WO2015174276A1 - 画像表示装置 - Google Patents

画像表示装置 Download PDF

Info

Publication number
WO2015174276A1
WO2015174276A1 PCT/JP2015/062817 JP2015062817W WO2015174276A1 WO 2015174276 A1 WO2015174276 A1 WO 2015174276A1 JP 2015062817 W JP2015062817 W JP 2015062817W WO 2015174276 A1 WO2015174276 A1 WO 2015174276A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
state
image display
liquid crystal
Prior art date
Application number
PCT/JP2015/062817
Other languages
English (en)
French (fr)
Inventor
増田 純一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/305,185 priority Critical patent/US9984612B2/en
Priority to CN201580022631.6A priority patent/CN106461991A/zh
Publication of WO2015174276A1 publication Critical patent/WO2015174276A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0237Switching ON and OFF the backlight within one frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light

Definitions

  • the present invention relates to an image display device, and more particularly, to an image display device including a see-through display with a transparent background.
  • the display described in Patent Document 1 includes a translucent panel and a transmittance changing unit arranged on the back side of the panel so as to face the panel.
  • the transmittance of the character region including the characters displayed on the display surface of the transmittance changing unit is larger than the transmittance of the image region including the image. To do. Thereby, the fall of the visibility of the display content is suppressed.
  • Patent Document 2 describes a display that adjusts the brightness of backlight light based on the illuminance measured by an illuminance sensor when the brightness of the outside world changes.
  • the screen transmittance is about 20 to 30% when a normally white liquid crystal panel is used as the display, and about 50% when an organic EL panel is used. become.
  • the brightness of the background is considerably lower than when the background is viewed directly without passing through the screen.
  • the ambient light is affected by the color of the liquid crystal panel by being transmitted through the liquid crystal panel, and the chromaticity and color temperature of the ambient light deviate from the chromaticity and color temperature of the background, making it difficult for the observer to feel transparency. In this way, when the background is viewed through a see-through display, the brightness of the background decreases or the transparency becomes difficult to be sensed, thereby reducing visibility.
  • an object of the present invention is to provide an image display device including a see-through type display capable of suppressing a decrease in visibility when a background is visually recognized through a screen.
  • 1st aspect of this invention is an image display apparatus provided with the display in which the transparent display which can see through a background is possible, A light source that emits light source light; An image is displayed by transmitting light source light emitted from the light source based on an image signal given from the outside in order to display an image, and a background is displayed by transmitting ambient light incident from the back side.
  • An image display capable of An ambient light measurement sensor attached to the display and capable of measuring at least chromaticity and color temperature of ambient light;
  • a drive control unit for driving the image display unit,
  • the drive control unit transmits a chromaticity and color temperature of light source light that is lower than the luminance of the light source light that is transmitted through a region that should be originally transmitted by the environmental light and is emitted from the light source when the image is displayed.
  • the image display unit is controlled to approach the chromaticity and color temperature of the ambient light measured by the light measurement sensor.
  • the ambient light measurement sensor can further measure the illuminance of ambient light
  • the drive control unit includes a first state in which only the light source light is transmitted, a second state in which a part of the light source light is transmitted through a region that should originally transmit only the environmental light, and a third state in which only the environmental light is transmitted.
  • luminance of the light source light of the said 2nd state approaches the brightness
  • the image display unit is controlled as follows: Fourth state> first state> (second state + third state) (1).
  • a human sensor that can detect the presence of the observer
  • the drive control unit turns off the light source when the human sensor does not detect the presence of the observer, and turns on the light source in a slightly lit state when the presence of the observer is detected.
  • the image display unit includes a liquid crystal panel, an absorption polarizing plate disposed on the front side of the liquid crystal panel, and a reflective polarizing plate disposed on the back side of the liquid crystal panel,
  • the light source is a light guide plate that is disposed between the liquid crystal panel and the reflective polarizing plate and has an edge light attached to an end portion thereof.
  • the light guide plate irradiates the reflective polarizing plate with light source light emitted from the light source,
  • the reflective polarizing plate reflects the polarization component of the light source light having the same polarization direction as the reflection axis, transmits the polarization component of the ambient light having the same polarization direction as the transmission axis, and irradiates the liquid crystal panel.
  • the drive control unit considers the constituent members of the image display unit so as to bring the chromaticity and color temperature of the light source light in the second state closer to the chromaticity and color temperature of the environmental light in the fourth state, respectively.
  • the liquid crystal panel is driven by correcting the calculated constant.
  • the drive control unit considers the constituent members of the image display unit so that the luminance of the light source light in the first state approaches the luminance of the environmental light in the fourth state within a range satisfying the equation (1). Then, the calculated constant is corrected, and the light source is driven.
  • a sixth aspect of the present invention is the fourth aspect of the present invention,
  • the absorptive polarizing plate, the liquid crystal panel, and the reflective polarizing plate are viewed from the back side when the absorptive polarizing plate is viewed from the front side when the liquid crystal panel and the light source are off.
  • the direction of the transmission axis of the absorptive polarizing plate, the liquid crystal panel, and the reflective polarizing plate is adjusted so that ambient light incident on can be transmitted to the front side of the absorptive polarizing plate. .
  • the edge light attached to the light guide plate is 1 or 2 or more,
  • the one or more edge lights emit light source light toward the inside of the light guide plate, and irradiate a part of the light source light to an object placed on the back side of the image display device. To do.
  • the fifth aspect of the present invention there are a plurality of edge lights attached to the light guide plate,
  • the plurality of edge lights are arranged to face an end portion of the light guide plate, and the plurality of edge lights emit light source light toward the inside of the light guide plate and a part of the light source light is displayed on the image. It is characterized by irradiating an object placed on the back side of the apparatus.
  • the image display unit is an organic EL panel having a plurality of pixels that emit light of a light amount corresponding to the image signal
  • the drive control unit transmits the chromaticity and color temperature of the light source light that is lower than the luminance of the light source light that is transmitted through the pixel that should be originally transmitted by the environmental light and is emitted from the pixel when the image is displayed.
  • the organic EL panel is driven by correcting the constant calculated in consideration of the components of the organic EL panel so as to approach the chromaticity and color temperature of the ambient light measured by the ambient light measurement sensor.
  • the drive control unit adjusts the constituent members of the organic EL panel so that the luminance of the light source light in the first state approaches the luminance of the environmental light in the fourth state within a range satisfying the formula (1).
  • the constant calculated in consideration is corrected, and the light source is driven.
  • the chromaticity and color temperature of the light source light having a luminance lower than the luminance of the light source light that is originally transmitted through the region through which the ambient light should be transmitted are attached to the display.
  • the image display unit is driven so as to approach the chromaticity and color temperature of the ambient light measured by the ambient light measurement sensor.
  • the region where the background of the image display unit can be seen through has been conventionally seen to have decreased transparency due to the color of the image display unit, but it seems that the transparency has been increased by the above driving. The observer can see the background more easily.
  • the image display unit is controlled so that the luminance of the light source light in the second state approaches the luminance of the ambient light in the fourth state within a range satisfying the expression (1). To do. This makes it possible to increase the brightness of the light source light and display a bright image. For this reason, the observer can visually recognize the image with brightness that is easy to see.
  • the light source when the observer is not near, the light source is turned off, and when the human sensor detects the observer, the light source is slightly emitted. In this way, only when the observer is near, the background chromaticity and color temperature transmitted through the image display unit are adjusted, and the luminance of the light source light is adjusted. Thereby, the power consumption of the image display apparatus can be reduced.
  • the drive control unit displays an image so that the chromaticity and color temperature of the light source light in the second state are brought close to the chromaticity and color temperature of the ambient light in the fourth state.
  • the liquid crystal panel included in the image display unit is driven by correcting the constant calculated in consideration of the constituent members of the unit.
  • the drive control unit is configured so that the brightness of the light source light in the first state approaches the brightness of the ambient light in the fourth state within a range that satisfies the formula (1).
  • the light source is driven by correcting the constant calculated in consideration of the constituent members of the display unit.
  • the reflective polarizing plate can be used when the liquid crystal panel and the light source are off.
  • the ambient light incident on is transmitted to the front side of the absorption type polarizing plate.
  • the light source light is emitted from the edge light attached to the end of the light guide plate toward the inside of the light guide plate, and part of the light source light is directed to the back side of the image display device. Irradiate the placed object.
  • the brightness of the ambient light applied to the object is increased, so that the brightness of the light source light that satisfies the relationship of Expression (1) is also increased, and a bright image can be displayed. For this reason, it becomes easy for an observer to visually recognize an image.
  • the plurality of edge lights are arranged to face the end portion of the light guide plate, and irradiates a part of the light source light onto the object placed on the back side of the image display device. Since the edge lights are arranged so as to face each other, a part of the light source light irradiated on the object is uniformly irradiated on the object. Thereby, the brightness of the object becomes uniform, and the observer can visually recognize an image with uniform brightness.
  • the image display unit is an organic EL panel having a plurality of pixels that emit light of a light amount corresponding to the image signal
  • the constants calculated in consideration of the components of the organic EL panel are corrected so that the chromaticity and color temperature of the light source light in the second state approach the chromaticity and color temperature of the ambient light in the fourth state, respectively.
  • the organic EL panel is driven. Thereby, the effect similar to the said 4th aspect is acquired.
  • the image display unit is an organic EL panel having a plurality of pixels that emit light of a light amount corresponding to an image signal
  • the constants calculated in consideration of the components of the organic EL panel are corrected so that the luminance of the light source light in the state 1 approaches the luminance of the environmental light in the fourth state, and the light source is driven.
  • FIG. 2 is an OFF state. It is a figure which shows the permeation
  • FIG. 11 is a diagram showing transmission paths of light source light and ambient light in the four states shown in FIGS.
  • FIG. 7 to 10 in the display shown in FIG. 5 is a flowchart showing the first half of a processing procedure for correcting the chromaticity and color temperature of light source light in the image display device shown in FIG. 4.
  • 5 is a flowchart showing the second half of a processing procedure for correcting the chromaticity and color temperature of light source light in the image display device shown in FIG. 4.
  • FIG. 11 is a diagram showing screen brightness in the first state to the fourth state shown in FIGS. 7 to 10, and more specifically, (a) shows that the light source is turned on when the measured value of ambient light illuminance is low.
  • FIG. 11 is a diagram showing transmission paths of light source light and ambient light in the first state to the fourth state shown in FIGS. 7 to 10 in the display of the image display device according to the second embodiment of the present invention.
  • FIG. 16 is a diagram showing the brightness of the screen in the first state to the fourth state when the light source is slightly emitted in the image display device shown in FIG.
  • FIG. 6B is a diagram illustrating screen brightness in a first state to a fourth state before the light is emitted;
  • FIG. 5B illustrates screen brightness in the first state to the fourth state when light source light is dimmed.
  • FIG. FIG. 11 is a diagram showing transmission paths of light source light and ambient light in the first to fourth states shown in FIGS. 7 to 10 in the display of the image display device according to the third embodiment of the present invention.
  • FIG. 11 is a diagram showing transmission paths of light source light and ambient light in the first to fourth states shown in FIGS. 7 to 10 in the display of the image display apparatus according to the fourth embodiment of the present invention. In the image display apparatus shown in FIG.
  • FIG. 18 is a figure which shows the light-guide plate with which the light source was attached
  • (a) is a figure which shows the light-guide plate with which the light source was attached to the edge part on either side, respectively.
  • (b) is a figure which shows the light-guide plate with which the light source was attached to the right-and-left and up-and-down edge part, respectively
  • (c) is a figure which shows the light-guide plate with which the light source was attached to the right-and-left edge part and an upper side edge part.
  • FIG. 11 is a diagram showing transmission paths of light source light and ambient light in the first state to the fourth state shown in FIGS. 7 to 10 in the display of the image display device according to the fifth embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a transmission path of light source light emitted from a light guide plate 45 and ambient light incident from the back side of the display in a display of a see-through type image display device.
  • the absorption polarizing plate 10 the liquid crystal panel 30, the light guide plate 45 to which the light source 40 is attached, and the reflective polarizing plate 20 are mutually connected from the display surface side to the back surface side. They are arranged in parallel.
  • the direction of the reflection axis of the reflective polarizing plate 20 is the same as the polarization direction of S-polarized light included in the light source light, and the direction of the transmission axis is the same as the polarization direction of P-polarized light.
  • the direction of the reflection axis of the reflective polarizing plate 20 may be the same as the polarization direction of P-polarized light, and the direction of the transmission axis may be the same as the polarization direction of P-polarized light.
  • the reflective polarizing plate 20 when the light source light emitted from the light guide plate 45 is applied to the reflective polarizing plate 20, the P-polarized light of the light source light passes through the reflective polarizing plate 20 and escapes to the outside.
  • the S-polarized light (not shown) is reflected by the reflective polarizing plate 20 and is applied to the liquid crystal panel 30 as backlight light.
  • S-polarized light is reflected by the reflective polarizing plate 20 (not shown), and P-polarized light passes through the reflective polarizing plate 20 and enters the liquid crystal panel 30. Irradiated.
  • the liquid crystal panel 30 selects either the S-polarized light of the light source light or the P-polarized light of the ambient light, or selects them at a predetermined ratio.
  • the selected polarization component further passes through the absorption polarizing plate 10, the observer can visually recognize an image or visually recognize the background with the transmitted polarization component.
  • the reflective polarizing plate 20 In practice, however, most of the P-polarized light contained in the light source light passes through the reflective polarizing plate 20 and escapes to the outside, but part of it is reflected by the reflective polarizing plate 20 in the same manner as the S-polarized light.
  • the liquid crystal panel 30 is irradiated as backlight light. At this time, the ratios of S-polarized light and P-polarized light included in the light source light are, for example, 99% and 1%, respectively.
  • the light source light is irradiated onto the liquid crystal panel 30, only the S-polarized light of the light source light is selected in the region where the image is to be displayed, and the image is displayed.
  • the S-polarized light reflected by the reflective polarizing plate 20 in the light source light is transmitted through the light guide plate 45 and irradiated onto the liquid crystal panel 30.
  • the S-polarized light incident on the light guide plate 45 may be Fresnel-reflected on the surface of the light guide plate 45 or scattered inside the light guide plate 45, so that a part of the S-polarized light is converted to P-polarized light. .
