the main winding shaft to realize the bidirectional contraction winding, thereby generating a linear traction force of bidirectional contraction.
  • the plurality of traction unit clusters cooperate to form a muscle-like traction tissue. It can be conveniently applied in the field of humanoid robots or other types of extremity mechanical technology.
  • the power device without the electric muscle-like traction in the prior art is filled.
  • the invention can conveniently increase and decrease the combined force of the external load through the on-off mode of the traction unit, and the combination is applied in an ever-changing manner.
  • the control program is simplified and easy to program.
  • the field of linear drive and linear traction can be easily changed in the number of traction units used in a variety of mechanical traction, even in areas requiring large traction.
  • the number of on-off of the traction unit can also be controlled, and various strokes can be controlled to facilitate the application in this field. Due to the unitized design concept, it is easy to standardize manufacturing in industrial production, which can greatly reduce the robot manufacturing cost, and can greatly reduce the design and manufacturing cost in mechanical power traction in the production of industrial equipment.
  • Figure 1 is a longitudinal cross-sectional structural view of the traction unit of the present invention in a state of traction and contraction;
  • FIG. 2 is a schematic cross-sectional structural view of the traction unit of the present invention.
  • FIG. 3 is a schematic view showing the appearance of a traction unit of the present invention.
  • FIG. 4 is a schematic view showing the appearance of the traction unit of the traction unit of the present invention.
  • Figure 5 is a schematic illustration of a muscle-like traction organization constructed by joining a number of traction units of the present invention.
  • motor 1 and gear set 2 The housing 3, the battery module 8 and the relaxation spring 5 constitute a traction unit, and within the housing 3 of the traction unit 9, there is a coupling gear set 2 and a winding shaft 7. Traction rope 4 by the shaft hole on the winding shaft 7 6 Pass through the winding shaft 7 and secure it to the winding shaft 7.
  • the relaxation spring 5 is fixed to the housing 3.
  • the battery module 8 is symmetrically arranged with the motor 1 to maintain a center of gravity balance inside the housing 3.
  • the reverse diastolic recovery returns the traction unit from the traction contraction state of Figure 4 to the initial diastolic state diagram 3, completing a cycle of action.
  • the power supply for motor 1 can be connected to the power supply by an external lead or by the battery module 8 Power supply, battery pack module 8 Use rechargeable battery with wireless control and wireless charging technology. The connection of the power supply can be used in parallel or in series, depending on the control needs.
  • Each of the above-mentioned traction units is connected to the first and last ends in a chain, that is, the adjacent traction unit passes through the traction rope 4
  • the connection constitutes a muscle-like traction chain; the muscle-like traction chain formed by the muscle-like traction unit is arranged in a staggered arrangement to form an electric muscle-like traction organization, as shown in Fig. 5. Shown is a state in which a certain number of traction units are connected to each other.
  • the appearance of an electric muscle-like traction tissue can be coated with a flexible artificial bionic soft material to make the structure more compact and not discrete. Under the coating of the outer covering soft biomimetic material, it can mimic the bionic muscle resembling animal muscle tissue.
  • a method for manufacturing an electric muscle-like traction tissue adopts a traction rope fixed on a traction shaft, realizes bidirectional shrinkage winding under the rotation of the traction shaft, generates a linear traction force of bidirectional contraction, and manufactures
  • the basic traction unit cooperates with each other to form an electric muscle-like traction organization through the cluster of traction units.
  • the invention combines the development status of the fields of bionic technology, mechanical, electronic control, and the like, and adopts a unitized design to be more convenient for mass production. Using modern high-tech micro-electromechanical and micro-machining technology, it can finally be made into a very small size.
  • the invention utilizes the bionic concept and utilizes the unit design method to utilize the bidirectional contraction motion generated by the bidirectional winding of the traction rope on the winding shaft.
  • the rotational speed of the rotational speed is changed by means of the existing motor and gear shifting device by means of superimposing the number of traction units. It is a traction and contraction device that can mimic the movement of biological muscles.
  • the function of contraction and relaxation is realized by the forward and reverse rotation of the motor and the on/off power.
  • a worm gear mechanism in which the motor is perpendicular to the main shaft can also be used in the case where the traction of the motor is insufficient.
  • the gear set device can also be eliminated in the traction unit and directly driven by the motor, so that the start and stop can be more conveniently controlled.
  • a coaxial motor drive arranged symmetrically on both sides can be used.
  • the battery pack and the wireless control receiving system and the wireless charging system are arranged in the remaining space of the traction unit.
  • the application of the invention in various environments and places in use does not require professional design for different fields, and the traction speed, traction and required for various environments can be satisfied by changing the number of traction units in the tissue device. Traction trip. Even in the large traction drive field, it is possible to realize a mode of combining forces by pulling a cluster of traction units and dragging huge objects.
  • the intelligent control method of the present invention is realized in that: due to the unit design, the accuracy of the motion stroke is achieved by changing the stroke of each traction unit, and the speed of traction and the magnitude of the traction force are determined by the total number of traction units.
  • the control method is to control the on and off of each traction unit, that is, in the usual sense. 0 and 1
  • the computer control concept can be easily communicated with computers and extended to various fields.
  • Each action of an electric muscle-like traction tissue controls the opening and closing of different numbers of traction units at different positions to achieve each movement stroke and displacement.
  • the electric muscle-like traction tissue on the arm can be symmetrically arranged in the yin and yang of the front and back of the arm to produce a biological movement.
  • the motion control of the robot arm using the present invention does not require a large amount of cumbersome programming, just like the acquisition and playback of television images.
  • the corresponding space action can be completed, and the control and implementation of various actions of the robot can be realized.
  • a muscle-like traction tissue exhibits a constant proportion of properties. For all sizes of muscle-like traction tissue, the mechanism is the same. The same muscle-like traction tissue, if the number of traction units can be greatly increased, will be given to the traction device. Very large telescopic force.
  • the invention can be widely applied to various production technology fields as an innovative electromechanical organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Toys (AREA)
  • Manipulator (AREA)

