WO2015174413A1 - Retreaded tire - Google Patents

Retreaded tire Download PDF

Info

Publication number
WO2015174413A1
WO2015174413A1 PCT/JP2015/063635 JP2015063635W WO2015174413A1 WO 2015174413 A1 WO2015174413 A1 WO 2015174413A1 JP 2015063635 W JP2015063635 W JP 2015063635W WO 2015174413 A1 WO2015174413 A1 WO 2015174413A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
tread
circumferential main
circumferential
Prior art date
Application number
PCT/JP2015/063635
Other languages
French (fr)
Japanese (ja)
Inventor
敬史 郷原
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201580025177.XA priority Critical patent/CN106457897B/en
Publication of WO2015174413A1 publication Critical patent/WO2015174413A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/02Replaceable treads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply

Definitions

  • the present invention relates to a retreaded tire, and more particularly to a retreaded tire that can improve wet performance.
  • the present invention has been made in view of the above, and an object thereof is to provide a retread tire that can improve wet performance.
  • a retread tire according to the present invention includes a tread and a base tire, and the tread has at least three circumferential main grooves extending in the tire circumferential direction, and the circumferential main groove.
  • a plurality of land portions divided into a tread surface, and the base tire includes a carcass layer and a belt layer disposed on the outer side in the tire radial direction of the carcass layer, and the belt layer
  • a retread tire having a pair of cross belts and a belt cover disposed on the outer side in the tire radial direction of the pair of cross belts, wherein the outer circumferential main groove is the outermost circumferential main
  • the tread width TW and the tire total width SW have a relationship of 0.65 ⁇ TW / SW ⁇ 0.85
  • the tire cross-section height SH has a relationship of 0.45 ⁇ SDH / SH ⁇ 0.
  • the ratio TW / SW and the ratio SDH / SH that define the profile are optimized, there is an advantage that the ground contact shape of the tire is optimized and the wet performance of the tire is improved. Further, the land portion on the inner side in the tire width direction adjacent to the outermost circumferential main groove is provided with one circumferential narrow groove and a plurality of lug grooves, thereby ensuring the land area of the land portion. Drainage is improved. Thereby, there exists an advantage which the wet performance of a tire improves further.
  • FIG. 1 is a cross-sectional view in the tire meridian direction showing a retread tire according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing the operation of the retread tire described in FIG. 1.
  • FIG. 3 is a plan view showing a tread surface of the retread tire described in FIG. 1.
  • FIG. 4 is an enlarged view showing a main part of the retread tire described in FIG. 1.
  • FIG. 5 is an enlarged view showing a main part of the retread tire described in FIG. 1.
  • FIG. 6 is an enlarged view showing a main part of the retread tire described in FIG. 1.
  • FIG. 7 is an explanatory view showing a modified example of the retread tire described in FIG. 1.
  • FIG. 8 is a chart showing the results of the performance test of the retreaded tire according to the embodiment of the present invention.
  • FIG. 9 is a chart showing the results of the performance test of the retreaded tire according
  • FIG. 1 is a cross-sectional view in the tire meridian direction showing a retread tire according to an embodiment of the present invention.
  • the same figure has shown sectional drawing of the one-side area
  • the figure has shown the retreaded tire for light trucks as an example.
  • the cross section in the tire meridian direction means a cross section when the tire is cut along a plane including the tire rotation axis (not shown).
  • Reference sign CL denotes a tire equator plane, which is a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis.
  • symbol T is a tread end.
  • the tire width direction means a direction parallel to the tire rotation axis
  • the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the rehabilitated tire 10 is a tire that is reused by replacing the tread rubber of a tire whose remaining groove has reached the end of its life. For example, it is used for a heavy load tire, a light truck tire, or the like.
  • the retread tire 10 includes a tread 20 and a base tire 30.
  • the tread 20 is a rubber member that constitutes the tread portion, and is newly added when the retread tire 10 is manufactured.
  • the base tire 30 is formed by cutting off part of the tread rubber and part of the sidewall rubber of the tire whose remaining grooves have reached the end of life, and buffing the outer peripheral surface thereof.
  • the retread tire 10 is manufactured by a remolding method or a precure method, as will be described later.
  • the retread tire 10 includes a pair of bead cores 11 and 11, a pair of bead fillers 12 and 12, a carcass layer 13, and a plurality of belt plies 141 to 143 (in FIG. 1, a pair of bead cores 11 and 11).
  • Belt layer 14 formed by laminating cross belts 141 and 142 and belt cover 143), tread rubber 15 constituting a tread portion, side wall rubbers 16 and 16 constituting left and right sidewall portions, and left and right bead portions.
  • Rim cushion rubbers 17 and 17 are provided.
  • the tread rubber 15 includes a newly added tread 20 and a residual tread 301 of the base tire 30. Further, the sidewall rubber 16 and the rim cushion rubber 17 are included in the base tire 30.
  • the circumferential main groove 22 on the outermost side in the tire width direction is referred to as the outermost circumferential main groove.
  • the land portion 32 on the outer side in the tire width direction adjacent to the outermost circumferential main groove is referred to as a shoulder land portion.
  • the tread 20 is unvulcanized rubber at the material stage, and constitutes the tread portion of the retread tire 10 at the product stage. Further, the tread 20 can be made of, for example, a strip-shaped unvulcanized rubber, a plate-shaped unvulcanized rubber, or the like.
  • Such remolded retread tire 10 is manufactured by the following process (not shown).
  • the tread rubber of the tire whose remaining groove has reached the end of its life is cut out, and the outer peripheral surface thereof is buffed to obtain the base tire 30.
  • This buffing process is performed in a state where an internal pressure is applied to the tire.
  • the tread 20 is disposed on the outer peripheral surface of the base tire 30.
  • the tread 20 may be formed by (a) strip-shaped unvulcanized rubber being spirally wound around the outer peripheral surface of the base tire 30, or (b) a plate-shaped rubber member serving as a basis.
  • the tread 20 may be formed by being wound around the outer peripheral surface of the base tire 30 and spirally winding a strip-like unvulcanized rubber around the outer periphery. In the case of the latter (b), the time required for the installation process of the tread 20 can be shortened compared to the case of the former (a).
  • a vulcanization process is performed.
  • the assembly of the tread 20 and the base tire 30 is filled into a tire vulcanization mold (not shown) having a tire molding die.
  • the assembly of the tread 20 and the base tire 30 is expanded radially outward by the pressurizing device, and the tread 20 is pressed against the tire molding die. Further, the assembly of the tread 20 and the base tire 30 is heated, so that the tread 20 is vulcanized and the shape of the tire molding die is transferred to the tread 20. Thereafter, the vulcanized tire is taken out from the tire vulcanization mold.
  • the tread 20 is a tread rubber (precure tread) that has been vulcanized in the material stage, and constitutes a tread portion of the retreaded tire 10. Further, the tread 20 has a plate-like structure or an annular structure, and has a tread pattern when the retread tire 10 is new on its outer peripheral surface in advance.
  • the retread tire 10 by the precure method is manufactured by the following process (not shown).
  • the tread rubber of the tire whose remaining groove has reached the end of its life is cut out, and the outer peripheral surface thereof is buffed to obtain the base tire 30.
  • This buffing process is performed in a state where an internal pressure is applied to the tire.
  • cushion rubber (not shown) is pasted over the entire circumference of the outer peripheral surface of the base tire 30.
  • the cushion rubber is a sheet-like unvulcanized rubber at the material stage.
  • the tread 20 is disposed on the outer peripheral surface of the base tire 30 and bonded to the base tire 30 via cushion rubber.
  • the tread 20 when the tread 20 has a plate-like structure, the tread 20 is wound around the base tire 30 and is fixed by temporarily fixing both ends by a fixing member (not shown).
  • the tread 20 in the configuration in which the tread 20 has an annular structure, the tread 20 is expanded and contracted by a dedicated expansion / contraction diameter device (not shown) and is fitted to the outer periphery of the base tire 30.
  • a vulcanization process is performed.
  • the assembly of the tread 20 and the base tire 30 is housed in a vulcanization can (not shown), the air in the vulcanization can is sucked in vacuum, and then heated and pressurized.
  • the cushion rubber is vulcanized. Thereafter, the vulcanized tire is taken out from the vulcanization can.
  • retreaded tires use tires whose remaining grooves have reached the end of their life as stand tires, so the tire profile tends to be rounded as a whole and the tread radius tends to be small. For this reason, there is a problem that the contact area of the shoulder region of the tread portion is insufficient and the wet performance of the tire is deteriorated.
  • the retreaded tire 10 employs the following configuration in order to improve wet performance particularly in a small truck tire.
  • the tread width TW and the total tire width SW have a relationship of 0.65 ⁇ TW / SW ⁇ 0.85. Further, the ratio TW / SW is preferably in the range of 0.70 ⁇ TW / SW ⁇ 0.80, and more preferably in the range of 0.73 ⁇ TW / SW ⁇ 0.78.
  • the tread width TW is measured as a linear distance between both ends of the tread pattern portion of the tire when the tire is mounted on a specified rim to apply a specified internal pressure and is in an unloaded state.
  • the total tire width SW is measured as the linear distance between the sidewalls (including all parts such as the pattern on the tire side and characters) when the tire is mounted on the specified rim to provide the specified internal pressure and the load is not loaded. Is done.
  • the distance SDH in the tire radial direction from the measurement point P of the rim diameter to the tire maximum width position Q and the tire cross-section height SH have a relationship of 0.45 ⁇ SDH / SH ⁇ 0.65.
  • the ratio SDH / SH is preferably in the range of 0.50 ⁇ SDH / SH ⁇ 0.60, and more preferably in the range of 0.52 ⁇ SDH / SH ⁇ 0.58.
  • the tire maximum width position Q is the maximum width position of the tire cross-sectional width specified by JATMA. Note that the tire cross-sectional width is measured as a no-load state while applying a specified internal pressure by mounting the tire on a specified rim.
  • the tire cross-section height SH is a distance that is 1 ⁇ 2 of the difference between the tire outer diameter and the rim diameter.
  • the tire cross-section height SH is measured by attaching the tire to the specified rim and applying the specified internal pressure, as well as no load.
  • FIG. 2 is an explanatory view showing the operation of the retreaded tire shown in FIG. The figure shows the evaluation results of the test tires of the conventional example and Example A.
  • the evaluation results in Fig. 2 were obtained as follows. First, the maximum principal strain [%] of the peripheral rubber at the end portions of the cross belts 141 and 142 is measured while a tire is mounted on a prescribed rim and a prescribed internal pressure is applied and no load is applied. In addition, the fluctuation range of the main strain is the main strain [%] of the peripheral rubber at the ends of the cross belts 141 and 142 when the tire is mounted on the specified rim and the specified internal pressure and the specified load are applied. Is measured at each position in the tire circumferential direction, and is calculated as the difference between the maximum value and the minimum value of these measured values. Then, based on the calculation result, index evaluation using the conventional example as a reference (100) is performed.
  • the ratio TW / SW and the ratio SDH / SH are optimized, the profile from the tire equatorial plane CL to the shoulder becomes flat, and the ground contact shape of the tire approaches a rectangle. Then, the contact area of the tread shoulder region at the time of tire contact is secured, and the wet performance of the tire is improved.
  • FIG. 3 is a plan view showing a tread surface of the retread tire described in FIG. 1.
  • the figure shows a tread pattern of an all-season tire.
  • the tire circumferential direction refers to the direction around the tire rotation axis.
  • symbol T is a tire grounding end.
  • the retread tire 10 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 and 32 partitioned by the circumferential main grooves 21 and 22 in a tread portion. (See FIG. 3).
  • the left and right circumferential main grooves 22 and 22 on the outermost side in the tire width direction are referred to as outermost circumferential main grooves.
  • the tread portion center region and the tread portion shoulder region are defined with the left and right outermost circumferential main grooves 22 and 22 as boundaries.
  • the circumferential main groove is a circumferential groove having a wear indicator indicating the end of wear, and generally has a groove width of 5.0 [mm] or more and a groove depth of 7.5 [mm] or more.
  • the groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure.
  • the groove width is based on the intersection of the tread surface and the extension line of the groove wall in a cross-sectional view in which the groove length direction is a normal direction. Measured.
  • the groove width is measured with reference to the center line of the amplitude of the groove wall.
  • the groove depth is measured as the maximum value of the distance from the tread surface to the groove bottom in an unloaded state in which the tire is mounted on the specified rim and filled with the specified internal pressure. Moreover, in the structure which a groove
  • the stipulated rim means “applied rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • the specified internal pressure means “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATIONLPRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load means the “maximum load capacity” defined by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFUREATION PRESSURES” prescribed by TRA, or “LOAD CAPACITY” prescribed by ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • the circumferential main grooves 21 and 22 may have a straight shape, or may have a zigzag shape or a wavy shape.
  • the circumferential main groove 21 on the tire equatorial plane CL has a zigzag shape formed by alternately connecting long portions and short portions having different inclination angles in the tire circumferential direction.
  • the left and right outermost circumferential main grooves 22, 22 have a straight shape.
  • the groove width W1 of the circumferential main groove 21 closest to the tire equatorial plane CL and the tread width TW have a relationship of 0.05 ⁇ W1 / TW ⁇ 0.09.
  • the groove width W2 of the outermost circumferential main groove 22 and the tread width TW have a relationship of 0.06 ⁇ W2 / TW ⁇ 0.10.
  • the circumferential main groove 21 closest to the tire equatorial plane CL corresponds to the circumferential main groove 21 in the configuration having the circumferential main groove 21 on the tire equatorial plane CL (see FIG. 3).
  • the circumferential main groove 21 closer to the tire equatorial plane CL among the left and right circumferential main grooves defining the land portion corresponds.
  • the three circumferential main grooves 21 and 22 are arranged symmetrically about the tire equatorial plane CL.
  • the wear forms in the left and right regions with the tire equatorial plane CL as a boundary are uniformed, This is preferable in that the wear life of the tire is improved.
  • the present invention is not limited to this, and the circumferential main grooves 21 and 22 may be arranged asymmetrically about the tire equatorial plane CL (not shown). Further, the circumferential main groove 21 may be disposed at a position deviated from the tire equatorial plane CL (not shown).
  • circumferential main groove 21 is disposed on the tire equatorial plane CL.
  • the present invention is not limited to this, and four or more circumferential main grooves may be arranged (not shown). For this reason, the land part 31 may be arrange
  • FIG. 4 shows an enlarged plan view of the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22.
  • FIG. 5 shows a cross-sectional view in the tire meridian direction of one side region as the tire equatorial plane CL.
  • FIG. 6 shows an enlarged cross-sectional view of the circumferential main grooves 21 and 22.
  • the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 has one circumferential narrow groove 311 and a plurality of lug grooves 312.
  • the retread tire 10 has a point-symmetric tread pattern, so the left and right outermost circumferential main grooves 22, 22 each have one circumferential narrow groove 311 and a plurality of lug grooves 312. ing. Thereby, the groove area of the land part 31 increases and the drainage property is improved.
  • the circumferential narrow groove 311 is a narrow groove extending continuously over the entire circumference of the tire.
  • the circumferential narrow groove 311 may have a straight shape, or may have a zigzag shape or a wavy shape.
  • the circumferential narrow groove 311 has a zigzag shape formed by alternately connecting long portions and short portions having different inclination angles in the tire circumferential direction.
  • the circumferential narrow groove 311 has a wide structure in which the groove width is widened at the short portion.
  • the circumferential direction narrow groove 311 is arrange
  • the width Wr of the land portion 31 and the distance Da in the tire width direction from the edge portion of the land portion 31 to the circumferential narrow groove 311 have a relationship of 0.40 ⁇ Da / Wr ⁇ 0.60. Have.
  • the width Wr of the land portion 31 is measured as the distance in the tire width direction of the left and right edge portions on the tread surface of the land portion in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure.
  • variety is measured on the basis of the intersection of the tread of a land part and the extended line of a groove wall.
  • the distance Da of the circumferential narrow groove 311 is from the measurement point of the width Wr of the land portion 31 to the groove center line of the circumferential narrow groove 311 in a no-load state in which the tire is mounted on the defined rim and filled with the defined internal pressure. Measured as distance.
  • the groove width W3 of the circumferential narrow groove 311 is in the range of 1.5 [mm] ⁇ W3 ⁇ 4.3 [mm]. Thereby, the groove area of the circumferential narrow groove 311 is ensured, and the rigidity of the land portion 31 is ensured.
  • the groove depth D3 of the circumferential narrow groove 311 and the groove depth D2 of the outermost circumferential main groove 22 preferably have a relationship of 0.10 ⁇ D3 / D2 ⁇ 0.40. More preferably, the relationship is 0.20 ⁇ D3 / D2 ⁇ 0.30.
  • the circumferential narrow groove 311 is preferably a shallow groove. Thereby, the rigidity of the land portion 31 is ensured, and the steering stability performance of the tire is ensured.
  • the retread tire 10 includes the three circumferential main grooves 21 and 22 and the four rows of land portions 31 and 32 as described above. For this reason, the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 is also adjacent to the tire equatorial plane CL, and the circumferential narrow groove 311 and the lug groove 312 are arranged on the land portion 31. ing.
  • At least a land portion (so-called second land portion) on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 is a circumferential narrow groove 311 and a lug.
  • a groove 312 may be provided.
  • the plurality of lug grooves 312 are lateral grooves that extend in the tire width direction and communicate with the outermost circumferential main groove 22. That is, the lug groove 312 is disposed in the region between the circumferential narrow groove 311 and the outermost circumferential main groove 22 of the land portion 31 as shown in FIG. 3 and FIG. Opening in the outer circumferential main groove 22.
  • the land portions 31, 31 on the inner side in the tire width direction adjacent to the left and right outermost circumferential main grooves 22, 22 are each provided with a plurality of lug grooves 312.
  • a plurality of lug grooves 312 are arranged at a predetermined interval L1 in the tire circumferential direction. Further, the lug groove 312 extends while inclining at a predetermined angle in the tire width direction, and connects the circumferential narrow groove 311 and the outermost circumferential main groove 22. In addition, the lug groove 312 widens the groove width at both the connecting portion with the circumferential narrow groove 311 and the connecting portion with the outermost circumferential main groove 22.
  • short and a plurality of sipes are disposed at predetermined intervals in the tire circumferential direction at the left and right edge portions of the land portion 31 facing the circumferential main grooves 21 and 22.
  • the groove width W4 of the lug groove 312 is in the range of 1.0 [mm] ⁇ W4 ⁇ 4.0 [mm]. Thereby, the groove area of the lug groove 312 is ensured, and the rigidity of the land portion 31 is ensured.
  • the groove depth D4 of the lug groove 312 and the groove depth D2 of the outermost circumferential main groove 22 preferably have a relationship of 0.10 ⁇ D4 / D2 ⁇ 0.40. It is more preferable to have a relationship of 20 ⁇ D4 / D2 ⁇ 0.30. That is, the lug groove 312 is preferably a shallow groove. Thereby, the rigidity of the land portion 31 is ensured, and the steering stability performance of the tire is ensured.
  • the groove depth D4 of the lug groove 312 increases from the circumferential narrow groove 311 side toward the outermost circumferential main groove 22 side, and at the opening with respect to the outermost circumferential main groove 22. It has become the maximum. Thereby, the drainage of the lug groove 312 is improved.
  • the lug groove 312 communicates with the circumferential narrow groove 311 at the inner end in the tire width direction. For this reason, a portion of the land portion 31 that is divided into the circumferential narrow groove 311 and the outermost circumferential main groove 22 is divided in the tire circumferential direction by the plurality of lug grooves 31 to form a block row composed of a plurality of blocks 313. ing.
  • Such a configuration is preferable in that the drainage of the land portion 31 is improved and the wet performance of the tire is improved.
  • the present invention is not limited to this, and may be terminated in a region between the circumferential narrow groove 311 and the outermost circumferential main groove 22 without intersecting the circumferential narrow groove 311 (not shown).
  • a portion of the land portion 31 that is partitioned into the circumferential narrow groove 311 and the outermost circumferential main groove 22 is a rib that is continuous in the tire circumferential direction.
  • the lug groove 312 terminates at the connecting portion with the circumferential narrow groove 311 without penetrating the circumferential narrow groove 311 in the tire width direction.
  • region inside the tire width direction of the circumferential direction narrow groove 311 in the land part 31 is a rib which continues in a tire circumferential direction.
  • the present invention is not limited thereto, and the lug groove 312 may extend through the circumferential narrow groove 311 in the tire width direction and extend to the inner region in the tire width direction of the circumferential narrow groove 311 (not shown). At this time, the lug groove 312 does not open to the circumferential main groove 21 and terminates inside the land portion 31, whereby the rigidity of the land portion 31 on the tire equatorial plane CL side is appropriately ensured.
  • the circumferential narrow groove 311 has a zigzag shape, and the lug groove 312 is connected to the zigzag bent portion of the circumferential narrow groove 311. Further, the lug groove 312 widens the groove width at the connection portion with the circumferential narrow groove 311, so that the groove width of the circumferential narrow groove 311 is widened at the zigzag bent portion.
  • Such a configuration is preferable in that the drainability of the land portion 31 is improved and the wet performance of the tire is improved.
  • the shoulder land portion 32 includes a plurality of notches 321 at the edge portion on the outermost circumferential main groove 22 side. Thereby, the groove area of the outermost circumferential main groove 22 is increased, and drainage is improved.
  • the cutout portion 321 has a trapezoidal shape in a plan view of the tread and is arranged at a ratio of one to one pitch of the tread pattern.
  • a plurality of sets of cutout portions 321 and lug grooves 312 of the center land portion 31 are alternately arranged in one outermost circumferential main groove 22 while being offset in the tire circumferential direction.
  • the notch part 321 and the opening part of the lug groove 312 are disperse
  • the length L2 of the notch 321 in the tire circumferential direction and the arrangement interval L1 of the lug groove 312 in the tire circumferential direction have a relationship of 0.20 ⁇ L2 / L1 ⁇ 0.60. Preferably, it has a relationship of 0.35 ⁇ L2 / L1 ⁇ 0.45. Thereby, the length L2 of the notch 321 is optimized.