  • the P-polarized light of the ambient light is transmitted, and the P-polarized light converted from the S-polarized light of the light source light is transmitted along with the P-polarized light of the ambient light through the region where the background is desired to be displayed.
  • a light source that originally transmits only the P-polarized light of the environmental light and displays the background is not only the P-polarized light of the environmental light but also light that deviates from the ideal polarization state. P-polarized light derived from light is also transmitted.
  • the screen is white and turbid because P-polarized light derived from the light source light is transmitted and emitted, resulting in a decrease in transparency.
  • FIG. 2 is a diagram showing a configuration of a see-through display 110 included in the image display device 100 according to the first embodiment of the present invention.
  • the configuration of this display is the same as the configuration shown in FIG. 1, and therefore, the same reference numerals are assigned to the same components as those of the display shown in FIG. Below, each component is demonstrated in detail.
  • the light guide plate 45 is made of, for example, a plate-like body made of a transparent resin such as acrylic or polycarbonate, a plate-like body made of a transparent solid such as glass, or a plate-like container filled with a transparent gas such as air.
  • a transparent resin such as acrylic or polycarbonate
  • a plate-like body made of a transparent solid such as glass
  • a plate-like container filled with a transparent gas such as air.
  • a transparent gas such as air.
  • a reflection member (not shown) that reflects light emitted from the light source 40 is attached to the lower end portion of the light guide plate 45.
  • the light source light including P-polarized light and S-polarized light emitted from the light source 40 enters the light guide plate 45, the light source light is totally reflected on the front and back surfaces of the light guide plate 45 and downwards in the light guide plate 45. Or go upwards.
  • the reason why the edge light type light source 40 is used is to facilitate the transmission of ambient light.
  • an organic EL panel can also be used as a light source.
  • the light source 40 and the light guide plate 45 may be collectively referred to as “light source”.
  • a scatterer 46 that reflects incident light is formed on the surface of the light guide plate 45 on the liquid crystal panel 30 side.
  • the light guide plate 45 used in the present embodiment is an asymmetric light guide plate that emits light source light from one surface.
  • FIG. 3 is a diagram illustrating an example of the scatterer 46 formed on the surface of the light guide plate 45.
  • dots made of opaque ink having a size of about several ⁇ m are formed on the surface of the light guide plate 45 on the liquid crystal panel 30 side as the scatterer 46 by ink jet printing. If the light source light traveling upward or downward while totally reflecting inside the light guide plate 45 is incident on the dots, the light source light is scattered by the scatterer, and the reflective polarizing plate 20 from the surface facing the surface on which the dots are formed.
  • the light guide plate 45 may be added with a diffusing agent such as silica, or irregularities may be formed on at least one of the front and back surfaces of the light guide plate 45.
  • a diffusing agent such as silica
  • irregularities may be formed on at least one of the front and back surfaces of the light guide plate 45. The reason for adding a diffusing agent or forming irregularities on the surface will be described later.
  • the liquid crystal panel 30 When the liquid crystal panel 30 is in an off state (a state in which no image signal is written), ambient light that enters from the back side and passes through the reflective polarizing plate 20, the liquid crystal panel 30, and the absorption polarizing plate 10 in order, Any panel that can be visually recognized by an observer on the front side of the display may be used.
  • the liquid crystal panel 30 When the liquid crystal panel 30 is in an on state (a state in which an image signal is written), the transmittance is increased according to the image signal and the backlight is easily transmitted, so that an image corresponding to the image signal is displayed. .
  • Such a liquid crystal panel 30 is realizable by adjusting the direction of the transmission axis of the absorption-type polarizing plate stuck on both surfaces.
  • the direction of the transmission axis of the absorptive polarizing plate applied to the front surface is orthogonal to the direction of the transmission axis of the absorptive polarizing plate applied to the back surface.
  • the liquid crystal panel 30 becomes transparent by transmitting the ambient light incident from the back side when in the off state, and when it is in the on state, the transmittance increases according to the signal voltage and displays an image.
  • the absorptive polarizing plate applied to the front side of the liquid crystal panel 30 is the absorptive polarizing plate 10, but the absorptive polarizing plate applied to the back side.
  • the plate is not shown.
  • the absorption polarizing plate 10, the reflective polarizing plate 20, and the liquid crystal panel 30 may be collectively referred to as an “image display unit”.
  • the display is provided with a color illuminance sensor 50 for measuring the illuminance, chromaticity and color temperature of the ambient light.
  • the color illuminance sensor 50 is attached to the frame of the display toward the observer.
  • the color illuminance sensor 50 can sequentially measure the illuminance, chromaticity, and color temperature of the ambient light.
  • the attachment position of the color illuminance sensor 50 is not limited to the frame of the display, and may be attached to the side surface, the back surface, the top surface, or the like, or may be attached to a place away from the display.
  • the color illuminance sensor may be referred to as an “ambient light measurement sensor”.
  • FIG. 4 is a block diagram showing a configuration of the image display device 100 including the display shown in FIG.
  • the image display apparatus 100 is an active matrix type including a display 110, a display control circuit 111, a scanning signal line driving circuit 113, a data signal line driving circuit 114, a light source driving circuit 115, and a light source 40. It is a display device.
  • the display 110 includes not only the liquid crystal panel 30 but also various polarizing plates and the like, which are not shown.
  • the liquid crystal panel 30 includes n scanning signal lines G1 to Gn, m data signal lines S1 to Sm, and (m ⁇ n) pixels Pij (where m is an integer of 2 or more, j is an integer from 1 to m).
  • the scanning signal lines G1 to Gn are arranged in parallel to each other, and the data signal lines S1 to Sm are arranged in parallel to each other so as to be orthogonal to the scanning signal lines G1 to Gn.
  • Pixels Pij are arranged near the intersections of the scanning signal lines Gi and the data signal lines Sj. In this way, (m ⁇ n) pixels Pij are arranged two-dimensionally, m in the row direction and n in the column direction.
  • the scanning signal line Gi is connected in common to the pixel Pij arranged in the i-th row
  • the data signal line Sj is connected in common to the pixel Pij arranged in the j-th column.
  • Control signals such as a horizontal synchronization signal HSYNC and a vertical synchronization signal VSYNC and an image signal DV are supplied from the outside of the image display device 100. Based on these signals, the display control circuit 111 outputs a clock signal CK and a start pulse ST to the scanning signal line drive circuit 113, and outputs a control signal SC and an image signal DV1 to the data signal line drive circuit 114. To do.
  • the display control circuit 111 includes a memory 112 for storing illuminance, chromaticity, and color temperature measured by the color illuminance sensor 50 or obtained by calculation. Further, the light source driving circuit 115 is controlled so that the light source 40 emits light source light having a desired luminance.
  • the scanning signal line driving circuit 113 supplies high level output signals to the scanning signal lines G1 to Gn one by one in order. As a result, the scanning signal lines G1 to Gn are sequentially selected one by one, and the pixels Pij for one row are selected at a time.
  • the data signal line driving circuit 114 applies a signal voltage corresponding to the image signal DV1 to the data signal lines S1 to Sm based on the control signal SC and the image signal DV1. As a result, a signal voltage corresponding to the image signal DV1 is written into the selected pixel Pij for one row. In this way, the image display device 100 displays an image on the liquid crystal panel 30.
  • the display control circuit 111, the scanning signal line drive circuit 113, the data signal line drive circuit 114, and the light source drive circuit 115 may be collectively referred to as a “drive control unit”.
  • the image display apparatus 100 displays a color image by performing field sequential driving in which red, green, and blue light are sequentially irradiated in time division.
  • a color image may be displayed by forming a color filter on the surface of the liquid crystal panel 30.
  • all the techniques for displaying these color images are well-known, detailed description is abbreviate
  • FIGS. 5 and 6 are diagrams showing transmission paths of the light source light and the ambient light when displaying an image or displaying the background on the image display device 100. More specifically, FIG. 5 shows the liquid crystal panel 30. FIG. 6 is a diagram illustrating transmission paths of light source light and ambient light when the liquid crystal panel 30 is in an on state. In FIGS. 5 and 6, it is assumed that the reflective polarizing plate 20 transmits P-polarized light and reflects S-polarized light, and the absorbing polarizing plate 10 absorbs P-polarized light and transmits S-polarized light.
  • FIG. 5 will be described.
  • the P-polarized light passes through the reflective polarizing plate 20 and escapes to the outside, and the S-polarized light is reflected to the liquid crystal panel. 30 is irradiated. Since the liquid crystal panel 30 is in the off state, the polarization direction of the incident S-polarized light is rotated by 90 degrees and emitted as P-polarized light. This P-polarized light is absorbed by the absorptive polarizing plate 10 and cannot be transmitted to the front side.
  • the P-polarized light in the ambient light passes through the reflective polarizing plate 20 and is irradiated on the liquid crystal panel 30. Since the liquid crystal panel 30 is in the off state, the polarization direction of the incident P-polarized light is rotated by 90 degrees and emitted as S-polarized light. This S-polarized light is transmitted through the absorption polarizing plate 10. Thus, when the liquid crystal panel 30 is in the off state, the observer can visually recognize the background by the S-polarized light of the transmitted ambient light.
  • FIG. 6 When light source light emitted from the light source 40 is applied to the reflective polarizing plate 20 by the light guide plate 45, the P-polarized light passes through the reflective polarizing plate 20 and escapes to the outside, and the S-polarized light is reflected to the liquid crystal panel. 30 is irradiated. Since the liquid crystal panel 30 is in the ON state, the polarization direction of the incident S-polarized light does not change and is emitted as S-polarized light. This S-polarized light is transmitted through the absorption polarizing plate 10. On the other hand, the P-polarized light in the ambient light passes through the reflective polarizing plate 20 and is irradiated on the liquid crystal panel 30.
  • the liquid crystal panel 30 Since the liquid crystal panel 30 is in the ON state, the liquid crystal panel 30 is emitted as P-polarized light without rotating the polarization direction of the incident P-polarized light. This P-polarized light is absorbed by the absorptive polarizing plate 10 and cannot be transmitted to the front side. Thus, when the liquid crystal panel 30 is in the ON state, the observer can visually recognize an image by the S-polarized light of the transmitted light source light.
  • FIG. 7 is a diagram illustrating a first state A representing light source light that is transmitted through the screen of the image display apparatus 100
  • FIG. 8 is a second state B representing light source light that is transmitted through the screen of the image display apparatus 100
  • FIG. 9 is a diagram illustrating a third state C representing ambient light that is transmitted through the screen of the image display device 100
  • FIG. 10 is a fourth diagram illustrating ambient light that is not transmitted through the screen of the image display device 100. It is a figure which shows the state D.
  • FIG. As described above, the light transmitted through the screen of the image display apparatus 100 is divided into four states. Therefore, these four states will be described.
  • the first state A is a state representing the brightness of the light source light that is taken out when the back surface of the image display device 100 is covered with a black cloth 70 so that only the display on the display is visible. Yes, the observer can visually recognize the gradation-displayed image.
  • the liquid crystal panel 30 and the light source 40 are turned off so that only the background can be seen without covering the back surface of the image display device 100 with a black cloth or the like.
  • This is a state representing the brightness of ambient light transmitted through the liquid crystal panel 30, and the observer can visually recognize the background through the liquid crystal panel 30.
  • the fourth state D is a state representing the brightness of the ambient light reaching the front side of the display without passing through the display, and the observer directly displays the background without going through the display. It can be visually recognized.
  • FIG. 11 is a diagram illustrating transmission paths of light source light and ambient light in each state.
  • the luminance, chromaticity, and color temperature of the light source light and ambient light are determined as follows.
  • the luminance, chromaticity, and color temperature of the light source light are the same as the types and characteristics of the liquid crystal panel 30, the absorption polarizing plate 10, and the reflective polarizing plate 20 used in the image display device 100. It is obtained by calculation based on the light emitting method, the characteristics of the light guide plate 45, the power supplied to the image display device 100, and the like.
  • representative values for example, average values
  • the ratio of the light source light that has leaked out of the light source light in the first state A is determined by the configuration of the image display device 100. Thereby, the luminance of the leaked light source light in the second state B is determined. Further, since the chromaticity and color temperature of the leaked light source light are substantially the same as the chromaticity and color temperature of the light source light in the first state A, the chromaticity and color temperature of the light source light in the first state A are Let it be the chromaticity and color temperature of the second state B.
  • the illuminance, chromaticity, and color temperature measured by the color illuminance sensor 50 are set as the luminance, chromaticity, and color temperature in the fourth state D, respectively.
  • the luminance is obtained by multiplying the illuminance measured by the color illuminance sensor 50 in the fourth state D by the transmittance of the liquid crystal panel 30. Further, the chromaticity and the color temperature are obtained by multiplying the chromaticity and the color temperature measured by the color illuminance sensor 50 in the fourth state D by a coefficient representing the color of the liquid crystal panel 30. Note that each calculation in the first state A to the third state C is performed by the display control circuit 111.
  • the observer can visually recognize the three states of the first state A, the second state B and the third state C, and the fourth state D.
  • the observer cannot visually recognize the second state B and the third state C separately.
  • the luminance, chromaticity and color temperature in the state where the second state B and the third state C are combined are the same as the luminance, chromaticity and color temperature in the second state B. And the color temperature are added to each other.
  • Adjustment of brightness in each state In adjusting the brightness of the display screen in each state, the brightness of the light source light is adjusted by driving the light source 40 so that the brightness satisfies the following expression (1).
  • the brightness in the fourth state is represented by the brightness of the ambient light measured by the color illuminance sensor 50.
  • the brightness of the first state is obtained by calculation using a constant that takes into account the influence of the constituent members of the display. Therefore, in order to bring the luminance of the light source light close to the luminance of the ambient light within a range satisfying the expression (1), the constant is changed and the light source 40 is driven. Thereby, since the light source 40 emits light source light having a desired luminance, the brightness in the first state can be changed.
  • the dimming is performed so that the luminance of the light source light in the first state is high within a range that satisfies the formula (1). Further, when the measured value of the illuminance of the ambient light in the fourth state is low, the dimming is performed so that the luminance of the light source light in the first state is reduced within a range satisfying the formula (1).
  • the brightness of the second state and the third state is determined.
  • the brightness of the third state cannot be changed because it depends on the brightness of the ambient light.
  • the brightness in the second state is determined by the luminance of the light source light and can be changed by dimming the light source light. For example, when the brightness of the combined state of the second state and the third state becomes brighter than the brightness of the first state, Equation (1) is not satisfied, so that the brightness of the light source light decreases. To dimm.
  • the backlight light is dimmed so that the brightness in the first state is the brightest within the range satisfying the formula (1).
  • the observer can visually recognize the image displayed with the brightness which is easy to see.
  • step S 12 and 13 are flowcharts showing a processing procedure for correcting the chromaticity and color temperature of the light source light.
  • step S ⁇ b> 11 the initial values of the ambient light chromaticity and color temperature are stored in the memory 112.
  • step S12 first, the chromaticity and color temperature of the light source light in the first state are obtained using constants determined by components such as the liquid crystal panel 30.
  • representative values for example, average values
  • the chromaticity and color temperature of the light source light in the second state are determined from the chromaticity and color temperature of the light source light in the first state,
  • the data is stored in the memory 112 in the display control circuit 111.
