WO2013064108A1 - 仿生伸缩组织 - Google Patents

仿生伸缩组织 Download PDF

Info

Publication number
WO2013064108A1
WO2013064108A1 PCT/CN2012/084043 CN2012084043W WO2013064108A1 WO 2013064108 A1 WO2013064108 A1 WO 2013064108A1 CN 2012084043 W CN2012084043 W CN 2012084043W WO 2013064108 A1 WO2013064108 A1 WO 2013064108A1
Authority
WO
WIPO (PCT)
Prior art keywords
bionic
telescopic
electromagnetic coil
elastic
housing
Prior art date
Application number
PCT/CN2012/084043
Other languages
English (en)
French (fr)
Inventor
赵德政
Original Assignee
Zhao Dezheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhao Dezheng filed Critical Zhao Dezheng
Publication of WO2013064108A1 publication Critical patent/WO2013064108A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1075Programme-controlled manipulators characterised by positioning means for manipulator elements with muscles or tendons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2002/0894Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5066Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2002/6863Operating or control means magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular

Definitions

  • the invention relates to the field of reciprocating devices for use in the field of microelectromechanical technology and robotics, the field of bionic magnetoelectric muscles and large strokes. Especially the bionic telescopic tissue.
  • reciprocating power machines are mainly driven by electric motors, engines or hydraulic motors.
  • industrial robots are driven by electric motors, which limits the joint movement of the robot arm. Its bionic degree is relatively low, and the walking behavior of humanoid robots or other limb-like animal machines is stiff, which also limits its flexibility.
  • air compressors and pneumatic pistons are required in reciprocating devices that require large strokes.
  • the object of the present invention is to provide a bionic telescopic tissue which can function as a mimicking the movement of animal muscle tissue and is fully applied to humanoid robots or other limb-like animal mechanical techniques.
  • the bionic telescopic structure is composed of a basic unit which is composed of a strut (2), an elastic telescopic casing (3) and an electromagnetic coil (1), which constitutes a telescopic base unit, which simplifies fixing in the electromagnet. Armature or metal conduit.
  • the elastic telescopic housing two sliding columns (2) made of a magnetizable material are slidably engaged with the inner wall of the electromagnetic coil (1) through the front and rear ends, and the front and rear of the elastic expansion housing (3) are connected.
  • An infinite number of units can be connected to form a bionic muscle tissue device or a reciprocating device.
  • Bionic telescopic structure characterized by: a basic unit of a bionic stretchable structure composed of a strut (2) elastic expansion shell (3) and an electromagnetic coil (1), and two reverse-moving slide columns composed of an easily magnetizable material ( 2)
  • the inner wall of the electromagnetic coil (3) slides in both directions, and the front and rear ends of the elastic expansion housing (3) are respectively fixed to the top end of the sliding column (2), and the elastic expansion housing (3) is fixed to the electromagnetic coil (1)
  • the electromagnetic coil (1) is covered by the elastic telescopic housing (2), and the two ends of the lead wire of the electromagnetic coil (1) are connected in parallel or in series with the positive and negative stages of the power supply.
  • the front and rear ends of the adjacent bionic telescopic tissues are matched with each other, and the bionic telescopic chains are formed by soft connection or fixation, and the bionic telescopic chains are formed by the staggered arrangement of the bionic telescopic chains.
  • the basic unit of a bionic telescopic tissue consists of two reversibly movable sliding columns ( 2 ) and elastically coupled housings ( 3 ) joined together to each other to form a bionic telescopic structure.
  • the principle of the invention is: in the bionic telescopic tissue unit, the magnetic force generated by the electromagnetic column by the sliding column (2) composed of the easy magnetized material slides back and forth in the coil skeleton, and the two sliding columns (2) are magnetically attracted to each other to exert electromagnetic force.
  • the device acts both statically and statically. Similar to the stretching function of muscle cells, mimicking the stretching mode of each muscle cell, the cells are clustered by connection, and the clusters cooperate with each other to form a reciprocating telescopic bionic telescopic tissue, which can be applied in the field of humanoid robots or other kinds of extremities. among.
  • the invention can play the function of simulating the movement and contraction of the animal muscle tissue, and greatly simplifies the production process, and simultaneously moves in two directions, thereby forming a completely approximate biomimetic unit, which can be widely applied to mechanical and bionic tissue devices requiring reciprocating motion.
  • FIG. 1 is a schematic cross-sectional structural view of a basic unit of each bionic telescopic tissue of the present invention
  • FIG. 2 is a schematic view showing the structure of a bionic telescopic structure composed of a bionic base chain and a bionic telescopic chain which are connected by a telescopic base unit.
  • the bionic telescopic tissue is composed of a unit consisting of a sliding column ( 2 ), an elastic telescopic housing ( 3 ) and an electromagnetic coil ( 1
  • the telescopic basic unit is formed.
  • the elastic telescopic housing (3) two oppositely moving sliding columns (2) composed of a magnetizable material slide on the inner wall of the electromagnetic coil (1), and the elastic expansion housing (3)