Abstract

公开了一种电动仿肌肉牵引组织,由基本牵引单元(9)和牵引绳(4)连接成一种电动仿肌肉牵引组织。牵引单元(9)由电动机(1)、齿轮组(2)、壳体(3)和舒张弹簧(5)构成,通过牵引单元(9)壳体(3)内电动机(1)和齿轮组(2)的扭矩变换,由卷绕轴(7)转动,通过固定在卷绕轴(7)上的牵引绳(4)实现双向卷绕,产生双向收缩的直线牵引里,使多个牵引单元(9)集群相互协作组成一种电动仿肌肉牵引组织,可应用于制造业机器人制造领域、机电技术领域和驱动方式需要直线牵引驱动的传动领域。

Description

一种电动仿肌肉牵引组织 说明书
技术领域
本发明涉及应用于制造业机器人制造领域、机电技术领域和驱动方式需要直线牵引驱动的传动领域,特别是一种电动仿肌肉牵引组织。
背景技术
现有诸多动力机械和机械传动领域主要依靠电动机、发动机或液压马达来直接驱动,特别在许多工厂中的工业机器人都依靠电机来直接驱动。旋转运动作用于机器人的机械臂的关节活动方式很难控制,机器人工作过程中,各种大小不同的关节需使用不同控制信号和控制方式。没有往复牵引并且极易控制的线驱动仿肌肉装置。现有机器人相关研究在改变类人机器人或其它类四肢动物机械的动作时,机电控制不能使用简单的计算机 0 和 1 的通断信号控制,实现的动作仿生程度比较低,活动方式动作僵硬,机器手太大也使其灵活性受到限制,很难最终实现与人类近似的全仿真类人机器人。本发明提出的一种电动仿生肌肉牵引组织可以非常好的模仿生物肌肉的运动过程,同时方便的接受计算机的通断信号控制。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供了一种电动仿肌肉牵引组织。其制造方法,其采用了由固定在牵引轴上的牵引绳,在牵引轴的转动下实现双向收缩卷绕,产生双向收缩的直线牵引力,并制造成基础的牵引单元,通过牵引单元集群的方式相互协作组成一种电动仿肌肉牵引组织。它能够起到模仿动物肌肉组织收缩运动的牵引功能,应用于全仿真类人机器人或类其它四肢动物机械领域中,制造出类人机器人或其它类四肢动物,并方便控制各种动作使其更加灵活自如。还可应用于现有机械和传动中需要线驱动牵引的动力装置中,运动的控制通过通断牵引单元的数量就可以很方便的控制运动行程。
本发明所采用的技术方案是:一种电动仿肌肉牵引组织,由基本牵引单元和牵引绳连接成一种电动仿肌肉牵引组织,牵引单元由电动机、齿轮组、壳体和舒张弹簧构成。在牵引单元壳体内电动机的低扭矩高速旋转,通过变速齿轮组转变成外界所需要的低转速高扭矩,这样电动机所作的功就传导到卷绕轴上,通过固定在卷绕轴上牵引绳索在轴转动过程中实现双向收缩卷绕,把电机的动能转变为两头双向收缩的直线牵引力。牵引绳可以一端固定也可壳体固定在骨骼或基础上。利用牵引绳的卷绕牵引作用,能较好的模仿动物肌肉的牵引运动,实现线驱动仿肌肉牵引。单元两头的舒张弹簧,在电机断电或反向旋转舒张的同时,可防止牵引绳杂乱缠绕打结,在电动机断电或反向旋转放松组织时起到舒张的作用。一个牵引单元的一端与另一个牵引单元的另一端通过牵引绳索相连接,形成长串链结构。每个牵引单元都可以在自身内部牵引力的作用下对自身单元进行拉动并使自身产生牵引位移。通过一定数量的牵引单元连接,由牵引绳索形成的长串链结构叠加在一起,形成一种电动仿肌肉牵引组织。电动机的电源可采用外接电源引线,也可连接在单元内部的电池组和充放电控制电路。通过内部的电路实现无线控制和无线充电功能。