  • step S13 the chromaticity and color temperature of the ambient light, that is, the chromaticity and illuminance of the ambient light in the fourth state are measured by the color illuminance sensor 50 attached to the image display device 100.
  • step S14 the chromaticity and color temperature of the ambient light are read from the memory 112.
  • step S15 the chromaticity and color temperature of the ambient light measured in step S13 are compared with the chromaticity and color temperature of the ambient light read from the memory 112 in step S14 to determine whether the ambient light has changed. To do. As a result, when it is determined that the chromaticity and color temperature of the ambient light have not changed, the process proceeds to step S22 described later, and when it is determined that the chromaticity or color temperature of the ambient light has changed, step S16. Proceed to
  • step S16 the measured ambient light chromaticity and color temperature are overwritten in the memory 112.
  • step S17 the chromaticity and color temperature of the measured ambient light are adjusted in consideration of the color of the liquid crystal panel 30, and the chromaticity and color temperature of the ambient light in the third state are obtained and stored in the memory 112. .
  • step S18 it is determined whether or not the screen is a transparent display for displaying a background. As a result, if it is determined that the screen is not transparent, the process proceeds to step S22 described later, and if it is determined that the screen is transparent, the process proceeds to step S19.
  • step S19 the chromaticity and color temperature of the light source light in the second state and the chromaticity and color temperature of the ambient light in the third state are read from the memory 112.
  • step S20 it is determined whether or not the chromaticity and color temperature of the read second state and third state are equal to the chromaticity and color temperature of the ambient light. As a result, when it is determined that they are not equal, the process proceeds to step S22 described later, and when it is determined that they are equal, the process proceeds to step S21.
  • step S21 the chromaticity and color temperature of the light source light in the second state B read from the memory 112 are corrected by adjusting the chromaticity and color temperature of the light source light in the first state, and the corrected chromaticity is corrected. And the color temperature are overwritten in the memory 112.
  • the correction is performed by adjusting the driving of the liquid crystal panel 30 in accordance with a constant determined in consideration of the influence of the members such as the liquid crystal panel 30.
  • step S18 when it is determined in step S18 that the screen is not transparent display, and in step S20, the chromaticity and color temperature of the combined second state and third state are the color of the ambient light.
  • the second state chromaticity and color temperature corrected in step S21, or the second state chromaticity and color temperature read from the memory 112 in step S19 The chromaticity and color temperature in the state where the chromaticity and color temperature in the third state are combined are obtained, and are output to the data signal line drive circuit 114, and the process returns to step S13.
  • the observer feels that the transparency has increased.
  • the reason why the diffusing agent is added to the light guide plate 45 or the unevenness is formed on the surface is to increase the polarization component deviated from the ideal polarization state.
  • the background chromaticity and color temperature when viewed can be made closer to the actual background chromaticity and color temperature.
  • the luminance of the light source light is adjusted so as to satisfy the expression (1), and the difference between the chromaticity and color temperature of the background when viewed through the liquid crystal panel 30 and the actual chromaticity and color temperature of the background is reduced. Adjustments to be made can be made independently of each other. For this reason, only one of the adjustments may be performed.
  • FIG. 14 is a diagram showing the brightness of the screen in the first state to the fourth state. More specifically, FIG. 14A shows the light source 40 when the measured value of the illuminance of the ambient light is low.
  • FIG. 14B is a diagram showing the screen brightness in each state when the light source 40 is turned on.
  • FIG. 14B is a diagram showing the screen brightness in each state when the light source 40 is turned off.
  • the brightness in the first and second states is “0”.
  • the ambient light is affected by the transmittance of the liquid crystal panel 30 and becomes darker than the brightness in the fourth state, but the viewer can visually recognize the background.
  • the luminance of the light source light in the first state is shown in FIG. 14 (a) so as to satisfy the condition of Expression (1). It can be higher than the case. As a result, not only the background but also the image is displayed brighter. As the brightness of the ambient light and the light source light increases, the brightness of the ambient light in the third state and the brightness of the light source light in the second state increase accordingly at a predetermined ratio. Satisfies equation (1). For this reason, it can be seen that the image is displayed with a brightness that is easier to see.
  • the display control circuit 111 changes the chromaticity and color temperature of the light source light in the second state to the chromaticity and color temperature of the ambient light in the fourth state measured by the color illuminance sensor 50.
  • the liquid crystal panel 30 is driven by correcting the constant calculated in consideration of the constituent members of the liquid crystal panel 30 and controlling the scanning signal line driving circuit 113 and the data signal line driving circuit 114 so as to approach each other.
  • the liquid crystal panel 30 appears to have increased transparency. It becomes easy to see.
  • the display control circuit 111 considers the constituent members of the liquid crystal panel 30 so that the luminance of the light source light in the first state approaches the luminance of the environmental light in the fourth state within a range that satisfies the formula (1).
  • the light source 40 is driven by correcting the calculated constant. This makes it possible to display an image with a brightness that is easy to see, so that the observer can easily view the image.
  • FIG. 15 is a diagram showing transmission paths of light source light and ambient light in each state in the display of the image display apparatus 200 according to the second embodiment of the present invention.
  • the image display apparatus 200 according to the present embodiment has the same configuration as the image display apparatus 100 according to the first embodiment except that a human sensor 60 described later is further attached.
  • the same constituent members are denoted by the same reference numerals, and the description thereof is omitted. Since the first state A to the fourth state D are also the same as those in the first embodiment, the same reference numerals are given and the description thereof is omitted.
  • the light source 40 is lit even when the observer is not nearby. For this reason, since the time for turning on the light source 40 becomes longer, the power consumption of the image display apparatus 100 becomes larger. Further, when the light source 40 is not turned on, the light emitted to the liquid crystal panel 30 is only ambient light incident from the back side or ambient light incident from the front side and reflected by the reflective polarizing plate 20. Become. In this case, since the display quality of the image depends on the brightness of the ambient light, the visibility is lowered.
  • a human sensor 60 that detects whether or not the observer is near the image display device 200 is installed, and the light source 40 is turned on only when the human sensor 60 detects an observer near the image display device 200. Lights off slightly and turns off when no observer is detected. Here, the slight light emission is necessary for driving to bring the chromaticity and color temperature of the state in which the second state and the third state are combined closer to the chromaticity and color temperature of the ambient light in the fourth state, respectively. It means that the light source 40 is turned on so as to obtain a minimum brightness.
  • the human sensor 60 detects the observer and causes the light source 40 to emit light slightly, the light source light is dimmed in the same manner as described in the first embodiment, so that the second state and the third state are adjusted.
  • the chromaticity and color temperature of the combined state are brought close to the chromaticity and color temperature of the ambient light. Thereby, the observer feels that the transparency of the screen on which the background is displayed has increased.
  • the brightness of the light source 40 is adjusted so that the screen brightness in the first state approaches the screen brightness in the fourth state within a range satisfying the formula (1). Thereby, the observer can visually recognize the image displayed with the brightness which is easy to see.
  • the human sensor 60 is attached to the lower frame of the display side by side with the color illuminance sensor 50.
  • the human sensor 60 may be attached to the side surface, the back surface, the top surface, or the like of the image display device 200 as long as it can detect an observer who has come to a position where the image or background displayed on the display can be visually recognized. Or you may attach to the position distant from the image display apparatus 200.
  • FIG. Further, the human sensor 60 and the color illuminance sensor 50 may be arranged separately.
  • FIG. 16 is a diagram showing the brightness of the screen in the first to fourth states when the light source 40 is slightly emitted. More specifically, FIG. 16 (a) dims the light source light.
  • FIG. 16B is a diagram illustrating screen brightness in the previous first to fourth states, and FIG. 16B illustrates screen brightness in the first to fourth states when light source light is dimmed.
  • FIG. 16A when the light source 40 is slightly emitted, the screen in the first state is slightly brighter and the screen in the second state is darker than the first screen. If the light source light is dimmed in this state, the screen in the first state can be brightened as shown in FIG. In this way, by dimming the light source light by causing the light source 40 to emit light slightly, the brightness of the screen in the first state becomes brighter within the range satisfying the formula (1), and the image becomes easy to see.
  • the light source 40 when the observer is not near, the light source 40 is turned off, and when the human sensor 60 detects the observer, the light source 40 is slightly emitted. As described above, only when the observer is near, the deviation of the chromaticity and color temperature of the background transmitted through the liquid crystal panel 30 is adjusted, and the luminance of the light source light is adjusted. Thereby, the power consumption of the image display apparatus can be reduced.
  • FIG. 17 is a diagram illustrating transmission paths of light source light and ambient light in each state in the display of the image display apparatus 300 according to the third embodiment of the present invention.
  • the image display apparatus 300 according to the present embodiment has the same configuration as the image display apparatus 100 according to the first embodiment except for a method of using light from the light source 40 as auxiliary light.
  • the same constituent members are denoted by the same reference numerals, and the description thereof is omitted. Since the first to fourth states are also the same as those in the first embodiment, the same reference numerals are assigned and description thereof is omitted.
  • the image display device 300 not only emits light emitted from the light source 40 attached to the light guide plate 45 but enters the light guide plate 45.
  • a part of the light is directly irradiated to an object (for example, a cylindrical object) 48 on the back side of the display as auxiliary light.
  • the light applied to the object 48 is reflected and applied to the reflective polarizing plate 20 from the back side as part of the ambient light.
  • the screen in the fourth state is brightened. Therefore, it is possible to drive the light source 40 so that the brightness of the light source light is increased within a range satisfying the expression (1). As a result, the observer can visually recognize an image displayed with an easily viewable brightness.
  • the light source 40 that irradiates auxiliary light to the object 48 on the back surface is attached to the upper end of the light guide plate 45.
  • the light source 40 may be attached to the lower end portion or the left and right end portions of the light guide plate 45.
  • the number of light sources 40 attached to the light guide plate 45 is not limited to one and may be plural. When a plurality of light sources 40 are attached, they may be attached to the same end portion of the light guide plate 45 or different end portions. If a plurality of light sources 40 are attached, the luminance of the auxiliary light is increased by that amount, so that the luminance of the backlight light can be increased by Equation (1). Thereby, the observer can visually recognize the image displayed with the brightness which is easier to see.
  • FIG. 18 is a diagram illustrating transmission paths of light source light and ambient light in each state in the display of the image display apparatus 400 according to the fourth embodiment of the present invention.
  • the image display apparatus 400 according to the present embodiment has the same configuration as the image display apparatus 300 according to the third embodiment except for the arrangement of the light source 40. Reference numerals are assigned and explanations thereof are omitted. Since the first to fourth states are also the same as those in the first embodiment, the same reference numerals are assigned and description thereof is omitted.
  • FIG. 19 is a view showing the light guide plate 45 to which the light source 40 is attached. More specifically, FIG. 19A is a view showing the light guide plate 45 to which the light source 40 is attached to the left and right ends, respectively.
  • FIG. 19B is a view showing the light guide plate 45 to which the light source 40 is attached at the left and right and upper and lower ends
  • FIG. 19C is a view showing the light source 40 at the left and right ends and the upper end. It is a figure which shows the attached light-guide plate.
  • the light source 40 is mounted so as to face the left and right ends of the light guide plate 45, so that the auxiliary light emitted from the light source 40 makes the object 48 on the back surface uniform. Irradiate. Thereby, the ambient light including the auxiliary light reflected by the object 48 becomes uniform light.
  • the auxiliary light emitted from the light source 40 is also on the back surface when the light guide plate 45 is mounted so as to face the upper and lower ends and the left and right ends, respectively.
  • the object 48 is irradiated so as to be uniform.
  • the ambient light including the auxiliary light reflected by the object 48 becomes more uniform than the case shown in FIG.
  • the number of the light sources 40 is an odd number, and the light sources 40 at the left and right end portions are in positions facing each other.
  • the light source 40 at the upper end is the light source 40 facing left and right when viewed from the center.
  • the auxiliary light uniformly irradiated on the object 48 on the back side is reflected and is reflected on the back side as a part of the environmental light.
  • the uniformly irradiated auxiliary light is reflected as light of uniform brightness, so that the brightness of the ambient light transmitted through the liquid crystal panel 30 is also uniform, and the viewer can view the object displayed with uniform brightness. 48 can be visually recognized.
  • FIG. 20 is a diagram showing transmission paths of the light source light and the environmental light in each state in the display of the image display apparatus 500 according to the fifth embodiment of the present invention.
  • the image display device 500 includes an organic EL panel 530.
  • the organic EL panel 530 is a panel that emits light. Therefore, the organic EL panel 530 emits light for each pixel of the organic EL panel 530, and the emitted light does not leak to other pixels. For this reason, the second state does not exist among the four states of the first state to the fourth state described in the first embodiment.
  • the organic EL panel 530 includes a light emitting layer, an electron transport layer, a transparent electrode layer, and the like.
  • the organic EL panel 530 when a voltage corresponding to the image signal is applied to the light emitting layer, the light emitting layer emits light for each pixel, and an image corresponding to the image signal is displayed on the screen.
  • the ambient light incident from the back side of the organic EL panel 530 can pass through the light emitting layer, the electron transport layer, the transparent electrode layer, and the like. At that time, the chromaticity and color temperature of the ambient light are not incident. Deviation from chromaticity and color temperature.
  • the organic EL panel 530 may be referred to as an “image display unit”.
  • the color illuminance sensor 50 for measuring the illuminance, chromaticity, and color temperature of the ambient light is attached to the organic EL panel 530 of the image display device 500.
  • the image display device 500 does not have the second state as described above. Therefore, in place of the second state, a voltage lower than the voltage applied to the pixels is displayed to display an image, and weak light is emitted.
  • the organic EL panel 530 is driven so that the chromaticity and color temperature in this state are close to the chromaticity and color temperature of the ambient light measured by the color illuminance sensor 50, and the chromaticity and color temperature of the light source light are set. adjust.
  • the attachment position of the color illuminance sensor 50 can be attached to the same position as in the case of the first embodiment.
  • the pixel of the organic EL panel 530 is low. A voltage is applied to cause slight light emission.
  • the observer can emit light so that the chromaticity and the color temperature are close to the environmental chromaticity and the color temperature measured by the color illuminance sensor 50.
  • the background can be visually recognized in a state where the transparency appears to have increased. Further, by bringing the screen brightness in the first state close to the brightness in the fourth state within a range satisfying the expression (1), the observer can visually recognize an image displayed with a brightness that is easy to see. .
  • an image display device including an organic EL panel can obtain the same effects as those of the image display devices according to the first to fourth embodiments.
  • the present invention can be applied to an image display device having a see-through display with a transparent background.