  • the length L2 of the notch 321 is measured as the opening length in the tire circumferential direction of the notch 321 with respect to the outermost circumferential main groove 22 on the tread surface.
  • the arrangement interval L1 of the lug grooves 312 is equal to the pitch length of the tread pattern.
  • the width W5 of the notch 321 and the groove width W2 of the outermost circumferential main groove 22 preferably have a relationship of 0.20 ⁇ W5 / W2 ⁇ 0.40, and 0.25 ⁇ It is more preferable to have a relationship of W5 / W2 ⁇ 0.35. Thereby, the width W5 of the notch 321 is optimized.
  • the width W5 of the notch 321 is measured as the opening width in the tire width direction of the notch 321 on the tread surface.
  • the depth D5 of the notch 321 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.60 ⁇ D5 / D2 ⁇ 1.00.
  • the depth D5 of the notch 321 is optimized.
  • the groove area ratio A of the entire tread pattern is preferably in the range of 0.20 ⁇ A ⁇ 0.35. Thereby, the groove area ratio A is optimized and the contact pressure at the time of tire contact is optimized.
  • the groove area ratio A of the entire tread pattern is defined by groove area / (groove area + ground area).
  • the groove area refers to the opening area of the groove on the ground contact surface.
  • the groove refers to a circumferential groove and a lug groove in the tread portion, and does not include sipes, kerfs, and notches.
  • the ground contact area is the contact area between the tire and the road surface.
  • the groove area and the contact area are determined when the tire is mounted on the specified rim and applied with the specified internal pressure, and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. Measured at the contact surface between the plate and the flat plate.
  • the groove area ratio Ac of the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 and the groove area ratio As of the land portion 32 on the outer side in the tire width direction are 1.5 ⁇ . It is preferable to be in the range of Ac / As.
  • the ratio Ac / As is more preferably in the range of 2.5 ⁇ Ac / As ⁇ 4.5. Thereby, ratio Ac / As is optimized and the rigidity of the shoulder land part 32 is ensured.
  • the groove area ratios Ac and As of the land portions 31 and 32 are defined in the same manner as the groove area ratio A of the entire tread pattern described above. However, the groove area of the land portion is measured as the sum of the areas of grooves formed in the land portion itself (for example, lug grooves, narrow grooves, etc.). Areas such as formed sipes, kerfs, and notches are excluded from the land area.
  • the retread tire 10 is provided with the carcass layer 13 and the belt layer 14 arrange
  • the carcass layer 13 and the belt layer 14 are included in the base tire 30. Further, the carcass layer 13 is bridged in a toroidal shape between the pair of left and right bead cores 11 and 11 to constitute a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber, and has an absolute value of 80 [deg]. A carcass angle of 95 [deg] or less (inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction) is obtained.
  • the belt layer 14 is formed by laminating a pair of cross belts 141, 142 and a belt cover 143, and is arranged so as to be wound around the outer periphery of the carcass layer 13.
  • the pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and is an absolute value of 10 [deg] or more and 55 [deg] or less. Have an angle. Further, the pair of cross belts 141 and 142 have belt angles of different signs (inclination angles in the fiber direction of the belt cord with respect to the tire circumferential direction) and are laminated so that the fiber directions of the belt cords cross each other. Yes (cross-ply structure). Note that three or more cross belts may be laminated (not shown).
  • the belt cover 143 is configured by rolling a plurality of cords made of steel or organic fiber material covered with a coat rubber.
  • the belt cover 143 preferably has an absolute value of a belt angle of 0 [deg] or more and 10 [deg] or less, and more preferably a belt angle of 0 [deg] or more and 5 [deg] or less.
  • a belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
  • the belt width Wb1 of the wide cross belt 141 and the carcass cross-sectional width Wa of the carcass layer 13 preferably have a relationship of 0.65 ⁇ Wb1 / Wa ⁇ 0.90. .68 ⁇ Wb1 / Wa ⁇ 0.80 is more preferable. Thereby, ratio Wb1 / Wa is optimized and the riding comfort of a tire improves.
  • the carcass cross-sectional width Wa is a distance in the tire width direction at the left and right maximum width positions of the carcass layer 13, and is measured as a no-load state while attaching a tire to a specified rim and applying a specified internal pressure.
  • the belt width Wb1 of the wide cross belt 141 and the tread width TW have a range of 0.70 ⁇ Wb1 / TW ⁇ 1.00.
  • the belt width Wb2 of the narrow cross belt 142 and the tread width TW preferably have a range of 0.70 ⁇ Wb2 / TW ⁇ 0.95, and 0.80 ⁇ Wb2 / TW ⁇ 0.90. It is more preferable to have this range.
  • the belt widths Wb1 and Wb2 are distances in the tire width direction of the belt cords on the outermost side in the tire width direction in a cross sectional view in the tire meridian direction. As measured.
  • the distance Wc between the left and right end portions on the outer side in the tire width direction of the belt cover 143 and the tread width TW satisfy 0.75 ⁇ Wc / TW ⁇ 1.00. It is preferable to have a relationship, and it is more preferable to have a relationship of 0.80 ⁇ Wc / TW ⁇ 0.90. Thereby, the ground contact shape of a tire is optimized and the wet performance of a tire is ensured.
  • the distance Wc is the distance in the tire width direction of the outermost belt cord in the tire width direction in a cross-sectional view in the tire meridian direction, and is measured as an unloaded condition while attaching the tire to a specified rim and applying a specified internal pressure.
  • the distance Wc is measured with reference to the left and right end portions of the belt cover that is the outermost in the tire width direction.
  • the number of ends of the belt cover 143 is preferably in the range of 40 [lines / 50 mm] to 60 [lines / 50 mm]. Moreover, it is preferable that the thickness of the thread
  • the single-layer belt cover 143 has a so-called full-cover structure, and extends continuously in the tire width direction and is disposed so as to cover the entire belt layer 14. Further, the belt cover 143 extends to the end of the wide cross belt 141, thereby covering the ends of the pair of cross belts 141 and 142 at the same time. Further, as shown in FIG. 5, an additional belt cover 144 is laminated on the outer side in the tire radial direction of the belt cover 143. The additional belt cover 144 is partially disposed at a position covering the left and right ends of the pair of cross belts 141 and 142 and functions as a so-called edge cover.
  • a plurality of belt covers 143 and 144 are disposed at the left and right ends of the cross belts 141 and 142, respectively, and the number of stacked belt covers is greater than the position where the belt equatorial plane CL intersects. . Thereby, the restraining force with respect to the edge part of the cross belts 141 and 142 is heightened.
  • the present invention is not limited to this, and a plurality of belt covers 143 having a full cover structure may be laminated so as to cover the entire belt layer 14 (not shown). Therefore, the belt cover 143 may have a multilayer structure. Further, a belt ply may be further arranged outside the belt cover 143 in the tire radial direction (not shown). Therefore, the belt cover 143 may not be disposed on the outermost layer of the belt layer 14.
  • the tread gauge Dcc is a belt of a belt ply (the belt cover 143 in FIG. 5) that is the intersection of the tire equatorial plane CL and the tread profile and the outermost radial direction of the belt layer 14 in a cross-sectional view in the tire meridian direction Measured as the distance to the code surface.
  • the belt cord surface is defined as a surface including ends of the plurality of belt cords constituting the belt ply on the outer side in the tire radial direction.
  • the tread gauge De is measured as the thickness of the tread rubber on the perpendicular drawn from the end of the narrow cross belt 142 to the tread surface in a sectional view in the tire meridian direction.
  • the end portion of the cross belt 142 refers to the end surface of the belt cord that is the outermost in the tire width direction among the belt cords constituting the cross belt 142.
  • the tread gauge Dcc on the tire equatorial plane CL and the tread gauge Dsh from the outer end in the tire width direction of the belt cover 144 to the tread end T are 1.00 ⁇ Dsh / Dcc ⁇ 1.70. It is preferable to have a relationship of 1.20 ⁇ Dsh / Dcc ⁇ 1.40, and more preferable. Thereby, Dsh / Dcc is optimized.
  • the tread gauge Dsh is measured with reference to the end surface of the belt cord that is the outermost in the tire width direction among the belt cords that constitute the belt cover 143 in a sectional view in the tire meridian direction.
  • the new rubber sub-groove gauge Ga1 of the circumferential main groove 21 closest to the tire equatorial plane CL is in the range of 1.0 [mm] ⁇ Ga1 ⁇ 5.0 [mm] More preferably, the range is 2.0 [mm] ⁇ Ga1 ⁇ 3.0 [mm].
  • the new under-groove groove gauge Ga1 of the circumferential main groove 21 in the center region of the tread portion is optimized.
  • the new rubber sub-groove gauge Ga2 of the outermost circumferential main groove 22 has a relationship of Ga2 ⁇ Ga1 with respect to the new rubber sub-groove gauge Ga1 of the circumferential main groove 21 closest to the tire equatorial plane CL. It is preferable to have. Therefore, the new under-groove groove gauge Ga2 of the circumferential main groove 22 in the tread portion shoulder region is smaller than the new under-groove gauge Ga1 of the circumferential main groove 21 in the tread portion center region.
  • the new sub-groove gauge Ga2 is preferably in the range of 1.0 [mm] ⁇ Ga2 ⁇ 4.0 [mm], and in the range of 1.3 [mm] ⁇ Ga2 ⁇ 3.0 [mm]. More preferably. Thereby, the new under-groove groove gauge Ga2 of the circumferential main groove 22 in the tread shoulder region is optimized.
  • the new rubber sub-groove gauges Ga1 and Ga2 are sub-groove gauges in the tread 20 newly added by rehabilitation, and are treads from the maximum groove depth position of the circumferential main grooves 21 and 22 in the sectional view in the tire meridian direction. It is measured as the distance to the inner circumferential surface of 20 tire radial directions.
  • the groove depth D1 of the circumferential main groove 21 closest to the tire equatorial plane CL and the tread gauge Dcc on the tire equatorial plane CL have a relationship of 1.30 ⁇ Dcc / D1 ⁇ 1.55.
  • it has a relationship of 1.40 ⁇ Dcc / D1 ⁇ 1.50.
  • the ratio Dcc / D1 is optimized.
  • FIG. 7 is an explanatory view showing a modified example of the retread tire described in FIG. 1. This figure shows the profile of the shoulder portion.
  • the retread tire 10 includes a shoulder portion having a square shape in a sectional view in the tire meridian direction.
  • the measurement point of the tread width TW is the edge portion on the outer side in the tire width direction of the shoulder land portion 32.
  • the present invention is not limited to this, and the retread tire 10 may include a shoulder portion having a round shape (see FIG. 7) or a chamfered shape (not shown) in a sectional view in the tire meridian direction.
  • the measurement point of the tread width TW is the intersection T between the extension line of the ground contact surface of the shoulder land portion 32 and the extension line of the profile of the buttress portion (non-ground region of the shoulder portion) in a sectional view in the tire meridian direction. Defined by '.
  • the tread gauge Dsh is a straight line drawn from the intersection T ′ to the end surface of the belt cord that is the outermost in the tire width direction among the belt cords that constitute the belt cover 143 in a sectional view in the tire meridian direction. Measured as the thickness of the tread rubber.
  • the retread tire 10 includes the tread 20 and the base tire 30 (see FIG. 1). Further, the tread 20 includes at least three circumferential main grooves 21 and 22 extending in the tire circumferential direction and a plurality of land portions 31 and 32 that are partitioned by the circumferential main grooves 21 and 22. Prepare for the surface (see FIG. 3). Further, the base tire 30 includes a carcass layer 13 and a belt layer 14 disposed on the outer side in the tire radial direction of the carcass layer 13. Further, the belt layer 14 includes a pair of cross belts 141 and 142 and a belt cover 143 disposed on the outer side in the tire radial direction of the pair of cross belts 141 and 142.
  • the tread width TW and the tire total width SW have a relationship of 0.65 ⁇ TW / SW ⁇ 0.85 (see FIG. 1).
  • the distance SDH in the tire radial direction from the rim diameter measurement point P to the tire maximum width position Q and the tire cross-section height SH have a relationship of 0.45 ⁇ SDH / SH ⁇ 0.65.
  • the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 includes one circumferential narrow groove 311 extending continuously over the entire tire circumference.
  • the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 includes one circumferential narrow groove 311 and a plurality of lug grooves 312, thereby securing the groove area of the land portion 32.
  • the drainage of the land portion 32 is improved.
  • the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 extends in the tire width direction and communicates with the outermost circumferential main groove 22, and the circumferential narrow groove 311.
  • the plurality of lug grooves 312 connect the circumferential narrow groove 311 and the outermost circumferential main groove 22, thereby improving the drainage of the land portion 32.
  • the groove depth D3 of the circumferential narrow groove 311 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.10 ⁇ D3 / D2 ⁇ 0.40 ( (See FIG. 6).
  • the groove depth D3 of the circumferential direction fine groove 311 is optimized. That is, by satisfying 0.10 ⁇ D3 / D2, the groove depth D3 of the circumferential narrow groove 311 is secured, and the drainage of the land portion 31 is secured.
  • the groove depth D4 of the lug groove 312 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.10 ⁇ D4 / D2 ⁇ 0.40 (FIG. 5). reference).
  • the groove depth D4 of the lug groove 312 is optimized. That is, by satisfying 0.10 ⁇ D4 / D2, the groove depth D4 of the lug groove 312 is ensured, and the drainage of the land portion 31 is ensured.
  • the groove width W1 of the circumferential main groove 21 closest to the tire equatorial plane CL and the tread width TW have a relationship of 0.05 ⁇ W1 / TW ⁇ 0.09 (FIG. 3). reference).
  • the groove width W1 of the circumferential direction main groove 21 is ensured, and there exists an advantage by which drainage property is ensured.
  • the groove width W2 of the outermost circumferential main groove 22 and the tread width TW have a relationship of 0.06 ⁇ W2 / TW ⁇ 0.10 (see FIG. 3). Thereby, the groove width W2 of the outermost circumferential main groove 22 is ensured, and there is an advantage that drainage is ensured.
  • the circumferential narrow groove 311 extends in a zigzag shape or a wave shape in the tire circumferential direction (see FIG. 3).
  • the circumferential main groove 21 closest to the tire equatorial plane CL has a zigzag shape or a wave shape substantially parallel to the circumferential narrow groove 311 and extends in the tire circumferential direction (see FIG. 3).
  • the rigidity in the tire circumferential direction of the portion of the land portion 31 partitioned into the circumferential main groove 21 and the circumferential narrow groove 311 is made uniform. Thereby, there exists an advantage by which the partial wear of the land part 31 is suppressed.
  • the outermost land portion 32 in the tire width direction has a plurality of notches 321 at the edge portion on the outermost circumferential main groove 22 side (see FIG. 3).
  • the groove area (groove volume) of the outermost circumferential main groove 22 is increased, and there is an advantage that the wet performance of the tire is improved.
  • the length L2 of the notch 321 in the tire circumferential direction and the arrangement interval L1 of the lug groove 312 in the tire circumferential direction have a relationship of 0.2 ⁇ L2 / L1 ⁇ 0.6. (See FIG. 4).
  • the length L2 of the notch part 321 is optimized. That is, by satisfying 0.2 ⁇ L2 / L1, the length L2 of the notch 321 is secured, and an increase in the groove area (groove volume) of the outermost circumferential main groove 22 is secured.
  • L2 / L1 ⁇ 0.6, the rigidity reduction of the land part 32 by the notch part 321 becoming excessive is suppressed, and the uneven wear of the land part 32 is suppressed.
  • the width W5 of the notch 321 and the groove width W2 of the outermost circumferential main groove 22 have a relationship of 0.2 ⁇ W5 / W2 ⁇ 0.4 (see FIG. 4).
  • the width W5 of the notch part 321 is optimized. That is, by satisfying 0.2 ⁇ W5 / W2, the width W5 of the notch 321 is secured, and an increase in the groove area (groove volume) of the outermost circumferential main groove 22 is secured.
  • the depth D5 of the notch 321 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.60 ⁇ D5 / D2 ⁇ 1.00 (see FIG. 6). ).
  • the depth D5 of the notch 321 is ensured, and an increase in the groove area (groove volume) of the outermost circumferential main groove 22 is ensured.
  • the groove area ratio A of the entire tread pattern is in the range of 0.20 ⁇ A ⁇ 0.35 (see FIG. 3).
  • the groove area ratio Ac of the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 and the groove area ratio As of the land portion 32 on the outer side in the tire width direction are 1.5 ⁇ . It is in the range of Ac / As. Thereby, there is an advantage that the rigidity of the shoulder land portion 32 is secured and the tire uneven wear performance of the tire is secured.
  • the retread tire 10 has a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction and a plurality of land portions 31 and 32 defined by the circumferential main grooves 21 and 22 on the tread surface.
  • the new sub-groove gauge Ga1 of the circumferential main groove 21 closest to the tire equatorial plane CL is in the range of 1.0 [mm] ⁇ Ga1 ⁇ 5.0 [mm] (see FIG. 6). In such a configuration, there is an advantage that the new under-groove gauge Ga1 of the circumferential main groove 21 in the center region of the tread portion is optimized.
  • the new rubber sub-groove gauge Ga1 of the circumferential main groove 21 is secured. Then, since the new rubber of the tread 20 is softer than the old rubber (residual tread 301) of the base tire 30 (the residual tread 301 is deteriorated and hardened), the force acting on the interface between the new rubber and the old rubber is increased. Dispersed to ensure tire durability. Further, since Ga1 ⁇ 5.0 [mm], it is possible to prevent the new rubber groove gauge Ga1 of the circumferential main groove 21 from becoming excessive. Then, heat generation due to excessive volume of the tread rubber is suppressed, and the durability of the tire is improved.
  • the new rubber sub-groove gauge Ga2 of the circumferential main groove 22 at the outermost side in the tire width direction satisfies Ga2 ⁇ Ga1 and 1.0 [mm] ⁇ Ga2 ⁇ 4.0 [mm]. It is in range (see FIG. 6).
  • the new under-groove gauge Ga2 of the circumferential main groove 22 in the tread shoulder region is optimized. That is, by Ga2 ⁇ Ga1, there is an advantage that distortion of the peripheral rubber at the end portion of the belt layer 14 is reduced and belt durability is ensured. Further, by satisfying 1.0 [mm] ⁇ Ga2, the new rubber groove gauge Ga2 of the circumferential main groove 22 is secured.
  • the new rubber of the tread 20 is softer than the old rubber (residual tread 301) of the base tire 30 (the residual tread 301 is deteriorated and hardened), the force acting on the interface between the new rubber and the old rubber is increased. Dispersed to ensure tire durability. Further, since Ga2 ⁇ 4.0 [mm], the new sub-groove gauge Ga2 of the circumferential main groove 22 is prevented from becoming excessive. Then, heat generation due to excessive volume of the tread rubber is suppressed, and the durability of the tire is improved.
  • the carcass layer 13 is configured by arranging a plurality of carcass cords made of organic fiber materials.
  • the tire life is generally extended by the retreading and the traveling distance is increased.
  • the strength of the carcass layer is lowered, the tire ground contact shape becomes inappropriate, and the wet performance of the tire tends to be lowered. Therefore, there is an advantage that the effect of improving the wet performance can be remarkably obtained by applying the configuration including the carcass layer 13 made of such an organic fiber material.
  • the belt cover 143 is formed of a plurality of cords made of an organic fiber material and arranged at an angle of ⁇ 5 [deg] or less with respect to the tire circumferential direction.
  • the tire life is generally extended by the retreading and the traveling distance is increased.
  • strength of a belt cover falls, the tire ground contact shape becomes inadequate, and there exists a tendency for the wet performance of a tire to fall easily. Therefore, there is an advantage that the effect of improving the wet performance can be remarkably obtained by applying the configuration including the belt cover 143 made of such an organic fiber material.
  • the single or plural belt covers 143 and 144 cover at least the position intersecting the tire equatorial plane CL and the ends of the pair of intersecting belts 141 and 142 on the outer side in the tire width direction. (See FIGS. 1 and 5).
  • the belt cover 143 covers the position intersecting the tire equator plane CL, thereby suppressing the diameter growth of the tread portion center region. Thereby, the profile from the tire equatorial plane CL to the shoulder portion becomes flat, and the ground contact shape of the tire is optimized.
  • the belt cover 143 covers the ends of the pair of cross belts 141 and 142 on the outer side in the tire width direction, so that the displacement amount of the ends of the cross belts 141 and 142 is reduced, and the ground contact shape of the tire is optimized. Is done. These have the advantage of improving the wet performance of the tire.
  • the tread gauge Dcc on the tire equatorial plane CL and the tread gauge De at the outer end in the tire width direction of the narrow cross belt 142 are 1.03 ⁇ Dcc / De ⁇ 1.20. (See FIG. 5).
  • ratio Dcc / De is optimized. That is, by satisfying 1.03 ⁇ Dcc / De, the tread gauge Dcc in the tread portion center region is set larger than the tread gauge De in the shoulder region. Then, since the belt ply is disposed horizontally with respect to the tire contact surface, the tension acting on the belt ply at the time of tire contact is made uniform, and the belt durability is improved.
  • the belt width Wb1 of the wide cross belt 141 and the carcass cross-sectional width Wa of the carcass layer 13 have a relationship of 0.65 ⁇ Wb1 / Wa ⁇ 0.90 (see FIG. 1). .
  • ratio Wb1 / Wa is optimized. That is, by satisfying 0.65 ⁇ Wb1 / Wa, there is an advantage that the belt width Wb is secured and the distortion of the peripheral rubber at the outer end of the belt layer 14 in the tire width direction is reduced.
  • Wb1 / Wa since the distance between the end portion of the belt ply and the sidewall portion is secured by Wb1 / Wa ⁇ 0.90, the movement of the end portion of the belt ply during tire rolling is suppressed, and the tire Improves durability.
  • the number of ends of the belt cover 143 is in the range of 40 [lines / 50 mm] to 60 [lines / 50 mm]. Thereby, there exists an advantage by which the number of ends of the belt cover 143 is optimized.
  • the thickness of the thread constituting the belt cover 143 is in the range of 1100 [dtex / 2] to 1500 [dtex / 2].
  • the retread tire 10 is applied to a low flat tire having a flat rate of 70% or less, and particularly to a light truck tire defined by JATMA.
  • a low-profile tire for a small truck the ground contact state of the tread portion is likely to change between when the load is loaded and when the load is not loaded. That is, the center area and the shoulder area of the tread portion are uniformly grounded when the load is loaded, but the diameter growth of the tread center area becomes obvious and the contact area of the tread shoulder area tends to decrease when no load is loaded. It is in. Then, the ground contact shape of the tire becomes inappropriate, and the wet performance of the tire tends to decrease. Therefore, there is an advantage that the effect of improving the wet performance can be remarkably obtained by using such a low flat tire for a small truck.
  • FIG. 8 and FIG. 9 are charts showing the results of the performance test of the retread tire according to the embodiment of the present invention.
  • test tire having a tire size of 205 / 70R16 111/109 LT is assembled to an applicable rim defined by JATMA, and the highest air pressure and maximum load specified by JATMA are applied to the test tire.
  • a test vehicle equipped with a test tire travels on a wet road surface (a flooded asphalt road surface), and a braking distance from an initial speed of 60 [km / h] is measured. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. An evaluation result is so preferable that the numerical value is large.
  • the test tires of Examples 1 to 16 have the structures described in FIGS. However, in Examples 1 to 4, the land portion 31 does not include a lug groove.
  • the groove width W2 (FIG. 3) of the outermost circumferential main groove 22 is 13.0 [mm]
  • the groove depth D2 (FIG. 6) is 10.0 [mm].
  • the arrangement interval (pitch) L1 of the lug grooves 312 is in the range of 30.0 [mm] ⁇ L1 ⁇ 50.0 [mm].
  • the belt width Wb of the wide cross belt 141 150 [mm].
  • the conventional test tire does not include the circumferential narrow groove 311 and the lug groove 312 in the configuration of FIGS.