与现有技术相比,本发明的有益效果是:一种电动仿肌肉牵引组织,由基本牵引单元和牵引绳连接成组织。通过牵引单元壳体内电动机和齿轮组的扭矩变换,由卷绕轴转动,通过固定在主卷绕轴上牵引绳索实现双向收缩卷绕,产生双向收缩的直线牵引力。使多个牵引单元集群相互协作组成一种仿肌肉牵引组织。可方便的应用在类人机器人或其它类四肢动物机械技术领域当中。起到模仿动物肌肉组织伸缩运动的功能,在仿真机器人上方便使用,使类人机器人或类其它四肢动物机械的活动更加灵活和自如。与现有技术相比,填补了现有技术中没有电动仿肌肉牵引的动力装置,本发明可以通过牵引单元的通断方式,方便的增加和减少对外负载的合力,进行千变万化的组合,应用在全仿真机器人中,使得控制程序简化易编程。在线驱动和直线牵引领域可以简单的改变使用牵引单元的数量方便的应用于各种机械牵引中,甚至可以在需要大牵引力的领域应用。在需要分段行程控制的机械和传动领域也可控制牵引单元的通断数量,控制各种不同的行程,方便的实现此领域应用。由于采用单元化的设计理念,在工业生产中便于标准化生产制造,可大幅度降低机器人制造成本,在工业设备的生产制造中也可大幅降低在机械动力牵引中的设计和制造成本。
附图说明
图 1 是本发明牵引单元处于牵引收缩状态的纵向剖视结构示意图;
图 2 是本发明牵引单元的横向剖视结构示意图;
图 3 是本发明牵引单元舒张状态的外观结构示意图;
图 4 是本发明牵引单元牵引收缩状态的外观结构示意图
图 5 是本发明一定数量的牵引单元连接构成的一种仿肌肉牵引组织的示意图。
具体实施方式
一种电动仿肌肉牵引组织,下面是结合附图对本发明进一步说明。如图 1 至图 5 所示,电动机 1 、齿轮组 2 、壳体 3 、电池组模块 8 和舒张弹簧 5 构成牵引单元,在牵引单元 9 壳体 3 内,有连接齿轮组 2 和卷绕轴 7 。牵引绳 4 由卷绕轴 7 上的轴孔 6 穿过卷绕轴 7 ,同时固接在卷绕轴 7 上。舒张弹簧 5 固定在壳体 3 上。电池组模块 8 与电动机 1 对称布置在壳体 3 内部保持重心平衡。当电动机 1 通电后产生的旋转扭矩,通过齿轮组 2 改变转速和扭矩,把动能传到给卷绕轴 7 上,卷绕轴 7 转动,固接在卷绕轴 7 上的牵引绳 4 ,在卷绕轴 7 的转动过程中牵引绳 4 从两个方向卷绕到卷绕轴,使得牵引绳 4 两头向内收缩,同时压迫舒张弹簧收缩。对外输出两端向内的双向牵引力。使牵引单元的外型由图 3 外观变化成图 4 外观。当电动机 1 反向旋转时。通过齿轮组 2 传动,卷绕轴 7 反向旋转,在此过程中,在舒张弹簧 5 的反弹拉伸作用下,牵引绳 4 反向舒张恢复,使牵引单元由图 4 的牵引收缩状态恢复到初始的舒张状态图 3 ,完成一个动作的周期。电动机 1 的电源供给可由外接引线接入电源或由电池组模块 8 供电,电池组模块 8 使用充电电池采用无线控制和无线充电技术。电源的连接可使用并联也可使用串联,由控制需要决定。