Abstract

 画面を通して背景を視認したときに、視認性の低下を抑制可能なシースルータイプのディスプレイを備えた画像表示装置を提供する。 本来環境光が透過すべき領域を透過し、光源から出射される光源光の輝度よりも低い輝度の光源光の色度および色温度を、ディスプレイに取り付けられた色彩照度センサ50によって測定された環境光の色度および色温度にそれぞれ近づくように、液晶パネル30を駆動する。これにより、液晶パネル30の背景が透けて見える領域では、透明性が高くなったように見え、観察者は背景を見やすくなる。

Description

画像表示装置
 本発明は、画像表示装置に関し、特に、背景が透けて見えるシースルータイプのディスプレイを備えた画像表示装置に関する。
 近年、画面に画像を表示するだけではなく、画面を通してディスプレイの背面にある物体を視認するシースルーディスプレイ(透明ディスプレイ)と呼ばれる表示技術の開発が活発に進められている。シースルーディスプレイを実現するために、液晶パネルを用いる方式、有機EL(Electro-Luminescence)パネルを用いる方式などの様々な方式が提案されている。例えば、特許文献1に記載されたディスプレイは、透光性を有するパネルと、その裏面側にパネルと対向して配置された透過率変更部とを備えている。このパネルの表示面に画像と文字を表示する場合には、透過率変更部のうち、表示面に表示される文字を含む文字領域の透過率を、画像を含む画像領域の透過率よりも大きくする。これにより、表示内容の視認性の低下が抑制される。また、特許文献2には、外界の明るさが変化したときに、照度センサによって測定した照度に基づきバックライト光の輝度を調整するディスプレイが記載されている。
日本の特開2013-41099号公報 日本の特開2013-174708号公報
 しかし、液晶パネルや有機ELパネルを用いるシースルーディスプレイでは、画面の透過率は、ディスプレイとしてノーマリホワイト型液晶パネルを使用した場合に20~30%程度、有機ELパネルを使用した場合に50%程度になる。このため、シースルータイプのディスプレイの画面を通して背景を見た場合には、画面を通さずに背景を直接見た場合に比べて、背景の明るさがかなり低下する。また、環境光は、液晶パネルを透過することにより液晶パネルの色味の影響を受け、その色度および色温度が背景の色度および色温度からずれ、観察者は透明性を感じにくくなる。このように、シースルータイプのディスプレイを通して背景を見た場合、背景の明るさが低下したり、透明性が感じられにくくなったりすることにより、視認性が低下する。
 特許文献1に記載のディスプレイでは、環境光の影響が考慮されていないので、外光の輝度が変化した場合に画面を通して見る背景もその影響を受け、視認性が低下する。特許文献2に記載のディスプレイでは、外光の影響は考慮されているが、観察者が視認する物体の色は補正されない。このため、観察者が画面を通して背景を視認したとき、ディスプレイの色味の影響を受け、画面を透過した環境光の色度および色温度が画面を透過する前の色度および色温度からずれることにより、観察者は透明性を感じにくくなる。
 そこで、本発明は、画面を通して背景を視認したときに、視認性の低下を抑制可能なシースルータイプのディスプレイを備えた画像表示装置を提供することを目的とする。
 本発明の第1の局面は、背景が透けて見える透明表示が可能なディスプレイを備えた画像表示装置であって、
 光源光を出射する光源と、
 画像を表示するために外部から与えられる画像信号に基づいて前記光源から出射される光源光を透過させることにより画像を表示すると共に、背面側から入射する環境光を透過して背景を表示することが可能な画像表示部と、
 前記ディスプレイに取り付けられ、環境光の少なくとも色度と色温度の測定が可能な環境光測定センサと、
 前記画像表示部を駆動する駆動制御部とを備え、
 前記駆動制御部は、本来環境光が透過すべき領域を透過し、前記画像を表示する際に前記光源から出射される光源光の輝度よりも低い光源光の色度および色温度を、前記環境光測定センサによって測定された環境光の色度および色温度にそれぞれ近づけるように、前記画像表示部を制御することを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記環境光測定センサは、さらに環境光の照度を測定可能であり、
 前記駆動制御部は、光源光のみを透過する第1の状態、本来環境光のみを透過すべき領域を光源光の一部が透過する第2の状態、環境光のみを透過する第3の状態、および、環境光を直接視認する第4の状態における各輝度が式(1)を満たす範囲で、前記第2の状態の光源光の輝度が、前記第4の状態の環境光の輝度に近づくように、前記画像表示部を制御することを特徴とする:
   第4の状態>第1の状態>(第2の状態+第3の状態) (1)。
 本発明の第3の局面は、本発明の第1または第2の局面において、
 観察者の存在を検知可能な人感センサをさらに備え、
 前記駆動制御部は、前記人感センサが前記観察者の存在を検知しないとき前記光源を消灯し、前記観察者の存在を検知したとき、前記光源を微発光状態で点灯させることを特徴とする。
 本発明の第4の局面は、本発明の第1または第2の局面において、
 前記画像表示部は、液晶パネルと、前記液晶パネルの前面側に配置された吸収型偏光板と、前記液晶パネルの背面側に配置された反射型偏光板とを含み、
 前記光源は、前記液晶パネルと前記反射型偏光板の間に配置され、端部にエッジライトが取り付けられた導光板であり、
 前記導光板は前記光源から出射される光源光を前記反射型偏光板に照射し、
 前記反射型偏光板は、反射軸と同じ偏光方向を有する光源光の偏光成分を反射し、透過軸と同じ偏光方向を有する環境光の偏光成分を透過させて前記液晶パネルに照射し、
 前記駆動制御部は、前記第2の状態の光源光の色度および色温度を前記第4の状態の環境光の色度および色温度にそれぞれ近づけるように前記画像表示部の構成部材を考慮して算出した定数を補正し、前記液晶パネルを駆動することを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 前記駆動制御部は、前記式(1)を満たす範囲で、前記第1の状態の光源光の輝度が前記第4の状態の環境光の輝度に近づくように前記画像表示部の構成部材を考慮して算出した定数を補正し、前記光源を駆動することを特徴とする。
 本発明の第6の局面は、本発明の第4の局面において、
 前記吸収型偏光板、前記液晶パネルおよび前記反射型偏光板は、前記液晶パネルおよび前記光源がオフ状態のときに前面側から前記吸収型偏光板を視認したとき、背面側から前記反射型偏光板に入射した環境光が前記吸収型偏光板の前面側に透過できるように、前記吸収型偏光板、前記液晶パネルおよび前記反射型偏光板の透過軸の方向が調整されていることを特徴とする。
 本発明の第7の局面は、本発明の第5の局面において、
 前記導光板に取り付けられたエッジライトは1また2以上であり、
 前記1または2以上のエッジライトは、前記導光板の内部に向けて光源光を出射すると共に、光源光の一部を前記画像表示装置の背面側に置かれた物体に照射することを特徴とする。
 本発明の第8の局面は、本発明の第5の局面において、
 前記導光板に取り付けられたエッジライトは複数であり、
 前記複数のエッジライトは前記導光板の端部に対向して配置され、前記複数のエッジライトは、前記導光板の内部に向けて光源光を出射すると共に、光源光の一部を前記画像表示装置の背面側に置かれた物体に照射することを特徴とする。
 本発明の第9の局面は、本発明の第2の局面において、
 前記画像表示部は前記画像信号に応じた光量の光を出射する複数の画素を有する有機ELパネルであり、
 前記駆動制御部は、本来環境光が透過すべき前記画素を透過し、前記画像を表示する際に前記画素から出射される光源光の輝度よりも低い光源光の色度および色温度を、前記環境光測定センサによって測定された環境光の色度および色温度にそれぞれ近づけるように、前記有機ELパネルの構成部材を考慮して算出した定数を補正し、前記有機ELパネルを駆動することを特徴とする。
 本発明の第10の局面は、本発明の第9の局面において、
 前記駆動制御部は、前記式(1)を満たす範囲で、前記第1の状態の光源光の輝度が前記第4の状態の環境光の輝度に近づくように、前記有機ELパネルの構成部材を考慮して算出した定数を補正し、前記光源を駆動することを特徴とする。
 本発明の第1の局面によれば、本来環境光が透過すべき領域を透過し、光源から出射される光源光の輝度よりも低い輝度の光源光の色度および色温度を、ディスプレイに取り付けられた環境光測定センサによって測定された環境光の色度および色温度にそれぞれ近づくように、画像表示部を駆動する。これにより、画像表示部の背景が透けて見える領域は、従来、画像表示部の色味のために透明性が低下したように見えていたが、上記駆動によって透明性が高くなったように見え、観察者は背景を見やすくなる。
 本発明の第2の局面によれば、式(1)を満たす範囲で、第2の状態の光源光の輝度が、第4の状態の環境光の輝度に近づくように、画像表示部を制御する。これにより、光源光の輝度を高くし、明るい画像を表示することが可能になる。このため、観察者は見やすい明るさで画像を視認することができる。
 本発明の第3の局面によれば、観察者が近くにいないときは、光源を消灯し、人感センサが観察者を検知したときに、光源を微発光させる。このように、観察者が近くにいるときにのみ、画像表示部を透過する背景の色度や色温度のずれを調整したり、光源光の輝度を調整したりする。これにより、画像表示装置の消費電力を低減することができる。
 本発明の第4の局面によれば、駆動制御部は、第2の状態の光源光の色度および色温度を第4の状態の環境光の色度および色温度に近づけるように、画像表示部の構成部材を考慮して算出した定数を補正して、画像表示部に含まれる液晶パネルを駆動する。これにより、上記第1の局面の場合と同様に、画像表示部の透明性が高くなったように見え、観察者は背景を見やすくなる。
 本発明の第5の局面によれば、駆動制御部は、式(1)を満たす範囲で、第1の状態の光源光の輝度を第4の状態の環境光の輝度に近づけるように、画像表示部の構成部材を考慮して算出した定数を補正して、光源を駆動する。これにより、上記第2の局面の場合と同様に、見やすい明るさの画像を表示することが可能になるので、観察者は画像を視認しやすくなる。
 本発明の第6の局面によれば、吸収型偏光板、液晶パネルおよび反射型偏光板の透過軸の方向が調整されているので、液晶パネルおよび光源がオフ状態のときに、反射型偏光板に入射した環境光が吸収型偏光板の前面側に透過する。これにより、液晶パネルおよび光源がオフ状態のときであっても、観察者は背景を視認することができる。
 本発明の第7の局面によれば、導光板の端部に取り付けられたエッジライトから導光板の内部に向けて光源光を出射すると共に、光源光の一部を画像表示装置の背面側に置かれた物体に照射する。これにより、物体に照射される環境光の輝度が高くなるので、式(1)の関係を満たす光源光の輝度も高くなり、明るい画像を表示することが可能になる。このため、観察者は画像を視認しやすくなる。
 本発明の第8の局面によれば、複数のエッジライトが導光板の端部に対向して配置され、光源光の一部を画像表示装置の背面側に置かれた物体に照射する。エッジライトが対向して配置されているので、物体に照射される一部の光源光は、物体に均一に照射される。これにより、物体の明るさが均一になり、観察者は均一な明るさの画像を視認することができる。
 本発明の第9の局面によれば、画像表示部が、画像信号に応じた光量の光を出射する複数の画素を有する有機ELパネルの場合にも、上記第4の局面の場合と同様にして、第2の状態の光源光の色度および色温度が第4の状態の環境光の色度および色温度にそれぞれ近づくように、有機ELパネルの構成部材を考慮して算出した定数を補正し、有機ELパネルを駆動する。これにより、上記第4の局面と同様の効果が得られる。
 本発明の第10の局面によれば、画像表示部が、画像信号に応じた光量の光を出射する複数の画素を有する有機ELパネルの場合にも、式(1)を満たす範囲で、第1の状態の光源光の輝度が第4の状態の環境光の輝度に近づくように、有機ELパネルの構成部材を考慮して算出した定数を補正し、光源を駆動する。これにより、上記第5の局面と同様の効果が得られる。