Abstract

In this retreaded tire (10), a tread (20) has, provided in a tread surface, at least three circumferential main grooves (21, 22) extending in a tire-circumference direction, and a plurality of land parts (31, 32) formed by subdividing these circumferential main grooves (21, 22). The tread width (TW) and the tire total width (SW) satisfy the relationship 0.65 ≤ TW/SW ≤ 0.85. The distance (SDH) in the tire-diameter direction from a rim diameter measurement point (P) to a tire maximum width position (Q), and the tire cross-sectional height (SH), satisfy the relationship 0.45 ≤ SDH/SH ≤ 0.65. The land parts (31) adjacent on the tire-widthwise inner side to the outermost circumferential main grooves (22) are each provided with one circumferential thin groove (311) extending continuously throughout the entire tire circumference.

Description

更生タイヤRehabilitation tire
 この発明は、更生タイヤに関し、さらに詳しくは、ウェット性能を向上できる更生タイヤに関する。 The present invention relates to a retreaded tire, and more particularly to a retreaded tire that can improve wet performance.
 従来は、トラック・バスなどに装着される重荷重用タイヤについて、更生が行われていたが、近年では、小型トラック用タイヤについても、更生が行われつつある。かかる小型トラック用の更生タイヤとして、特許文献1に記載される技術が知られている。 Conventionally, rehabilitation has been performed on heavy-duty tires mounted on trucks and buses, but in recent years, rehabilitation is also being performed on small truck tires. As such a retread tire for a small truck, a technique described in Patent Document 1 is known.
特開2009-040179号公報JP 2009-0410179 A
 一方で、更生タイヤにおいても、タイヤのウェット性能を向上させるべき課題がある。 On the other hand, retreaded tires also have problems to improve the wet performance of the tires.
 そこで、この発明は、上記に鑑みてなされたものであって、ウェット性能を向上できる更生タイヤを提供することを目的とする。 Therefore, the present invention has been made in view of the above, and an object thereof is to provide a retread tire that can improve wet performance.
 上記目的を達成するため、この発明にかかる更生タイヤは、トレッドと、台タイヤとを備え、前記トレッドが、タイヤ周方向に延在する少なくとも3本の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とをトレッド面に備え、且つ、前記台タイヤが、カーカス層と、前記カーカス層のタイヤ径方向外側に配置されるベルト層とを備えると共に、前記ベルト層が、一対の交差ベルトと、前記一対の交差ベルトのタイヤ径方向外側に配置されるベルトカバーとを有する更生タイヤであって、タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶときに、トレッド幅TWと、タイヤ総幅SWとが、0.65≦TW/SW≦0.85の関係を有し、リム径の測定点からタイヤ最大幅位置までのタイヤ径方向の距離SDHと、タイヤ断面高さSHとが、0.45≦SDH/SH≦0.65の関係を有し、且つ、前記最外周方向主溝に隣接するタイヤ幅方向内側の前記陸部が、タイヤ全周に渡って連続的に延在する1本の周方向細溝を備えることを特徴とする。 In order to achieve the above object, a retread tire according to the present invention includes a tread and a base tire, and the tread has at least three circumferential main grooves extending in the tire circumferential direction, and the circumferential main groove. A plurality of land portions divided into a tread surface, and the base tire includes a carcass layer and a belt layer disposed on the outer side in the tire radial direction of the carcass layer, and the belt layer A retread tire having a pair of cross belts and a belt cover disposed on the outer side in the tire radial direction of the pair of cross belts, wherein the outer circumferential main groove is the outermost circumferential main When referred to as a groove, the tread width TW and the tire total width SW have a relationship of 0.65 ≦ TW / SW ≦ 0.85, and the tire radial direction from the rim diameter measurement point to the tire maximum width position Distance SD And the tire cross-section height SH has a relationship of 0.45 ≦ SDH / SH ≦ 0.65, and the land portion on the inner side in the tire width direction adjacent to the outermost circumferential direction main groove is One circumferential narrow groove extending continuously over the circumference is provided.
 この発明にかかる更生タイヤでは、プロファイルを規定する比TW/SWおよび比SDH/SHが適正化されるので、タイヤの接地形状が適正化されて、タイヤのウェット性能が向上する利点がある。また、最外周方向主溝に隣接するタイヤ幅方向内側の陸部が、1本の周方向細溝と複数のラグ溝とを備えることにより、陸部の溝面積が確保されて、陸部の排水性が向上する。これにより、タイヤのウェット性能がさらに向上する利点がある。 In the retreaded tire according to the present invention, since the ratio TW / SW and the ratio SDH / SH that define the profile are optimized, there is an advantage that the ground contact shape of the tire is optimized and the wet performance of the tire is improved. Further, the land portion on the inner side in the tire width direction adjacent to the outermost circumferential main groove is provided with one circumferential narrow groove and a plurality of lug grooves, thereby ensuring the land area of the land portion. Drainage is improved. Thereby, there exists an advantage which the wet performance of a tire improves further.
図1は、この発明の実施の形態にかかる更生タイヤを示すタイヤ子午線方向の断面図である。FIG. 1 is a cross-sectional view in the tire meridian direction showing a retread tire according to an embodiment of the present invention. 図2は、図1に記載した更生タイヤの作用を示す説明図である。FIG. 2 is an explanatory view showing the operation of the retread tire described in FIG. 1. 図3は、図1に記載した更生タイヤのトレッド面を示す平面図である。FIG. 3 is a plan view showing a tread surface of the retread tire described in FIG. 1. 図4は、図1に記載した更生タイヤの要部を示す拡大図である。FIG. 4 is an enlarged view showing a main part of the retread tire described in FIG. 1. 図5は、図1に記載した更生タイヤの要部を示す拡大図である。FIG. 5 is an enlarged view showing a main part of the retread tire described in FIG. 1. 図6は、図1に記載した更生タイヤの要部を示す拡大図である。FIG. 6 is an enlarged view showing a main part of the retread tire described in FIG. 1. 図7は、図1に記載した更生タイヤの変形例を示す説明図である。FIG. 7 is an explanatory view showing a modified example of the retread tire described in FIG. 1. 図8は、この発明の実施の形態にかかる更生タイヤの性能試験の結果を示す図表である。FIG. 8 is a chart showing the results of the performance test of the retreaded tire according to the embodiment of the present invention. 図9は、この発明の実施の形態にかかる更生タイヤの性能試験の結果を示す図表である。FIG. 9 is a chart showing the results of the performance test of the retreaded tire according to the embodiment of the present invention.
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Further, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within a range obvious to those skilled in the art.
[更生タイヤ]
 図1は、この発明の実施の形態にかかる更生タイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域の断面図を示している。また、同図は、一例として、小型トラック用の更生タイヤを示している。
[Rehabilitated tire]
FIG. 1 is a cross-sectional view in the tire meridian direction showing a retread tire according to an embodiment of the present invention. The same figure has shown sectional drawing of the one-side area | region of a tire radial direction. Moreover, the figure has shown the retreaded tire for light trucks as an example.
 同図において、タイヤ子午線方向の断面とは、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面をいう。また、符号CLは、タイヤ赤道面であり、タイヤ回転軸方向にかかるタイヤの中心点を通りタイヤ回転軸に垂直な平面をいう。また、符号Tは、トレッド端である。また、タイヤ幅方向とは、タイヤ回転軸に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。 In the figure, the cross section in the tire meridian direction means a cross section when the tire is cut along a plane including the tire rotation axis (not shown). Reference sign CL denotes a tire equator plane, which is a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis. Moreover, the code | symbol T is a tread end. Further, the tire width direction means a direction parallel to the tire rotation axis, and the tire radial direction means a direction perpendicular to the tire rotation axis.
 更生タイヤ10は、残溝が寿命に達したタイヤのトレッドゴムを貼り替えて再利用されるタイヤであり、例えば、重荷重用タイヤ、小型トラック用タイヤなどに用いられる。 The rehabilitated tire 10 is a tire that is reused by replacing the tread rubber of a tire whose remaining groove has reached the end of its life. For example, it is used for a heavy load tire, a light truck tire, or the like.
 図1に示すように、更生タイヤ10は、トレッド20と、台タイヤ30とを備える。トレッド20は、トレッド部を構成するゴム部材であり、更生タイヤ10の製造時に新たに追加される。台タイヤ30は、残溝が寿命に達したタイヤのトレッドゴムの一部およびサイドウォールゴムの一部を切除し、その外周面をバフ処理して成形される。かかる更生タイヤ10は、後述するように、リモールド方式あるいはプレキュア方式により製造される。 As shown in FIG. 1, the retread tire 10 includes a tread 20 and a base tire 30. The tread 20 is a rubber member that constitutes the tread portion, and is newly added when the retread tire 10 is manufactured. The base tire 30 is formed by cutting off part of the tread rubber and part of the sidewall rubber of the tire whose remaining grooves have reached the end of life, and buffing the outer peripheral surface thereof. The retread tire 10 is manufactured by a remolding method or a precure method, as will be described later.
 また、更生タイヤ10は、一般的な構成要素として、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、複数のベルトプライ141~143(図1では、一対の交差ベルト141、142およびベルトカバー143)を積層して成るベルト層14と、トレッド部を構成するトレッドゴム15と、左右のサイドウォール部を構成するサイドウォールゴム16、16と、左右のビード部を構成するリムクッションゴム17、17とを備える。これらの構成要素のうち、トレッドゴム15は、新たに追加されたトレッド20と、台タイヤ30の残留トレッド301とから成る。また、サイドウォールゴム16およびリムクッションゴム17は、台タイヤ30に含まれる。 Further, the retread tire 10 includes a pair of bead cores 11 and 11, a pair of bead fillers 12 and 12, a carcass layer 13, and a plurality of belt plies 141 to 143 (in FIG. 1, a pair of bead cores 11 and 11). Belt layer 14 formed by laminating cross belts 141 and 142 and belt cover 143), tread rubber 15 constituting a tread portion, side wall rubbers 16 and 16 constituting left and right sidewall portions, and left and right bead portions. Rim cushion rubbers 17 and 17 are provided. Among these components, the tread rubber 15 includes a newly added tread 20 and a residual tread 301 of the base tire 30. Further, the sidewall rubber 16 and the rim cushion rubber 17 are included in the base tire 30.
 なお、この実施の形態では、タイヤ幅方向の最も外側にある周方向主溝22を最外周方向主溝と呼ぶ。また、この最外周方向主溝に隣接するタイヤ幅方向外側の陸部32をショルダー陸部と呼ぶ。 In this embodiment, the circumferential main groove 22 on the outermost side in the tire width direction is referred to as the outermost circumferential main groove. The land portion 32 on the outer side in the tire width direction adjacent to the outermost circumferential main groove is referred to as a shoulder land portion.
[リモールド方式による更生タイヤ]
 リモールド方式により製造される更生タイヤ10では、トレッド20が、材料段階にて未加硫のゴムであり、製品段階にて更生タイヤ10のトレッド部を構成する。また、トレッド20が、例えば、ストリップ状の未加硫ゴム、板状の未加硫ゴムなどから構成され得る。
[Rehabilitated tire by remolding method]
In the retread tire 10 manufactured by the remolding method, the tread 20 is unvulcanized rubber at the material stage, and constitutes the tread portion of the retread tire 10 at the product stage. Further, the tread 20 can be made of, for example, a strip-shaped unvulcanized rubber, a plate-shaped unvulcanized rubber, or the like.
 かかるリモールド方式による更生タイヤ10は、以下の工程により製造される(図示省略)。 Such remolded retread tire 10 is manufactured by the following process (not shown).
 まず、残溝が寿命に達したタイヤのトレッドゴムが切除され、その外周面にバフ処理が施されて、台タイヤ30が取得される。このバフ処理は、タイヤに内圧を付与した状態で行われる。 First, the tread rubber of the tire whose remaining groove has reached the end of its life is cut out, and the outer peripheral surface thereof is buffed to obtain the base tire 30. This buffing process is performed in a state where an internal pressure is applied to the tire.
 次に、トレッド20が、台タイヤ30の外周面に配置される。このとき、(a)ストリップ状の未加硫ゴムが台タイヤ30の外周面に螺旋状に巻き付けられて、トレッド20が形成されても良いし、(b)基礎となる板状のゴム部材が台タイヤ30の外周面に巻き付けられ、その外周にストリップ状の未加硫ゴムが螺旋状に巻き付けられて、トレッド20が形成されても良い。後者(b)の場合には、前者(a)の場合と比較して、トレッド20の設置工程に要する時間を短縮できる。 Next, the tread 20 is disposed on the outer peripheral surface of the base tire 30. At this time, the tread 20 may be formed by (a) strip-shaped unvulcanized rubber being spirally wound around the outer peripheral surface of the base tire 30, or (b) a plate-shaped rubber member serving as a basis. The tread 20 may be formed by being wound around the outer peripheral surface of the base tire 30 and spirally winding a strip-like unvulcanized rubber around the outer periphery. In the case of the latter (b), the time required for the installation process of the tread 20 can be shortened compared to the case of the former (a).
 次に、加硫工程が行われる。この加硫工程では、トレッド20および台タイヤ30の組立体が、タイヤ成形金型を有するタイヤ加硫モールド(図示省略)に充填される。次に、トレッド20および台タイヤ30の組立体が加圧装置により径方向外方に拡張されて、トレッド20がタイヤ成形金型に押圧される。また、トレッド20および台タイヤ30の組立体が加熱されることにより、トレッド20が加硫されて、タイヤ成形金型の形状がトレッド20に転写される。その後に、加硫後のタイヤがタイヤ加硫モールドから取り出される。  Next, a vulcanization process is performed. In this vulcanization step, the assembly of the tread 20 and the base tire 30 is filled into a tire vulcanization mold (not shown) having a tire molding die. Next, the assembly of the tread 20 and the base tire 30 is expanded radially outward by the pressurizing device, and the tread 20 is pressed against the tire molding die. Further, the assembly of the tread 20 and the base tire 30 is heated, so that the tread 20 is vulcanized and the shape of the tire molding die is transferred to the tread 20. Thereafter, the vulcanized tire is taken out from the tire vulcanization mold.
[プレキュア方式による更生タイヤ]
 一方、プレキュア方式により製造される更生タイヤ10では、トレッド20が、材料段階にて加硫済みのトレッドゴム(プレキュアトレッド)であり、更生タイヤ10のトレッド部を構成する。また、トレッド20が、板状構造あるいは環状構造を有し、その外周面に更生タイヤ10の新品時のトレッドパターンを予め有する。
[Rehabilitated tire by precure method]
On the other hand, in the retreaded tire 10 manufactured by the precure method, the tread 20 is a tread rubber (precure tread) that has been vulcanized in the material stage, and constitutes a tread portion of the retreaded tire 10. Further, the tread 20 has a plate-like structure or an annular structure, and has a tread pattern when the retread tire 10 is new on its outer peripheral surface in advance.
 かかるプレキュア方式による更生タイヤ10は、以下の工程により製造される(図示省略)。 The retread tire 10 by the precure method is manufactured by the following process (not shown).
 まず、残溝が寿命に達したタイヤのトレッドゴムが切除され、その外周面にバフ処理が施されて、台タイヤ30が取得される。このバフ処理は、タイヤに内圧を付与した状態で行われる。  First, the tread rubber of the tire whose remaining groove has reached the end of its life is cut out, and the outer peripheral surface thereof is buffed to obtain the base tire 30. This buffing process is performed in a state where an internal pressure is applied to the tire.
 次に、クッションゴム(図示省略)が、台タイヤ30の外周面の全周に渡って貼り付けられる。クッションゴムは、材料段階にてシート状の未加硫ゴムである。その後に、トレッド20が、台タイヤ30の外周面に配置されてクッションゴムを介して台タイヤ30に接着される。 Next, cushion rubber (not shown) is pasted over the entire circumference of the outer peripheral surface of the base tire 30. The cushion rubber is a sheet-like unvulcanized rubber at the material stage. Thereafter, the tread 20 is disposed on the outer peripheral surface of the base tire 30 and bonded to the base tire 30 via cushion rubber.
 このとき、トレッド20が板状構造を有する場合には、トレッド20が台タイヤ30を一周して巻き付けられて、固定部材(図示省略)により両端部を仮止めして固定される。一方、トレッド20が環状構造を有する構成では、トレッド20が専用の拡縮径装置(図示省略)により拡径および縮径されて台タイヤ30の外周に嵌め合わされて配置される。 At this time, when the tread 20 has a plate-like structure, the tread 20 is wound around the base tire 30 and is fixed by temporarily fixing both ends by a fixing member (not shown). On the other hand, in the configuration in which the tread 20 has an annular structure, the tread 20 is expanded and contracted by a dedicated expansion / contraction diameter device (not shown) and is fitted to the outer periphery of the base tire 30.
 次に、加硫工程が行われる。この加硫工程では、トレッド20および台タイヤ30の組立体が加硫缶(図示省略)に収容されて、加硫缶内の空気が真空吸引され、その後に、加熱および加圧が行われて、クッションゴムが加硫される。その後に、加硫後のタイヤが加硫缶から取り出される。 Next, a vulcanization process is performed. In this vulcanization process, the assembly of the tread 20 and the base tire 30 is housed in a vulcanization can (not shown), the air in the vulcanization can is sucked in vacuum, and then heated and pressurized. The cushion rubber is vulcanized. Thereafter, the vulcanized tire is taken out from the vulcanization can.
[タイヤプロファイル]
 従来は、トラック・バスなどに装着される重荷重用タイヤについて、更生が行われていたが、近年では、小型トラック用タイヤについても、更生が行われつつある。
[Tire profile]
Conventionally, rehabilitation has been performed on heavy-duty tires mounted on trucks and buses, but in recent years, rehabilitation is also being performed on light truck tires.
 また、更生タイヤは、残溝が寿命に達したタイヤを台タイヤとして使用するため、タイヤプロファイルが全体として丸くなり、トレッドラジアスが小さくなる傾向にある。このため、トレッド部ショルダー領域の接地面積が不足して、タイヤのウェット性能が低下するという課題がある。 Also, retreaded tires use tires whose remaining grooves have reached the end of their life as stand tires, so the tire profile tends to be rounded as a whole and the tread radius tends to be small. For this reason, there is a problem that the contact area of the shoulder region of the tread portion is insufficient and the wet performance of the tire is deteriorated.
 そこで、この更生タイヤ10は、特に、小型トラック用タイヤにおけるウェット性能を向上するために、以下の構成を採用している。 Therefore, the retreaded tire 10 employs the following configuration in order to improve wet performance particularly in a small truck tire.
 この更生タイヤ10では、図1において、トレッド幅TWと、タイヤ総幅SWとが、0.65≦TW/SW≦0.85の関係を有する。また、比TW/SWが、0.70≦TW/SW≦0.80の範囲にあることが好ましく、0.73≦TW/SW≦0.78の範囲にあることがより好ましい。 In this retread tire 10, in FIG. 1, the tread width TW and the total tire width SW have a relationship of 0.65 ≦ TW / SW ≦ 0.85. Further, the ratio TW / SW is preferably in the range of 0.70 ≦ TW / SW ≦ 0.80, and more preferably in the range of 0.73 ≦ TW / SW ≦ 0.78.
 トレッド幅TWは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態としたときのタイヤのトレッド模様部分の両端の直線距離として測定される。 The tread width TW is measured as a linear distance between both ends of the tread pattern portion of the tire when the tire is mounted on a specified rim to apply a specified internal pressure and is in an unloaded state.
 タイヤ総幅SWは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態としたときのサイドウォール間の(タイヤ側面の模様、文字などのすべての部分を含む)直線距離として測定される。 The total tire width SW is measured as the linear distance between the sidewalls (including all parts such as the pattern on the tire side and characters) when the tire is mounted on the specified rim to provide the specified internal pressure and the load is not loaded. Is done.
 また、図1において、リム径の測定点Pからタイヤ最大幅位置Qまでのタイヤ径方向の距離SDHと、タイヤ断面高さSHとが、0.45≦SDH/SH≦0.65の関係を有する。また、比SDH/SHが、0.50≦SDH/SH≦0.60の範囲にあることが好ましく、0.52≦SDH/SH≦0.58の範囲にあることがより好ましい。 Further, in FIG. 1, the distance SDH in the tire radial direction from the measurement point P of the rim diameter to the tire maximum width position Q and the tire cross-section height SH have a relationship of 0.45 ≦ SDH / SH ≦ 0.65. Have. The ratio SDH / SH is preferably in the range of 0.50 ≦ SDH / SH ≦ 0.60, and more preferably in the range of 0.52 ≦ SDH / SH ≦ 0.58.
 タイヤ最大幅位置Qは、JATMA規定のタイヤ断面幅の最大幅位置をいう。なお、タイヤ断面幅は、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。 The tire maximum width position Q is the maximum width position of the tire cross-sectional width specified by JATMA. Note that the tire cross-sectional width is measured as a no-load state while applying a specified internal pressure by mounting the tire on a specified rim.
 タイヤ断面高さSHは、タイヤ外径とリム径との差の1/2の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。 The tire cross-section height SH is a distance that is ½ of the difference between the tire outer diameter and the rim diameter. The tire cross-section height SH is measured by attaching the tire to the specified rim and applying the specified internal pressure, as well as no load.
 図2は、図1に記載した更生タイヤの作用を示す説明図である。同図は、従来例および実施例Aの試験タイヤの評価結果を示している。 FIG. 2 is an explanatory view showing the operation of the retreaded tire shown in FIG. The figure shows the evaluation results of the test tires of the conventional example and Example A.
 図2の評価結果は、次のように取得された。まず、交差ベルト141、142の端部における周辺ゴムの最大主歪み[%]が、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。また、主歪みの変動幅が、タイヤを規定リムに装着して規定内圧および規定荷重を付与したときのタイヤ接地状態にて、交差ベルト141、142の端部における周辺ゴムの主歪み[%]をタイヤ周方向の各位置にて測定し、これらの測定値の最大値と最小値との差として算出される。そして、この算出結果に基づいて、従来例を基準(100)とした指数評価が行われる。 The evaluation results in Fig. 2 were obtained as follows. First, the maximum principal strain [%] of the peripheral rubber at the end portions of the cross belts 141 and 142 is measured while a tire is mounted on a prescribed rim and a prescribed internal pressure is applied and no load is applied. In addition, the fluctuation range of the main strain is the main strain [%] of the peripheral rubber at the ends of the cross belts 141 and 142 when the tire is mounted on the specified rim and the specified internal pressure and the specified load are applied. Is measured at each position in the tire circumferential direction, and is calculated as the difference between the maximum value and the minimum value of these measured values. Then, based on the calculation result, index evaluation using the conventional example as a reference (100) is performed.
 この更生タイヤ10では、比TW/SWおよび比SDH/SHが適正化されることにより、タイヤ赤道面CLからショルダー部に至るプロファイルがフラットとなり、タイヤの接地形状が矩形に近づく。すると、タイヤ接地時におけるトレッド部ショルダー領域の接地面積が確保されて、タイヤのウェット性能が向上する。 In this retreaded tire 10, the ratio TW / SW and the ratio SDH / SH are optimized, the profile from the tire equatorial plane CL to the shoulder becomes flat, and the ground contact shape of the tire approaches a rectangle. Then, the contact area of the tread shoulder region at the time of tire contact is secured, and the wet performance of the tire is improved.
[トレッドパターン]
 図3は、図1に記載した更生タイヤのトレッド面を示す平面図である。同図は、オールシーズン用タイヤのトレッドパターンを示している。同図において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端である。
[Tread pattern]
FIG. 3 is a plan view showing a tread surface of the retread tire described in FIG. 1. The figure shows a tread pattern of an all-season tire. In the figure, the tire circumferential direction refers to the direction around the tire rotation axis. Moreover, the code | symbol T is a tire grounding end.
 この更生タイヤ10は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画された複数の陸部31、32とをトレッド部に備える(図3参照)。 The retread tire 10 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions 31 and 32 partitioned by the circumferential main grooves 21 and 22 in a tread portion. (See FIG. 3).
 ここでは、タイヤ幅方向の最も外側にある左右の周方向主溝22、22を最外周方向主溝と呼ぶ。また、左右の最外周方向主溝22、22を境界として、トレッド部センター領域およびトレッド部ショルダー領域を定義する。 Here, the left and right circumferential main grooves 22 and 22 on the outermost side in the tire width direction are referred to as outermost circumferential main grooves. Further, the tread portion center region and the tread portion shoulder region are defined with the left and right outermost circumferential main grooves 22 and 22 as boundaries.
 周方向主溝とは、摩耗末期を示すウェアインジケータを有する周方向溝であり、一般に、5.0[mm]以上の溝幅および7.5[mm]以上の溝深さを有する。 The circumferential main groove is a circumferential groove having a wear indicator indicating the end of wear, and generally has a groove width of 5.0 [mm] or more and a groove depth of 7.5 [mm] or more.