  • the front and rear ends are respectively fixed to the top end of the sliding column (2), the elastic expansion housing (3) is fixed on the coil (1); the electromagnetic coil (1) is covered by the elastic expansion housing (3), and the electromagnetic coil (1)
  • Both positive and negative ends are matched with the positive and negative power supplies, and connected in parallel or in series. Controlled by an intelligent control system.
  • Each of the above-mentioned telescopic base units is connected in a row and a tail, and an elastic telescopic housing of the adjacent telescopic base unit (3)
  • the flexible materials cooperate with each other to form a bionic telescopic chain; a plurality of bionic telescopic chains cooperate to form a bionic telescopic structure, and a telescopic base unit of a bionic telescopic chain is staggered with respect to another telescopic base unit of the bionic telescopic chain, and can pass
  • the artificial bionic soft materials with good flexibility and toughness are connected to make the structure more compact and not discrete. Forming a map 2 bionic telescopic matrix structure.
  • connection between the front end of the strut (2) of a telescopic base unit and the elastic joint (3) at the joint (4) Knuck or nested connections that are hooped or glued or threaded or spliced or unidirectionally inserted may be used.
  • the sliding column (2) can be made of iron metal, easily magnetized material, permanent magnet material, and various magnetic materials.
  • Elastic telescopic housing (3) Made of elastic, soft, and tough materials. They are composed of rubber, textile materials, plastics, soft conductive materials, soft magnetically permeable materials or soft conductive materials. When a conductive soft material is used, it is separated by an insulating material in the middle, and can replace the positive and negative wires to form a power supply.
  • the core of the electromagnetic coil (1) is made of a material with low electrical resistance and is copper or silver or a superconductor.
  • Elastic telescopic housing of the invention (3) The whole is made of elastic rubber, and a plurality of bionic telescopic tissues are connected to form a bionic tissue similar to muscle tissue.
  • the present invention combines bionic technology, with the development of related fields such as mechanical, electromagnetic, electronic control, lubrication structure, etc., using modern high-tech micro-electromechanical and micro-machining technology, and finally can be made into a size below micron, thousands Tens of thousands of bionic telescopic tissues are connected to form a similar muscle tissue, resulting in a large mechanical movement, attaching these mechanical bionic telescopic tissues to a bionic joint or metal skeleton of a humanoid robot or other extremity machine.
  • the bionic telescopic tissue releases an electric current after completing an action, and is composed of an elastic telescopic housing ( 3)
  • the elastic force or another set of bionic telescopic tissue restores it, and the mechanical arm assumes the role of a lever. It is possible to make humanoid robots or other extremities machinery more flexible and form a humanoid robot similar to humans.
  • the invention realizes various movements by controlling the current and voltage of the current and the parallel connection of the circuit, and even if the individual expansion base unit fails, the overall movement and movement are not affected.
  • the control of current and voltage by electrical signals similar to the response to nerve stimulation, coupled with large-scale integrated circuit intelligent control, achieves many traction control constraints of bionic telescopic tissue.
  • Each bionic telescopic organization can accurately control the force it exerts by simply changing the number of its length and the number of widths.
  • the basic unit is connected to each other by a flexible connection, and can also be used for the manufacture of an artificial heart, solving the problem that the artificial heart is too large to be put into the human body, and the wireless power supply device can realize the artificial imitation of the human body. heart.
  • the two sliding ends of the two units can be hard-connected into one unit, and the number of infinite expansions can form a large piston or mechanical drag device.
  • the bionic telescopic tissue exhibits a constant proportion of properties. For all sizes of bionic telescopic tissue, the mechanism is the same. The same bionic telescopic tissue, if the number of bionic telescopic structures can be greatly increased, will give the robotic arm a very large The strength of the telescopic.
  • the reciprocating machine driven by the electric motor can be improved, and the present invention can be widely applied to various fields of production technology as an innovative MEMS.
  • the parts of the bionic unit that are not utilized by the space, the charging and discharging capacitors, the battery and the wireless power supply device can be fabricated into a completely similar biomimetic muscle and biomimetic muscle cell unit. Therefore, it truly solves the need for reciprocating devices in the field of micro-electromechanics, robotics, and machinery, thereby creating working robots and humanoid robots, and truly solving the problem of human labor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Therapy (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种仿生伸缩组织,由滑柱(2)、弹性伸缩壳体(3)和电磁线圈(1)构成可产生双向收缩的仿生伸缩单元,在弹性伸缩壳体(3)内,由易磁化材料构成的两个滑柱(2)在电磁线圈(1)内管壁滑动,并反向运动相互吸引配合。弹性伸缩壳体(3)前、后相互连接,弹性伸缩壳体(3)的拉伸长度与滑柱(2)在导管内往复行程相配合;电磁线圈(1)被外部的弹性伸缩壳体(3)罩住,电磁线圈(1)的引出线两端与电源正、负极对应配合串联或并联。本发明可模仿动物肌肉组织伸缩而运动,使类人机器人等四肢机械的活动更灵活。