シースルータイプの画像表示装置のディスプレイにおいて、導光板から出射される光源光、およびディスプレイの背面側から入射する環境光の透過経路を説明するための図である。 本発明の第1の実施形態に係る画像表示装置に含まれるシースルータイプのディスプレイの構成を示す図である。 図2に示すディスプレイに含まれる導光板の表面に形成された散乱体の一例を示す図である。 図2に示すディスプレイを含む画像表示装置の構成を示すブロック図である。 図2に示すディスプレイの液晶パネルがオフ状態のときの光源光および環境光の透過経路を示す図である。 図2に示すディスプレイの液晶パネルがオン状態のときの光源光および環境光の透過経路を示す図である。 図2に示すディスプレイを透過する光源光を表す第1の状態を示す図である。 図2に示すディスプレイを透過する光源光を表す第2の状態を示す図である。 図2に示すディスプレイを透過する環境光を表す第3の状態を示す図である。 図2に示すディスプレイを透過しない環境光を表す第4の状態を示す図である。 図2に示すディスプレイにおいて、図7~図10に示す4つの状態における光源光と環境光の透過経路を示す図である。 図4に示す画像表示装置において、光源光の色度および色温度を補正する処理手順の前半を示すフローチャートである。 図4に示す画像表示装置において、光源光の色度および色温度を補正する処理手順の後半を示すフローチャートである。 図7~図10に示す第1の状態~第4の状態における画面の明るさを示す図であり、より詳しくは、(a)は環境光の照度の測定値が低い場合に、光源をオン状態にしたときの各状態における画面の明るさを示す図であり、(b)は光源をオフしたときの各状態における画面の明るさを示す図であり、(c)は環境光の照度の測定値が高い場合に、光源をオンしたときの各状態における画面の明るさを示す図である。 本発明の第2の実施形態に係る画像表示装置のディスプレイにおいて、図7~図10に示す第1の状態~第4の状態における光源光と環境光の透過経路を示す図である。 図15に示す画像表示装置において、光源を微発光させたときの第1の状態~第4の状態における画面の明るさを示す図であり、より詳しくは、(a)は光源光を調光する前の第1の状態~第4の状態における画面の明るさを示す図であり、(b)は光源光を調光したときの第1の状態~第4の状態における画面の明るさを示す図である。 本発明の第3の実施形態に係る画像表示装置のディスプレイにおいて、図7~図10に示す第1の状態~第4の状態における光源光と環境光の透過経路を示す図である。 本発明の第4の実施形態に係る画像表示装置のディスプレイにおいて、図7~図10に示す第1の状態~第4の状態における光源光と環境光の透過経路を示す図である。 図18に示す画像表示装置において、光源が取り付けられた導光板を示す図であり、より詳しくは、(a)は光源が左右の端部にそれぞれ取り付けられた導光板を示す図であり、(b)は光源が左右および上下の端部にそれぞれ取り付けられた導光板を示す図であり、(c)は光源が左右の端部と上側端部に取り付けられた導光板を示す図である。 本発明の第5の実施形態に係る画像表示装置のディスプレイにおいて、図7~図10に示す第1の状態~第4の状態における光源光と環境光の透過経路を示す図である。
<1.第1の実施形態>
<1.1 基礎検討>
 図1は、シースルータイプの画像表示装置のディスプレイにおいて、導光板45から出射される光源光、およびディスプレイの背面側から入射する環境光の透過経路を説明するための図である。図1に示すように、画像表示装置では、表示面側から背面側に向かって、吸収型偏光板10、液晶パネル30、光源40が取り付けられた導光板45、および反射型偏光板20が互いに平行になるように配置されている。図1では、反射型偏光板20の反射軸の方向を光源光に含まれるS偏光の偏光方向と同じとし、透過軸の方向をP偏光の偏光方向と同じとする。なお、反射型偏光板20の反射軸の方向をP偏光の偏光方向と同じ方向とし、透過軸の方向をP偏光の偏光方向と同じとしてもよい。
 この場合、理想的には、導光板45から出射された光源光が反射型偏光板20に照射されれば、光源光のうちP偏光は反射型偏光板20を透過して外部に抜けていき(図示しない)、S偏光は反射型偏光板20によって反射され、バックライト光として液晶パネル30に照射される。また、背面側から反射型偏光板20に入射する環境光のうち、S偏光は反射型偏光板20によって反射され(図示しない)、P偏光は反射型偏光板20を透過して液晶パネル30に照射される。液晶パネル30は、光源光のS偏光と、環境光のP偏光のいずれかを選択し、またはそれらを所定の割合で選択する。選択された偏光成分がさらに吸収型偏光板10を透過することによって、観察者は透過した偏光成分によって画像を視認したり、背景を視認したりすることができる。
 しかし、実際には、光源光に含まれるP偏光の大部分は反射型偏光板20を透過して外部に抜けていくが、その一部はS偏光と同様に反射型偏光板20によって反射され、バックライト光として液晶パネル30に照射される。このとき、光源光に含まれるS偏光とP偏光の割合がそれぞれ例えば99%と1%とする。この光源光が液晶パネル30に照射されれば、画像を表示したい領域では光源光のS偏光だけが選択され、画像が表示される。しかし、環境光のP偏光だけを透過させて背景を表示したい領域では、反射型偏光板20を透過した環境光のP偏光と共に光源光に含まれる1%のP偏光も透過する。
 また、光源光のうち反射型偏光板20によって反射されたS偏光は、導光板45を透過して液晶パネル30に照射される。このとき、導光板45に入射したS偏光は導光板45の表面でフレネル反射されたり、導光板45の内部で散乱されたりすることによってS偏光の一部がP偏光に変換されることがある。これにより、環境光のP偏光だけを透過させて背景を表示したい領域を、環境光のP偏光と共に光源光のS偏光から変換されたP偏光も透過する。
 このように、いずれの場合にも、本来環境光のP偏光だけを透過させて背景を表示したい領域を、環境光のP偏光だけでなく、理想的な偏光状態からはずれた光である、光源光に由来するP偏光も透過する。これにより、透明にして背景を表示したい領域では、光源光に由来するP偏光が透過して発光することにより画面が白く濁るので、透明性が低下する。
 この理想的な偏光状態からはずれた、光源光に由来するP偏光を完全になくすことができれば液晶パネル30を通して背景を視認したときの透明性が高くなったように感じられるが、実際にはこのP偏光をなくすことは困難である。そこで、本発明では、光源光に由来するP偏光を積極的利用することにより、透明性が高くなったと感じられるようにする。
<1.2 画像表示装置の構成>
 図2は、本発明の第1の実施形態に係る画像表示装置100に含まれるシースルータイプのディスプレイ110の構成を示す図である。図2に示すように、このディスプレイの構成は図1に示す構成と同じであるので、図1に示すディスプレイの構成部材と同じ構成部材に同一の参照符号を付す。以下では、各構成部材について詳細に説明する。
 導光板45は、例えばアクリル、ポリカーボネートなどの透明な樹脂からなる板状体、ガラスなどの透明な固体からなる板状体、または空気などの透明な気体を封入した板状の容器などからなる。導光板45の上端部には、例えば複数個のLED(Light Emitting Device)を直線上に配列したエッジライトタイプの光源40が取り付けられている。導光板45の下端部には、光源40から出射された光を反射する反射部材(図示しない)が取り付けられている。このため、光源40から出射されたP偏光とS偏光を含む光源光が導光板45に入射すれば、光源光は導光板45の表面と裏面で全反射しながら導光板45の内部を下方向または上方向に向かって進む。なお、エッジライトタイプの光源40を使用するのは、環境光を透過させやすくするためである。また、光源として有機ELパネルを使用することもできる。なお、光源40および導光板45をまとめて「光源」という場合がある。
 導光板45の液晶パネル30側の表面には、入射光を反射する散乱体46が形成されている。光源光が散乱体46に入射すれば、光源光は散乱体46によって反射され、主に背面側の表面から反射型偏光板20に向かって照射される。このように、本実施形態で使用する導光板45は、一方の表面から光源光を射出する非対称導光板である。
 導光板45を非対称導光板とするために、導光板45の片方の表面に形成された散乱体46について説明する。図3は、導光板45の表面に形成された散乱体46の一例を示す図である。図3に示すように、散乱体46として、導光板45の液晶パネル30側の表面に、大きさが数μm程度の不透明なインクからなるドットがインクジェット印刷によって形成されている。導光板45内を全反射しながら上方向または下方向に進む光源光がドットに入射すれば、光源光は散乱体によって散乱され、ドットが形成された表面と対向する表面から反射型偏光板20に向かって出射される。また、導光板45には、シリカなどの拡散剤が添加されていてもよく、あるいは導光板45の表面および裏面の少なくともにいずれかに凹凸が形成されていてもよい。拡散剤を添加したり、表面に凹凸を形成したりする理由は後述する。
 液晶パネル30は、オフ状態(画像信号が書き込まれていない状態)のときに、背面側から入射して反射型偏光板20、液晶パネル30、吸収型偏光板10を順に透過する環境光を、ディスプレイの前面側にいる観察者が視認可能なパネルであればよい。この液晶パネル30は、オン状態(画像信号が書き込まれている状態)になると画像信号に応じて透過率が高くなってバックライト光を透過させやすくなるので、画像信号に応じた画像を表示する。このような液晶パネル30は、その両面に貼る吸収型偏光板の透過軸の方向を調整することにより実現できる。例えば、TN(Twisted Nematic)方式のノーマリブラック型の液晶パネルでは、表面に貼る吸収型偏光板の透過軸の方向と裏面に貼る吸収型偏光板の透過軸の方向を直交させる。これにより、液晶パネル30は、オフ状態のときに背面側から入射した環境光を透過して透明になり、オン状態になれば信号電圧に応じて透過率が高くなり画像を表示する。なお、液晶パネル30の両面に貼る吸収型偏光板のうち、液晶パネル30の前面側に貼られた吸収型偏光板は上記吸収型偏光板10であるが、裏面側に貼られた吸収型偏光板は図示されていない。なお、吸収型偏光板10、反射型偏光板20、および液晶パネル30をまとめて「画像表示部」という場合がある。
 ディスプレイには、環境光の照度、色度および色温度を測定するための色彩照度センサ50が取り付けられている。色彩照度センサ50は、ディスプレイの額縁等に、観察者に向けて取り付けられている。この色彩照度センサ50は環境光の照度、色度、色温度を順に測定することができる。なお、色彩照度センサ50の取付位置は、ディスプレイの額縁に限定されず、その側面、裏面または上面などに取り付けられていてもよく、あるいはディスプレイから離れた場所に取り付けてもよい。なお、色彩照度センサを「環境光測定センサ」という場合がある。
 図4は、図2に示すディスプレイを含む画像表示装置100の構成を示すブロック図である。図4に示すように、画像表示装置100は、ディスプレイ110、表示制御回路111、走査信号線駆動回路113、データ信号線駆動回路114、光源駆動回路115、および光源40を備えたアクティブマトリクス型の表示装置である。なお、ディスプレイ110には、液晶パネル30だけではなく、各種の偏光板なども含まれるがそれらの図示は省略する。
 液晶パネル30は、n本の走査信号線G1~Gn、m本のデータ信号線S1~Sm、および、(m×n)個の画素Pijを含んでいる(ただし、mは2以上の整数、jは1以上m以下の整数)。走査信号線G1~Gnは互いに平行に配置され、データ信号線S1~Smは走査信号線G1~Gnと直交するように互いに平行に配置される。走査信号線Giとデータ信号線Sjの交点近傍には、画素Pijが配置される。このように(m×n)個の画素Pijは、行方向にm個ずつ、列方向にn個ずつ、2次元状に配置される。走査信号線Giはi行目に配置された画素Pijに共通して接続され、データ信号線Sjはj列目に配置された画素Pijに共通して接続される。
 画像表示装置100の外部からは、水平同期信号HSYNC、垂直同期信号VSYNCなどの制御信号と画像信号DVが供給される。表示制御回路111は、これらの信号に基づき、走査信号線駆動回路113に対してクロック信号CKとスタートパルスSTを出力し、データ信号線駆動回路114に対して制御信号SCと画像信号DV1を出力する。
 表示制御回路111は、色彩照度センサ50によって測定され、または計算によって求められた照度、色度、および色温度を格納するためのメモリ112を含む。また、光源40が所望の輝度の光源光を発光するように光源駆動回路115を制御する。
 走査信号線駆動回路113は、ハイレベルの出力信号を1つずつ順に走査信号線G1~Gnに与える。これにより、走査信号線G1~Gnが1本ずつ順に選択され、1行分の画素Pijが一括して選択される。データ信号線駆動回路114は、制御信号SCと画像信号DV1に基づき、データ信号線S1~Smに対して画像信号DV1に応じた信号電圧を与える。これにより、選択された1行分の画素Pijに画像信号DV1に応じた信号電圧が書き込まれる。このようにして、画像表示装置100は液晶パネル30に画像を表示する。なお、表示制御回路111、走査信号線駆動回路113、データ信号線駆動回路114、および光源駆動回路115をまとめて「駆動制御部」という場合がある。
 画像表示装置100は、赤色、緑色、青色の光を時分割して順に照射するフィールドシーケンシャル駆動することによってカラー画像を表示する。または、液晶パネル30の表面にカラーフィルタを形成することによってカラー画像を表示してもよい。なお、これらのカラー画像を表示する技術はいずれも周知であるので、詳細な説明は省略する。
<1.3 画像表示装置の動作>
 図5および図6は、画像表示装置100において画像を表示したり背景を表示したりする際に、光源光および環境光の透過経路を示す図であり、より詳しくは、図5は液晶パネル30がオフ状態のときの光源光および環境光の透過経路を示す図であり、図6は液晶パネル30がオン状態のときの光源光および環境光の透過経路を示す図である。なお、図5および図6では、反射型偏光板20はP偏光を透過しS偏光を反射するとし、吸収型偏光板10はP偏光を吸収し、S偏光を透過するとする。