 溝幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、溝開口部における左右の溝壁の距離の最大値として測定される。陸部が切欠部や面取部をエッジ部に有する構成では、溝長さ方向を法線方向とする断面視にて、トレッド踏面と溝壁の延長線との交点を基準として、溝幅が測定される。また、溝がタイヤ周方向にジグザグ状あるいは波状に延在する構成では、溝壁の振幅の中心線を基準として、溝幅が測定される。 The groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure. In the configuration where the land part has a notch part or a chamfered part at the edge part, the groove width is based on the intersection of the tread surface and the extension line of the groove wall in a cross-sectional view in which the groove length direction is a normal direction. Measured. In the configuration in which the groove extends in a zigzag shape or a wave shape in the tire circumferential direction, the groove width is measured with reference to the center line of the amplitude of the groove wall.
 溝深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面から溝底までの距離の最大値として測定される。また、溝が部分的な凹凸部やサイプを溝底に有する構成では、これらを除外して溝深さが測定される。 The groove depth is measured as the maximum value of the distance from the tread surface to the groove bottom in an unloaded state in which the tire is mounted on the specified rim and filled with the specified internal pressure. Moreover, in the structure which a groove | channel has a partial uneven | corrugated | grooved part and a sipe in a groove bottom, groove depth is measured except these.
 ここで、規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。 Here, the stipulated rim means “applied rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO. The specified internal pressure means “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATIONLPRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO. The specified load means the “maximum load capacity” defined by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFUREATION PRESSURES” prescribed by TRA, or “LOAD CAPACITY” prescribed by ETRTO. However, in JATMA, in the case of tires for passenger cars, the specified internal pressure is air pressure 180 [kPa], and the specified load is 88 [%] of the maximum load capacity.
 周方向主溝21、22は、ストレート形状を有しても良いし、ジグザグ形状あるいは波状形状を有しても良い。例えば、図3の構成では、タイヤ赤道面CL上にある周方向主溝21が、相互に異なる傾斜角をもつ長尺部と短尺部とをタイヤ周方向に交互に接続して成るジグザグ形状を有している。また、左右の最外周方向主溝22、22が、ストレート形状を有している。 The circumferential main grooves 21 and 22 may have a straight shape, or may have a zigzag shape or a wavy shape. For example, in the configuration of FIG. 3, the circumferential main groove 21 on the tire equatorial plane CL has a zigzag shape formed by alternately connecting long portions and short portions having different inclination angles in the tire circumferential direction. Have. The left and right outermost circumferential main grooves 22, 22 have a straight shape.
 また、タイヤ赤道面CLに最も近い周方向主溝21の溝幅W1と、トレッド幅TWとが、0.05≦W1/TW≦0.09の関係を有することが好ましい。また、最外周方向主溝22の溝幅W2と、トレッド幅TWとが、0.06≦W2/TW≦0.10の関係を有することが好ましい。これらにより、周方向主溝21、22の溝幅W1、W2が適正化される。 Also, it is preferable that the groove width W1 of the circumferential main groove 21 closest to the tire equatorial plane CL and the tread width TW have a relationship of 0.05 ≦ W1 / TW ≦ 0.09. Moreover, it is preferable that the groove width W2 of the outermost circumferential main groove 22 and the tread width TW have a relationship of 0.06 ≦ W2 / TW ≦ 0.10. As a result, the groove widths W1 and W2 of the circumferential main grooves 21 and 22 are optimized.
 タイヤ赤道面CLに最も近い周方向主溝21とは、タイヤ赤道面CL上に周方向主溝21を有する構成(図3参照)では、この周方向主溝21が該当し、タイヤ赤道面CL上に陸部を有する構成(図示省略)では、この陸部を区画する左右の周方向主溝のうちタイヤ赤道面CLに近い方の周方向主溝21が該当する。 The circumferential main groove 21 closest to the tire equatorial plane CL corresponds to the circumferential main groove 21 in the configuration having the circumferential main groove 21 on the tire equatorial plane CL (see FIG. 3). In the configuration having a land portion on the top (not shown), the circumferential main groove 21 closer to the tire equatorial plane CL among the left and right circumferential main grooves defining the land portion corresponds.
 なお、図3の構成では、3本の周方向主溝21、22がタイヤ赤道面CLを中心として左右対称に配置されている。このように、複数の周方向主溝21、22がタイヤ赤道面CLを境界として左右対称に配置される構成では、タイヤ赤道面CLを境界とする左右の領域の摩耗形態が均一化されて、タイヤの摩耗寿命が向上する点で好ましい。 In the configuration of FIG. 3, the three circumferential main grooves 21 and 22 are arranged symmetrically about the tire equatorial plane CL. Thus, in the configuration in which the plurality of circumferential main grooves 21 and 22 are arranged symmetrically with respect to the tire equatorial plane CL as a boundary, the wear forms in the left and right regions with the tire equatorial plane CL as a boundary are uniformed, This is preferable in that the wear life of the tire is improved.
 しかし、これに限らず、周方向主溝21、22がタイヤ赤道面CLを中心として左右非対称に配置されても良い(図示省略)。また、周方向主溝21が、タイヤ赤道面CLから外れた位置に配置されても良い(図示省略)。 However, the present invention is not limited to this, and the circumferential main grooves 21 and 22 may be arranged asymmetrically about the tire equatorial plane CL (not shown). Further, the circumferential main groove 21 may be disposed at a position deviated from the tire equatorial plane CL (not shown).
 また、図3の構成では、3本の周方向主溝21、22により、4列の陸部31、32が区画されている。また、周方向主溝21が、タイヤ赤道面CL上に配置されている。 Further, in the configuration of FIG. 3, four rows of land portions 31 and 32 are partitioned by three circumferential main grooves 21 and 22. Further, the circumferential main groove 21 is disposed on the tire equatorial plane CL.
 しかし、これに限らず、4本以上の周方向主溝が配置されても良い(図示省略)。このため、陸部31が、タイヤ赤道面CL上に配置されても良い。 However, the present invention is not limited to this, and four or more circumferential main grooves may be arranged (not shown). For this reason, the land part 31 may be arrange | positioned on the tire equator surface CL.
[センター陸部の周方向細溝およびラグ溝]
 図4~図6は、図1に記載した更生タイヤの要部を示す拡大図である。これらの図において、図4は、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31の拡大平面図を示している。また、図5は、タイヤ赤道面CLとする片側領域のタイヤ子午線方向の断面図を示している。また、図6は、周方向主溝21、22の拡大断面図を示している。
[Circular narrow groove and lug groove in the center land]
4 to 6 are enlarged views showing a main part of the retreaded tire shown in FIG. In these drawings, FIG. 4 shows an enlarged plan view of the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22. FIG. 5 shows a cross-sectional view in the tire meridian direction of one side region as the tire equatorial plane CL. FIG. 6 shows an enlarged cross-sectional view of the circumferential main grooves 21 and 22.
 図3および図4に示すように、この更生タイヤ10では、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31が、1本の周方向細溝311と、複数のラグ溝312とを備える。例えば、図3の構成では、更生タイヤ10が点対称なトレッドパターンを備えるため、左右の最外周方向主溝22、22が、1本の周方向細溝311および複数のラグ溝312をそれぞれ備えている。これにより、陸部31の溝面積が増加して、排水性が高められている。 As shown in FIGS. 3 and 4, in this retreaded tire 10, the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 has one circumferential narrow groove 311 and a plurality of lug grooves 312. With. For example, in the configuration of FIG. 3, the retread tire 10 has a point-symmetric tread pattern, so the left and right outermost circumferential main grooves 22, 22 each have one circumferential narrow groove 311 and a plurality of lug grooves 312. ing. Thereby, the groove area of the land part 31 increases and the drainage property is improved.
 周方向細溝311は、タイヤ全周に渡って連続的に延在する細溝である。この周方向細溝311は、ストレート形状を有しても良いし、ジグザグ形状あるいは波状形状を有しても良い。例えば、図4の構成では、周方向細溝311が、相互に異なる傾斜角をもつ長尺部と短尺部とをタイヤ周方向に交互に接続して成るジグザグ形状を有している。また、周方向細溝311が、短尺部にて溝幅を拡幅した幅広構造を有している。 The circumferential narrow groove 311 is a narrow groove extending continuously over the entire circumference of the tire. The circumferential narrow groove 311 may have a straight shape, or may have a zigzag shape or a wavy shape. For example, in the configuration of FIG. 4, the circumferential narrow groove 311 has a zigzag shape formed by alternately connecting long portions and short portions having different inclination angles in the tire circumferential direction. Further, the circumferential narrow groove 311 has a wide structure in which the groove width is widened at the short portion.
 また、周方向細溝311は、陸部31の略中央領域に配置されて、陸部31をタイヤ幅方向に分断する。具体的には、陸部31の幅Wrと、陸部31のエッジ部から周方向細溝311までのタイヤ幅方向の距離Daとが、0.40≦Da/Wr≦0.60の関係を有する。 Moreover, the circumferential direction narrow groove 311 is arrange | positioned in the approximate center area | region of the land part 31, and divides the land part 31 in a tire width direction. Specifically, the width Wr of the land portion 31 and the distance Da in the tire width direction from the edge portion of the land portion 31 to the circumferential narrow groove 311 have a relationship of 0.40 ≦ Da / Wr ≦ 0.60. Have.
 陸部31の幅Wrは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、陸部の踏面における左右のエッジ部のタイヤ幅方向の距離として測定される。また、陸部が切欠部や面取部をエッジ部に有する構成では、陸部の踏面と溝壁の延長線との交点を基準として、陸部幅が測定される。 The width Wr of the land portion 31 is measured as the distance in the tire width direction of the left and right edge portions on the tread surface of the land portion in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure. Moreover, in the structure which a land part has a notch part and a chamfering part in an edge part, a land part width | variety is measured on the basis of the intersection of the tread of a land part and the extended line of a groove wall.
 周方向細溝311の距離Daは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、陸部31の幅Wrの測定点から周方向細溝311の溝中心線までの距離として測定される。 The distance Da of the circumferential narrow groove 311 is from the measurement point of the width Wr of the land portion 31 to the groove center line of the circumferential narrow groove 311 in a no-load state in which the tire is mounted on the defined rim and filled with the defined internal pressure. Measured as distance.
 また、図4において、周方向細溝311の溝幅W3が、1.5[mm]≦W3≦4.3[mm]の範囲にあることが好ましい。これにより、周方向細溝311の溝面積が確保され、また、陸部31の剛性が確保される。 Moreover, in FIG. 4, it is preferable that the groove width W3 of the circumferential narrow groove 311 is in the range of 1.5 [mm] ≦ W3 ≦ 4.3 [mm]. Thereby, the groove area of the circumferential narrow groove 311 is ensured, and the rigidity of the land portion 31 is ensured.
 また、図6において、周方向細溝311の溝深さD3と、最外周方向主溝22の溝深さD2とが、0.10≦D3/D2≦0.40の関係を有することが好ましく、0.20≦D3/D2≦0.30の関係を有することがより好ましい。すなわち、周方向細溝311が、浅溝であることが好ましい。これにより、陸部31の剛性が確保されて、タイヤの操縦安定性能が確保される。 In FIG. 6, the groove depth D3 of the circumferential narrow groove 311 and the groove depth D2 of the outermost circumferential main groove 22 preferably have a relationship of 0.10 ≦ D3 / D2 ≦ 0.40. More preferably, the relationship is 0.20 ≦ D3 / D2 ≦ 0.30. In other words, the circumferential narrow groove 311 is preferably a shallow groove. Thereby, the rigidity of the land portion 31 is ensured, and the steering stability performance of the tire is ensured.
 なお、図3の構成では、上記のように、更生タイヤ10が、3本の周方向主溝21、22と、4列の陸部31、32とを備えている。このため、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31が、タイヤ赤道面CLにも隣接し、この陸部31に上記の周方向細溝311およびラグ溝312が配置されている。 In the configuration of FIG. 3, the retread tire 10 includes the three circumferential main grooves 21 and 22 and the four rows of land portions 31 and 32 as described above. For this reason, the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 is also adjacent to the tire equatorial plane CL, and the circumferential narrow groove 311 and the lug groove 312 are arranged on the land portion 31. ing.
 一方で、5列以上の陸部を備える構成(図示省略)では、少なくとも最外周方向主溝22に隣接するタイヤ幅方向内側の陸部(いわゆるセカンド陸部)が、周方向細溝311およびラグ溝312を有すれば良い。 On the other hand, in a configuration including five or more rows of land portions (not shown), at least a land portion (so-called second land portion) on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 is a circumferential narrow groove 311 and a lug. A groove 312 may be provided.
 複数のラグ溝312は、タイヤ幅方向に延在して最外周方向主溝22に連通する横溝である。すなわち、ラグ溝312は、図3および図4に示すように、陸部31の周方向細溝311と最外周方向主溝22との間の領域に配置されて、一方の端部にて最外周方向主溝22に開口する。 The plurality of lug grooves 312 are lateral grooves that extend in the tire width direction and communicate with the outermost circumferential main groove 22. That is, the lug groove 312 is disposed in the region between the circumferential narrow groove 311 and the outermost circumferential main groove 22 of the land portion 31 as shown in FIG. 3 and FIG. Opening in the outer circumferential main groove 22.
 例えば、図3の構成では、左右の最外周方向主溝22、22に隣接するタイヤ幅方向内側の陸部31、31が、複数のラグ溝312をそれぞれ備えている。また、複数のラグ溝312が、タイヤ周方向に所定間隔L1で配列されている。また、ラグ溝312が、タイヤ幅方向に所定角度で傾斜しつつ延在して、周方向細溝311と最外周方向主溝22とを接続している。また、ラグ溝312が、周方向細溝311との接続部および最外周方向主溝22との接続部の双方にて、溝幅を拡幅している。また、周方向主溝21、22に面する陸部31の左右のエッジ部には、短尺かつ複数のサイプ(いわゆるマルチサイプ。符号省略。)が、タイヤ周方向に所定間隔で配置されている。 For example, in the configuration of FIG. 3, the land portions 31, 31 on the inner side in the tire width direction adjacent to the left and right outermost circumferential main grooves 22, 22 are each provided with a plurality of lug grooves 312. A plurality of lug grooves 312 are arranged at a predetermined interval L1 in the tire circumferential direction. Further, the lug groove 312 extends while inclining at a predetermined angle in the tire width direction, and connects the circumferential narrow groove 311 and the outermost circumferential main groove 22. In addition, the lug groove 312 widens the groove width at both the connecting portion with the circumferential narrow groove 311 and the connecting portion with the outermost circumferential main groove 22. Moreover, short and a plurality of sipes (so-called multi-sipe, not shown) are disposed at predetermined intervals in the tire circumferential direction at the left and right edge portions of the land portion 31 facing the circumferential main grooves 21 and 22.
 また、図4において、ラグ溝312の溝幅W4が、1.0[mm]≦W4≦4.0[mm]の範囲にあることが好ましい。これにより、ラグ溝312の溝面積が確保され、また、陸部31の剛性が確保される。 Moreover, in FIG. 4, it is preferable that the groove width W4 of the lug groove 312 is in the range of 1.0 [mm] ≦ W4 ≦ 4.0 [mm]. Thereby, the groove area of the lug groove 312 is ensured, and the rigidity of the land portion 31 is ensured.
 また、図6において、ラグ溝312の溝深さD4と、最外周方向主溝22の溝深さD2とが、0.10≦D4/D2≦0.40の関係を有することが好ましく、0.20≦D4/D2≦0.30の関係を有することがより好ましい。すなわち、ラグ溝312が、浅溝であることが好ましい。これにより、陸部31の剛性が確保されて、タイヤの操縦安定性能が確保される。 In FIG. 6, the groove depth D4 of the lug groove 312 and the groove depth D2 of the outermost circumferential main groove 22 preferably have a relationship of 0.10 ≦ D4 / D2 ≦ 0.40. It is more preferable to have a relationship of 20 ≦ D4 / D2 ≦ 0.30. That is, the lug groove 312 is preferably a shallow groove. Thereby, the rigidity of the land portion 31 is ensured, and the steering stability performance of the tire is ensured.
 また、図6の構成では、ラグ溝312の溝深さD4が、周方向細溝311側から最外周方向主溝22側に向かって増加して、最外周方向主溝22に対する開口部にて最大となっている。これにより、ラグ溝312の排水性が高められている。 In the configuration of FIG. 6, the groove depth D4 of the lug groove 312 increases from the circumferential narrow groove 311 side toward the outermost circumferential main groove 22 side, and at the opening with respect to the outermost circumferential main groove 22. It has become the maximum. Thereby, the drainage of the lug groove 312 is improved.
 なお、図3および図4の構成では、ラグ溝312が、タイヤ幅方向内側の端部にて周方向細溝311に連通している。このため、陸部31における周方向細溝311と最外周方向主溝22とに区画された部分が複数のラグ溝31によりタイヤ周方向に分断されて、複数のブロック313から成るブロック列となっている。かかる構成は、陸部31の排水性が向上して、タイヤのウェット性能が向上する点で好ましい。 3 and 4, the lug groove 312 communicates with the circumferential narrow groove 311 at the inner end in the tire width direction. For this reason, a portion of the land portion 31 that is divided into the circumferential narrow groove 311 and the outermost circumferential main groove 22 is divided in the tire circumferential direction by the plurality of lug grooves 31 to form a block row composed of a plurality of blocks 313. ing. Such a configuration is preferable in that the drainage of the land portion 31 is improved and the wet performance of the tire is improved.
 しかし、これに限らず、周方向細溝311に交差することなく、周方向細溝311と最外周方向主溝22との間の領域で終端しても良い(図示省略)。この場合には、陸部31における周方向細溝311と最外周方向主溝22とに区画された部分が、タイヤ周方向に連続するリブとなる。かかる構成は、周方向細溝311と最外周方向主溝22との間の領域における陸部31の剛性が増加して、陸部31の最外周方向主溝22側のエッジ部における偏摩耗が抑制される点で好ましい。 However, the present invention is not limited to this, and may be terminated in a region between the circumferential narrow groove 311 and the outermost circumferential main groove 22 without intersecting the circumferential narrow groove 311 (not shown). In this case, a portion of the land portion 31 that is partitioned into the circumferential narrow groove 311 and the outermost circumferential main groove 22 is a rib that is continuous in the tire circumferential direction. With this configuration, the rigidity of the land portion 31 in the region between the circumferential narrow groove 311 and the outermost circumferential main groove 22 is increased, and uneven wear at the edge portion on the outermost circumferential main groove 22 side of the land portion 31 is reduced. It is preferable in terms of being suppressed.
 また、図3および図4の構成では、ラグ溝312が、周方向細溝311をタイヤ幅方向に貫通することなく、周方向細溝311との接続部で終端している。このため、陸部31における周方向細溝311のタイヤ幅方向内側の領域が、タイヤ周方向に連続するリブとなっている。かかる構成では、タイヤ赤道面CL側にかかる陸部31の剛性が確保されて、タイヤの操縦安定性能が向上する点で好ましい。 3 and 4, the lug groove 312 terminates at the connecting portion with the circumferential narrow groove 311 without penetrating the circumferential narrow groove 311 in the tire width direction. For this reason, the area | region inside the tire width direction of the circumferential direction narrow groove 311 in the land part 31 is a rib which continues in a tire circumferential direction. Such a configuration is preferable in that the rigidity of the land portion 31 on the tire equatorial plane CL side is ensured and the steering stability performance of the tire is improved.
 しかし、これに限らず、ラグ溝312が、周方向細溝311をタイヤ幅方向に貫通して、周方向細溝311のタイヤ幅方向内側の領域まで延在しても良い(図示省略)。このとき、ラグ溝312が、周方向主溝21に開口することなく、陸部31の内部で終端することにより、タイヤ赤道面CL側にかかる陸部31の剛性が適正に確保される。 However, the present invention is not limited thereto, and the lug groove 312 may extend through the circumferential narrow groove 311 in the tire width direction and extend to the inner region in the tire width direction of the circumferential narrow groove 311 (not shown). At this time, the lug groove 312 does not open to the circumferential main groove 21 and terminates inside the land portion 31, whereby the rigidity of the land portion 31 on the tire equatorial plane CL side is appropriately ensured.
 また、図3および図4の構成では、周方向細溝311がジグザグ形状を有し、ラグ溝312が周方向細溝311のジグザグ形状の屈曲部に接続している。また、ラグ溝312が周方向細溝311との接続部にて溝幅を拡幅することにより、周方向細溝311の溝幅がジグザグ形状の屈曲部にて拡幅している。かかる構成では、陸部31の排水性が向上して、タイヤのウェット性能が向上する点で好ましい。 3 and 4, the circumferential narrow groove 311 has a zigzag shape, and the lug groove 312 is connected to the zigzag bent portion of the circumferential narrow groove 311. Further, the lug groove 312 widens the groove width at the connection portion with the circumferential narrow groove 311, so that the groove width of the circumferential narrow groove 311 is widened at the zigzag bent portion. Such a configuration is preferable in that the drainability of the land portion 31 is improved and the wet performance of the tire is improved.
[ショルダー陸部の切欠部]
 また、図3の構成では、ショルダー陸部32が、最外周方向主溝22側のエッジ部に、複数の切欠部321を備えている。これにより、最外周方向主溝22の溝面積が増加して、排水性が向上する。
[Notch of shoulder land]
In the configuration of FIG. 3, the shoulder land portion 32 includes a plurality of notches 321 at the edge portion on the outermost circumferential main groove 22 side. Thereby, the groove area of the outermost circumferential main groove 22 is increased, and drainage is improved.
 例えば、図3の構成では、トレッド平面視にて、切欠部321が台形状を有し、トレッドパターンの1つのピッチに1つの割合で配置されている。また、1本の最外周方向主溝22にて、複数組の切欠部321とセンター陸部31のラグ溝312とがタイヤ周方向にオフセットしつつ交互に配置されている。これにより、切欠部321とラグ溝312の開口部とが、タイヤ周方向に分散して配置されて、最外周方向主溝22の溝面積がタイヤ周方向に均一化されている。 For example, in the configuration of FIG. 3, the cutout portion 321 has a trapezoidal shape in a plan view of the tread and is arranged at a ratio of one to one pitch of the tread pattern. In addition, a plurality of sets of cutout portions 321 and lug grooves 312 of the center land portion 31 are alternately arranged in one outermost circumferential main groove 22 while being offset in the tire circumferential direction. Thereby, the notch part 321 and the opening part of the lug groove 312 are disperse | distributed and arrange | positioned in the tire circumferential direction, and the groove area of the outermost periphery direction main groove 22 is equalized in the tire circumferential direction.
 また、図4において、切欠部321のタイヤ周方向の長さL2と、ラグ溝312のタイヤ周方向の配置間隔L1とが、0.20≦L2/L1≦0.60の関係を有することが好ましく、0.35≦L2/L1≦0.45の関係を有することがより好ましい。これにより、切欠部321の長さL2が適正化される。 In FIG. 4, the length L2 of the notch 321 in the tire circumferential direction and the arrangement interval L1 of the lug groove 312 in the tire circumferential direction have a relationship of 0.20 ≦ L2 / L1 ≦ 0.60. Preferably, it has a relationship of 0.35 ≦ L2 / L1 ≦ 0.45. Thereby, the length L2 of the notch 321 is optimized.
 切欠部321の長さL2は、トレッド踏面における最外周方向主溝22に対する切欠部321のタイヤ周方向の開口長さとして測定される。 The length L2 of the notch 321 is measured as the opening length in the tire circumferential direction of the notch 321 with respect to the outermost circumferential main groove 22 on the tread surface.
 ラグ溝312の配置間隔L1は、トレッドパターンのピッチ長に等しい。 The arrangement interval L1 of the lug grooves 312 is equal to the pitch length of the tread pattern.
 また、図4において、切欠部321の幅W5と、最外周方向主溝22の溝幅W2とが、0.20≦W5/W2≦0.40の関係を有することが好ましく、0.25≦W5/W2≦0.35の関係を有することがより好ましい。これにより、切欠部321の幅W5が適正化される。 In FIG. 4, the width W5 of the notch 321 and the groove width W2 of the outermost circumferential main groove 22 preferably have a relationship of 0.20 ≦ W5 / W2 ≦ 0.40, and 0.25 ≦ It is more preferable to have a relationship of W5 / W2 ≦ 0.35. Thereby, the width W5 of the notch 321 is optimized.
 切欠部321の幅W5は、トレッド踏面における切欠部321のタイヤ幅方向の開口幅として測定される。 The width W5 of the notch 321 is measured as the opening width in the tire width direction of the notch 321 on the tread surface.
 また、図6において、切欠部321の深さD5と、最外周方向主溝22の溝深さD2とが、0.60≦D5/D2≦1.00の関係を有することが好ましい。切欠部321の深さD5が適正化される。 In FIG. 6, it is preferable that the depth D5 of the notch 321 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.60 ≦ D5 / D2 ≦ 1.00. The depth D5 of the notch 321 is optimized.
[溝面積比]