Description

仿生伸缩组织 说明书
技术领域
本发明涉及应用于微机电技术领域和机器人领域,仿生磁电肌肉领域和大行程的往复运动装置领域。特别是仿生伸缩组织。
背景技术
现有诸多往复动力机械主要依靠电动机、发动机或液压马达来驱动,特别在许多工厂中的工业机器人都依靠电机来驱动,这使得机器人的机械臂的关节活动方式受到限制。其仿生程度比较低,类人机器人或其它类四肢动物机械等行走活动方式僵硬,也使其灵活性受到限制。特别是需大行程的往复运动装置中需配备空压机和气动活塞。
发明内容
本发明的目的在于提供一种仿生伸缩组织,它能够起到模仿动物肌肉组织伸缩而运动的功能,充分应用于类人机器人或其它类四肢动物机械技术中。
本发明的目的是这样实现的:仿生伸缩组织由基本单元构成,单元由滑柱( 2 )、弹性伸缩壳体( 3 )和电磁线圈( 1 )构成伸缩基体单元,简化了电磁铁中的固定衔铁或金属导管。在弹性伸缩壳体内,由易磁化材料构成的两个滑柱( 2 )经前后端伸入电磁线圈( 1 )的内壁滑动配合相互吸引,弹性伸缩壳体( 3 )的前、后相连接,并可无限数量的单元连接,形成仿生肌肉组织装置或往复运动装置。仿生伸缩组织,其特征是:滑柱( 2 )弹性伸缩壳体( 3 )和电磁线圈( 1 )构成的仿生伸缩组织的基本单元,由易磁化材料构成的两个反向运动的滑柱( 2 )在电磁线圈( 3 )内壁双向滑动运行,弹性伸缩壳体( 3 )前、后端分别固接在滑柱( 2 )的顶端,弹性伸缩壳体( 3 )固接在电磁线圈( 1 )上;电磁线圈( 1 )被弹性伸缩壳体( 2 )罩住,电磁线圈( 1 )的引出线两端与电源正、负级对应配合并联或串联连接。相邻的仿生伸缩组织前后端相互配合,柔接或固接构成仿生伸缩链,由仿生伸缩链相配合交错排列形成仿生伸缩组织。一个仿生伸缩组织的基本单元由两个可反向运动的滑柱( 2 ),和连接在一起的弹性伸缩壳体( 3 ),相互配合柔接固接成仿生伸缩组织。
本发明原理为:在仿生伸缩组织单元中,由易磁化材料构成的滑柱( 2 )被电磁线圈产生的磁力在线圈骨架中来回滑动,两个滑柱( 2 )异磁性相吸,发挥电磁装置动静两衔铁的全部作用。类似于肌肉细胞的伸缩功能,模仿每个肌肉细胞的伸缩方式,通过连接使单元集群,同时集群相互协作,组成往复伸缩的仿生伸缩组织,可应用在类人机器人或其它类四肢动物机械技术领域当中。本发明能够起到模仿动物肌肉组织伸缩而运动的功能,并大大简化生产工艺,同时双向运动,从而形成完全近似的仿生单元,可广泛应用于需往复运动的机械和仿生组织装置中。
附图说明
图 1 是本发明每个仿生伸缩组织基本单元剖视结构示意图;
图 2 是本发明由伸缩基体单元连接构成的仿生伸缩链,和仿生伸缩链组成的仿生伸缩组织的结构示意图。
具体实施方式
仿生伸缩组织由单元构成,单元由滑柱( 2 )、弹性伸缩壳体( 3 )和电磁线圈( 1 )构成伸缩基本单元,在弹性伸缩壳体( 3 )内,由易磁化材料构成的两个反向运动的滑柱( 2 )在电磁线圈( 1 )内壁滑动运行,弹性伸缩壳体 (3) 前、后端分别固接在滑柱 (2) 的顶端,弹性伸缩壳体 (3) 固接在线圈 (1) 上;电磁线圈 (1) 被弹性伸缩壳体 (3) 罩住,电磁线圈 (1) 的正负两端与电源正、负级对应配合,并联或串联连接。由智能控制系统控制。