 まず、図5について説明する。光源40から出射された光源光が導光板45によって反射型偏光板20に照射されると、P偏光は反射型偏光板20を透過して外部に抜けていき、S偏光は反射されて液晶パネル30に照射される。液晶パネル30はオフ状態であるので入射したS偏光の偏光方向を90度回転させ、P偏光として出射する。このP偏光は吸収型偏光板10に吸収され、前面側に透過できない。一方、環境光のうちP偏光は反射型偏光板20を透過し、液晶パネル30に照射される。液晶パネル30はオフ状態であるので、入射したP偏光の偏光方向を90度回転させ、S偏光として出射する。このS偏光は吸収型偏光板10を透過する。このように、液晶パネル30がオフ状態のときには、観察者は透過した環境光のS偏光により背景を視認することができる。
 次に、図6について説明する。光源40から出射された光源光が導光板45によって反射型偏光板20に照射されると、P偏光は反射型偏光板20を透過して外部に抜けていき、S偏光は反射されて液晶パネル30に照射される。液晶パネル30はオン状態であるので入射したS偏光の偏光方向が変化せず、S偏光として出射する。このS偏光は吸収型偏光板10を透過する。一方、環境光のうちP偏光は反射型偏光板20を透過し、液晶パネル30に照射される。液晶パネル30はオン状態であるので、入射したP偏光の偏光方向を回転させることなく、P偏光として出射する。このP偏光は吸収型偏光板10に吸収され、前面側に透過できない。このように、液晶パネル30がオン状態のときには、観察者は透過した光源光のS偏光により画像を視認することができる。
<1.4 画像表示装置の調整>
 図7は画像表示装置100の画面を透過する光源光を表す第1の状態Aを示す図であり、図8は画像表示装置100の画面を透過する光源光を表す第2の状態Bを示す図であり、図9は画像表示装置100の画面を透過する環境光を表す第3の状態Cを示す図であり、図10は画像表示装置100の画面を透過しない環境光を表す第4の状態Dを示す図である。このように、画像表示装置100の画面を透過する光は4つの状態に分けられる。そこで、これら4つの状態について説明する。
 図7に示すように、第1の状態Aは、画像表示装置100の裏面を黒い布70で覆ってディスプレイの表示のみが見える状態にしたときに、取り出される光源光の明るさを表す状態であり、観察者は階調表示された画像を視認することができる。
 図8に示すように、第2の状態Bは、第1の状態と同様に、画像表示装置100の裏面を黒い布70で覆ってディスプレイの表示のみが見える状態にしたときに、本来環境光を取り出すべき領域に漏れた光源光の明るさを表す状態である。
 図9に示すように、第3の状態Cは、画像表示装置100の裏面を黒い布などで覆うことなく、液晶パネル30および光源40の電源をオフにして背景のみが見えるようにしたときの液晶パネル30を透過する環境光の明るさを表す状態であり、観察者は液晶パネル30を通して背景を視認することができる。
 図10に示すように、第4の状態Dは、ディスプレイを透過することなく、ディスプレイの前面側に到達する環境光の明るさを表す状態であり、観察者はディスプレイを介することなく背景を直接視認することができる。
 シースルータイプのディスプレイでは、透明度を高く維持した状態で、画像を見やすくするために、第1の状態~第4の状態における照度、色度および色温度を調整する必要がある。そこで、これらの調整方法を説明する。
<1.5 照度、色度および色温度の求め方>
 図11は、各状態における光源光と環境光の透過経路を示す図である。光源光および環境光の輝度、色度および色温度は以下のようにして求められる。第1の状態Aでは、光源光の輝度、色度および色温度は、画像表示装置100に使用される液晶パネル30、吸収型偏光板10、反射型偏光板20の種類や特性、光源40の発光方式、導光板45の特性、画像表示装置100に供給される電力などに基づき計算により求められる。このとき、液晶パネル30の画像を表示した全領域に白色表示をした場合の輝度、色度、および色温度の代表値(例えば平均値)を、それぞれ第1の状態Aの輝度、色度、および色温度とする。
 第2の状態Bでは、画像表示装置100の構成によって、第1の状態Aの光源光のうち漏れた光源光の割合が決まる。これにより、第2の状態Bにおける漏れた光源光の輝度が決まる。また、漏れた光源光の色度および色温度は、第1の状態Aの光源光の色度および色温度とほぼ同じであるので、第1の状態Aの光源光の色度および色温度を第2の状態Bの色度および色温度とする。
 第4の状態Dでは、色彩照度センサ50によって測定された照度、色度および色温度をそれぞれ第4の状態Dにおける輝度、色度および色温度とする。
 第3の状態Cでは、輝度は、第4の状態Dで色彩照度センサ50によって測定した照度に、液晶パネル30の透過率を乗算することにより求められる。また、色度と色温度は、第4の状態Dで色彩照度センサ50によって測定された色度と色温度に液晶パネル30の色味を表す係数を乗算することにより求められる。なお、第1の状態A~第3の状態Cの上記各計算は表示制御回路111で行われる。
 上記4つの状態のうち観察者が視認できるのは、第1の状態Aと、第2の状態Bと第3の状態Cを合わせた状態、および第4の状態Dの3つの状態であり、観察者は第2の状態Bと第3の状態Cを分けて視認することはできない。第2の状態Bと第3の状態Cを合わせた状態における輝度、色度および色温度は、第2の状態Bにおける輝度、色度および色温度に、第3の状態Cにおける輝度、色度および色温度をそれぞれ加算することによって求められる。
<1.6 各状態における明るさの調整>
 各状態におけるディスプレイの画面の明るさの調整は、その明るさが次式(1)を満たすように光源40を駆動して光源光の輝度を調光する。
     第4の状態の明るさ>第1の状態の明るさ
                 >(第2の状態+第3の状態)の明るさ …(1)
 上記のように、第4の状態の明るさは、色彩照度センサ50により測定された環境光の輝度によって表される。一方、第1の状態の明るさは、ディスプレイの構成部材による影響を考慮した定数を用いて計算により求められる。そこで、式(1)を満たす範囲で光源光の輝度を環境光の輝度に近づけるために、その定数を変えて光源40を駆動する。これにより、光源40は所望の輝度の光源光を出射するので、第1の状態の明るさを変えることができる。例えば、第4の状態における環境光の照度の測定値が高い場合には、式(1)を満たす範囲で、第1の状態における光源光の輝度が高くなるように調光する。また、第4の状態における環境光の照度の測定値が低い場合には、式(1)を満たす範囲で、第1の状態における光源光の輝度が低くなるように調光する。
 また、光源光および環境光の輝度が決まれば、第2の状態および第3の状態の明るさが決まる。第3の状態の明るさは環境光の輝度に応じて決まるので変えることができない。しかし、第2の状態の明るさは、光源光の輝度によって決まり、光源光を調光することによって変えることができる。例えば、第2の状態と第3の状態を合わせた状態の明るさが第1の状態の明るさよりも明るくなる場合には、式(1)を満たさなくなるので、光源光の輝度が低下するように調光する。
 このようにして、第1の状態における明るさを、式(1)を満たす範囲で最も明るくなるようにバックライト光を調光する。これにより、観察者は見やすい明るさで表示された画像を視認することができる。
<1.7 各状態における色度および色温度の調整>
 第2の状態と第3の状態を合わせた状態における色度および輝度と、第4の状態における色度および色温度との差がそれぞれ大きくなれば、視聴者は透明性が高いと感じにくくなる。ここで、第3の状態の色度および色温度は液晶パネル30の色味によって決まるので、それらの値を変えることはできない。そこで、液晶パネル30の駆動を補正することにより、第2の状態の色度および色温度を変えて、第4の状態における色度および色温度に近づけるための処理を説明する。なお、以下に説明する処理は表示制御回路111で行われる。
 図12および図13は、光源光の色度および色温度を補正する処理手順を示すフローチャートである。図12および図13に示すように、ステップS11では、環境光の色度および色温度の初期値をメモリ112に格納する。ステップS12では、まず液晶パネル30などの構成部材によって決まる定数を用いて第1の状態における光源光の色度および色温度を求める。このとき、液晶パネル30の画像を表示したい全領域に白色表示をした場合の輝度、色度、および色温度の代表値(例えば平均値)を、それぞれ第1の状態Aの輝度、色度、および色温度とする。次に、第1の状態と第2の状態との関係に基づき、第1の状態の光源光の色度および色温度から第2の状態における光源光の色度および色温度を求め、それらを表示制御回路111内のメモリ112に格納する。
 ステップS13では、画像表示装置100に取り付けられた色彩照度センサ50によって環境光の色度および色温度、すなわち第4の状態における環境光の色度および照度を測定する。ステップS14では、メモリ112から環境光の色度と色温度を読み出す。
 ステップS15では、ステップS13で測定した環境光の色度および色温度と、ステップS14でメモリ112から読み出した環境光の色度および色温度とを比較し、環境光が変化したか否かを判定する。その結果、環境光の色度および色温度が変化していないと判定した場合には後述のステップS22に進み、環境光の色度または色温度が変化していると判定した場合にはステップS16に進む。
 ステップS16では、測定した環境光の色度および色温度をメモリ112に上書きする。ステップS17では、液晶パネル30の色味を考慮して、測定した環境光の色度および色温度を調整し、第3の状態の環境光の色度と色温度を求めてメモリ112に格納する。
 ステップS18では、画面が背景を表示する透明表示であるか否かを判定する。その結果、画面が透明表示ではないと判定した場合には後述するステップS22に進み、画面が透明表示であると判定した場合にはステップS19に進む。ステップS19では、第2の状態の光源光の色度および色温度と、第3の状態の環境光の色度および色温度をメモリ112から読み出す。
 ステップS20では、読み出した第2の状態と第3の状態を合わせた状態の色度および色温度が、環境光の色度および色温度と等しいか否かを判定する。その結果、それらが等しくないと判定した場合には後述するステップS22に進み、それらが等しいと判定した場合には、ステップS21に進む。
 ステップS21では、第1の状態の光源光の色度および色温度を調整することにより、メモリ112から読み出した第2の状態Bの光源光の色度および色温度を補正し、補正した色度および色温度をメモリ112に上書きする。補正は、液晶パネル30などの部材による影響を考慮して求めた定数に合わせて、液晶パネル30の駆動を調整することにより行う。
 また、ステップS18において画面が透明表示ではないと判定された場合、および、ステップS20において、読み出した第2の状態と第3の状態を合わせた状態の色度および色温度が、環境光の色度および色温度と等しくないと判定した場合、ステップS21において補正した第2の状態の色度および色温度、または、ステップS19においてメモリ112から読み出した第2の状態の色度および色温度と、第3の状態における色度および色温度を合わせた状態の色度および色温度を求め、それらをデータ信号線駆動回路114に出力し、ステップS13に戻る。
 このように、第2の状態における光源光に由来する、理想的な偏光状態からはずれた偏光成分を利用することで、液晶パネル30を通して視聴したときの背景の色度および色温度と、実際の背景の色度および色温度の差を小さくする。これにより、観察者は透明性が高くなったと感じる。上述のように、導光板45に拡散剤を添加したり、表面に凹凸を形成したりしたのは、理想的な偏光状態からはずれた偏光成分を増やすためであり、これにより、液晶パネル30を通して視聴したときの背景の色度および色温度を、実際の背景の色度および色温度により近づけることができる。
 また、式(1)を満たすように光源光の輝度を調整することと、液晶パネル30を通して視聴したときの背景の色度および色温度と、実際の背景の色度および色温度の差を小さくする調整は、互いに独立して行うことができる。このため、いずれか一方の調整だけを行ってもよい。
<1.8 各状態における画面の明るさ>
 図14は、第1の状態~第4の状態における画面の明るさを示す図であり、より詳しくは、図14(a)は、環境光の照度の測定値が低い場合に、光源40をオン状態にしたときの各状態における画面の明るさを示す図であり、図14(b)は、光源40をオフしたときの各状態における画面の明るさを示す図であり、図14(c)は、環境光の照度の測定値が高い場合に、光源40をオンしたときの各状態における画面の明るさを示す図である。
 図14(a)に示すように、光源光と環境光が画面を透過するときには、第4の状態の画面が、第1の状態Aの画面よりも明るくなっている。また、第2の状態Bと第3の状態Cを合わせた状態の画面は、第1の状態Aの画面よりも暗くなっている。このため、図14(a)に示す各状態は式(1)を満たしており、画像は見やすい明るさで表示されていることがわかる。
 図14(b)に示すように、光源40がオフされているので、第1および第2の状態における明るさは“0”である。この場合、第3の状態では、環境光が液晶パネル30の透過率の影響を受けて、第4の状態の明るさに比べて暗くなるが、視聴者は背景を視認することができる。