 また、図3の構成では、トレッドパターン全体の溝面積比Aが、0.20≦A≦0.35の範囲にあることが好ましい。これにより、溝面積比Aが適正化されて、タイヤ接地時における接地圧が適正化される。
[Groove area ratio]
In the configuration of FIG. 3, the groove area ratio A of the entire tread pattern is preferably in the range of 0.20 ≦ A ≦ 0.35. Thereby, the groove area ratio A is optimized and the contact pressure at the time of tire contact is optimized.
 トレッドパターン全体の溝面積比Aは、溝面積/(溝面積+接地面積)により定義される。溝面積とは、接地面における溝の開口面積をいう。また、溝とは、トレッド部の周方向溝およびラグ溝をいい、サイプ、カーフ、切欠部などを含まない。また、接地面積とは、タイヤと路面との接触面積をいう。また、溝面積および接地面積は、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面にて、測定される。 The groove area ratio A of the entire tread pattern is defined by groove area / (groove area + ground area). The groove area refers to the opening area of the groove on the ground contact surface. Further, the groove refers to a circumferential groove and a lug groove in the tread portion, and does not include sipes, kerfs, and notches. The ground contact area is the contact area between the tire and the road surface. In addition, the groove area and the contact area are determined when the tire is mounted on the specified rim and applied with the specified internal pressure, and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. Measured at the contact surface between the plate and the flat plate.
 また、図3の構成では、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31の溝面積比Acおよびタイヤ幅方向外側の陸部32の溝面積比Asが、1.5≦Ac/Asの範囲にあることが好ましい。また、比Ac/Asが、2.5≦Ac/As≦4.5の範囲にあることがより好ましい。これにより、比Ac/Asが適正化されて、ショルダー陸部32の剛性が確保される。 3, the groove area ratio Ac of the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 and the groove area ratio As of the land portion 32 on the outer side in the tire width direction are 1.5 ≦. It is preferable to be in the range of Ac / As. The ratio Ac / As is more preferably in the range of 2.5 ≦ Ac / As ≦ 4.5. Thereby, ratio Ac / As is optimized and the rigidity of the shoulder land part 32 is ensured.
 陸部31、32の溝面積比Ac、Asとは、上記したトレッドパターン全体の溝面積比Aと同様に定義される。ただし、陸部の溝面積は、陸部自身に形成された溝(例えば、ラグ溝、細溝など)の面積の総和として測定され、陸部を区画する周方向主溝の面積や陸部に形成されたサイプ、カーフ、切欠部などの面積は、陸部の溝面積から除外される。 The groove area ratios Ac and As of the land portions 31 and 32 are defined in the same manner as the groove area ratio A of the entire tread pattern described above. However, the groove area of the land portion is measured as the sum of the areas of grooves formed in the land portion itself (for example, lug grooves, narrow grooves, etc.). Areas such as formed sipes, kerfs, and notches are excluded from the land area.
[カーカス層およびベルト層]
 また、更生タイヤ10は、上記のように、カーカス層13と、カーカス層13のタイヤ径方向外側に配置されるベルト層14とを備える(図1参照)。
[Carcass layer and belt layer]
Moreover, the retread tire 10 is provided with the carcass layer 13 and the belt layer 14 arrange | positioned on the tire radial direction outer side of the carcass layer 13 as mentioned above (refer FIG. 1).
 例えば、図1に示す小型トラック用の更生タイヤ10では、カーカス層13およびベルト層14が、台タイヤ30に含まれている。また、カーカス層13が、左右一対のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成している。また、カーカス層13の両端部が、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止されている。また、カーカス層13が、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有している。 For example, in the retread tire 10 for a small truck shown in FIG. 1, the carcass layer 13 and the belt layer 14 are included in the base tire 30. Further, the carcass layer 13 is bridged in a toroidal shape between the pair of left and right bead cores 11 and 11 to constitute a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12. The carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber, and has an absolute value of 80 [deg]. A carcass angle of 95 [deg] or less (inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction) is obtained.
 また、ベルト層14が、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置されている。 The belt layer 14 is formed by laminating a pair of cross belts 141, 142 and a belt cover 143, and is arranged so as to be wound around the outer periphery of the carcass layer 13.
 また、一対の交差ベルト141、142が、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で10[deg]以上55[deg]以下のベルト角度を有している。また、一対の交差ベルト141、142が、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有し、ベルトコードの繊維方向を相互に交差させて積層されている(クロスプライ構造)。なお、3枚以上の交差ベルトが積層されて配置されても良い(図示省略)。 The pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and is an absolute value of 10 [deg] or more and 55 [deg] or less. Have an angle. Further, the pair of cross belts 141 and 142 have belt angles of different signs (inclination angles in the fiber direction of the belt cord with respect to the tire circumferential direction) and are laminated so that the fiber directions of the belt cords cross each other. Yes (cross-ply structure). Note that three or more cross belts may be laminated (not shown).
 また、ベルトカバー143が、コートゴムで被覆されたスチールあるいは有機繊維材から成る複数のコードを圧延加工して構成されている。また、ベルトカバー143が、絶対値で0[deg]以上10[deg]以下のベルト角度を有することが好ましく、0[deg]以上5[deg]以下のベルト角度を有することがより好ましい。また、ベルトカバー143が、交差ベルト141、142のタイヤ径方向外側に積層されて配置されている。 Further, the belt cover 143 is configured by rolling a plurality of cords made of steel or organic fiber material covered with a coat rubber. The belt cover 143 preferably has an absolute value of a belt angle of 0 [deg] or more and 10 [deg] or less, and more preferably a belt angle of 0 [deg] or more and 5 [deg] or less. A belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
 また、図1の構成において、幅広な交差ベルト141のベルト幅Wb1と、カーカス層13のカーカス断面幅Waとが、0.65≦Wb1/Wa≦0.90の関係を有することが好ましく、0.68≦Wb1/Wa≦0.80の関係を有することがより好ましい。これにより、比Wb1/Waが適正化されて、タイヤの乗心地性が向上する。 1, the belt width Wb1 of the wide cross belt 141 and the carcass cross-sectional width Wa of the carcass layer 13 preferably have a relationship of 0.65 ≦ Wb1 / Wa ≦ 0.90. .68 ≦ Wb1 / Wa ≦ 0.80 is more preferable. Thereby, ratio Wb1 / Wa is optimized and the riding comfort of a tire improves.
 カーカス断面幅Waは、カーカス層13の左右の最大幅位置のタイヤ幅方向の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。 The carcass cross-sectional width Wa is a distance in the tire width direction at the left and right maximum width positions of the carcass layer 13, and is measured as a no-load state while attaching a tire to a specified rim and applying a specified internal pressure.
 また、幅広な交差ベルト141のベルト幅Wb1と、トレッド幅TWとが、0.70≦Wb1/TW≦1.00の範囲を有することが好ましい。 Further, it is preferable that the belt width Wb1 of the wide cross belt 141 and the tread width TW have a range of 0.70 ≦ Wb1 / TW ≦ 1.00.
 また、幅狭な交差ベルト142のベルト幅Wb2と、トレッド幅TWとが、0.70≦Wb2/TW≦0.95の範囲を有することが好ましく、0.80≦Wb2/TW≦0.90の範囲を有することがより好ましい。 Further, the belt width Wb2 of the narrow cross belt 142 and the tread width TW preferably have a range of 0.70 ≦ Wb2 / TW ≦ 0.95, and 0.80 ≦ Wb2 / TW ≦ 0.90. It is more preferable to have this range.
 ベルト幅Wb1、Wb2は、タイヤ子午線方向の断面視におけるタイヤ幅方向の最も外側にあるベルトコードのタイヤ幅方向の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。 The belt widths Wb1 and Wb2 are distances in the tire width direction of the belt cords on the outermost side in the tire width direction in a cross sectional view in the tire meridian direction. As measured.
[ベルトカバー]
 また、この更生タイヤ10では、図1において、ベルトカバー143のタイヤ幅方向外側にある左右の端部間の距離Wcと、トレッド幅TWとが、0.75≦Wc/TW≦1.00の関係を有することが好ましく、0.80≦Wc/TW≦0.90の関係を有することがより好ましい。これにより、タイヤの接地形状が適正化されて、タイヤのウェット性能が確保される。
[Belt cover]
Moreover, in this retreaded tire 10, in FIG. 1, the distance Wc between the left and right end portions on the outer side in the tire width direction of the belt cover 143 and the tread width TW satisfy 0.75 ≦ Wc / TW ≦ 1.00. It is preferable to have a relationship, and it is more preferable to have a relationship of 0.80 ≦ Wc / TW ≦ 0.90. Thereby, the ground contact shape of a tire is optimized and the wet performance of a tire is ensured.
 距離Wcは、タイヤ子午線方向の断面視におけるタイヤ幅方向の最も外側にあるベルトコードのタイヤ幅方向の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。また、ベルトカバー143がタイヤ幅方向に分割された構造を有する構成(図示省略)では、最もタイヤ幅方向外側にあるベルトカバーの左右の端部を基準として、距離Wcが測定される。 The distance Wc is the distance in the tire width direction of the outermost belt cord in the tire width direction in a cross-sectional view in the tire meridian direction, and is measured as an unloaded condition while attaching the tire to a specified rim and applying a specified internal pressure. The Further, in a configuration (not shown) in which the belt cover 143 is divided in the tire width direction, the distance Wc is measured with reference to the left and right end portions of the belt cover that is the outermost in the tire width direction.
 また、ベルトカバー143のエンド数が、40[本/50mm]以上60[本/50mm]以下の範囲にあることが好ましい。また、ベルトカバー143を構成する糸の太さが、1100[dtex/2]以上1500[dtex/2]以下の範囲にあることが好ましい。これらにより、ベルトカバー143の構造が適正化される。 Further, the number of ends of the belt cover 143 is preferably in the range of 40 [lines / 50 mm] to 60 [lines / 50 mm]. Moreover, it is preferable that the thickness of the thread | yarn which comprises the belt cover 143 exists in the range of 1100 [dtex / 2] or more and 1500 [dtex / 2] or less. As a result, the structure of the belt cover 143 is optimized.
 例えば、図1の構成では、単層のベルトカバー143が、いわゆるフルカバー構造を有し、タイヤ幅方向に連続的に延在してベルト層14の全域を覆って配置されている。また、ベルトカバー143が、幅広な交差ベルト141の端部まで延在することにより、一対の交差ベルト141、142の端部を同時に覆っている。また、図5に示すように、付加的なベルトカバー144が、上記のベルトカバー143のタイヤ径方向外側に積層されている。この付加的なベルトカバー144は、一対の交差ベルト141、142の左右の端部を覆う位置に部分的に配置されて、いわゆるエッジカバーとして機能する。このため、交差ベルト141、142の左右の端部には、複数層のベルトカバー143、144がそれぞれ配置されて、ベルトカバーの積層枚数がタイヤ赤道面CLに交差する位置よりも多くなっている。これにより、交差ベルト141、142の端部に対する拘束力が高められている。 For example, in the configuration of FIG. 1, the single-layer belt cover 143 has a so-called full-cover structure, and extends continuously in the tire width direction and is disposed so as to cover the entire belt layer 14. Further, the belt cover 143 extends to the end of the wide cross belt 141, thereby covering the ends of the pair of cross belts 141 and 142 at the same time. Further, as shown in FIG. 5, an additional belt cover 144 is laminated on the outer side in the tire radial direction of the belt cover 143. The additional belt cover 144 is partially disposed at a position covering the left and right ends of the pair of cross belts 141 and 142 and functions as a so-called edge cover. For this reason, a plurality of belt covers 143 and 144 are disposed at the left and right ends of the cross belts 141 and 142, respectively, and the number of stacked belt covers is greater than the position where the belt equatorial plane CL intersects. . Thereby, the restraining force with respect to the edge part of the cross belts 141 and 142 is heightened.
 しかし、これに限らず、フルカバー構造を有する複数のベルトカバー143が、積層されてベルト層14の全域を覆って配置されても良い(図示省略)。したがって、ベルトカバー143が、多層構造を有しても良い。また、ベルトカバー143のタイヤ径方向外側に、さらにベルトプライが配置されても良い(図示省略)。したがって、ベルトカバー143が、ベルト層14の最外層に配置されていなくとも良い。 However, the present invention is not limited to this, and a plurality of belt covers 143 having a full cover structure may be laminated so as to cover the entire belt layer 14 (not shown). Therefore, the belt cover 143 may have a multilayer structure. Further, a belt ply may be further arranged outside the belt cover 143 in the tire radial direction (not shown). Therefore, the belt cover 143 may not be disposed on the outermost layer of the belt layer 14.
[トレッドゴムのゲージ]
 また、図5において、タイヤ赤道面CLにおけるトレッドゲージDccと、幅狭な交差ベルト142のタイヤ幅方向外側の端部におけるトレッドゲージDeとが、1.03≦Dcc/De≦1.20の関係を有することが好ましく、1.05≦Dcc/De≦1.10の関係を有することがより好ましい。これにより、比Dcc/Deが適正化される。
[Tread rubber gauge]
In FIG. 5, the relationship between the tread gauge Dcc on the tire equatorial plane CL and the tread gauge De at the outer end in the tire width direction of the narrow cross belt 142 is 1.03 ≦ Dcc / De ≦ 1.20. It is preferable to have 1.05 ≦ Dcc / De ≦ 1.10. Thereby, the ratio Dcc / De is optimized.
 トレッドゲージDccは、タイヤ子午線方向の断面視にて、タイヤ赤道面CLとトレッドプロファイルとの交点と、ベルト層14の最もタイヤ径方向外側にあるベルトプライ(図5では、ベルトカバー143)のベルトコード面との距離として測定される。ベルトコード面は、ベルトプライを構成する複数のベルトコードのタイヤ径方向外側の端部を含む面として定義される。 The tread gauge Dcc is a belt of a belt ply (the belt cover 143 in FIG. 5) that is the intersection of the tire equatorial plane CL and the tread profile and the outermost radial direction of the belt layer 14 in a cross-sectional view in the tire meridian direction Measured as the distance to the code surface. The belt cord surface is defined as a surface including ends of the plurality of belt cords constituting the belt ply on the outer side in the tire radial direction.
 トレッドゲージDeは、タイヤ子午線方向の断面視にて、幅狭な交差ベルト142の端部からトレッド面に引いた垂線上におけるトレッドゴムの厚さとして測定される。交差ベルト142の端部とは、交差ベルト142を構成するベルトコードのうちタイヤ幅方向の最も外側にあるベルトコードの端面をいう。 The tread gauge De is measured as the thickness of the tread rubber on the perpendicular drawn from the end of the narrow cross belt 142 to the tread surface in a sectional view in the tire meridian direction. The end portion of the cross belt 142 refers to the end surface of the belt cord that is the outermost in the tire width direction among the belt cords constituting the cross belt 142.
 また、図5において、タイヤ赤道面CLにおけるトレッドゲージDccと、ベルトカバー144のタイヤ幅方向外側の端部からトレッド端TまでのトレッドゲージDshとが、1.00≦Dsh/Dcc≦1.70の関係を有することが好ましく、1.20≦Dsh/Dcc≦1.40の関係を有することがより好ましい。これにより、Dsh/Dccが適正化される。 In FIG. 5, the tread gauge Dcc on the tire equatorial plane CL and the tread gauge Dsh from the outer end in the tire width direction of the belt cover 144 to the tread end T are 1.00 ≦ Dsh / Dcc ≦ 1.70. It is preferable to have a relationship of 1.20 ≦ Dsh / Dcc ≦ 1.40, and more preferable. Thereby, Dsh / Dcc is optimized.
 トレッドゲージDshは、タイヤ子午線方向の断面視にて、ベルトカバー143を構成するベルトコードのうち、タイヤ幅方向の最も外側にあるベルトコードの端面を基準として測定される。 The tread gauge Dsh is measured with reference to the end surface of the belt cord that is the outermost in the tire width direction among the belt cords that constitute the belt cover 143 in a sectional view in the tire meridian direction.
 また、図6において、タイヤ赤道面CLに最も近い周方向主溝21の新ゴム溝下ゲージGa1が、1.0[mm]≦Ga1≦5.0[mm]の範囲にあることが好ましく、2.0[mm]≦Ga1≦3.0[mm]の範囲にあることがより好ましい。これにより、トレッド部センター領域の周方向主溝21の新ゴム溝下ゲージGa1が適正化される。 Moreover, in FIG. 6, it is preferable that the new rubber sub-groove gauge Ga1 of the circumferential main groove 21 closest to the tire equatorial plane CL is in the range of 1.0 [mm] ≦ Ga1 ≦ 5.0 [mm] More preferably, the range is 2.0 [mm] ≦ Ga1 ≦ 3.0 [mm]. Thereby, the new under-groove groove gauge Ga1 of the circumferential main groove 21 in the center region of the tread portion is optimized.
 また、図6において、最外周方向主溝22の新ゴム溝下ゲージGa2が、タイヤ赤道面CLに最も近い周方向主溝21の新ゴム溝下ゲージGa1に対して、Ga2<Ga1の関係を有することが好ましい。したがって、トレッド部ショルダー領域の周方向主溝22の新ゴム溝下ゲージGa2が、トレッド部センター領域の周方向主溝21の新ゴム溝下ゲージGa1よりも小さい。 In FIG. 6, the new rubber sub-groove gauge Ga2 of the outermost circumferential main groove 22 has a relationship of Ga2 <Ga1 with respect to the new rubber sub-groove gauge Ga1 of the circumferential main groove 21 closest to the tire equatorial plane CL. It is preferable to have. Therefore, the new under-groove groove gauge Ga2 of the circumferential main groove 22 in the tread portion shoulder region is smaller than the new under-groove gauge Ga1 of the circumferential main groove 21 in the tread portion center region.
 また、新ゴム溝下ゲージGa2が、1.0[mm]≦Ga2≦4.0[mm]の範囲にあることが好ましく、1.3[mm]≦Ga2≦3.0[mm]の範囲にあることがより好ましい。これにより、トレッド部ショルダー領域の周方向主溝22の新ゴム溝下ゲージGa2が適正化される。 Further, the new sub-groove gauge Ga2 is preferably in the range of 1.0 [mm] ≦ Ga2 ≦ 4.0 [mm], and in the range of 1.3 [mm] ≦ Ga2 ≦ 3.0 [mm]. More preferably. Thereby, the new under-groove groove gauge Ga2 of the circumferential main groove 22 in the tread shoulder region is optimized.
 新ゴム溝下ゲージGa1、Ga2は、更生により新たに追加されたトレッド20における溝下ゲージであり、タイヤ子午線方向の断面視にて、周方向主溝21、22の最大溝深さ位置からトレッド20のタイヤ径方向内側の周面までの距離として測定される。 The new rubber sub-groove gauges Ga1 and Ga2 are sub-groove gauges in the tread 20 newly added by rehabilitation, and are treads from the maximum groove depth position of the circumferential main grooves 21 and 22 in the sectional view in the tire meridian direction. It is measured as the distance to the inner circumferential surface of 20 tire radial directions.
 また、図6において、タイヤ赤道面CLに最も近い周方向主溝21の溝深さD1と、タイヤ赤道面CLにおけるトレッドゲージDccとが、1.30≦Dcc/D1≦1.55の関係を有することが好ましく、1.40≦Dcc/D1≦1.50の関係を有することがより好ましい。これにより、比Dcc/D1が適正化される。 In FIG. 6, the groove depth D1 of the circumferential main groove 21 closest to the tire equatorial plane CL and the tread gauge Dcc on the tire equatorial plane CL have a relationship of 1.30 ≦ Dcc / D1 ≦ 1.55. Preferably, it has a relationship of 1.40 ≦ Dcc / D1 ≦ 1.50. Thereby, the ratio Dcc / D1 is optimized.
[変形例]
 図7は、図1に記載した更生タイヤの変形例を示す説明図である。同図は、ショルダー部のプロファイルを示している。
[Modification]
FIG. 7 is an explanatory view showing a modified example of the retread tire described in FIG. 1. This figure shows the profile of the shoulder portion.
 図1の構成では、図5に示すように、更生タイヤ10が、タイヤ子午線方向の断面視にて、スクエア形状を有するショルダー部を備えている。かかる構成では、トレッド幅TWの測定点が、ショルダー陸部32のタイヤ幅方向外側のエッジ部となる。 In the configuration of FIG. 1, as shown in FIG. 5, the retread tire 10 includes a shoulder portion having a square shape in a sectional view in the tire meridian direction. In such a configuration, the measurement point of the tread width TW is the edge portion on the outer side in the tire width direction of the shoulder land portion 32.
 しかし、これに限らず、更生タイヤ10が、タイヤ子午線方向の断面視にて、ラウンド形状(図7参照)あるいは面取り形状(図示省略)を有するショルダー部を備えても良い。 However, the present invention is not limited to this, and the retread tire 10 may include a shoulder portion having a round shape (see FIG. 7) or a chamfered shape (not shown) in a sectional view in the tire meridian direction.
 かかる構成では、トレッド幅TWの測定点が、タイヤ子午線方向の断面視におけるショルダー陸部32の接地面の延長線と、バットレス部(ショルダー部の非接地領域)のプロファイルの延長線との交点T’により定義される。 In such a configuration, the measurement point of the tread width TW is the intersection T between the extension line of the ground contact surface of the shoulder land portion 32 and the extension line of the profile of the buttress portion (non-ground region of the shoulder portion) in a sectional view in the tire meridian direction. Defined by '.
 また、トレッドゲージDshが、タイヤ子午線方向の断面視にて、上記の交点T’からベルトカバー143を構成するベルトコードのうちタイヤ幅方向の最も外側にあるベルトコードの端面に引いた直線上におけるトレッドゴムの厚さとして測定される。 Further, the tread gauge Dsh is a straight line drawn from the intersection T ′ to the end surface of the belt cord that is the outermost in the tire width direction among the belt cords that constitute the belt cover 143 in a sectional view in the tire meridian direction. Measured as the thickness of the tread rubber.
[効果]
 以上説明したように、この更生タイヤ10は、トレッド20と、台タイヤ30とを備える(図1参照)。また、トレッド20が、タイヤ周方向に延在する少なくとも3本の周方向主溝21、22と、これらの周方向主溝21、22に区画されて成る複数の陸部31、32とをトレッド面に備える(図3参照)。また、台タイヤ30が、カーカス層13と、カーカス層13のタイヤ径方向外側に配置されるベルト層14とを備える。また、ベルト層14が、一対の交差ベルト141、142と、一対の交差ベルト141、142のタイヤ径方向外側に配置されるベルトカバー143とを有する。また、トレッド幅TWと、タイヤ総幅SWとが、0.65≦TW/SW≦0.85の関係を有する(図1参照)。また、リム径の測定点Pからタイヤ最大幅位置Qまでのタイヤ径方向の距離SDHと、タイヤ断面高さSHとが、0.45≦SDH/SH≦0.65の関係を有する。また、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31が、タイヤ全周に渡って連続的に延在する1本の周方向細溝311を備える。
[effect]
As described above, the retread tire 10 includes the tread 20 and the base tire 30 (see FIG. 1). Further, the tread 20 includes at least three circumferential main grooves 21 and 22 extending in the tire circumferential direction and a plurality of land portions 31 and 32 that are partitioned by the circumferential main grooves 21 and 22. Prepare for the surface (see FIG. 3). Further, the base tire 30 includes a carcass layer 13 and a belt layer 14 disposed on the outer side in the tire radial direction of the carcass layer 13. Further, the belt layer 14 includes a pair of cross belts 141 and 142 and a belt cover 143 disposed on the outer side in the tire radial direction of the pair of cross belts 141 and 142. Further, the tread width TW and the tire total width SW have a relationship of 0.65 ≦ TW / SW ≦ 0.85 (see FIG. 1). Further, the distance SDH in the tire radial direction from the rim diameter measurement point P to the tire maximum width position Q and the tire cross-section height SH have a relationship of 0.45 ≦ SDH / SH ≦ 0.65. Further, the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 includes one circumferential narrow groove 311 extending continuously over the entire tire circumference.
 かかる構成では、プロファイルを規定する比TW/SWおよび比SDH/SHが適正化されるので、タイヤの接地形状が適正化されて、タイヤのウェット性能が向上する利点がある。また、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31が、1本の周方向細溝311と複数のラグ溝312とを備えることにより、陸部32の溝面積が確保されて、陸部32の排水性が向上する。これにより、タイヤのウェット性能がさらに向上する利点がある。 In such a configuration, since the ratio TW / SW and the ratio SDH / SH that define the profile are optimized, there is an advantage that the contact shape of the tire is optimized and the wet performance of the tire is improved. Further, the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 includes one circumferential narrow groove 311 and a plurality of lug grooves 312, thereby securing the groove area of the land portion 32. Thus, the drainage of the land portion 32 is improved. Thereby, there exists an advantage which the wet performance of a tire improves further.
 また、この更生タイヤ10では、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31が、タイヤ幅方向に延在して最外周方向主溝22に連通すると共に周方向細溝311に連通する複数のラグ溝312を備える(図3参照)。かかる構成では、複数のラグ溝312が周方向細溝311と最外周方向主溝22とを接続することにより、陸部32の排水性が向上する。これにより、タイヤのウェット性能がさらに向上する利点がある。 Further, in this retreaded tire 10, the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 extends in the tire width direction and communicates with the outermost circumferential main groove 22, and the circumferential narrow groove 311. Are provided with a plurality of lug grooves 312 (see FIG. 3). In such a configuration, the plurality of lug grooves 312 connect the circumferential narrow groove 311 and the outermost circumferential main groove 22, thereby improving the drainage of the land portion 32. Thereby, there exists an advantage which the wet performance of a tire improves further.
 また、この更生タイヤ10では、周方向細溝311の溝深さD3と、最外周方向主溝22の溝深さD2とが、0.10≦D3/D2≦0.40の関係を有する(図6参照)。これにより、周方向細溝311の溝深さD3が適正化される利点がある。すなわち、0.10≦D3/D2であることにより、周方向細溝311の溝深さD3が確保されて、陸部31の排水性が確保される。また、D3/D2≦0.40であることにより、陸部31の剛性が確保されて、陸部31の偏摩耗が抑制される。 Further, in this retreaded tire 10, the groove depth D3 of the circumferential narrow groove 311 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.10 ≦ D3 / D2 ≦ 0.40 ( (See FIG. 6). Thereby, there exists an advantage by which the groove depth D3 of the circumferential direction fine groove 311 is optimized. That is, by satisfying 0.10 ≦ D3 / D2, the groove depth D3 of the circumferential narrow groove 311 is secured, and the drainage of the land portion 31 is secured. Moreover, the rigidity of the land part 31 is ensured by being D3 / D2 <= 0.40, and the partial wear of the land part 31 is suppressed.
 また、この更生タイヤ10では、ラグ溝312の溝深さD4と、最外周方向主溝22の溝深さD2とが、0.10≦D4/D2≦0.40の関係を有する(図5参照)。これにより、ラグ溝312の溝深さD4が適正化される利点がある。すなわち、0.10≦D4/D2であることにより、ラグ溝312の溝深さD4が確保されて、陸部31の排水性が確保される。また、D4/D2≦0.40であることにより、陸部31の剛性が確保されて、陸部31の偏摩耗が抑制される。 Further, in this retreaded tire 10, the groove depth D4 of the lug groove 312 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.10 ≦ D4 / D2 ≦ 0.40 (FIG. 5). reference). Thereby, there exists an advantage by which the groove depth D4 of the lug groove 312 is optimized. That is, by satisfying 0.10 ≦ D4 / D2, the groove depth D4 of the lug groove 312 is ensured, and the drainage of the land portion 31 is ensured. Moreover, by being D4 / D2 <= 0.40, the rigidity of the land part 31 is ensured and the partial wear of the land part 31 is suppressed.
 また、この更生タイヤ10では、タイヤ赤道面CLに最も近い周方向主溝21の溝幅W1と、トレッド幅TWとが、0.05≦W1/TW≦0.09の関係を有する(図3参照)。これにより、周方向主溝21の溝幅W1が確保されて、排水性が確保される利点がある。 In this retreaded tire 10, the groove width W1 of the circumferential main groove 21 closest to the tire equatorial plane CL and the tread width TW have a relationship of 0.05 ≦ W1 / TW ≦ 0.09 (FIG. 3). reference). Thereby, the groove width W1 of the circumferential direction main groove 21 is ensured, and there exists an advantage by which drainage property is ensured.
 また、この更生タイヤ10では、最外周方向主溝22の溝幅W2と、トレッド幅TWとが、0.06≦W2/TW≦0.10の関係を有する(図3参照)。これにより、最外周方向主溝22の溝幅W2が確保されて、排水性が確保される利点がある。 Further, in this retreaded tire 10, the groove width W2 of the outermost circumferential main groove 22 and the tread width TW have a relationship of 0.06 ≦ W2 / TW ≦ 0.10 (see FIG. 3). Thereby, the groove width W2 of the outermost circumferential main groove 22 is ensured, and there is an advantage that drainage is ensured.
 また、この更生タイヤ10では、周方向細溝311が、タイヤ周方向にジグザグ状あるいは波状に延在する(図3参照)。これにより、陸部31のエッジ成分が確保される利点がある。 Further, in this retread tire 10, the circumferential narrow groove 311 extends in a zigzag shape or a wave shape in the tire circumferential direction (see FIG. 3). Thereby, there exists an advantage by which the edge component of the land part 31 is ensured.
 また、この更生タイヤ10では、タイヤ赤道面CLに最も近い周方向主溝21が、周方向細溝311に対して略平行なジグザグ状あるいは波状を有してタイヤ周方向に延在する(図3参照)。かかる構成では、周方向主溝21と周方向細溝311とに区画された陸部31の部分のタイヤ周方向の剛性が均一化される。これにより、陸部31の偏摩耗が抑制される利点がある。 Further, in this retreaded tire 10, the circumferential main groove 21 closest to the tire equatorial plane CL has a zigzag shape or a wave shape substantially parallel to the circumferential narrow groove 311 and extends in the tire circumferential direction (see FIG. 3). In such a configuration, the rigidity in the tire circumferential direction of the portion of the land portion 31 partitioned into the circumferential main groove 21 and the circumferential narrow groove 311 is made uniform. Thereby, there exists an advantage by which the partial wear of the land part 31 is suppressed.
 また、この更生タイヤ10では、タイヤ幅方向の最も外側にある陸部32が、最外周方向主溝22側のエッジ部に複数の切欠部321を有する(図3参照)。これにより、最外周方向主溝22の溝面積(溝容積)が増加して、タイヤのウェット性能が向上する利点がある。 In the retread tire 10, the outermost land portion 32 in the tire width direction has a plurality of notches 321 at the edge portion on the outermost circumferential main groove 22 side (see FIG. 3). Thereby, the groove area (groove volume) of the outermost circumferential main groove 22 is increased, and there is an advantage that the wet performance of the tire is improved.
 また、この更生タイヤ10では、切欠部321のタイヤ周方向の長さL2と、ラグ溝312のタイヤ周方向の配置間隔L1とが、0.2≦L2/L1≦0.6の関係を有する(図4参照)。これにより、切欠部321の長さL2が適正化される利点がある。すなわち、0.2≦L2/L1であることにより、切欠部321の長さL2が確保されて、最外周方向主溝22の溝面積(溝容積)の増加分が確保される。また、L2/L1≦0.6であることにより、切欠部321が過大となることによる陸部32の剛性低下が抑制されて、陸部32の偏摩耗が抑制される。 Moreover, in this retreaded tire 10, the length L2 of the notch 321 in the tire circumferential direction and the arrangement interval L1 of the lug groove 312 in the tire circumferential direction have a relationship of 0.2 ≦ L2 / L1 ≦ 0.6. (See FIG. 4). Thereby, there exists an advantage by which the length L2 of the notch part 321 is optimized. That is, by satisfying 0.2 ≦ L2 / L1, the length L2 of the notch 321 is secured, and an increase in the groove area (groove volume) of the outermost circumferential main groove 22 is secured. Moreover, by L2 / L1 <= 0.6, the rigidity reduction of the land part 32 by the notch part 321 becoming excessive is suppressed, and the uneven wear of the land part 32 is suppressed.
 また、この更生タイヤ10では、切欠部321の幅W5と、最外周方向主溝22の溝幅W2とが、0.2≦W5/W2≦0.4の関係を有する(図4参照)。これにより、切欠部321の幅W5が適正化される利点がある。すなわち、0.2≦W5/W2であることにより、切欠部321の幅W5が確保されて、最外周方向主溝22の溝面積(溝容積)の増加分が確保される。また、W5/W2≦0.4であることにより、切欠部321が過大となることによる陸部32の剛性低下が抑制されて、陸部32の偏摩耗が抑制される。 Further, in the retread tire 10, the width W5 of the notch 321 and the groove width W2 of the outermost circumferential main groove 22 have a relationship of 0.2 ≦ W5 / W2 ≦ 0.4 (see FIG. 4). Thereby, there exists an advantage by which the width W5 of the notch part 321 is optimized. That is, by satisfying 0.2 ≦ W5 / W2, the width W5 of the notch 321 is secured, and an increase in the groove area (groove volume) of the outermost circumferential main groove 22 is secured. Moreover, by being W5 / W2 <= 0.4, the rigidity fall of the land part 32 by the notch part 321 becoming excessive is suppressed, and the uneven wear of the land part 32 is suppressed.
 また、この更生タイヤ10では、切欠部321の深さD5と、最外周方向主溝22の溝深さD2とが、0.60≦D5/D2≦1.00の関係を有する(図6参照)。これにより、切欠部321の深さD5が確保されて、最外周方向主溝22の溝面積(溝容積)の増加分が確保される。また、D5/D2≦1.00であることにより、切欠部321が過大となることによる陸部32の剛性低下が抑制されて、陸部32の偏摩耗が抑制される。 In this retread tire 10, the depth D5 of the notch 321 and the groove depth D2 of the outermost circumferential main groove 22 have a relationship of 0.60 ≦ D5 / D2 ≦ 1.00 (see FIG. 6). ). Thereby, the depth D5 of the notch 321 is ensured, and an increase in the groove area (groove volume) of the outermost circumferential main groove 22 is ensured. Moreover, by being D5 / D2 <= 1.00, the rigidity fall of the land part 32 by the notch part 321 becoming excessive is suppressed, and the partial wear of the land part 32 is suppressed.
 また、この更生タイヤ10では、トレッドパターン全体の溝面積比Aが、0.20≦A≦0.35の範囲にある(図3参照)。これにより、トレッドパターン全体の溝面積比Aが適正化される利点がある。すなわち、0.20≦Aであることにより、溝面積Aが確保されて、タイヤのウェット性能が確保される。また、A≦0.35であることにより、接地面全体の接地圧が適正化されて、タイヤの耐偏摩耗性能が確保される。 Moreover, in this retread tire 10, the groove area ratio A of the entire tread pattern is in the range of 0.20 ≦ A ≦ 0.35 (see FIG. 3). Thereby, there exists an advantage by which the groove area ratio A of the whole tread pattern is optimized. That is, by satisfying 0.20 ≦ A, the groove area A is secured and the wet performance of the tire is secured. Further, when A ≦ 0.35, the contact pressure of the entire contact surface is optimized, and the uneven wear resistance performance of the tire is ensured.
 また、この更生タイヤ10では、最外周方向主溝22に隣接するタイヤ幅方向内側の陸部31の溝面積比Acおよびタイヤ幅方向外側の陸部32の溝面積比Asが、1.5≦Ac/Asの範囲にある。これにより、ショルダー陸部32の剛性が確保されて、タイヤのタイヤ偏摩耗性能が確保される利点がある。 Further, in this retreaded tire 10, the groove area ratio Ac of the land portion 31 on the inner side in the tire width direction adjacent to the outermost circumferential main groove 22 and the groove area ratio As of the land portion 32 on the outer side in the tire width direction are 1.5 ≦. It is in the range of Ac / As. Thereby, there is an advantage that the rigidity of the shoulder land portion 32 is secured and the tire uneven wear performance of the tire is secured.
 また、この更生タイヤ10は、タイヤ周方向に延在する複数の周方向主溝21、22と、周方向主溝21、22に区画されて成る複数の陸部31、32とをトレッド面に備える。また、タイヤ赤道面CLに最も近い周方向主溝21の新ゴム溝下ゲージGa1が、1.0[mm]≦Ga1≦5.0[mm]の範囲にある(図6参照)。かかる構成では、トレッド部センター領域にある周方向主溝21の新ゴム溝下ゲージGa1が適正化される利点がある。すなわち、1.0[mm]≦Ga1であることにより、周方向主溝21の新ゴム溝下ゲージGa1が確保される。すると、トレッド20の新ゴムが台タイヤ30の旧ゴム(残留トレッド301)よりも柔らかい(残留トレッド301は劣化して硬くなっている)ので、新ゴムと旧ゴムとの界面に作用する力が分散されて、タイヤの耐久性が確保される。また、Ga1≦5.0[mm]であることにより、周方向主溝21の新ゴム溝下ゲージGa1が過大となることが防止される。すると、トレッドゴムのボリューム過多による発熱が抑制されて、タイヤの耐久性が向上する。 Further, the retread tire 10 has a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction and a plurality of land portions 31 and 32 defined by the circumferential main grooves 21 and 22 on the tread surface. Prepare. In addition, the new sub-groove gauge Ga1 of the circumferential main groove 21 closest to the tire equatorial plane CL is in the range of 1.0 [mm] ≦ Ga1 ≦ 5.0 [mm] (see FIG. 6). In such a configuration, there is an advantage that the new under-groove gauge Ga1 of the circumferential main groove 21 in the center region of the tread portion is optimized. That is, by satisfying 1.0 [mm] ≦ Ga1, the new rubber sub-groove gauge Ga1 of the circumferential main groove 21 is secured. Then, since the new rubber of the tread 20 is softer than the old rubber (residual tread 301) of the base tire 30 (the residual tread 301 is deteriorated and hardened), the force acting on the interface between the new rubber and the old rubber is increased. Dispersed to ensure tire durability. Further, since Ga1 ≦ 5.0 [mm], it is possible to prevent the new rubber groove gauge Ga1 of the circumferential main groove 21 from becoming excessive. Then, heat generation due to excessive volume of the tread rubber is suppressed, and the durability of the tire is improved.
 また、この更生タイヤ10では、タイヤ幅方向の最も外側にある周方向主溝22の新ゴム溝下ゲージGa2が、Ga2<Ga1かつ1.0[mm]≦Ga2≦4.0[mm]の範囲にある(図6参照)。かかる構成では、トレッド部ショルダー領域にある周方向主溝22の新ゴム溝下ゲージGa2が適正化される利点がある。すなわち、Ga2<Ga1であることにより、ベルト層14の端部における周辺ゴムの歪みが低減されて、ベルト耐久性が確保される利点がある。また、1.0[mm]≦Ga2であることにより、周方向主溝22の新ゴム溝下ゲージGa2が確保される。すると、トレッド20の新ゴムが台タイヤ30の旧ゴム(残留トレッド301)よりも柔らかい(残留トレッド301は劣化して硬くなっている)ので、新ゴムと旧ゴムとの界面に作用する力が分散されて、タイヤの耐久性が確保される。また、Ga2≦4.0[mm]であることにより、周方向主溝22の新ゴム溝下ゲージGa2が過大となることが防止される。すると、トレッドゴムのボリューム過多による発熱が抑制されて、タイヤの耐久性が向上する。 Further, in this retreaded tire 10, the new rubber sub-groove gauge Ga2 of the circumferential main groove 22 at the outermost side in the tire width direction satisfies Ga2 <Ga1 and 1.0 [mm] ≦ Ga2 ≦ 4.0 [mm]. It is in range (see FIG. 6). In such a configuration, there is an advantage that the new under-groove gauge Ga2 of the circumferential main groove 22 in the tread shoulder region is optimized. That is, by Ga2 <Ga1, there is an advantage that distortion of the peripheral rubber at the end portion of the belt layer 14 is reduced and belt durability is ensured. Further, by satisfying 1.0 [mm] ≦ Ga2, the new rubber groove gauge Ga2 of the circumferential main groove 22 is secured. Then, since the new rubber of the tread 20 is softer than the old rubber (residual tread 301) of the base tire 30 (the residual tread 301 is deteriorated and hardened), the force acting on the interface between the new rubber and the old rubber is increased. Dispersed to ensure tire durability. Further, since Ga2 ≦ 4.0 [mm], the new sub-groove gauge Ga2 of the circumferential main groove 22 is prevented from becoming excessive. Then, heat generation due to excessive volume of the tread rubber is suppressed, and the durability of the tire is improved.
 また、この更生タイヤ10では、カーカス層13が、有機繊維材から成る複数のカーカスコードを配列して構成される。更生タイヤ10では、一般に、更生によりタイヤ寿命が延びて、走行距離が増加する。このため、カーカス層が有機繊維材から成る構成では、カーカス層の強度が低下して、タイヤの接地形状が不適切となり、タイヤのウェット性能が低下し易い傾向にある。したがって、かかる有機繊維材から成るカーカス層13を備える構成を適用対象とすることにより、ウェット性能の向上効果を顕著に得られる利点がある。 Further, in this retread tire 10, the carcass layer 13 is configured by arranging a plurality of carcass cords made of organic fiber materials. In the retreaded tire 10, the tire life is generally extended by the retreading and the traveling distance is increased. For this reason, in the configuration in which the carcass layer is made of an organic fiber material, the strength of the carcass layer is lowered, the tire ground contact shape becomes inappropriate, and the wet performance of the tire tends to be lowered. Therefore, there is an advantage that the effect of improving the wet performance can be remarkably obtained by applying the configuration including the carcass layer 13 made of such an organic fiber material.
 また、この更生タイヤ10では、ベルトカバー143が、有機繊維材から成ると共にタイヤ周方向に対して±5[deg]以下の角度で配列された複数のコードから構成される。更生タイヤ10では、一般に、更生によりタイヤ寿命が延びて、走行距離が増加する。このため、ベルトカバーが有機繊維材から成る構成では、ベルトカバーの強度が低下して、タイヤの接地形状が不適切となり、タイヤのウェット性能が低下し易い傾向にある。したがって、かかる有機繊維材から成るベルトカバー143を備える構成を適用対象とすることにより、ウェット性能の向上効果を顕著に得られる利点がある。 Further, in this retreaded tire 10, the belt cover 143 is formed of a plurality of cords made of an organic fiber material and arranged at an angle of ± 5 [deg] or less with respect to the tire circumferential direction. In the retreaded tire 10, the tire life is generally extended by the retreading and the traveling distance is increased. For this reason, in the structure which a belt cover consists of organic fiber materials, the intensity | strength of a belt cover falls, the tire ground contact shape becomes inadequate, and there exists a tendency for the wet performance of a tire to fall easily. Therefore, there is an advantage that the effect of improving the wet performance can be remarkably obtained by applying the configuration including the belt cover 143 made of such an organic fiber material.
 また、この更生タイヤ10では、単一あるいは複数のベルトカバー143、144が、少なくともタイヤ赤道面CLに交差する位置と、一対の交差ベルト141、142のタイヤ幅方向外側の端部とを覆って配置される(図1および図5参照)。かかる構成では、ベルトカバー143が、タイヤ赤道面CLに交差する位置を覆うことにより、トレッド部センター領域の径成長が抑制される。これにより、タイヤ赤道面CLからショルダー部に至るプロファイルがフラットとなり、タイヤの接地形状が適正化される。また、ベルトカバー143が、一対の交差ベルト141、142のタイヤ幅方向外側の端部を覆うことにより、交差ベルト141、142の端部の変位量が低減されて、タイヤの接地形状が適正化される。これらにより、タイヤのウェット性能の向上する利点がある。 Further, in this retread tire 10, the single or plural belt covers 143 and 144 cover at least the position intersecting the tire equatorial plane CL and the ends of the pair of intersecting belts 141 and 142 on the outer side in the tire width direction. (See FIGS. 1 and 5). In such a configuration, the belt cover 143 covers the position intersecting the tire equator plane CL, thereby suppressing the diameter growth of the tread portion center region. Thereby, the profile from the tire equatorial plane CL to the shoulder portion becomes flat, and the ground contact shape of the tire is optimized. Further, the belt cover 143 covers the ends of the pair of cross belts 141 and 142 on the outer side in the tire width direction, so that the displacement amount of the ends of the cross belts 141 and 142 is reduced, and the ground contact shape of the tire is optimized. Is done. These have the advantage of improving the wet performance of the tire.
 また、この更生タイヤ10では、タイヤ赤道面CLにおけるトレッドゲージDccと、幅狭な交差ベルト142のタイヤ幅方向外側の端部におけるトレッドゲージDeとが、1.03≦Dcc/De≦1.20の関係を有する(図5参照)。これにより、比Dcc/Deが適正化される利点がある。すなわち、1.03≦Dcc/Deであることにより、トレッド部センター領域のトレッドゲージDccがショルダー領域のトレッドゲージDeよりも大きく設定される。すると、ベルトプライがタイヤ接地面に対して水平に配置されるので、タイヤ接地時にてベルトプライに作用する張力が均一化されて、ベルト耐久性が向上する。また、Dcc/De≦1.20であることにより、センター領域のトレッドゲージDccが過大となることが防止されるので、タイヤ赤道面CLからショルダー部に至るプロファイルがフラットとなり、タイヤの接地形状が適正化される。これらにより、タイヤのウェット性能の向上する利点がある。 Further, in this retreaded tire 10, the tread gauge Dcc on the tire equatorial plane CL and the tread gauge De at the outer end in the tire width direction of the narrow cross belt 142 are 1.03 ≦ Dcc / De ≦ 1.20. (See FIG. 5). Thereby, there exists an advantage by which ratio Dcc / De is optimized. That is, by satisfying 1.03 ≦ Dcc / De, the tread gauge Dcc in the tread portion center region is set larger than the tread gauge De in the shoulder region. Then, since the belt ply is disposed horizontally with respect to the tire contact surface, the tension acting on the belt ply at the time of tire contact is made uniform, and the belt durability is improved. In addition, since Dcc / De ≦ 1.20 prevents the tread gauge Dcc in the center region from becoming excessive, the profile from the tire equatorial plane CL to the shoulder becomes flat, and the ground contact shape of the tire is It is optimized. These have the advantage of improving the wet performance of the tire.
 また、この更生タイヤ10では、幅広な交差ベルト141のベルト幅Wb1と、カーカス層13のカーカス断面幅Waとが、0.65≦Wb1/Wa≦0.90の関係を有する(図1参照)。これにより、比Wb1/Waが適正化される利点がある。すなわち、0.65≦Wb1/Waであることにより、ベルト幅Wbが確保されて、ベルト層14のタイヤ幅方向外側の端部における周辺ゴムの歪みが低減される利点がある。また、Wb1/Wa≦0.90であることにより、ベルトプライの端部とサイドウォール部との距離が確保されるので、タイヤ転動時におけるベルトプライの端部の動きが抑制されて、タイヤの耐久性が向上する。 Further, in this retreaded tire 10, the belt width Wb1 of the wide cross belt 141 and the carcass cross-sectional width Wa of the carcass layer 13 have a relationship of 0.65 ≦ Wb1 / Wa ≦ 0.90 (see FIG. 1). . Thereby, there exists an advantage by which ratio Wb1 / Wa is optimized. That is, by satisfying 0.65 ≦ Wb1 / Wa, there is an advantage that the belt width Wb is secured and the distortion of the peripheral rubber at the outer end of the belt layer 14 in the tire width direction is reduced. Further, since the distance between the end portion of the belt ply and the sidewall portion is secured by Wb1 / Wa ≦ 0.90, the movement of the end portion of the belt ply during tire rolling is suppressed, and the tire Improves durability.
 また、この更生タイヤ10では、ベルトカバー143のエンド数が、40[本/50mm]以上60[本/50mm]以下の範囲にある。これにより、ベルトカバー143のエンド数が適正化される利点がある。 Further, in this retread tire 10, the number of ends of the belt cover 143 is in the range of 40 [lines / 50 mm] to 60 [lines / 50 mm]. Thereby, there exists an advantage by which the number of ends of the belt cover 143 is optimized.
 また、この更生タイヤ10では、ベルトカバー143を構成する糸の太さが、1100[dtex/2]以上1500[dtex/2]以下の範囲にある。これにより、ベルトカバー143の糸の太さが適正化される利点がある。 Further, in this retread tire 10, the thickness of the thread constituting the belt cover 143 is in the range of 1100 [dtex / 2] to 1500 [dtex / 2]. Thereby, there exists an advantage by which the thickness of the thread | yarn of the belt cover 143 is optimized.
[適用対象]
 また、この更生タイヤ10は、70[%]以下の偏平率を有する低偏平タイヤに適用され、特に、JATMAに規定される小型トラック用タイヤに適用される。かかる低偏平な小型トラック用タイヤでは、荷物の積載時と無積載時とで、トレッド部の接地状態が変化し易い。すなわち、荷物の積載時には、トレッド部のセンター領域およびショルダー領域が一様に接地するが、無積載時には、トレッド部センター領域の径成長が顕在化して、トレッド部ショルダー領域の接地面積が減少する傾向にある。すると、タイヤの接地形状が不適切となり、タイヤのウェット性能が低下し易い傾向にある。したがって、かかる低偏平な小型トラック用タイヤを適用対象とすることにより、ウェット性能の向上効果を顕著に得られる利点がある。
[Applicable to]
Further, the retread tire 10 is applied to a low flat tire having a flat rate of 70% or less, and particularly to a light truck tire defined by JATMA. In such a low-profile tire for a small truck, the ground contact state of the tread portion is likely to change between when the load is loaded and when the load is not loaded. That is, the center area and the shoulder area of the tread portion are uniformly grounded when the load is loaded, but the diameter growth of the tread center area becomes obvious and the contact area of the tread shoulder area tends to decrease when no load is loaded. It is in. Then, the ground contact shape of the tire becomes inappropriate, and the wet performance of the tire tends to decrease. Therefore, there is an advantage that the effect of improving the wet performance can be remarkably obtained by using such a low flat tire for a small truck.
 図8および図9は、この発明の実施の形態にかかる更生タイヤの性能試験の結果を示す図表である。 FIG. 8 and FIG. 9 are charts showing the results of the performance test of the retread tire according to the embodiment of the present invention.
 この性能試験では、複数種類の試験タイヤについて、ウェット性能に関する評価が行われた。また、タイヤサイズ205/70R16 111/109 LTの試験タイヤがJATMA規定の適用リムに組み付けられ、この試験タイヤにJATMA規定の最高空気圧および最大負荷が付与される。 In this performance test, the wet performance was evaluated for multiple types of test tires. In addition, a test tire having a tire size of 205 / 70R16 111/109 LT is assembled to an applicable rim defined by JATMA, and the highest air pressure and maximum load specified by JATMA are applied to the test tire.
 また、試験タイヤを装着した試験車両がウェット路面(撒水したアスファルト路面)を走行し、初速度60[km/h]からの制動距離が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。評価結果は、その数値が大きいほど好ましい。 Also, a test vehicle equipped with a test tire travels on a wet road surface (a flooded asphalt road surface), and a braking distance from an initial speed of 60 [km / h] is measured. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. An evaluation result is so preferable that the numerical value is large.
 実施例1~16の試験タイヤは、図1および図3に記載した構造を有する。ただし、実施例1~4では、陸部31がラグ溝を備えていない。また、タイヤ総幅SWがSW=204[mm]であり、タイヤ断面高さSHがSH=143.7[mm]である。また、最外周方向主溝22の溝幅W2(図3)が13.0[mm]であり、溝深さD2(図6)が10.0[mm]である。また、ラグ溝312の配置間隔(ピッチ)L1が、30.0[mm]≦L1≦50.0[mm]の範囲にある。また、タイヤ赤道面CLにおけるトレッドゲージDccがDcc=13.7[mm]である。また、幅広な交差ベルト141のベルト幅WbがWb=150[mm]である。 The test tires of Examples 1 to 16 have the structures described in FIGS. However, in Examples 1 to 4, the land portion 31 does not include a lug groove. The tire total width SW is SW = 204 [mm], and the tire cross-section height SH is SH = 143.7 [mm]. Further, the groove width W2 (FIG. 3) of the outermost circumferential main groove 22 is 13.0 [mm], and the groove depth D2 (FIG. 6) is 10.0 [mm]. The arrangement interval (pitch) L1 of the lug grooves 312 is in the range of 30.0 [mm] ≦ L1 ≦ 50.0 [mm]. Further, the tread gauge Dcc on the tire equatorial plane CL is Dcc = 13.7 [mm]. Further, the belt width Wb of the wide cross belt 141 is Wb = 150 [mm].
 従来例の試験タイヤは、図1および図3の構成において、周方向細溝311およびラグ溝312を備えていない。 The conventional test tire does not include the circumferential narrow groove 311 and the lug groove 312 in the configuration of FIGS.
 試験結果が示すように、実施例1~16の試験タイヤでは、タイヤのウェット性能が向上することが分かる。 As shown in the test results, it can be seen that in the test tires of Examples 1 to 16, the wet performance of the tire is improved.
 10:更生タイヤ、11:ビードコア、12:ビードフィラー、13:カーカス層、14:ベルト層、141、142:交差ベルト、143、144:ベルトカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム、20:トレッド、30:台タイヤ、301:残留トレッド、21、22:周方向主溝、31、32:陸部、311:周方向細溝、312:ラグ溝、321:切欠部 10: retread tire, 11: bead core, 12: bead filler, 13: carcass layer, 14: belt layer, 141, 142: cross belt, 143, 144: belt cover, 15: tread rubber, 16: sidewall rubber, 17 : Rim cushion rubber, 20: tread, 30: tire, 301: residual tread, 21, 22: circumferential main groove, 31, 32: land portion, 311: circumferential narrow groove, 312: lug groove, 321: notch Part

Claims (15)

  1.  トレッドと、台タイヤとを備え、
     前記トレッドが、タイヤ周方向に延在する少なくとも3本の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とをトレッド面に備え、且つ、
     前記台タイヤが、カーカス層と、前記カーカス層のタイヤ径方向外側に配置されるベルト層とを備えると共に、前記ベルト層が、一対の交差ベルトと、前記一対の交差ベルトのタイヤ径方向外側に配置されるベルトカバーとを有する更生タイヤであって、
     タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶときに、
     トレッド幅TWと、タイヤ総幅SWとが、0.65≦TW/SW≦0.85の関係を有し、
     リム径の測定点からタイヤ最大幅位置までのタイヤ径方向の距離SDHと、タイヤ断面高さSHとが、0.45≦SDH/SH≦0.65の関係を有し、且つ、
     前記最外周方向主溝に隣接するタイヤ幅方向内側の前記陸部が、タイヤ全周に渡って連続的に延在する1本の周方向細溝を備えることを特徴とする更生タイヤ。
    It has a tread and a base tire,
    The tread includes, on the tread surface, at least three circumferential main grooves extending in the tire circumferential direction and a plurality of land portions defined by the circumferential main grooves, and
    The base tire includes a carcass layer and a belt layer disposed on the outer side in the tire radial direction of the carcass layer, and the belt layer is disposed on the outer side in the tire radial direction of the pair of cross belts and the pair of cross belts. A retread tire having a belt cover disposed thereon,
    When the circumferential main groove on the outermost side in the tire width direction is called the outermost circumferential main groove,
    The tread width TW and the tire total width SW have a relationship of 0.65 ≦ TW / SW ≦ 0.85,
    The distance SDH in the tire radial direction from the measurement point of the rim diameter to the tire maximum width position and the tire cross-section height SH have a relationship of 0.45 ≦ SDH / SH ≦ 0.65, and
    The retread tire, wherein the land portion on the inner side in the tire width direction adjacent to the outermost circumferential main groove includes one circumferential narrow groove extending continuously over the entire circumference of the tire.
  2.  前記最外周方向主溝に隣接するタイヤ幅方向内側の前記陸部が、タイヤ幅方向に延在して前記最外周方向主溝に連通すると共に前記周方向細溝に連通する複数のラグ溝を備える請求項1に記載の更生タイヤ。 A plurality of lug grooves that extend in the tire width direction and communicate with the outermost circumferential direction main groove and communicate with the circumferential direction narrow groove while the land portion adjacent to the outermost circumferential direction main groove extends in the tire width direction. The retread tire according to claim 1 provided.
  3.  前記周方向細溝の溝深さD3と、前記最外周方向主溝の溝深さD2とが、0.10≦D3/D2≦0.40の関係を有する請求項1または2に記載の更生タイヤ。 The rehabilitation according to claim 1 or 2, wherein a groove depth D3 of the circumferential narrow groove and a groove depth D2 of the outermost circumferential main groove have a relationship of 0.10 ≦ D3 / D2 ≦ 0.40. tire.
  4.  前記ラグ溝の溝深さD4と、前記最外周方向主溝の溝深さD2とが、0.10≦D4/D2≦0.40の関係を有する請求項2に記載の更生タイヤ。 The retreaded tire according to claim 2, wherein a groove depth D4 of the lug groove and a groove depth D2 of the outermost circumferential main groove have a relationship of 0.10 ≦ D4 / D2 ≦ 0.40.
  5.  タイヤ赤道面に最も近い前記周方向主溝の溝幅W1と、トレッド幅TWとが、0.05≦W1/TW≦0.09の関係を有する請求項1~4のいずれか一つに記載の更生タイヤ。 The groove width W1 of the circumferential main groove closest to the tire equatorial plane and the tread width TW have a relationship of 0.05 ≦ W1 / TW ≦ 0.09. Rehabilitation tire.
  6.  前記最外周方向主溝の溝幅W2と、トレッド幅TWとが、0.06≦W2/TW≦0.10の関係を有する請求項1~5のいずれか一つに記載の更生タイヤ。 The rehabilitated tire according to any one of claims 1 to 5, wherein a groove width W2 of the outermost circumferential main groove and a tread width TW have a relationship of 0.06 ≦ W2 / TW ≦ 0.10.
  7.  前記周方向細溝が、タイヤ周方向にジグザグ状あるいは波状に延在する請求項1~6のいずれか一つに記載の更生タイヤ。 The retread tire according to any one of claims 1 to 6, wherein the circumferential narrow groove extends in a zigzag shape or a wave shape in the tire circumferential direction.
  8.  タイヤ赤道面に最も近い前記周方向主溝が、前記周方向細溝に対して略平行なジグザグ状あるいは波状を有してタイヤ周方向に延在する請求項7に記載の更生タイヤ。 The retread tire according to claim 7, wherein the circumferential main groove closest to the tire equatorial plane has a zigzag shape or a wave shape substantially parallel to the circumferential narrow groove and extends in the tire circumferential direction.
  9.  タイヤ幅方向の最も外側にある前記陸部が、前記最外周方向主溝側のエッジ部に複数の切欠部を有する請求項1~8のいずれか一つに記載の更生タイヤ。 The retread tire according to any one of claims 1 to 8, wherein the land portion on the outermost side in the tire width direction has a plurality of notches at an edge portion on the outermost circumferential main groove side.
  10.  前記切欠部のタイヤ周方向の長さL2と、前記ラグ溝のタイヤ周方向の配置間隔L1とが、0.2≦L2/L1≦0.6の関係を有する請求項9に記載の更生タイヤ。 The rehabilitated tire according to claim 9, wherein a length L2 of the notch in the tire circumferential direction and an arrangement interval L1 of the lug grooves in the tire circumferential direction have a relationship of 0.2 ≦ L2 / L1 ≦ 0.6. .
  11.  前記切欠部の幅W5と、前記最外周方向主溝の溝幅W2とが、0.2≦W5/W2≦0.4の関係を有する請求項9または10に記載の更生タイヤ。 The rehabilitated tire according to claim 9 or 10, wherein a width W5 of the notch portion and a groove width W2 of the outermost circumferential main groove have a relationship of 0.2≤W5 / W2≤0.4.
  12.  前記切欠部の深さD5と、前記最外周方向主溝の溝深さD2とが、0.60≦D5/D2≦1.00の関係を有する請求項9~11のいずれか一つに記載の更生タイヤ。 The depth D5 of the notch and the groove depth D2 of the outermost circumferential main groove have a relationship of 0.60 ≦ D5 / D2 ≦ 1.00. Rehabilitation tire.
  13.  トレッドパターン全体の溝面積比Aが、0.20≦A≦0.35の範囲にある請求項1~12のいずれか一つに記載の更生タイヤ。 The retread tire according to any one of claims 1 to 12, wherein a groove area ratio A of the entire tread pattern is in a range of 0.20 ≦ A ≦ 0.35.
  14.  前記最外周方向主溝に隣接するタイヤ幅方向内側の前記陸部の溝面積比Acおよびタイヤ幅方向外側の前記陸部の溝面積比Asが、1.5≦Ac/Asの範囲にある請求項1~13のいずれか一つに記載の更生タイヤ。 The groove area ratio Ac of the land portion inside the tire width direction adjacent to the outermost circumferential main groove and the groove area ratio As of the land portion outside the tire width direction are in a range of 1.5 ≦ Ac / As. Item 14. The retread tire according to any one of Items 1 to 13.
  15.  70[%]以下の偏平率を有する請求項1~14のいずれか一つに記載の更生タイヤ。 The retread tire according to any one of claims 1 to 14, which has a flatness ratio of 70% or less.
PCT/JP2015/063635 2014-05-12 2015-05-12 Retreaded tire WO2015174413A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580025177.XA CN106457897B (en) 2014-05-12 2015-05-12 Retreads