每个上述牵引单元首、尾连接成串链,即相邻牵引单元通过牵引绳 4 连接构成仿肌肉牵引串链;由仿肌肉牵引单元构成的仿肌肉牵引串链,相配合交错排列构成一种电动仿肌肉牵引组织,见图 5 所示是一定数量的牵引单元相互连接的状态。一种电动仿肌肉牵引组织的外表可使用柔韧性好的人造仿生软体材料包覆,使之结构更紧凑,相互不离散。在外覆软体仿生材料的包覆下,就可以模仿出类似动物肌肉组织的仿生肌肉。
综上所述,一种电动仿肌肉牵引组织的制造方法,其采用了由固定在牵引轴上的牵引绳,在牵引轴的转动下实现双向收缩卷绕,产生双向收缩的直线牵引力,并制造成基础的牵引单元,通过牵引单元集群的方式相互协作组成一种电动仿肌肉牵引组织。本发明结合仿生技术、机械、电子控制、等相关方面领域的发展现状,采用单元化的设计能够较方便的批量生产制造。利用现代高新微机电和微加工技术,最终能做成极微小的尺寸,通过集群和模块化的系统生产,一定数量的仿肌肉牵引单元连接起来,就会产生像生物肌肉运动一样的线运动行程,将这些机械式仿肌肉牵引组织,附着在如类人机器人或其它类四肢动物机械的骨骼或骨架上,就可以使类人机器人或其它类四肢动物机械灵活自如的运动。最终实现全仿真机器人的制造。
本发明是运用仿生理念,通过单元设计的方式,利用牵引绳在缠绕轴上的双向缠绕产生的双向收缩运动。运用牵引单元数量叠加的方式,利用现有电动机和齿轮变速装置改变转速扭力。是可以模仿生物肌肉运动的牵引收缩装置。利用电机的正反转和通断电来实现收缩和舒张的功能。在电动机的牵引力不够的情况下还可以使用电机与主轴垂直的蜗轮蜗杆传动机构。在电机牵引力足够的情况下,在牵引单元中也可以取消齿轮组装置,直接由电机驱动,这样可以更方便的控制启停。为保证牵引单元平衡可使用两边对称布置的同轴电动机驱动。随者技术的不断发展在牵引单元的剩余空间布置电池组和无线控制接收系统和无线充电系统。本发明在使用中对应各种环境和场所的应用不需要针对不同领域做专业设计,只需通过改变组织装置中牵引单元的数量,就可以满足各种环境所需的牵引速度、牵引力和所需的牵引行程。甚至在大型的牵引驱动领域也可以实现以牵引单元的集群来增加合力的模式,拖动巨大的物体。
本发明的智能控制方式是这样实现的:由于采用单元设计,运动行程的大小精度是通过改变每个牵引单元的行程实现精度控制,牵引的速度和牵引力的大小由牵引单元的总数量决定,因而控制的方法就是控制每个牵引单元的通断,也就是通常意义上的 0 和 1 的计算机控制理念,可以方便的和计算机通讯,并扩展到各个领域。一种电动仿肌肉牵引组织的每一个动作,就是控制不同位置上、不同数量的牵引单元通断,来实现每个运动行程和位移。在用于机器人手臂时,手臂上的电动仿肌肉牵引组织,可以在手臂的正反面阴阳对称布置,就可产生仿生物运动的效果。对使用本发明的机器手臂的运动控制不需大量而繁琐的编程,就如同电视图像的采集和播放。我们只要对所有运动结果的空间位置进行采集,并存入计算机数据库,在需要的时候只要调用数据库中的对应位置信息,对应的通断控制相应位置上牵引单元数量,借助支撑骨骼的杠杆作用,就可完成对应空间动作,实现机器人各种动作的控制和实施。
一种仿肌肉牵引组织表现出比例恒定的属性,对于各种尺寸大小的仿肌肉牵引组织,其机理都一样,相同的仿肌肉牵引组织,如果其牵引单元的数量能大幅增加,将赋予牵引装置非常大的伸缩力量。本发明可作为一种革新的机电组织大范围应用于各种生产技术领域。

Claims (7)

  1. 一种电动仿肌肉牵引组织,其特征是:由基本牵引单元 (9) 和牵引绳( 4 )连接成一种电动仿肌肉牵引组织;牵引单元由电动机( 1 )、齿轮组( 2 )、壳体 (3) 和舒张弹簧 (5) 构成,通过牵引单元 (9) 壳体( 3 )内电动机 (1) 和齿轮组 (2) 的扭矩变换,由卷绕轴 (7) 转动,通过固定在主卷绕轴 (7) 上牵引绳 (4) 实现双向收缩卷绕,产生双向收缩的直线牵引力,同时压迫舒张弹簧收缩,当电动机 (1) 反向旋转时,通过齿轮组 (2) 传动,卷绕轴 (7) 反向旋转;在此过程中,在舒张弹簧 (5) 的反弹拉伸作用下,牵引绳 (4) 反向舒张恢复,使牵引单元的牵引收缩状态恢复到初始的舒张状态,完成一个动作的周期,使多个牵引单元集群相互协作组成一种电动仿肌肉牵引组织。
  2. 一种电动仿肌肉牵引组织的制造方法,其采用了如权力要求 1 所述:由固定在牵引轴上的牵引绳,在牵引轴的转动下实现双向收缩卷绕,产生双向收缩的直线牵引力,并制造成基础的牵引单元,通过牵引单元集群的方式相互协作组成一种电动仿肌肉牵引组织。
  3. 根据权利要求 1 所述的一种电动仿肌肉牵引组织,其特征是:一个牵引单元的一端与另一个牵引单元的另一端通过牵引绳索相连接,形成长串链结构,通过一定数量的牵引单元连接,由牵引绳索形成的长串链结构叠加在一起,形成一种电动仿肌肉收缩组织。
  4. 根据权利要求 1 所述的一种电动仿肌肉牵引组织,其特征是:在线驱动和直线牵引领域简单的改变使用牵引单元的数量方便的应用于各种机械牵引中。
  5. 根据权利要求 1 所述的一种电动仿肌肉牵引组织,其特征是:一种电动仿肌肉牵引组织的每一个动作控制,通过对所有运动结果的空间位置进行采集,并存入计算机数据库,在需要的时候只要调用数据库中的对应位置信息,对应的通断控制相应位置上牵引单元数量和通断电时间,借助支撑骨骼的杠杆作用,就可完成对应空间动作,实现机器人各种动作的控制和实施。
  6. 根据权利要求 1 所述的一种电动仿肌肉牵引组织,其特征是:每个牵引单元都由自身内部牵引力的作用下,对自身单元进行拉动并使自身产生牵引位移。
  7. 根据权利要求 1 所述的一种电动仿肌肉牵引组织,其特征是:在牵引单元中取消齿轮组装置,直接由电机驱动,这样可以更方便的控制启停。
PCT/CN2015/078228 2014-05-23 2015-05-04 一种电动仿肌肉牵引组织 WO2015176604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420267514.9 2014-05-23
CN201420267514.9U CN203996528U (zh) 2014-05-23 2014-05-23 一种电动仿肌肉牵引组织

Publications (1)

Publication Number Publication Date
WO2015176604A1 true WO2015176604A1 (zh) 2015-11-26

Family

ID=52036572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078228 WO2015176604A1 (zh) 2014-05-23 2015-05-04 一种电动仿肌肉牵引组织

Country Status (2)

Country Link
CN (1) CN203996528U (zh)
WO (1) WO2015176604A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203996528U (zh) * 2014-05-23 2014-12-10 赵德政 一种电动仿肌肉牵引组织
CN105216894A (zh) * 2014-06-02 2016-01-06 赵德政 一种电动仿肌肉牵引组织

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031510A (en) * 1990-03-22 1991-07-16 Welch Allyn, Inc. Evacuation spring for hydraulic/pneumatic muscle
WO2009084305A1 (ja) * 2007-12-27 2009-07-09 Murata Manufacturing Co., Ltd. アクチュエータアレイおよびアクチュエータアレイの駆動方法
WO2009099352A2 (ru) * 2008-02-04 2009-08-13 Vasilii Mihailovich Kuzminyh Искусственная мышца (варианты)
CN202071079U (zh) * 2011-05-17 2011-12-14 赵德政 一种仿生伸缩基体单元
CN202622816U (zh) * 2011-11-06 2012-12-26 赵德政 仿生伸缩组织
CN103878762A (zh) * 2012-12-22 2014-06-25 赵德政 仿生伸缩组织链
CN203996528U (zh) * 2014-05-23 2014-12-10 赵德政 一种电动仿肌肉牵引组织

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031510A (en) * 1990-03-22 1991-07-16 Welch Allyn, Inc. Evacuation spring for hydraulic/pneumatic muscle
WO2009084305A1 (ja) * 2007-12-27 2009-07-09 Murata Manufacturing Co., Ltd. アクチュエータアレイおよびアクチュエータアレイの駆動方法
WO2009099352A2 (ru) * 2008-02-04 2009-08-13 Vasilii Mihailovich Kuzminyh Искусственная мышца (варианты)
CN202071079U (zh) * 2011-05-17 2011-12-14 赵德政 一种仿生伸缩基体单元
CN202622816U (zh) * 2011-11-06 2012-12-26 赵德政 仿生伸缩组织
CN103878762A (zh) * 2012-12-22 2014-06-25 赵德政 仿生伸缩组织链
CN203996528U (zh) * 2014-05-23 2014-12-10 赵德政 一种电动仿肌肉牵引组织

Also Published As

Publication number Publication date
CN203996528U (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2011050758A1 (zh) 一种仿生伸缩基体单元
CN105583821B (zh) 流体驱动多维自适应机器人手装置
CN104942790B (zh) 一种微型软体模块化可重构机器人单元模块
WO2013064108A1 (zh) 仿生伸缩组织
CN101391417B (zh) 一种基于被动运动方式的双足类人机器人
CN111300385B (zh) 一种具有灵活抓取目标功能的多自由度连续型机器人
CN107717961A (zh) 一种基于气缸的仿人型机器人
CN107253188A (zh) 一种基于ipmc驱动的多自由度简易机械手臂
CN106426268B (zh) 一种仿章鱼触手弯曲和扭转的柔性关节
CN109895066A (zh) 基于肌肉非线性特性的人工肌肉模块
Zhao et al. Soft robotics: Research, challenges, and prospects
WO2015176604A1 (zh) 一种电动仿肌肉牵引组织
CN110682305A (zh) 一种仿人型机器人系统
CN202592389U (zh) 一种用于仿生机械和机器人肢体的单向弯曲柔性关节器件
Liu et al. S 2 worm: A fast-moving untethered insect-scale robot with 2-DoF transmission mechanism
Liu et al. Design of a biped robot actuated by pneumatic artificial muscles
CN103878762A (zh) 仿生伸缩组织链
CN208602586U (zh) 便装式仿生腿
CN107598960B (zh) 全自由度易驱动的仿生机械手
CN104149094A (zh) 具有拉小提琴功能的机器人
CN108673492A (zh) 基于网页控制的模块化软体机器人系统
Yang et al. Compliant actuators that mimic biological muscle performance with applications in a highly biomimetic robotic arm
CN105216894A (zh) 一种电动仿肌肉牵引组织
CN203738803U (zh) 具有拉小提琴功能的机器人
KR20050071398A (ko) 신축동작의 라인모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796067

Country of ref document: EP

Kind code of ref document: A1