 図14(c)に示すように、環境光の照度の測定値が大きいので、式(1)の条件を満たすように、第1の状態の光源光の輝度を、図14(a)に示す場合に比べて高くすることができる。これにより、背景だけでなく画像もより明るく表示される。なお、環境光および光源光の輝度が大きくなれば、それに伴って第3の状態の環境光の輝度および第2の状態の光源光の輝度もそれぞれ所定の割合で大きくなるが、各状態の明るさは式(1)を満たしている。このため、画像はより一層見やすい明るさで表示されていることがわかる。
<1.9 効果>
 本実施形態によれば、表示制御回路111は、第2の状態の光源光の色度および色温度を、色彩照度センサ50によって測定された第4の状態の環境光の色度および色温度に近づけるように、液晶パネル30の構成部材を考慮して算出した定数を補正して、走査信号線駆動回路113およびデータ信号線駆動回路114を制御することにより、液晶パネル30を駆動する。これにより、従来、画像表示部の色味のために透明性が低下したように見えていた背景を表示する領域で、液晶パネル30の透明性が高くなったように見え、観察者は背景を見やすくなる。
 また、表示制御回路111は、式(1)を満たす範囲で、第1の状態の光源光の輝度を第4の状態の環境光の輝度に近づけるように、液晶パネル30の構成部材を考慮して算出した定数を補正して、光源40を駆動する。これにより、見やすい明るさの画像を表示することが可能になるので、観察者は画像を視認しやすくなる。
<2.第2の実施形態>
 図15は、本発明の第2の実施形態に係る画像表示装置200のディスプレイにおいて各状態における光源光と環境光の透過経路を示す図である。図15に示すように、本実施形態の画像表示装置200は、後述する人感センサ60がさらに取り付けられていることを除き、第1の実施形態に係る画像表示装置100と同じ構成であるので、同じ構成部材については同じ参照符号を付してその説明を省略する。また、第1の状態A~第4の状態Dも第1の実施形態の場合と同じであるので、同じ参照符号を付してその説明を省略する。
 第1の実施形態に係る画像表示装置100では、観察者が近くにいない場合にも光源40が点灯している。このため、光源40を点灯する時間が長くなるので、画像表示装置100の消費電力が大きくなる。また、光源40が点灯していないときに、液晶パネル30に照射される光は、背面側から入射する環境光、または前面側から入射し、反射型偏光板20によって反射された環境光だけになる。この場合、画像の表示品位は環境光の輝度に左右されるので、視認性が低下する。
 そこで、観察者が画像表示装置200の近くにいるか否かを検知する人感センサ60を設置し、人感センサ60によって画像表示装置200の近くにいる観察者を検知したときだけ、光源40を微発光させ、観察者を検知しないときには消灯する。ここで、微発光とは、第2の状態と第3の状態を合わせた状態の色度および色温度を、第4の状態の環境光の色度および色温度にそれぞれ近づけるための駆動に必要な最低限度の明るさになるように光源40を点灯することをいう。
 人感センサ60が観察者を検知して光源40を微発光させれば、第1の実施形態で説明した方法と同じ方法で光源光を調光することにより、第2の状態と第3の状態を合わせた状態の色度および色温度を環境光の色度および色温度に近づける。これにより、観察者は背景が表示された画面の透明性が高くなったように感じる。
 また、第1の状態における画面の明るさが式(1)を満たす範囲で、第4の状態における画面の明るさに近づくように、光源40の輝度を調整する。これにより、観察者は見やすい明るさで表示された画像を視認することができる。
 人感センサ60は色彩照度センサ50と並べてディスプレイの下部の額縁に取り付けられる。しかし、人感センサ60は、ディスプレイに表示された画像または背景を視認できる位置に来た観察者を検知できればよいので、画像表示装置200の側面、裏面、上面などに取り付けられていてもよく、あるいは画像表示装置200から離れた位置に取り付けられていてもよい。また、人感センサ60と色彩照度センサ50は離して配置してもよい。
<2.1 各状態における画面の明るさ>
 図16は、光源40を微発光させたときの第1の状態~第4の状態における画面の明るさを示す図であり、より詳しくは、図16(a)は、光源光を調光する前の第1の状態~第4の状態における画面の明るさを示す図であり、図16(b)は、光源光を調光したときの第1の状態~第4の状態における画面の明るさを示す図である。図16(a)に示すように、光源40を微発光させたとき、第1の状態の画面はわずかに明るくなり、第2の状態の画面は第1の画面よりも暗い状態になる。この状態で、光源光を調光すれば、図16(b)に示すように、第1の状態の画面を明るくすることができる。このように、光源40を微発光させることによって光源光を調光することにより、式(1)を満たす範囲内で第1の状態の画面の明るさがより明るくなり、画像が見やすくなる。
<2.2 効果>
 本実施形態によれば、観察者が近くにいないときは、光源40を消灯し、人感センサ60が観察者を検知したときに、光源40を微発光させる。このように、観察者が近くにいるときにのみ、液晶パネル30を透過する背景の色度や色温度のずれを調整したり、光源光の輝度を調整したりする。これにより、画像表示装置の消費電力を低減することができる。
<3.第3の実施形態>
 図17は、本発明の第3の実施形態に係る画像表示装置300のディスプレイにおいて各状態における光源光と環境光の透過経路を示す図である。図17に示すように、本実施形態に係る画像表示装置300は、光源40からの光を補助光として利用する方法を除き、第1の実施形態に係る画像表示装置100と同じ構成であるので、同じ構成部材については同じ参照符号を付してその説明を省略する。また、第1~第4の状態も第1の実施形態の場合と同じであるので、同じ参照符号を付してその説明を省略する。
 本実施形態に係る画像表示装置300は、第1の実施形態に係る画像表示装置100と異なり、導光板45に取り付けられた光源40から出射される光は導光板45に入射するだけでなく、その一部は補助光としてディスプレイの背面側にある物体(例えば円柱状の物体)48に直接照射される。物体48に照射された光は反射され、環境光の一部として背面側から反射型偏光板20に照射される。これにより、環境光の輝度が高くなるので、第4の状態の画面が明るくなるので、式(1)を満たす範囲で光源光の輝度が高くなるように光源40を駆動することができる。その結果、観察者は見やすい明るさで表示された画像を視認することができる。
 なお、図17では、背面の物体48に補助光を照射する光源40は、導光板45の上側端部に取り付けられている。しかし、光源40は、導光板45の下端部または左右の端部に取り付けてもよい。また、導光板45に取り付けられる光源40の個数は1個に限定されず複数個であってもよい。複数個の光源40を取り付ける場合には、導光板45の同じ端部に取り付けてもよく、また異なる端部に取り付けてもよい。複数個の光源40を取り付ければ、その分だけ補助光の輝度が大きくなるので、式(1)によってバックライト光の輝度も明るくすることが可能になる。これにより、観察者はより一層見やすい明るさで表示された画像を視認することができる。
<4.第4の実施形態>
 図18は、本発明の第4の実施形態に係る画像表示装置400のディスプレイにおいて各状態における光源光と環境光の透過経路を示す図である。図18に示すように、本実施形態に係る画像表示装置400は、光源40の配置を除き、第3の実施形態に係る画像表示装置300と同じ構成であるので、同じ構成部材については同じ参照符号を付してその説明を省略する。また、第1~第4の状態も第1の実施形態の場合と同じであるので、同じ参照符号を付してその説明を省略する。
 第4の実施形態に係る画像表示装置400でも、第3の実施形態に係る画像表示装置300と同様に、導光板45に取り付けられた光源40から出射された光は導光板45に入射するだけでなく、その一部は画像表示装置400の背面に置かれた物体48に照射される。しかし、第3の実施形態の場合と異なり、複数個の光源40は、補助光が物体48に均等に照射されるように取り付けられている。図19は、光源40が取り付けられた導光板45を示す図であり、より詳しくは、図19(a)は、光源40が左右の端部にそれぞれ取り付けられた導光板45を示す図であり、図19(b)は、光源40が左右および上下の端部にそれぞれ取り付けられた導光板45を示す図であり、図19(c)は、光源40が左右の端部と上側端部に取り付けられた導光板45を示す図である。図19(a)に示す場合は、光源40は導光板45の左右の端部に対向するように取り付けられているので、光源40から出射された補助光は背面の物体48を均一になるように照射する。これにより、物体48によって反射された補助光を含む環境光は均一な光になる。
 また、図19(b)に示すように、導光板45の上下の端部、および左右の端部にそれぞれ対向するように取り付けられていている場合も、光源40から出射された補助光は背面の物体48を均一になるように照射する。これにより、物体48によって反射された補助光を含む環境光は、図19(a)に示す場合よりもさらに均一な光になる。さらに、図19(c)に示すように、左右の端部、および上側端部に取り付けられていてもよい。この場合、光源40は奇数個になり、そのうち左右の端部の光源40は対向する位置にある。また、上側端部の光源40はその中心から見ると左右に対向している光源40となる。
 このように、導光板45の端部に複数の光源40を互いに対向して配置することによって、背面側の物体48に均一に照射された補助光は反射され、環境光の一部として背面側から反射型偏光板20に照射される。このとき、均一に照射された補助光は均一な明るさの光として反射されるので、液晶パネル30を透過する環境光の輝度も均一になり、視聴者は均一な明るさで表示された物体48を視認することができる。
<5.第5の実施形態>
 図20は本発明の第5の実施形態に係る画像表示装置500のディスプレイにおいて各状態における光源光と環境光の透過経路を示す図である。図20に示すように、画像表示装置500は、有機ELパネル530を含む。有機ELパネル530は、液晶パネル30と異なり、自発光するパネルであるので、有機ELパネル530の画素毎に発光し、発光した光が他の画素に漏れることはない。このため、第1の実施形態において説明した第1の状態~第4の状態の4つの状態のうち、第2の状態が存在しない。
 有機ELパネル530は、図示しないが、発光層、電子輸送層、透明電極層などを備えている。有機ELパネル530では、画像信号に応じた電圧を発光層に印加すると発光層は画素毎に発光し、画像信号に応じた画像を画面に表示する。また、有機ELパネル530の背面側から入射した環境光は、発光層、電子輸送層、透明電極層などを透過することができるが、その際に環境光の色度および色温度が入射前の色度および色温度からずれる。なお、有機ELパネル530を「画像表示部」という場合がある。
 第1の実施形態に係る画像表示装置100と同様に、画像表示装置500の有機ELパネル530に、環境光の照度、色度および色温度を測定するための色彩照度センサ50を取り付ける。画像表示装置500では、上述のように第2の状態がない。そこで、第2の状態の代わりに、画像を表示するために画素に印加する電圧よりも低い電圧を印加し、弱い光を発光させる。このときの状態の色度および色温度を、色彩照度センサ50で測定された環境光の色度および色温度に近づけるように、有機ELパネル530を駆動し、光源光の色度および色温度を調整する。これにより、第1の実施形態の画像表示装置100の場合と同様にして、観察者は背景を視認する際に透明性が高くなったように感じる。また、式(1)を満たす範囲で、第1の状態の画面の明るさを第4の状態の明るさに近づけることにより、観察者は見やすい明るさで表示された画像を視認することができる。
 なお、色彩照度センサ50の取り付け位置は、第1の実施形態の場合と同様の位置に取り付けることができる。また、第2の実施形態の場合と同様に、さらに人感センサ60を設け、画像表示装置の近くにいる観察者を人感センサ60によって検知した場合には、有機ELパネル530の画素に低い電圧を印加して微発光させる。この場合も、第2の実施形態の場合と同様にして、色度および色温度を、色彩照度センサ50で測定された環境の色度および色温度に近づくように発光させることにより、観察者は透明性が高くなったように見える状態で背景を視認することができる。また、式(1)を満たす範囲で、第1の状態の画面の明るさを第4の状態の明るさに近づけることにより、観察者は見やすい明るさで表示された画像を視認することができる。
<5.1 効果>
 本実施形態によれば、有機ELパネルを備える画像表示装置でも、上記第1から第4の各実施形態に係る画像表示装置と同様の効果が得られる。
 本発明は、背景が透けて見えるシースルータイプのディスプレイを備えた画像表示装置に適用することができる。
 10 … 吸収型偏光板
 20 … 反射型偏光板
 30 … 液晶パネル
 40 … 光源(エッジライト)
 45 … 導光板
 50 … 色彩照度センサ
 60 … 人感センサ
 70 … 黒い布
 100 … 画像表示装置
 110 … ディスプレイ
 111 … 表示制御回路
 112 … メモリ
 113 … 走査信号線駆動回路
 114 … データ信号線駆動回路
 530 … 有機ELパネル