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-098920 2014-05-12
JP2014098920A JP6032242B2 (en) 2014-05-12 2014-05-12 Rehabilitation tire

Publications (1)

Publication Number Publication Date
WO2015174413A1 true WO2015174413A1 (en) 2015-11-19

Family

ID=54479950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063635 WO2015174413A1 (en) 2014-05-12 2015-05-12 Retreaded tire

Country Status (3)

Country Link
JP (1) JP6032242B2 (en)
CN (1) CN106457897B (en)
WO (1) WO2015174413A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108290451A (en) * 2015-12-16 2018-07-17 米其林集团总公司 Tire with improved abrasion and rolling resistance performance
WO2020100336A1 (en) * 2018-11-12 2020-05-22 横浜ゴム株式会社 Pneumatic tire
EP3978274A1 (en) * 2020-10-01 2022-04-06 Continental Reifen Deutschland GmbH Commercial vehicle tyres

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6825252B2 (en) * 2016-07-12 2021-02-03 横浜ゴム株式会社 Pneumatic tires
JP6256658B1 (en) * 2017-03-07 2018-01-10 横浜ゴム株式会社 Pneumatic tire
CN111356597B (en) * 2017-11-20 2022-05-24 横滨橡胶株式会社 Pneumatic tire
JP2019104409A (en) 2017-12-13 2019-06-27 Toyo Tire株式会社 Pneumatic tire
JP6699079B1 (en) * 2019-09-27 2020-05-27 住友ゴム工業株式会社 Pneumatic tire
JP6927362B1 (en) * 2020-04-28 2021-08-25 住友ゴム工業株式会社 tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098938A (en) * 2002-09-11 2004-04-02 Bridgestone Corp Pneumatic tire
JP2009040179A (en) * 2007-08-08 2009-02-26 Bridgestone Corp Precured tread for retreaded tire and retreaded tire
JP2010254032A (en) * 2009-04-22 2010-11-11 Bridgestone Corp Pneumatic tire
JP2014051177A (en) * 2012-09-06 2014-03-20 Yokohama Rubber Co Ltd:The Pneumatic tire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010001A (en) * 2002-06-11 2004-01-15 Sumitomo Rubber Ind Ltd Pneumatic tire
JP4350483B2 (en) * 2003-10-31 2009-10-21 住友ゴム工業株式会社 Pneumatic tire
JP4089787B1 (en) * 2006-11-24 2008-05-28 横浜ゴム株式会社 Pneumatic radial tire
JP4506869B2 (en) * 2008-04-28 2010-07-21 横浜ゴム株式会社 Pneumatic tire
JP5007740B2 (en) * 2009-10-28 2012-08-22 横浜ゴム株式会社 Pneumatic tire
JP5718086B2 (en) * 2011-02-17 2015-05-13 株式会社ブリヂストン Pneumatic tire
JP5146564B2 (en) * 2011-05-10 2013-02-20 横浜ゴム株式会社 Pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098938A (en) * 2002-09-11 2004-04-02 Bridgestone Corp Pneumatic tire
JP2009040179A (en) * 2007-08-08 2009-02-26 Bridgestone Corp Precured tread for retreaded tire and retreaded tire
JP2010254032A (en) * 2009-04-22 2010-11-11 Bridgestone Corp Pneumatic tire
JP2014051177A (en) * 2012-09-06 2014-03-20 Yokohama Rubber Co Ltd:The Pneumatic tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108290451A (en) * 2015-12-16 2018-07-17 米其林集团总公司 Tire with improved abrasion and rolling resistance performance
CN108290451B (en) * 2015-12-16 2020-10-09 米其林集团总公司 Tire with improved wear and rolling resistance performance
WO2020100336A1 (en) * 2018-11-12 2020-05-22 横浜ゴム株式会社 Pneumatic tire
JP2020078970A (en) * 2018-11-12 2020-05-28 横浜ゴム株式会社 Pneumatic tire
JP7172476B2 (en) 2018-11-12 2022-11-16 横浜ゴム株式会社 pneumatic tire
EP3978274A1 (en) * 2020-10-01 2022-04-06 Continental Reifen Deutschland GmbH Commercial vehicle tyres

Also Published As

Publication number Publication date
JP2015214287A (en) 2015-12-03
CN106457897A (en) 2017-02-22
JP6032242B2 (en) 2016-11-24
CN106457897B (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6032242B2 (en) Rehabilitation tire
US7918256B2 (en) Heavy duty tire having ground contacting face at 70% and 100% maximum tire load
JP5024485B1 (en) Pneumatic tire
JP6304261B2 (en) Pneumatic tire
JP5915505B2 (en) Pneumatic tire
JP6052227B2 (en) Rehabilitation tire
WO2013042254A1 (en) Pneumatic tire
JP6075425B2 (en) Pneumatic tire
US11052708B2 (en) Pneumatic tire
JP6369185B2 (en) Rehabilitation tire
JP6269306B2 (en) Rehabilitation tire
JP6805535B2 (en) Pneumatic tires
JP6221788B2 (en) Rehabilitation tire
JP6701654B2 (en) Retreaded tires
JP6221789B2 (en) Rehabilitation tire
JP6287276B2 (en) Rehabilitation tire
JP6369183B2 (en) Rehabilitation tire
US11654725B2 (en) Pneumatic tire
JP6521115B1 (en) Pneumatic tire
JP6369184B2 (en) Rehabilitation tire
US20200189322A1 (en) Tire tread
JP6237216B2 (en) Pneumatic tire
US11633988B2 (en) Pneumatic tire
US11884109B2 (en) Pneumatic tire
JP2023010598A (en) tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792082

Country of ref document: EP

Kind code of ref document: A1