每个上述伸缩基体单元首、尾连接成排,与相邻伸缩基体单元其弹性伸缩壳体 (3) 的柔性材料相互配合柔性连接构成仿生伸缩链;由多个仿生伸缩链相配合形成仿生伸缩组织,一仿生伸缩链的伸缩基体单元相对于另一仿生伸缩链的伸缩基体单元交错排列,并可通过柔韧性韧性较好的人造仿生软体材料相连接,使之结构更紧凑,相互不离散。形成图 2 的仿生伸缩基体组织。
一个伸缩基体单元的滑柱 (2) 前端与弹性伸缩壳体 (3) 相互连接处 (4) 的连接。可使用箍接或胶接或螺纹连接或榫接或单向插入的卡接或嵌套连接。
滑柱 (2) 可采用铁金属、易磁化的材料、永磁材料、和各种产生磁性的原料等。
弹性伸缩壳体 (3) 由有弹性的、柔软的、有韧性的材料构成。它们是橡胶、纺织材料、塑料、柔软的导电材料、柔软的导磁材料或柔软的导电材料构成。使用导电的柔软材料时,在中间由绝缘材料分隔开,可代替正负两根导线形成供电电源。弹性伸缩壳体 3 前、后端,在生产加工时即可将两个或多个壳体制造成连接好的整体。电磁线圈( 1 )的线芯由电阻低的材料构成,是铜或银或超导体。
本发明弹性伸缩壳体( 3 )整体采用弹性橡胶制造,多个仿生伸缩组织连接就会形成类似肌肉组织的仿生伸缩组织。
综上所述,本发明结合仿生技术,随机械、电磁、电子控制、润滑结构等相关方面领域的发展,利用现代高新微机电和微加工技术,最终能做成微米级以下的尺寸,成千上万的仿生伸缩组织连接起来,就会形成近似肌肉组织,产生较大的机械运动行程,将这些机械式仿生伸缩组织附着在类人机器人或其它类四肢动物机械的仿生关节或金属骨架上,仿生伸缩组织完成一个动作后释放电流,由弹性伸缩壳体( 3 )的弹力或另一组仿生伸缩组织将其复原,机械臂则在其中承担杠杆的作用。就可以使类人机器人或其它类四肢动物机械更加灵活自如,形成与人近似的类人机器人。
本发明通过通电电流和电压和电路串并联的控制实现各种运动,即便是有个别伸缩基体单元出现故障,也不会影响整体动作和运动。通过电信号对电流电压的控制,类似对神经刺激的响应,加上大规模的集成电路智能控制,实现众多仿生伸缩组织相互牵引控制制约。每股仿生伸缩组织只须改变其长度的数量、和宽度的数量就能够准确地控制其施加的力量。
基本单元相互之间的连接采用柔性连接,也可用于人造心脏的制造,解决现今人造心脏太大不能放入人体的问题,使用无线供电装置则可实现完全仿生意义上的、植入人体的人造心脏。用于机械装置往复运动领域也可将两单元的两个滑柱顶端硬连接成一个整体,随数量的无限扩大,可形成大型的活塞或机械拖动装置。同时,仿生伸缩组织表现出比例恒定的属性,对于各种尺寸大小的仿生伸缩组织,其机理都一样,相同的仿生伸缩组织,如果其仿生伸缩组织的数量能大幅增加,将赋予机械臂非常大的伸缩力量。因此,可改进用电动马达驱动的往复运动机械,本发明可作为一种革新的微机电组织大范围应用于各种生产技术领域。随生产技术和加工技术的发展,在仿生单元中不被利用空间的部位,置入充放电电容、电池和无线供电装置,可制造成完全近似的仿生肌肉和仿生肌细胞单元。从而真正解决微机电领域、机器人领域、和机械领域需往复运动的装置,从而制造出工作机器人和类人机器人,真正解决人类的劳作问题。

Claims (3)

  1. 仿生伸缩组织由仿生伸缩单元构成其特征是:滑柱( 2 )弹性伸缩壳体( 3 )和电磁线圈( 1 )构成的仿生伸缩组织,由易磁化材料构成的两个反向运动的滑柱( 2 )在电磁线圈( 1 )内壁双向滑动运行,弹性伸缩壳体( 3 )前、后端分别固接在滑柱( 2 )的顶端,弹性伸缩壳体( 3 )固接在电磁线圈( 1 )上;电磁线圈( 1 )被弹性伸缩壳体( 3 )罩住,电磁线圈( 1 )的引出线两端与电源正、负级对应配合并联或串联连接。
  2. 根据权利要求 1 所述的仿生伸缩组织,其特征是:相邻的仿生伸缩单元前后端相互配合,柔接或固接构成仿生伸缩链,由仿生伸缩链相配合交错排列形成仿生伸缩组织。
  3. 根据权利要求 1 所述的仿生伸缩组织,其特征是:一个仿生伸缩组织由两个可反向运动的滑柱( 2 ),和连接在一起的弹性伸缩壳体( 3 ),相互配合柔接固接成仿生伸缩组织。
PCT/CN2012/084043 2011-11-06 2012-11-04 仿生伸缩组织 WO2013064108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011204338447 2011-11-06
CN2011204338447U CN202622816U (zh) 2011-11-06 2011-11-06 仿生伸缩组织

Publications (1)

Publication Number Publication Date
WO2013064108A1 true WO2013064108A1 (zh) 2013-05-10

Family

ID=47376055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084043 WO2013064108A1 (zh) 2011-11-06 2012-11-04 仿生伸缩组织

Country Status (2)

Country Link
CN (1) CN202622816U (zh)
WO (1) WO2013064108A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031059A1 (en) * 2013-08-08 2016-06-15 Clarus Technologies Pty Ltd. Bionic muscle
CN107323553A (zh) * 2017-07-18 2017-11-07 佛山科学技术学院 蚯蚓仿生机器人系统
CN108927787A (zh) * 2017-05-27 2018-12-04 魏相东 人工肌肉及仿真手臂
CN112223259A (zh) * 2020-09-17 2021-01-15 浙江大学 基于折纸理论的高收纳率仿生气动软体蠕虫机器人

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203996528U (zh) * 2014-05-23 2014-12-10 赵德政 一种电动仿肌肉牵引组织
CN108714893B (zh) * 2018-06-29 2023-06-27 深圳大学 一种仿生肌肉条索单元及仿生肌肉系统
CN109262600B (zh) * 2018-10-17 2022-02-22 尉长虹 一种可伸缩软体机械装置
CN111301551B (zh) * 2020-02-22 2021-05-25 杭州电子科技大学 一种基于折纸艺术的磁棒架构全磁控机器人及其磁控方法
CN111360801B (zh) * 2020-03-20 2021-04-27 哈尔滨工程大学 基于电磁人工肌肉的仿鳗鱼机器人及其工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2241613Y (zh) * 1995-06-07 1996-12-04 中国人民解放军89000部队 一种人工关节驱动器
JP2001300881A (ja) * 2000-04-20 2001-10-30 Juki Corp チップマウンタのチップ搭載用ヘッド
JP2006296018A (ja) * 2005-04-06 2006-10-26 Atsuo Nozaki 磁気による非接触駆動装置及びこれに用いるマグネット輪
CN101717064A (zh) * 2009-10-27 2010-06-02 赵德政 一种仿生伸缩基体单元
JP2010220684A (ja) * 2009-03-19 2010-10-07 Olympus Corp マニピュレータの関節の変位量検出機構
CN202071079U (zh) * 2011-05-17 2011-12-14 赵德政 一种仿生伸缩基体单元

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2241613Y (zh) * 1995-06-07 1996-12-04 中国人民解放军89000部队 一种人工关节驱动器
JP2001300881A (ja) * 2000-04-20 2001-10-30 Juki Corp チップマウンタのチップ搭載用ヘッド
JP2006296018A (ja) * 2005-04-06 2006-10-26 Atsuo Nozaki 磁気による非接触駆動装置及びこれに用いるマグネット輪
JP2010220684A (ja) * 2009-03-19 2010-10-07 Olympus Corp マニピュレータの関節の変位量検出機構
CN101717064A (zh) * 2009-10-27 2010-06-02 赵德政 一种仿生伸缩基体单元
CN202071079U (zh) * 2011-05-17 2011-12-14 赵德政 一种仿生伸缩基体单元

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031059A1 (en) * 2013-08-08 2016-06-15 Clarus Technologies Pty Ltd. Bionic muscle
EP3031059A4 (en) * 2013-08-08 2017-05-03 Clarus Technologies Pty Ltd. Bionic muscle
US10039632B2 (en) 2013-08-08 2018-08-07 Clarus Technologies Pty. Ltd. Bionic muscle
CN108927787A (zh) * 2017-05-27 2018-12-04 魏相东 人工肌肉及仿真手臂
CN107323553A (zh) * 2017-07-18 2017-11-07 佛山科学技术学院 蚯蚓仿生机器人系统
CN112223259A (zh) * 2020-09-17 2021-01-15 浙江大学 基于折纸理论的高收纳率仿生气动软体蠕虫机器人

Also Published As

Publication number Publication date
CN202622816U (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2013064108A1 (zh) 仿生伸缩组织
WO2011050758A1 (zh) 一种仿生伸缩基体单元
Kheirikhah et al. A review of shape memory alloy actuators in robotics
CN107972754B (zh) 一种形状记忆合金驱动的软体爬行机器人
CN105479463B (zh) 一种基于液态金属电磁致动的可变形柔性机器人
CN102551918B (zh) 触电伸缩仿肌肉运动装置
CN202952264U (zh) 仿生伸缩组织链
CN203804999U (zh) 形状记忆合金弹簧驱动的柔性机械臂
CN106041913A (zh) 一种基于磁斥力的仿生柔性驱动机器人
Banerjee et al. Electromagnetically responsive soft-flexible robots and sensors for biomedical applications and impending challenges
Bogue Artificial muscles and soft gripping: a review of technologies and applications
KR101855359B1 (ko) 손가락 재활 시스템
CN102653097B (zh) 一种基于电磁力学原理的仿生肌单元及装置
CN202071079U (zh) 一种仿生伸缩基体单元
Zhang et al. Research on soft manipulator actuated by shape memory alloy (SMA) springs
CN108453721B (zh) 可控变刚度柔性驱动器
CN103878762A (zh) 仿生伸缩组织链
CN109531540A (zh) 基于单片机控制的电磁式软体运动机器人及其控制方法
Angatkina et al. A metameric crawling robot enabled by origami and smart materials
Runge et al. Actuation principles for the bioinspired soft robotic manipulator spineman
CN113070895A (zh) 一种磁动软体机械手
CN107097215B (zh) 一种弹性机械肌肉群
CN205734997U (zh) 一种机器人电磁拉线动力装置
WO2015176604A1 (zh) 一种电动仿肌肉牵引组织
Bar-Cohen Artificial muscles based on electroactive polymers as an enabling tool in biomimetics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844876

Country of ref document: EP

Kind code of ref document: A1