Claims (10)

  1.  背景が透けて見える透明表示が可能なディスプレイを備えた画像表示装置であって、
     光源光を出射する光源と、
     画像を表示するために外部から与えられる画像信号に基づいて前記光源から出射される光源光を透過させることにより画像を表示すると共に、背面側から入射する環境光を透過して背景を表示することが可能な画像表示部と、
     前記ディスプレイに取り付けられ、環境光の少なくとも色度と色温度の測定が可能な環境光測定センサと、
     前記画像表示部を駆動する駆動制御部とを備え、
     前記駆動制御部は、本来環境光が透過すべき領域を透過し、前記画像を表示する際に前記光源から出射される光源光の輝度よりも低い光源光の色度および色温度を、前記環境光測定センサによって測定された環境光の色度および色温度にそれぞれ近づけるように、前記画像表示部を制御することを特徴とする、画像表示装置。
  2.  前記環境光測定センサは、さらに環境光の照度を測定可能であり、
     前記駆動制御部は、光源光のみを透過する第1の状態、本来環境光のみを透過すべき領域を光源光の一部が透過する第2の状態、環境光のみを透過する第3の状態、および、環境光を直接視認する第4の状態における各輝度が式(1)を満たす範囲で、前記第2の状態の光源光の輝度が、前記第4の状態の環境光の輝度に近づくように、前記画像表示部を制御することを特徴とする、請求項1に記載の画像表示装置:
       第4の状態>第1の状態>(第2の状態+第3の状態) (1)。
  3.  観察者の存在を検知可能な人感センサをさらに備え、
     前記駆動制御部は、前記人感センサが前記観察者の存在を検知しないとき前記光源を消灯し、前記観察者の存在を検知したとき、前記光源を微発光状態で点灯させることを特徴とする、請求項1または2に記載の画像表示装置。
  4.  前記画像表示部は、液晶パネルと、前記液晶パネルの前面側に配置された吸収型偏光板と、前記液晶パネルの背面側に配置された反射型偏光板とを含み、
     前記光源は、前記液晶パネルと前記反射型偏光板の間に配置され、端部にエッジライトが取り付けられた導光板であり、
     前記導光板は前記光源から出射される光源光を前記反射型偏光板に照射し、
     前記反射型偏光板は、反射軸と同じ偏光方向を有する光源光の偏光成分を反射し、透過軸と同じ偏光方向を有する環境光の偏光成分を透過させて前記液晶パネルに照射し、
     前記駆動制御部は、前記第2の状態の光源光の色度および色温度を前記第4の状態の環境光の色度および色温度にそれぞれ近づけるように前記画像表示部の構成部材を考慮して算出した定数を補正し、前記液晶パネルを駆動することを特徴とする、請求項2に記載の画像表示装置。
  5.  前記駆動制御部は、前記式(1)を満たす範囲で、前記第1の状態の光源光の輝度が前記第4の状態の環境光の輝度に近づくように前記画像表示部の構成部材を考慮して算出した定数を補正し、前記光源を駆動することを特徴とする、請求項4に記載の画像表示装置。
  6.  前記吸収型偏光板、前記液晶パネルおよび前記反射型偏光板は、前記液晶パネルおよび前記光源がオフ状態のときに前面側から前記吸収型偏光板を視認したとき、背面側から前記反射型偏光板に入射した環境光が前記吸収型偏光板の前面側に透過できるように、前記吸収型偏光板、前記液晶パネルおよび前記反射型偏光板の透過軸の方向が調整されていることを特徴とする、請求項4に記載の画像表示装置。
  7.  前記導光板に取り付けられたエッジライトは1また2以上であり、
     前記1または2以上のエッジライトは、前記導光板の内部に向けて光源光を出射すると共に、光源光の一部を前記画像表示装置の背面側に置かれた物体に照射することを特徴とする、請求項5に記載の画像表示装置。
  8.  前記導光板に取り付けられたエッジライトは複数であり、
     前記複数のエッジライトは前記導光板の端部に対向して配置され、前記複数のエッジライトは、前記導光板の内部に向けて光源光を出射すると共に、光源光の一部を前記画像表示装置の背面側に置かれた物体に照射することを特徴とする、請求項5に記載の画像表示装置。
  9.  前記画像表示部は前記画像信号に応じた光量の光を出射する複数の画素を有する有機ELパネルであり、
     前記駆動制御部は、本来環境光が透過すべき前記画素を透過し、前記画像を表示する際に前記画素から出射される光源光の輝度よりも低い光源光の色度および色温度を、前記環境光測定センサによって測定された環境光の色度および色温度にそれぞれ近づけるように、前記有機ELパネルの構成部材を考慮して算出した定数を補正し、前記有機ELパネルを駆動することを特徴とする、請求項2に記載の画像表示装置。
  10.  前記駆動制御部は、前記式(1)を満たす範囲で、前記第1の状態の光源光の輝度が前記第4の状態の環境光の輝度に近づくように、前記有機ELパネルの構成部材を考慮して算出した定数を補正し、前記光源を駆動することを特徴とする、請求項9に記載の画像表示装置。
PCT/JP2015/062817 2014-05-12 2015-04-28 画像表示装置 WO2015174276A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/305,185 US9984612B2 (en) 2014-05-12 2015-04-28 Image display device
CN201580022631.6A CN106461991A (zh) 2014-05-12 2015-04-28 图像显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014098818 2014-05-12
JP2014-098818 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174276A1 true WO2015174276A1 (ja) 2015-11-19

Family

ID=54479818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062817 WO2015174276A1 (ja) 2014-05-12 2015-04-28 画像表示装置

Country Status (3)

Country Link
US (1) US9984612B2 (ja)
CN (1) CN106461991A (ja)
WO (1) WO2015174276A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104340A1 (ja) * 2014-12-26 2016-06-30 シャープ株式会社 表示装置及びその駆動方法
TWI560486B (en) * 2016-01-05 2016-12-01 Innolux Corp Display panel
WO2017090358A1 (ja) * 2015-11-27 2017-06-01 オムロン株式会社 表示装置
CN110383161A (zh) * 2017-01-16 2019-10-25 夏普株式会社 显示装置
KR20200008629A (ko) * 2017-05-27 2020-01-28 선전 차이나 스타 옵토일렉트로닉스 세미컨덕터 디스플레이 테크놀로지 컴퍼니 리미티드 투명 디스플레이 디바이스의 색온도 조정 시스템 및 투명 디스플레이 디바이스의 색온도 조정 방법
WO2022024870A1 (ja) * 2020-07-30 2022-02-03 パナソニックIpマネジメント株式会社 表示装置、および、制御方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170055811A (ko) * 2015-11-12 2017-05-22 삼성전자주식회사 디스플레이를 구비한 전자 장치 및 전자 장치에서 디스플레이의 동작을 제어하기 위한 방법
DE102015226725A1 (de) * 2015-12-23 2017-06-29 Oculus Optikgeräte GmbH Sehprüfsystem und Verfahren zum Überprüfen der Augen
DE102015226726A1 (de) * 2015-12-23 2017-06-29 Oculus Optikgeräte GmbH Sehprüfsystem und Verfahren zum Überprüfen der Augen
CN105549249A (zh) * 2016-02-23 2016-05-04 武汉华星光电技术有限公司 一种液晶显示面板及手机
CN105700235A (zh) * 2016-04-13 2016-06-22 京东方科技集团股份有限公司 一种背光模组及显示装置
KR102416838B1 (ko) * 2017-10-12 2022-07-05 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
CN107909922B (zh) * 2017-11-16 2019-10-15 维沃移动通信有限公司 一种移动终端
CN108172197A (zh) * 2017-12-29 2018-06-15 深圳市华星光电半导体显示技术有限公司 显示器色温调整方法、电子设备及计算机可读存储介质
US10606349B1 (en) * 2018-06-22 2020-03-31 Facebook Technologies, Llc Infrared transparent backlight device for eye tracking applications
CN111123426A (zh) * 2020-01-22 2020-05-08 马鞍山晶智科技有限公司 一种用于显示装置的透明光源系统
CN111933027A (zh) * 2020-08-05 2020-11-13 维沃移动通信有限公司 显示模组和电子设备
US11209656B1 (en) * 2020-10-05 2021-12-28 Facebook Technologies, Llc Methods of driving light sources in a near-eye display
US11727892B1 (en) 2022-11-09 2023-08-15 Meta Platforms Technologies, Llc Eye-tracking based foveation control of displays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121625A (ja) * 2005-10-27 2007-05-17 Konica Minolta Photo Imaging Inc 画像表示装置
JP2011053468A (ja) * 2009-09-02 2011-03-17 Sony Corp 映像/文字同時表示装置及び頭部装着型ディスプレイ
JP2012527011A (ja) * 2009-05-12 2012-11-01 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 追加の原色及び調整可能な白色点を有するエレクトロルミネッセンスディスプレイ
JP2013171074A (ja) * 2012-02-17 2013-09-02 Nec Corp 自動表示調整装置および自動表示調整方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060197735A1 (en) * 2005-03-07 2006-09-07 Research In Motion Limited System and method for adjusting a backlight for a display for an electronic device
JP2007163891A (ja) * 2005-12-14 2007-06-28 Sony Corp 表示装置
JP4600310B2 (ja) * 2006-02-16 2010-12-15 エプソンイメージングデバイス株式会社 電気光学装置、駆動回路及び電子機器
JP4661875B2 (ja) * 2008-01-15 2011-03-30 ソニー株式会社 表示装置及び表示装置の輝度調整方法
JP2013041099A (ja) 2011-08-15 2013-02-28 Panasonic Corp 透明ディスプレイ装置
JP5817989B2 (ja) * 2011-10-05 2015-11-18 ソニー株式会社 照明装置、表示装置および電子機器
JP2013174708A (ja) 2012-02-24 2013-09-05 Brother Ind Ltd ヘッドマウントディスプレイ、輝度調整方法、及び制御プログラム
US9633607B1 (en) * 2013-12-02 2017-04-25 Amazon Technologies, Inc. Adaptive RGBW conversion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121625A (ja) * 2005-10-27 2007-05-17 Konica Minolta Photo Imaging Inc 画像表示装置
JP2012527011A (ja) * 2009-05-12 2012-11-01 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 追加の原色及び調整可能な白色点を有するエレクトロルミネッセンスディスプレイ
JP2011053468A (ja) * 2009-09-02 2011-03-17 Sony Corp 映像/文字同時表示装置及び頭部装着型ディスプレイ
JP2013171074A (ja) * 2012-02-17 2013-09-02 Nec Corp 自動表示調整装置および自動表示調整方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104340A1 (ja) * 2014-12-26 2016-06-30 シャープ株式会社 表示装置及びその駆動方法
WO2017090358A1 (ja) * 2015-11-27 2017-06-01 オムロン株式会社 表示装置
US10459283B2 (en) 2015-11-27 2019-10-29 Omron Corporation Display device
TWI560486B (en) * 2016-01-05 2016-12-01 Innolux Corp Display panel
CN110383161A (zh) * 2017-01-16 2019-10-25 夏普株式会社 显示装置
KR20200008629A (ko) * 2017-05-27 2020-01-28 선전 차이나 스타 옵토일렉트로닉스 세미컨덕터 디스플레이 테크놀로지 컴퍼니 리미티드 투명 디스플레이 디바이스의 색온도 조정 시스템 및 투명 디스플레이 디바이스의 색온도 조정 방법
JP2020521183A (ja) * 2017-05-27 2020-07-16 深▲せん▼市華星光電半導体顕示技術有限公司Shenzhen China Star Optoelectronics Semiconductor Display Technology Co.,Ltd. 透明表示装置色温度調整システム及び透明表示装置色温度調整方法
KR102305357B1 (ko) * 2017-05-27 2021-09-27 선전 차이나 스타 옵토일렉트로닉스 세미컨덕터 디스플레이 테크놀로지 컴퍼니 리미티드 투명 디스플레이 디바이스의 색온도 조정 시스템 및 투명 디스플레이 디바이스의 색온도 조정 방법
WO2022024870A1 (ja) * 2020-07-30 2022-02-03 パナソニックIpマネジメント株式会社 表示装置、および、制御方法

Also Published As

Publication number Publication date
US20170169749A1 (en) 2017-06-15
US9984612B2 (en) 2018-05-29
CN106461991A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015174276A1 (ja) 画像表示装置
JP5523278B2 (ja) 液晶表示装置及びその駆動方法
JP5256552B2 (ja) 液晶表示装置、該液晶表示装置に用いられる駆動制御回路及び駆動方法
US8144113B2 (en) Liquid crystal display
JP6284555B2 (ja) 画像表示装置
JP2005258403A (ja) 照明装置とこれを備えた画像表示装置及び画像表示方法
JPWO2009110456A1 (ja) 照明装置およびこれを備えた表示装置
US10460676B2 (en) Display device
KR20150026414A (ko) 액정표시장치와 그 구동방법
WO2016104340A1 (ja) 表示装置及びその駆動方法
KR101329076B1 (ko) 액정표시장치 및 그 구동방법
US20150262520A1 (en) Image display device and drive method therefor
KR101839327B1 (ko) 디밍 제어회로 및 방법, 이를 적용한 액정표시장치
KR101323523B1 (ko) 액정표시장치 및 그 구동방법
JP2019082549A (ja) フィールドシーケンシャル方式の画像表示装置および画像表示方法
JP2013020269A (ja) 液晶表示装置、該液晶表示装置に用いられる駆動制御回路及び駆動方法
KR101343495B1 (ko) 액정표시장치의 백라이트 제어 회로
KR100950517B1 (ko) 액정표시패널과 그 구동방법 및 장치
US20160049122A1 (en) Display apparatus and method of driving the same
WO2018193959A1 (ja) 表示装置
WO2017208897A1 (ja) 表示装置
JP2021015153A (ja) 表示装置
KR100685820B1 (ko) 전향경로 회로부가 구비되는 액정표시장치
WO2016059847A1 (ja) 表示装置
KR102658431B1 (ko) 백라이트 유닛 및 이를 이용한 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP