WO2015174236A1 - 集光太陽光の受熱装置、反応装置及び加熱装置 - Google Patents

集光太陽光の受熱装置、反応装置及び加熱装置 Download PDF

Info

Publication number
WO2015174236A1
WO2015174236A1 PCT/JP2015/062332 JP2015062332W WO2015174236A1 WO 2015174236 A1 WO2015174236 A1 WO 2015174236A1 JP 2015062332 W JP2015062332 W JP 2015062332W WO 2015174236 A1 WO2015174236 A1 WO 2015174236A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat receiving
receiving device
heat
sunlight
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2015/062332
Other languages
English (en)
French (fr)
Inventor
竜也 兒玉
幸治 松原
展之 郷右近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to US15/310,354 priority Critical patent/US10260014B2/en
Priority to JP2016519188A priority patent/JP6440267B2/ja
Priority to AU2015260468A priority patent/AU2015260468B2/en
Publication of WO2015174236A1 publication Critical patent/WO2015174236A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B23/00Other methods of heating coke ovens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/062Parabolic point or dish concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/063Tower concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/071Devices for producing mechanical power from solar energy with energy storage devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/75Arrangements for concentrating solar-rays for solar heat collectors with reflectors with conical reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/20Arrangements for storing heat collected by solar heat collectors using chemical reactions, e.g. thermochemical reactions or isomerisation reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/00451Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00247Fouling of the reactor or the process equipment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1284Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S2010/751Special fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/88Multi reflective traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • F24S2080/05Flow guiding means; Inserts inside conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a heat receiving device, a reaction device, and a heating device for concentrated sunlight.
  • pyrolysis and gasification are performed using concentrated sunlight (renewable energy) to produce hydrogen, carbon monoxide, methane, etc. Doing will create new energy.
  • the produced mixed gas of hydrogen and carbon monoxide is used as a raw material for hydrocarbon fuels (kerosene, light oil, diesel oil, gasoline, DME (dimethyl ether), methanol, etc.), and methane is generally used as a clean fuel. ing.
  • Patent Document 1 Technology development that decomposes water and produces hydrogen or the like by using high-temperature solar heat obtained by concentrating sunlight is being actively promoted. Since a transparent quartz plate is used at the entrance (window) of the concentrated sunlight, it cannot be applied to thermal decomposition reactions such as coal that generates tar and soot.
  • Patent Document 2 technology development for use in the thermal decomposition of coke by concentrated sunlight (for example, Patent Document 2) is limited to conditions where tar and soot are not generated.
  • Non-Patent Document 1 Recently, attempts have been made to heat air with concentrated sunlight and use it in a gas turbine (for example, Non-Patent Document 1). However, no heat dissipation measures are taken against the reflection or re-radiation of the concentrated sunlight incident on the heat receiving device, and the device installed around the heat receiving device is made of foam, and heat transfer and heat absorption are extremely It ’s bad.
  • FIGS. 1-10 examples of conventional reactors are shown in FIGS.
  • FIG. 14 is a system for performing a hydrogen production reaction in a two-stage hydrothermal decomposition cycle using a metal oxide such as iron oxide filled in a reactor, in which the reactor shown in FIG. 14 is placed horizontally.
  • the concentrated sunlight is guided to the reactor, and separately, coke and sand are introduced from the upper side wall of the reactor, water vapor is introduced from the bottom of the reactor, and hydrogen and the like are removed by a thermal decomposition reaction.
  • This is a manufacturing system.
  • This system is an example applied to the pyrolysis of coke, and is an operating condition where no soot or tar is generated.
  • the heat receiving device is made of a heat-resistant material, and is made of inconel, alumina, silicon carbide or the like when the temperature is high, and is made of stainless steel or the like when the temperature is low. Part of the concentrated sunlight is emitted outside the heat receiving device by reflection or re-radiation.
  • the figure shows the case where the depth of the heat receiving device is about the same length as the diameter thereof, and the elevation angle ( ⁇ ) with respect to the center line of the heat receiving device is 10 degrees, 20 degrees, 30 with respect to the incident angle of the collected sunlight.
  • the reflection state of light in the heat receiving device when assumed to be 40 degrees, 40 degrees, and 50 degrees is shown. It can be seen that the number of reflections in the heat receiving device is as small as 1 to 3, and that there is a large heat dissipation loss.
  • FIG. 17B shows an example in which the depth of the heat receiving device is about twice as long as the diameter of the heat receiving device.
  • the incident angle of the collected sunlight is the elevation angle ( ⁇ ) with respect to the center line of the heat receiving device. Shows a state of reflection in the heat receiving device when assumed to be 10 degrees, 20 degrees, 30 degrees, 40 degrees, and 50 degrees. It can be seen that the number of reflections is 2 to 6 and there are many heat dissipation losses.
  • FIG. 18 shows an example of a conventional heat storage system using sunlight collection.
  • Thermal storage systems using sunlight collection include sensible heat storage (liquid: oil, solid: concrete, solid particles, etc.), latent heat storage (molten salt, etc.) and chemical heat storage. These heat storage systems are configured to be capable of steady operation both when the sun is shining and when it is not shining (when the sun is blocked by clouds and at night). The capacity of the heat storage system is determined by the operating time when the sun is not shining.
  • This conventional example relates to a sensible heat storage system and a chemical heat storage system for solid particles. Since the chemical reaction material of chemical heat storage is in the form of particles, the sensible heat storage system and the chemical heat storage system for solid particles are similar.
  • the inside of the heat receiving device is filled with a honeycomb structure (or foam).
  • the condensed sunlight passes through the quartz plate (window) and enters the heat receiving device as shown in FIG. 18A, and the low-temperature air supplied to the heat receiving device is the honeycomb. It is heated through the structure and becomes high temperature.
  • the hot air flows in parallel to the steam generator and the heat storage tank.
  • the high-temperature air that has flowed to the steam generator heats water, generates steam, becomes low temperature, and is circulated to the heat receiving device.
  • the generated steam generates electricity by a steam turbine and a generator.
  • the high-temperature air that has flowed into the heat storage tank flows through small gaps between the metal oxide particles accommodated in the heat storage layer, it becomes a laminar flow and the heat transfer coefficient becomes small.
  • the high-temperature air slowly gives heat to the heat storage particles, becomes a low temperature, and is circulated to the heat receiving device.
  • the metal oxide particles heated in the heat storage tank release oxygen by a chemical reaction and store the heat of chemical reaction. That is, the metal oxide particles store both sensible heat and heat of chemical reaction.
  • the present invention relates to a heat receiving device, a reaction device, and a heating device that can efficiently perform thermal decomposition and chemical reaction of coal or the like (including biomass such as wood) using solar heat obtained by collecting sunlight.
  • a heat receiving device a reaction device, and a heating device that can efficiently perform thermal decomposition and chemical reaction of coal or the like (including biomass such as wood) using solar heat obtained by collecting sunlight.
  • the concentrated sunlight is guided to the heat receiving device, the guided sunlight is not released outside the device by reflection or re-radiation, and the temperature in the heat receiving device can be set uniformly or arbitrarily, Combined with a reactor or heating device installed on the outer periphery of the heat receiving device and capable of operating under high pressure and high temperature conditions, it is possible to operate the thermal decomposition and chemical reaction of coal, etc. under the optimal conditions.
  • An object of the present invention is to provide a heat receiving device, a reaction device, and a heating device.
  • the heat receiving device for condensed sunlight includes a side portion, a bottom portion connected to the lower end of the side portion, and a ceiling portion connected to the upper end of the side portion, and has an opening in the ceiling portion.
  • the side portion, the bottom portion, and the ceiling portion form a cavity in which the opening portion is opened and an inner wall that absorbs sunlight, and the inner wall of the side portion or the bottom portion emits sunlight.
  • the reflector which reflects toward is provided.
  • the diameter of the cavity is D
  • the length of the cavity is L
  • L 2D or more.
  • a conical reflector is provided at the center of the bottom, and the reflector is a cone having a diameter of d or more and an elevation angle from the center line of the cavity is 30 to 60 degrees. It is characterized by.
  • a reflector disposed on a concentric circle is further provided at the bottom.
  • the diameter of the ceiling and bottom of the cavity is different.
  • the reaction device of the present invention is provided with any one of the above-described concentrated sunlight heat receiving devices, and around the heat receiving device so as to cover the side and bottom of the heat receiving device at a predetermined interval from the heat receiving device. It is characterized by comprising a reactor.
  • a draft tube is provided inside the reactor.
  • a heating device is provided with any one of the above-described concentrated sunlight heat receiving devices, and around the heat receiving device so as to cover a side portion and a bottom portion of the heat receiving device at a predetermined interval from the heat receiving device. It is characterized by comprising a heater.
  • a fin is provided on the inner wall of the heater.
  • a rectifier is provided at the bottom of the heater.
  • the concentrated sunlight incident on the heat receiving device is confined in the heat receiving device, and the concentrated sunlight incident on the heat receiving device is effectively used. can do.
  • FIG. 6 is a schematic diagram showing a reaction apparatus in Example 5.
  • FIG. 10 is a schematic diagram showing a heating device in Example 6.
  • FIG. 10 is a schematic diagram showing a heating device in Example 7.
  • FIG. 10 is a schematic diagram showing a heating device in Example 8. It is a schematic diagram which shows the example which applied the heating apparatus in Example 9 to the solid particle thermal storage system. It is a schematic diagram which shows the example which applied the heating apparatus in Example 10 to the solid particle thermal storage system.
  • 2 is a schematic diagram showing a reaction apparatus in Example 11. FIG.
  • a heat receiving device made of silicon, stainless steel, or the like.
  • the heat receiving device 1 is connected to the side portion 11 that forms a cylindrical side surface, the circular bottom portion 12 that is connected to the lower end of the side portion 11 to form the bottom surface of the heat receiving device 1, and the upper end of the side portion 11 to receive heat. It is comprised from the ceiling part 13 which forms the ceiling surface of the apparatus 1.
  • FIG. A circular opening 14 is formed at the center of the ceiling 13.
  • the heat receiving apparatus 1 has a cylindrical cavity 15 having an outer shape that is cylindrical, and an opening 14 is opened inside. Note that nothing is provided in the opening 14, and the cavity 15 communicates with the outside through the opening 14.
  • a reactor 2 is provided around the heat receiving device 1 so as to cover most of the side portion 11 and the bottom portion 12 with a predetermined distance from the heat receiving device 1.
  • a lead-out port 23 for leading out such gas is formed, and the reactor 2 is sealed except for the portions where the inlet ports 21 and 22 and the lead-out port 23 are formed.
  • 31 is a heliostat
  • 32 is a beam down type condensing mirror installed in a tower (not shown)
  • the heliostat 31 and the beam down type condensing mirror 32 constitute a beam down type condensing system.
  • the light from the sun S is condensed by this beam down type condensing system, and it guide
  • only one heliostat 31 is shown in the figure, a large number of heliostats 31 are actually installed.
  • coal particles are introduced into the reactor 2 from the inlet 22 and water vapor is introduced from the inlet 21.
  • the condensed sunlight is guided from the opening 14 into the heat receiving apparatus 1 by the heliostat 31 and the beam-down condenser mirror 32.
  • the heat receiving device 1 the condensed sunlight is repeatedly reflected on the inner wall of the side portion 11, the bottom portion 12, and the ceiling portion 13 of the heat receiving device 1, that is, the surface on the cavity 15 side, whereby the heat receiving device 1 is heated.
  • the coal particles accommodated in the reactor 2 are heated by the heated heat receiving device 1.
  • the pyrolysis reaction of coal proceeds, and the generated gas such as hydrogen and carbon monoxide is led out from the outlet 23.
  • the heat receiving device 1 On the inner wall of the heat receiving device 1, it is necessary to reduce heat loss due to sunlight reflection and re-radiation and absorb the heat of sunlight at high speed. For this purpose, it is also effective to configure the heat receiving device 1 with a black material such as silicon carbide and apply black coating on the inner wall of the heat receiving device 1 if necessary.
  • a black material such as silicon carbide
  • FIG. D is the diameter of the cavity 15 of the heat receiving device 1
  • L is the length of the cavity 15 of the heat receiving device 1
  • d is the diameter d of the opening 14 that is the entrance of the condensed sunlight of the heat receiving device 1
  • is the heat receiving device 1.
  • 16 is a conical reflector described later
  • is an elevation angle from the center line C of the cavity 15 of the reflector 16.
  • the condensed sunlight is collected by a number of heliostats 31 and guided to the heat receiving device 1 at various incident angles.
  • FIG. 3 shows a reflected path of the concentrated sunlight in the heat receiving device 1.
  • the incident angle of the concentrated sunlight is expressed by an elevation angle ⁇ with respect to the center line C of the heat receiving device 1, and the elevation angle ⁇ is 10 degrees, 20 degrees, 30 degrees, 40 degrees, and 50 degrees, the concentrated sunlight receiving apparatus 1.
  • the number of reflections on the inner wall is 5 or more. For this reason, the heat radiation loss is very small as compared with the prior art (see FIG. 17) in which the number of reflections is as few as 2 to 6 depending on the incident angle.
  • the concentrated sunlight can be generated so that the collected sunlight incident on the heat receiving device 1 is not released to the outside due to reflection or re-radiation.
  • part where the sunlight of the inner wall of the heat receiving apparatus 1 was irradiated absorbs most of the heat of sunlight, a part of the heat which could not be absorbed reaches another site
  • the heat receiving device 1 for concentrated sunlight includes a side portion 11 that forms a substantially cylindrical side surface, and a substantially circular bottom portion that is connected to the lower end of the side portion 11 and forms a bottom surface. 12 and a ceiling portion 13 that is connected to the upper end of the side portion 11 to form a ceiling surface.
  • a substantially circular opening 14 is formed at the center of the ceiling portion 13, and the opening 14 is opened.
  • a substantially cylindrical cavity 15 is provided.
  • the side portion 11, the bottom portion 12, and the ceiling portion 13 are formed with inner walls that absorb sunlight.
  • the diameter of the cavity 15 is D
  • the length of the cavity 15 is L
  • the diameter of the opening 14 is d
  • d D / 2 or less
  • L 2D or more. Therefore, the condensed sunlight incident on the heat receiving device 1 can be confined in the heat receiving device 1, and the condensed sunlight incident on the heat receiving device 1 can be used effectively.
  • a reflector that reflects sunlight toward the inner wall may be provided on the inner wall of the side portion 11 or the bottom portion 12. The reflector will be described in the following examples.
  • a conical reflector 16 is installed at the center of the bottom 12 of the heat receiving device 1.
  • the reflector 16 is preferably a cone having a diameter of d or more, and an elevation angle ⁇ from the center line C of the heat receiving device 1 is preferably 30 to 60 degrees.
  • the conical reflector 16 is provided at the center of the bottom 12, and the reflector 16 is a cone having a diameter of d or more, and the elevation angle ⁇ from the center line C of the cavity 15. Is 30 degrees to 60 degrees, so that the collected sunlight incident at a small angle ⁇ from the center line C is prevented from being emitted to the outside of the heat receiving apparatus 1 with a small number of reflections, and the condensed light incident on the heat receiving apparatus 1 is prevented. Sunlight can be used effectively.
  • two circular reflectors 17 having a triangular cross section are arranged concentrically on the bottom of the heat receiving device 1. Yes.
  • sunlight can be uniformly reflected on the inner wall of the heat receiving device 1.
  • the reflectors 16 and 17 have a convex outer surface, but a reflector having a concave outer surface may be provided on the bottom 12 of the heat receiving apparatus 1.
  • a reflector having a concave outer surface may be provided on the bottom 12 of the heat receiving apparatus 1.
  • the outer surface of the reflector is concave, the number of reflections until the sunlight is reflected toward the side surface increases, so that reflection with a convex outer surface is required to reflect toward the side surface with a small number of reflections.
  • the body is preferred.
  • a reflector having irregularities on the surface a reflector having an irregular surface, or a reflector having fine irregularities and a rough surface may be provided on the bottom 12 of the heat receiving device 1.
  • a reflector may not be provided, and instead, sunlight may be irregularly reflected by forming fine irregularities on the inner wall surfaces of the side portion 11 and the bottom portion 12 of the heat receiving device 1.
  • FIG. 6 shows an example in which the diameters of the top and bottom of the heat receiving device 1 are changed.
  • FIG. 7 shows an example in which a fluidized bed type reactor 4 is installed on the outer periphery of the heat receiving device 1.
  • the condensed sunlight enters the heat receiving device 1 and is reflected by the conical reflector 16 installed on the bottom 12 or the circular reflector 17 having a circular cross section, and the inner wall of the heat receiving device 1 is uniformly heated.
  • the heat receiving device 1 is made of inconel, alumina, silicon carbide, stainless steel or the like.
  • the fluidized bed 41 is supplied with coal particles from the inlet 42, sand from the inlet 43, water vapor from the inlet 44 and, if necessary, fluidizing gas.
  • the fluidized bed 41 rapidly absorbs heat from the outer wall of the heat receiving device 1 by a stirring action by the flow of gas and sand.
  • Coal and water vapor are heated and decomposed and reacted with hydrogen, carbon monoxide, methane gas, etc., and discharged from the top of the fluidized bed 41. Since these gases are accompanied by undecomposed coal, ash, sand, etc., the coarse coal particles and sand are separated by the cyclone separator 45, and the separated coarse coal particles and sand are supplied to the fluidized bed 41 again. . Fine particles that could not be separated by the cyclone separator 45 are removed by the filter separator 46 and collected separately.
  • the reaction apparatus can be composed entirely of metal, it can be applied to chemical reaction conditions of high temperature and high pressure.
  • FIG. 8 shows an example in which the heater 5 is installed on the outer periphery of the heat receiving device 1.
  • the condensed sunlight enters the heat receiving device 1 and is reflected by the conical reflector 16 installed on the bottom 12 and the circular reflector 17 having a circular cross section, and the inner wall of the heat receiving device 1 is uniformly heated.
  • the heat receiving device 1 is made of inconel, alumina, silicon carbide, stainless steel or the like.
  • a large number of specially shaped fins 51 are attached to the inner wall of the heater 5, and the fins 51 rapidly take away the heat of the heat receiving device 1 and are used to raise the temperature of the air. Thus, the heat transfer area is increased by the fins 51, and the air in the heater 5 is effectively heated.
  • the angle ⁇ 1 at the tip of the fin 51 is preferably 10 to 30 degrees, although it depends on the shape of the heater 5 and the operating conditions.
  • a rectifier 52 is installed at the bottom of the heater 5, but this is for adjusting the gas flow and reducing the generation of vortices.
  • the angle ⁇ 2 formed by the slope of the rectifier 52 and the center line C of the heat receiving device 1 is preferably 20 to 60 degrees, although it depends on the shape of the heater 5 and the operating conditions.
  • the low temperature gas introduced from the inlet 53 provided at the bottom of the heater 5 is heated in the heater 5 and discharged as a high temperature gas from the outlet 54 provided at the top of the heater 5.
  • the obtained high-temperature gas is used for power generation by a high-temperature gas turbine (not shown), sensible heat storage, latent heat storage, chemical heat storage, etc. (not shown).
  • FIG. 9 shows another example in which a fluidized bed type heater 6 is installed on the outer periphery of the heat receiving device 1.
  • Low temperature gas is supplied to the fluidized bed 61 from the inlet 62, and the heat of the heat receiving device 1 is rapidly taken away by the gas in the fluidized bed 61.
  • the fluidized bed 61 acts as a heat exchanger having a high heat transfer rate.
  • the gas deprived of heat is discharged as a high-temperature gas from the outlet 63 provided at the top of the heater 6.
  • Reference numeral 64 denotes an inlet for introducing the sand constituting the fluidized bed 61 into the heater 6.
  • FIG. 10 shows an example in which Example 6 and Example 7 are combined.
  • a large number of specially shaped fins 71 are attached to the inner wall of the heater 7, and the heat of the heat receiving device 1 is rapidly removed to be used for raising the temperature of the air.
  • a rectifier 72 is installed at the bottom of the heater 5.
  • the fin 71 functions to promote heat transfer by the action of stirring the fluidized bed 73 and the gas that flows through the fluidized bed 73. Further, the scale attached to the fins 71 is removed by the random movement of the particles in the fluidized bed 73.
  • the low-temperature gas introduced from the inlet 74 provided at the bottom of the heater 7 is heated in the heater 7 and discharged as a high-temperature gas from the outlet 75 provided at the top of the heater 7.
  • Reference numeral 76 denotes an inlet for introducing the sand constituting the fluidized bed 73 into the heater 7.
  • Fig. 11 shows an example in which a fluidized bed heating device is applied to a solid particle heat storage system.
  • the condensed sunlight enters the heat receiving device 1 as shown in FIG.
  • a fluidized bed type heater 8 is installed on the outer periphery of the heat receiving device 1, and most of the heat of the concentrated sunlight received by the heat receiving device 1 is rapidly heated in the fluidized bed 81 accommodated in the heater 8. Communicated.
  • low temperature air is supplied to the heater 8 from an inlet 82 provided at the bottom of the heater 8, and a fluidized bed 81 is supplied from an inlet 83 provided at a side of the heater 8.
  • Metal oxide particles as heat storage particles to be configured are supplied.
  • the fluidized bed 81 is vigorously fluidized by the air supplied from the inlet 82, so that the air and the metal oxide particles are rapidly heated to a high temperature.
  • the heated metal oxide particles release oxygen by a chemical reaction and store heat. That is, the metal oxide particles store both sensible heat and reaction heat.
  • metal oxide particles barium oxide (BaO 2 ), cobalt oxide (Co 3 O 4 ), manganese oxide (Mn 2 O 3 ), copper oxide (CuO), or the like can be used.
  • the reaction formula when cobalt oxide is used is as follows. 3Co 3 O 4 ⁇ 3CoO + 0.5O 2 - 844kJ / (kg of Co 3 O 4) at about 1,200 ° C. (endothermic)
  • the high temperature air is guided to the cyclone separator 84 from the top of the heater 8, and the fine particles contained in the air are removed by the cyclone separator 84 and stored in the storage tank 85.
  • the air flows to the steam generator 86, water is heated by the steam generator 86 to generate steam, and the temperature is lowered and returned to the heater 8.
  • the above air circulation is performed by the blower 87.
  • the steam generated by the steam generator 86 rotates the steam turbine 88, and then returns to the steam generator 86 via the condenser 89 and the blower 90.
  • the generator 91 generates electricity by the rotation of the steam turbine 88.
  • the metal oxide particles are transferred from the heater 8 to the other heat storage tank 94, and at the same time, low-temperature metal oxide particles are supplied from the one heat storage tank 93 to the heater 8 by the discharging device 95. In this way, thereafter, the metal oxide particles are transferred to the heat storage tanks 93 and 94 alternately.
  • the example of two heat storage tanks was shown here, it is also possible to install many heat storage tanks and increase the amount of heat storage.
  • the valves are switched as shown in FIG. 11B to circulate air only between the heat storage tanks 93 and 94 and the steam generator 86. That is, the circulation of air between the heater 8 and the steam generator 86 is stopped. Also, the payout devices 95 and 96 are stopped.
  • the air is supplied to the heat storage tanks 93, 94 from the bottom of the heat storage tanks 93, 94, passes between the metal oxide particles accommodated in the heat storage tanks 93, 94, and then the steam generator 86 from the top of the heat storage tanks 93, 94. Sent to. Inside the heat storage tanks 93 and 94, the metal oxide particles react with oxygen to generate heat, and the air is heated.
  • the air heated in the heat storage tanks 93 and 94 flows to the steam generator 86, heats the water in the steam generator 86 to generate steam, becomes a low temperature, and returns to the heat storage tanks 93 and 94.
  • the above air circulation is also performed by the blower 87.
  • the steam generated by the steam generator 86 rotates the steam turbine 88, and then returns to the steam generator 86 via the condenser 89 and the blower 90.
  • the generator 91 generates electricity by the rotation of the steam turbine 88.
  • the present embodiment is a modification of the ninth embodiment, and uses metal oxide particles having a small particle diameter to transfer the metal oxide particles from the heater 8 to the heat storage tanks 93 and 94 by entraining the airflow. Yes.
  • a fluidized bed type heater 8 is installed on the outer periphery of the heat receiving device 1, and most of the heat of the concentrated sunlight received by the heat receiving device 1 is rapidly heated in the fluidized bed 81 accommodated in the heater 8. Communicated. At this time, low temperature air is supplied to the heater 8 from an inlet 82 provided at the bottom of the heater 8, and a fluidized bed 81 is supplied from an inlet 83 provided at a side of the heater 8.
  • Metal oxide particles as heat storage particles to be configured are supplied.
  • the fluidized bed 81 is vigorously fluidized by the air supplied from the inlet 82, so that the air and the metal oxide particles are rapidly heated to a high temperature.
  • the heated metal oxide particles release oxygen by a chemical reaction and store heat. That is, the metal oxide particles store both sensible heat and reaction heat.
  • the mixture of high-temperature air and metal oxide particles is guided from the top of the heater 8 to one cyclone separator 97, and the high-temperature metal oxide particles are separated from the air by the cyclone separator 97 and sent to the heat storage tank 93. .
  • low temperature metal oxide particles are supplied from the other heat storage tank 94 to the heater 8 by the discharge device 96.
  • the air from which the metal oxide particles have been separated by the cyclone separators 97 and 98 flows to the steam generator 86, where water is heated by the steam generator 86 to generate steam, and the temperature is lowered and returned to the heater 8. It is.
  • the above air circulation is performed by the blower 87.
  • the steam generated by the steam generator 86 rotates the steam turbine 88, and then returns to the steam generator 86 via the condenser 89 and the blower 90.
  • the generator 91 generates electricity by the rotation of the steam turbine 88.
  • the valve When the sun is not shining, the valve is switched as shown in FIG. 12B to circulate air only between the heat storage tanks 93 and 94 and the steam generator 86. That is, the circulation of air between the heater 8 and the steam generator 86 is stopped. Also, the payout devices 95 and 96 are stopped.
  • the air is supplied to the heat storage tanks 93, 94 from the bottom of the heat storage tanks 93, 94, passes between the metal oxide particles accommodated in the heat storage tanks 93, 94, and then the steam generator 86 from the top of the heat storage tanks 93, 94. Sent to. Inside the heat storage tanks 93 and 94, the metal oxide particles react with oxygen to generate heat, and the air is heated.
  • the air heated in the heat storage tanks 93 and 94 flows to the steam generator 86, heats the water by the steam generator 86 to generate steam, and is returned to the heat storage tanks 93 and 94.
  • the above air circulation is also performed by the blower 87.
  • the steam generated by the steam generator 86 rotates the steam turbine 88, and then returns to the steam generator 86 via the condenser 89 and the blower 90.
  • the generator 91 generates electricity by the rotation of the steam turbine 88.
  • FIG. 13 shows a modification of the fifth embodiment.
  • a draft pipe 47 is installed outside the side portion 11 of the heat receiving device 1 inside the reactor 4 to constitute an internal circulation type fluidized bed type reaction device.
  • the draft tube 47 is formed of a cylinder having a diameter larger than that of the heat receiving device 1, and the introduction port 44 is disposed outside the side portion 11 of the heat receiving device 1 and inside the draft tube 47 when viewed from above. .
  • the draft tube 47 is disposed so as to be buried in the fluidized bed 41.
  • the water vapor and the flowing gas introduced from the introduction port 44 flow between the heat receiving device 1 and the draft pipe 47, and the fluidized bed 41 flows along with the flow of the water vapor and the flow gas introduced from the introduction port 44.
  • a so-called internal circulation type flow is formed in which the fluidized bed 41 rises inside the draft pipe 47 and then falls outside the draft pipe 47 and rises again inside the draft pipe 47.
  • the energy of the concentrated sunlight is absorbed by the inner wall of the heat receiving device 1, and the inner wall reaches the highest temperature. Therefore, in order to advance the reaction efficiently in the reactor 4, it is necessary to rapidly take heat into the reactor 4 from the inner wall.
  • the particles in the fluidized bed 41 flow in a systematic manner, so that the heat conduction efficiency in the reactor 4 is extremely high. For this reason, the heat of the heat receiving device 1 is quickly taken into the reactor 4. Further, due to the flow, the temperature distribution of the fluidized bed 41 becomes substantially uniform. Therefore, the reaction can be efficiently advanced in the entire fluidized bed 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

太陽光を集光して得られる太陽熱を利用して石炭等の熱分解や化学反応を高効率で可能とする受熱装置、反応装置及び加熱装置を提供する。略円柱形の側面を形成する側部11と、側部11の下端に接続して底面を形成する略円形の底部12と、側部11の上端に接続して天井面を形成する天井部13から構成し、天井部13の中央に略円形の開口部14を形成した。開口部14が開口した略円柱形の空洞15を有する。空洞15の直径をD、空洞15の長さをL、開口部14の直径をdとしたときに、d=D/2以下、L=2D以上とした。受熱装置1に入射した集光太陽光を受熱装置1内に閉じ込めて、受熱装置1に入射した集光太陽光を有効に利用することができる。

Description

集光太陽光の受熱装置、反応装置及び加熱装置
 本発明は、集光太陽光の受熱装置、反応装置及び加熱装置に関する。
 従来、エネルギー源として、石油、天然ガス、石炭(主に瀝青炭)、原子力エネルギー(化石燃料と言わない場合がある)等の化石燃料が利用されてきた。しかし、世界の人口の増加や産業の発展等により、エネルギーの消費は急増している。これらの化石燃料の中で石炭は可採埋蔵量が非常に豊富で最も安定供給性に優れている。これまで、石炭では瀝青炭が使用されてきた。今後は、石炭資源の約半分を占める低品位炭(輸送効率やエネルギー効率が悪い)である褐炭や亜瀝青炭の活用が重要となる。低品炭は豪州、東南アジア、米国等のサンベルト地域にも大量に賦存する。また、将来、木材を始めとするバイオマスの利用も重要となる。これらの未利用エネルギー(低品位炭及びバイオマス)を有効に利用するため、集光太陽光(再生可能エネルギー)を利用して熱分解やガス化を行い、水素、一酸化炭素、メタン等を製造することは、新たなエネルギーを生み出すことになる。なお、製造された水素と一酸化炭素の混合ガスは炭化水素燃料(灯油、軽油、ディーゼル油、ガソリン、DME(ジメチルエーテル)、メタノール等)の原料となり、また、メタンはクリーンな燃料として一般に使用されている。
 太陽光を集光して得られる高温の太陽熱を利用して、水を分解し、水素等を製造する技術開発が積極的に進められている(例えば、特許文献1)が、この方法では、集光太陽光の入光口(窓)に透明石英板が使用されているので、タールや煤が発生する石炭などの熱分解反応に適用できない。
 また、最近、集光太陽光によるコークスの熱分解に利用する技術開発が行われている(例えば、特許文献2)が、タールや煤が発生しない条件に限られている。
 また、最近、集光太陽光により空気を加熱し、ガスタービンに利用する試みも行われている(例えば、非特許文献1)。しかし、受熱装置に入射した集光太陽光の反射や再輻射に対する放熱対策が施されていないし、また、受熱装置の周囲に設置された装置は発泡体で構成され、熱伝達や熱吸収が非常に悪い。
 ここで、従来の反応装置の例を図14~17に示す。
 図14に示す例は、太陽の移動に追従する多数のヘリオスタットとビームダウン式集光システムによって太陽光を集め、集光した太陽光を反応装置に導き、別途、水蒸気を反応装置に導入し、反応装置に充填された鉄酸化物等の金属酸化物による二段階水熱分解サイクルの水素製造反応を行わせるシステムである。二段階水熱分解サイクルでは、水蒸気と金属酸化物との化学反応によって、水素を製造する工程(水熱分解反応、反応温度は約900℃)と窒素ガス等により金属酸化物の還元反応を行わせる工程(熱還元反応、反応温度は約1400℃)を交互に繰り返す反応が行われる。
 図15に示す例は、太陽の移動に追従する多数のヘリオスタットとタワー式集光システムによって太陽光を集め、集光した太陽光を反応装置に導き、別途、水蒸気を反応装置に導入し、反応装置に充填された鉄酸化物等の金属酸化物による二段階水熱分解サイクルの水素製造反応を行わせるシステムであり、図14の反応装置を横置きにしたものである。
 図16に示す例は、集光した太陽光を反応装置に導き、別途、反応器の上方側壁からコークスと砂を導入し、反応器の底部から水蒸気を導入し、熱分解反応により水素等を製造するシステムである。このシステムはコークスの熱分解に適用された例で、煤やタールが発生しない運転条件である。
 図17(a)に示す例では、多数のヘリオスタット等で集光された太陽光は様々な角度で受熱装置に導かれる。受熱装置は耐熱材で、高温度の条件の場合は、インコネル、アルミナ、炭化珪素等で製作され、低温度の条件の場合はステンレス鋼等で製作される。集光太陽光の1部は反射や再輻射で受熱装置外に放出する。図は受熱装置の深さをそれの直径と約同じ長さにした時で、集光された太陽光の入射角度について、受熱装置の中心線に対する仰角(α)を10度、20度、30度、40度、50度と仮定した場合の受熱装置内での光の反射状況を示す。受熱装置内での反射回数は1~3回で少なく、放熱損失が多い事が分かる。
 図17(b)は、受熱装置の深さをそれの直径の約2倍の長さにした時の例で、集光された太陽光の入射角度について、受熱装置中心線に対する仰角(α)を10度、20度、30度、40度、50度と仮定した場合に受熱装置内で反射する状況を示す。反射回数は2~6回で、放熱損失が多い事が分かる。
 図18には、従来の太陽光集光による蓄熱システムの例を示す。太陽光集光による蓄熱システムには、顕熱蓄熱(液体:オイル、固体:コンクリート、固体粒子等)、潜熱蓄熱(溶融塩等)と化学蓄熱がある。これらの蓄熱システムは太陽が照っている時と照っていない時(太陽が雲によって遮断された時と夜間時)の両方において定常運転可能なように構成されている。蓄熱システムの容量は太陽が照っていないときの運転時間によって決定される。なお、この従来例は、固体粒子の顕熱蓄熱システムと化学蓄熱システムに関連する。化学蓄熱の化学反応物質は粒子状であるため、固体粒子の顕熱蓄熱システムと化学蓄熱システムは同様のシステムとなる。ここで、受熱装置内は、ハニカム構造体(又は発泡体)で満たされている。これは太陽光が直接空気を加熱することが出来ないためである。したがって太陽光集光はまずハニカム構造体を加熱し、その後ハニカム構造体が空気を加熱することになる。ハニカム構造体の表面積が少なく、しかも流路は狭く、熱伝達率が小さくなるので、空気を急速に高温にすることは難しい。
 太陽が照っている時は、図18(a)に示すように、集光太陽光は石英板(窓)を透過して受熱装置に入射し、受熱装置に供給された低温の空気はハニカム構造体を経由して加熱されて高温になる。高温になった空気は、蒸気発生器と蓄熱槽に並列に流れる。蒸気発生器に流れた高温の空気は水を加熱し、蒸気を発生させて、低温になり、受熱装置に循環される。発生した蒸気は、蒸気タービンと発電機によって電気を発生させる。一方、蓄熱槽に流れた高温の空気は、蓄熱層に収容された酸化金属粒子間の小さな隙間を流れるので、層流になり、熱伝達率は小さくなる。そして、高温の空気は、蓄熱粒子にゆっくりと熱を与え、低温になり、受熱装置に循環される。蓄熱槽で加熱された酸化金属粒子は化学反応によって酸素を放出し、化学反応熱を蓄える。すなわち、酸化金属粒子は、顕熱と化学反応熱の両方を蓄えた事になる。
 一方、太陽が照っていない時は、図18(b)に示すように、バルブを切り替えて受熱装置に空気が流れないようにして、蓄熱槽に空気を送ると蓄熱槽の酸化金属粒子は、化学反応によって空気中の酸素と反応して発熱し、空気が加熱される。蒸気発生器に流れた高温の空気は水を加熱し、蒸気を発生させて、低温になり、蓄熱槽に循環される。発生した蒸気は、蒸気タービンと発電機によって電気を発生させる。なお、この従来例においては、蓄熱槽が大きいため、蓄熱モードから放熱モードに切り替えるには多くの時間が必要である。したがって、雲り時の対応が困難である。
国際公開第WO2011/068122号パンフレット 特願2013-222867号明細書 特表2008-523351号公報 特表2009-535599号公報
I. Hischier, P. Leumann, A. Steinfeld, "Experimental and Numerical Analyses of a Pressurized Air Receiver for Solar-Driven Gas Turbines", Journal of Solar Energy Engineering, May 2012, Vol. 134 / P.021003.)
 従来の反応装置では、上部に石英円板が取り付けられるため、以下の短所がある。
 (1)光の透過率を高くする必要があるため、石英円板には高純度の石英板が使用され、高価である。
 (2)多くのヘリオスタットで太陽光(又は、熱)を集光するシステムの場合、集光された太陽光を一点に集中させることは不可能で、実用化される集光システムの石英円板の直径は1m以上にもなり、石英円板が高価になる。
 (3)このように直径が大きいので、石英円板の厚さにもよるが、反応装置内を高圧力にする事が出来ないので、低圧力の運転条件に制限される。
 (4)太陽光が石英円板を通過するときに透過損失が発生し、石英円板内に温度分布が生じる。石英円板の周囲は冷却可能であるが、内部は冷却できないので、温度分布による熱応力が発生し、石英円板が破損する恐れがある。また、石英円板を冷却した場合、その分熱エネルギー損失が発生する。
 (5)集光された太陽熱により反応装置内では化学反応が行われるが、炭素を含む物質(例えば、石炭や木材を含む物質)では、反応によって煤やタールが発生し、石英円板に付着するため、短時間で光の透過率が極端に低下する。したがって、現状では煤やタールが全く発生しない反応に制限される。
 本発明は、太陽光を集光して得られる太陽熱を利用して石炭等(木材などのバイオマスを含む)の熱分解や化学反応を高効率で可能とする受熱装置、反応装置及び加熱装置の提供を目的とする。即ち、集光太陽光を受熱装置に導き、導かれた太陽光を反射や再輻射によって当該装置外に放出しないようにするとともに、受熱装置内の温度を均一、又は任意に設定可能とし、さらに、受熱装置の外周に設置された高圧・高温の条件で運転可能な反応装置や加熱装置と組み合わせる事により、石炭等の熱分解や化学反応を最適な条件で運転可能とする、集光太陽光の受熱装置、反応装置及び加熱装置を提供することを目的とする。
 本発明の集光太陽光の受熱装置は、側部と、この側部の下端に接続する底部と、前記側部の上端に接続する天井部とを備え、前記天井部に開口部を有し、前記側部、前記底部、前記天井部によって、前記開口部が開口した空洞と、太陽光を吸収する内壁とが形成されるとともに、前記側部又は前記底部の内壁には太陽光を前記内壁に向けて反射する反射体が設けられたことを特徴とする。
 また、前記空洞の内部における前記開口部を含む天井部の面積をS、前記開口部の面積をsとしたときに、s=S/4以下としたことを特徴とする。
 また、前記空洞は略円柱形、前記開口部は略円形であって、前記空洞の直径をD、前記空洞の長さをL、前記開口部の直径をdとしたときに、d=D/2以下、L=2D以上としたことを特徴とする。
 また、前記底部の中心部に円錐状の反射体が設けられるとともに、この反射体は、直径がd以上の円錐であって、前記空洞の中心線からの仰角が30度~60度であることを特徴とする。
 また、前記底部にさらに同心円上に配置された反射体が設けられたことを特徴とする。
 また、前記空洞の天井部と底部の直径を異ならせたことを特徴とする。
 また、インコネル、アルミナ、炭化珪素、ステンレス鋼のいずれかから構成されたことを特徴とする。
 また、黒い材質から構成され、又は内壁に黒色の塗装が施されたことを特徴とする。
 本発明の反応装置は、上記いずれかの集光太陽光の受熱装置と、この受熱装置の周囲に前記受熱装置と所定の間隔をおいて前記受熱装置の側部と底部を覆うように設けられた反応器とからなることを特徴する。
 また、前記反応器の内部にドラフト管を設けたことを特徴とする。
 本発明の加熱装置は、上記いずれかの集光太陽光の受熱装置と、この受熱装置の周囲に前記受熱装置と所定の間隔をおいて前記受熱装置の側部と底部を覆うように設けられた加熱器とからなることを特徴する。
 また、前記加熱器の内壁にフィンを設けたことを特徴とする。
 また、前記加熱器の底部に整流体を設けたことを特徴とする。
 本発明の集光太陽光の受熱装置、反応装置及び加熱装置によれば、受熱装置に入射した集光太陽光を受熱装置内に閉じ込めて、受熱装置に入射した集光太陽光を有効に利用することができる。
実施例1における集光太陽光の受熱装置及び反応装置の全体構成を示す模式図である。 受熱装置の実施例の説明で用いる記号の説明図である。 実施例1における受熱装置内の集光太陽光の反射通路を示す説明図である。 実施例2における受熱装置内の集光太陽光の反射通路を示す説明図である。 実施例3における受熱装置内の集光太陽光の反射通路を示す説明図である。 実施例4における受熱装置の形状を示す説明図である。 実施例5における反応装置を示す模式図である。 実施例6における加熱装置を示す模式図である。 実施例7における加熱装置を示す模式図である。 実施例8における加熱装置を示す模式図である。 実施例9における加熱装置を固体粒子蓄熱システムに応用した例を示す模式図である。 実施例10における加熱装置を固体粒子蓄熱システムに応用した例を示す模式図である。 実施例11における反応装置を示す模式図である。
 
従来の太陽光集光による水蒸気等2段階熱分解サイクルよる水素製造システム(ビームダウン式)の例を示す模式図である。 従来の太陽光集光による水蒸気等2段階熱分解サイクルよる水素製造システム(タワー式)の例を示す模式図である。 従来の太陽光集光によるコークスの熱分解システムの例を示す模式図である。 従来の受熱装置内の集光太陽光の通路を示す説明図であり、(a)はL=1Dのとき、(b)はL=2Dのときを示す。 従来の太陽光集光による蓄熱システムの例を示す模式図である。
 以下、本発明の集光太陽光の受熱装置、反応装置及び加熱装置の実施例について、添付した図面を参照しながら説明する。
 図1に示す本実施例の集光太陽光の反応装置は、石炭の熱分解による水素等の製造システムであり、1は、太陽光の吸収率の高い耐熱材、例えば、インコネル、アルミナ、炭化珪素、ステンレス鋼などからなる受熱装置である。受熱装置1は、円柱形の側面を形成する側部11と、側部11の下端に接続して受熱装置1の底面を形成する円形の底部12と、側部11の上端に接続して受熱装置1の天井面を形成する天井部13から構成されている。また、天井部13の中央には、円形の開口部14が形成されている。すなわち、受熱装置1は、外形が円柱形であって、内側に開口部14が開口した円柱形の空洞15を有している。なお、開口部14には何も設けられておらず、空洞15は開口部14を通じて外部と連通している。
 受熱装置1の周囲には、受熱装置1と所定の間隔をおいて側部11のほとんどの部分と底部12を覆うように反応器2が設けられている。反応器2の底部には水蒸気を導入するための導入口21、側部には石炭等を導入するための導入口22、上部側面には反応によって生成した水素、一酸化炭素、メタン、二酸化炭素等のガスを導出するための導出口23が形成されており、これら導入口21,22、導出口23が形成された部分を除き、反応器2は密閉されている。
 31はヘリオスタット、32はタワー(図示せず)に設置されたビームダウン式集光鏡であり、ヘリオスタット31とビームダウン式集光鏡32によりビームダウン型の集光システムが構成される。そして、このビームダウン型の集光システムにより太陽Sからの光が集光されて集光太陽光として開口部14から受熱装置1内に導かれるようになっている。なお、ヘリオスタット31は1つのみが図示されているが、実際には多数のヘリオスタット31が設置されている。
 以上の構成において、導入口22から石炭粒を反応器2内に導入し、導入口21から水蒸気を導入する。つぎに、ヘリオスタット31とビームダウン式集光鏡32により集光太陽光を開口部14から受熱装置1内に導く。受熱装置1内では、集光太陽光が受熱装置1の側部11、底部12、天井部13の内壁、すなわち空洞15側の面で反射を繰り返すことで、受熱装置1が加熱される。そして、加熱された受熱装置1により反応器2に収容された石炭粒が加熱される。反応器2内では石炭の熱分解反応が進み、生成した水素、一酸化炭素等のガスは導出口23から導出される。
 なお、受熱装置1の内壁においては、太陽光の反射や再輻射による熱損失を少なくして、高速で太陽光の熱を吸熱させる必要がある。そのためには、受熱装置1を炭化珪素などの黒い材質で構成し、必要なら受熱装置1の内壁に黒色の塗装を施す方法も効果的である。
 なお、太陽光の集光システムとしては、本実施例のビームダウン型の集光システムに限らず、集中タワー型やパラボリックディッシュ型の集光システムを適用することができる。
 以下、受熱装置1についてさらに詳細に説明する。
 はじめに、以下で用いられる記号について、受熱装置1を示す図2に基づいて説明する。Dは受熱装置1の空洞15の直径、Lは受熱装置1の空洞15の長さ、dは受熱装置1の集光太陽光の入口となる開口部14の直径d、αは受熱装置1の空洞15の中心線Cからの仰角である。また、16は後述する円錐形の反射体であり、θは反射体16の空洞15の中心線Cからの仰角である。
 図3に示すように、受熱装置1の寸法は、d=1/2D、L=2Dとなっている。集光太陽光は多数のヘリオスタット31で集光され、様々な入射角度で受熱装置1に導かれる。図3に受熱装置1内の集光太陽光の反射通路を示している。集光太陽光の入射角度を受熱装置1の中心線Cに対する仰角αで表し、仰角αを10度、20度、30度、40度、50度とした場合、集光太陽光の受熱装置1内壁での反射回数はいずれも5回以上である。このため、反射回数が入射角度に応じて2~6回と少ない従来技術(図17を参照)と比較して放熱損失が非常に少なくなる。
 なお、受熱装置1に入射した集光太陽光を有効に利用するために、受熱装置1に入射した集光太陽光が反射や再輻射などによって外部に放出されないように、集光太陽光をできる限り受熱装置1内に閉じ込めておく必要がある。そのためには、受熱装置1に入射した光を受熱装置1内で複数回反射させるようにすることが好ましい。具体的には、受熱装置1の空洞15の寸法を適切に設定することにより、例えば、開口部14の中央から入射した仰角αが10度以上の集光太陽光を受熱装置1の内壁に4回以上反射させることが望ましい。このため、受熱装置1の空洞15の寸法比をd=D/2以下、L=2D以上とすることが好ましい。なお、このd=D/2以下の条件を満たすとき、空洞15の内部における開口部14を含む天井部13の面積をS、開口部14の面積をsとしたときに、s=S/4以下となる。
 なお、受熱装置1の内壁の太陽光が照射された部位は、太陽光の熱の大部分を吸収するが、吸収しきれなかった熱の一部は反射光として内壁の別の部位に達し、そこで吸収される。
 以上のように、本実施例の集光太陽光の受熱装置1は、略円柱形の側面を形成する側部11と、この側部11の下端に接続して底面を形成する略円形の底部12と、前記側部11の上端に接続して天井面を形成する天井部13から構成され、前記天井部13の中央には略円形の開口部14が形成され、前記開口部14が開口した略円柱形の空洞15を有している。また、側部11、底部12、天井部13には、太陽光を吸収する内壁が形成されている。そして、前記空洞15の直径をD、前記空洞15の長さをL、前記開口部14の直径をdとしたときに、d=D/2以下、L=2D以上としたものである。したがって、受熱装置1に入射した集光太陽光を受熱装置1内に閉じ込めて、受熱装置1に入射した集光太陽光を有効に利用することができる。
 なお、受熱装置1は略円柱形に限らず、断面が多角形の柱形としてもよく、開口部14を多角形としてもよい。受熱装置1が多角形の柱形、開口部14が多角形の場合であっても、空洞15の内部における開口部14を含む天井部13の面積をS、開口部14の面積をsとしたときに、s=S/4以下の条件を満たすように構成することにより、開口部14の中央から入射した仰角αが10度以上の集光太陽光を受熱装置1の内壁に4回以上反射させることが可能になり、受熱装置1に入射した集光太陽光を有効に利用することができる。
 また、側部11又は底部12の内壁に太陽光を内壁に向けて反射する反射体を設けてもよい。反射体については、以下の実施例にて説明する。
 図3に示す実施例において、受熱装置1の中心線Cから小さい角度αで入射した集光太陽光は、少ない反射回数で受熱装置1の外部に放出する。そこで、図4に示す実施例では、受熱装置1の底部12の中心部に、円錐状の反射体16を設置している。この反射体16は、直径がd以上の円錐で、受熱装置1の中心線Cからの仰角θが30度~60度であることが好ましい。
 以上のように、前記底部12の中心部に円錐状の反射体16が設けられるとともに、この反射体16は、直径がd以上の円錐であって、前記空洞15の中心線Cからの仰角θが30度~60度であるので、中心線Cから小さい角度αで入射した集光太陽光が少ない反射回数で受熱装置1の外部に放出することを防止し、受熱装置1に入射した集光太陽光を有効に利用することができる。
 図5に示す実施例では、受熱装置1の内壁における太陽光の照射率を均一にするため、受熱装置1の底部に、2つの円形で断面が三角形の反射体17を同心円上に配置している。反射体17の受熱装置1の中心線Cからの仰角θと個数を適切に設定し、反射体17を設置することによって、太陽光を受熱装置1の内壁へ均一に反射可能となる。
 なお、実施例2、3において、反射体16,17は凸状の外面を有しているが、凹状の外面を有する反射体を受熱装置1の底部12に設けてもよい。しかし、反射体の外面が凹状の場合は、側面に向かって太陽光を反射させるまでの反射回数が多くなるため、少ない反射回数で側面に向かって反射させるためには凸状の外面を有する反射体が好ましい。
 また、表面に凹凸が形成された反射体、不規則な表面を有する反射体、或いは、微細な凹凸が形成されて表面がざらざらした反射体を受熱装置1の底部12に設けてもよい。
 また、反射体は、受熱装置1の底部12の内壁に限らず、側部11の内壁に設けてもよい。なお、L=2D以上という条件下では、内壁の面積の大部分を側部11の内壁が占めることになるため、熱の吸収の寄与度に関し、側部11が最も高い一方、底部12は比較的低い。したがって、熱の吸収効率を考慮すると、反射体は、底部12に設ける方が望ましい。
 さらに、反射体は設けず、その代わりに受熱装置1の側部11や底部12の内壁の表面に微細な凹凸を形成することにより太陽光を乱反射させるようにしてもよい。
 図6には、受熱装置1の上部と底部の直径を変化させた例を示す。受熱装置1の上部と底部の直径を適切に変化させることにより、受熱装置1の内壁における太陽光の照射率を均一にすることが可能となる。
 受熱装置1の外周に流動層式の反応器4が設置された例を図7に示す。集光された太陽光は受熱装置1に入射し、底部12に設置された円錐状の反射体16や円形で断面が三角形の反射体17によって反射され、受熱装置1の内壁は均一に加熱される。受熱装置1はインコネル、アルミナ、炭化珪素、ステンレス鋼等で製作されている。
 流動層41には、導入口42から石炭粒、導入口43から砂、導入口44から水蒸気と必要によっては流動用ガスが供給される。流動層41はガスと砂の流動による攪拌作用で、受熱装置1の外壁から急激に熱を吸収する。石炭と水蒸気は加熱されて、水素、一酸化炭素、メタンガス等に分解、反応し、流動層41の頂部から排出する。これらのガスには未分解の石炭、灰、砂等が同伴するので、サイクロン分離機45で粗い石炭粒子や砂が分離され、分離された粗い石炭粒子や砂は流動層41に再度供給される。また、サイクロン分離機45で分離できなかった細かい粒子はフィルター分離機46で除去され、別途回収される。
 図示されていないが、熱交換器によって、製造された高温の水素、一酸化炭素、メタンガス等の熱エネルギーを反応器4に供給される水蒸気や流動用ガスの加熱に利用するシステム構成とすればエネルギー効率は高くなることは言うまでもない。
 また、反応装置は全て金属で構成することが可能なため、高温・高圧の化学反応条件にも適用可能である。
 受熱装置1の外周に加熱器5が設置された例を図8に示す。集光された太陽光は受熱装置1に入射し、底部12に設置された円錐状の反射体16や円形で断面が三角形の反射体17によって反射され、受熱装置1の内壁が均一に加熱される。受熱装置1はインコネル、アルミナ、炭化珪素、ステンレス鋼等で製作されている。
 この加熱器5の内壁には多数の特殊形状のフィン51が取り付けられており、フィン51は受熱装置1の熱を急激に奪い空気の昇温に利用される。このように、フィン51により伝熱面積を増大した構造になっており、効果的に加熱器5内の空気が加熱されるようになっている。フィン51の先端の角度θ1は、加熱器5の形状と、運転条件にもよるが、好ましくは10度~30度である。
 また、加熱器5の底部に整流体52が設置されているが、これはガスの流れを整え渦の発生を少なくするためのものである。整流体52の斜面と受熱装置1の中心線Cがなす角度θ2は、加熱器5の形状と、運転条件にもよるが、好ましくは20度~60度である。
 加熱器5の底部に設けられた導入口53から導入された低温ガスは、加熱器5内で加熱され、加熱器5の頂部に設けられた導出口54から高温ガスとして排出される。得られた高温のガスは高温ガスタービンによる発電(図示せず)や顕熱蓄熱、潜熱蓄熱、化学蓄熱等(図示せず)に利用される。
 なお、加熱器5の内壁やフィン51にスケールが付着したときに、加熱器5に微細な砂を供給して流動させることによって、付着したスケール除去することも可能である。
 受熱装置1の外周に流動層式の加熱器6が設置された別の例を図9に示す。流動層61には、導入口62から低温ガスが供給され、受熱装置1の熱は流動層61においてガスにより急激に奪われる。ここで、流動層61は伝熱速度が高い熱交換機として作用する。そして、熱を奪ったガスは、高温ガスとして加熱器6の頂部に設けられた導出口63から排出される。なお、64は、流動層61を構成する砂を加熱器6に導入するための導入口である。
 実施例6と実施例7を組み合わせた例を図10に示す。加熱器7の内壁には多数の特殊形状のフィン71が取り付けられており、受熱装置1の熱を急激に奪い空気の昇温に利用される。また、加熱器5の底部には整流体72が設置されている。
 フィン71は、流動層73と流動層73を流動させるガスを攪拌する作用により、伝熱を促進する働きを果たす。また、フィン71に付着したスケールは、流動層73内の粒子のランダム運動により除去される。
 加熱器7の底部に設けられた導入口74から導入された低温ガスは、加熱器7内で加熱され、加熱器7の頂部に設けられた導出口75から高温ガスとして排出される。なお、76は、流動層73を構成する砂を加熱器7に導入するための導入口である。
 流動層式の加熱装置を固体粒子蓄熱システムに応用した例を図11に示す。太陽が照っている時は、図11(a)に示すように、集光太陽光は受熱装置1に入射する。受熱装置1の外周に流動層式の加熱器8が設置されており、受熱装置1により受熱された集光太陽光の熱のほとんどが、加熱器8に収容された流動層81に急速に熱伝達される。このとき、加熱器8には、加熱器8の底部に設けられた導入口82から低温度の空気が供給され、加熱器8の側部に設けられた導入口83からは、流動層81を構成する蓄熱粒子としての酸化金属粒子が供給される。そして、導入口82から供給される空気により流動層81が激しく流動することによって、急速に空気と酸化金属粒子が加熱されて高温となる。また、加熱された酸化金属粒子は化学反応によって酸素を放出し、熱を蓄える。すなわち、酸化金属粒子は、顕熱と反応熱の両方の熱を蓄えることになる。
 なお、酸化金属粒子としては、酸化バリウム(BaO)、酸化コバルト(Co)、酸化マンガン(Mn)、酸化銅(CuO)などを用いることができる。また、酸化コバルトを用いた場合の反応式は、次のとおりである。
3Co3O4 → 3CoO + 0.5O2 - 844kJ/(kg of Co3O4) at 約1,200℃(吸熱)
 高温となった空気は、加熱器8の頂部からサイクロン分離機84へ導かれ、空気に含まれた微粉粒子は、サイクロン分離機84により除去され貯槽85に貯められる。その後、空気は、蒸気発生器86に流れ、蒸気発生器86で水を加熱して蒸気を発生させて低温になり、加熱器8に戻される。なお、以上の空気の循環は送風機87により行われる。蒸気発生器86で発生した蒸気は、蒸気タービン88を回し、その後、コンデンサー89、送風機90を経由して蒸気発生器86に戻される。発電機91は、蒸気タービン88の回転により電気を発生させる。
 また、加熱器8中の高温の酸化金属粒子の大部分は、加熱器8の外側に配置された移送装置92によって蓄熱槽93、94のうちの一方の蓄熱槽93に移送され、貯蔵される。同時に、他方の蓄熱槽94からは、低温の酸化金属粒子が払い出し装置96により加熱器8に供給される。この加熱器8から一方の蓄熱槽93への酸化金属粒子の移送と、他方の蓄熱槽94から加熱器8への酸化金属粒子の供給が終了すると、次は、高温の酸化金属粒子が移送装置92によって加熱器8から他方の蓄熱槽94に移送され、同時に、低温の酸化金属粒子が払い出し装置95によって一方の蓄熱槽93から加熱器8に供給される。このように、以降、交替で蓄熱槽93、94への酸化金属粒子の移送が行われる。ここでは2つの蓄熱槽の例を示したが、多数の蓄熱槽を設置し、蓄熱量を増大することも可能である。
 太陽が照っていない時は、図11(b)に示すようにバルブを切り替えて、蓄熱槽93、94と蒸気発生器86との間のみで空気を循環させる。すなわち、加熱器8と蒸気発生器86との間の空気の循環を停止させる。また、払い出し装置95、96を停止させる。空気は、蓄熱槽93、94の底部から蓄熱槽93、94に供給され、蓄熱槽93、94に収容された酸化金属粒子の間を通ってから蓄熱槽93、94の上部から蒸気発生器86に送られる。蓄熱槽93、94の内部では、酸化金属粒子が酸素と反応して発熱し、空気が加熱される。なお、酸化金属粒子として酸化コバルトを用いた場合の反応式は、次のとおりである。
3CoO + 0.5O2 + 844kJ/(kg of Co3O4) → 3Co3O4  at 約900℃(放熱=発熱)
 蓄熱槽93、94で加熱された空気は、蒸気発生器86に流れ、蒸気発生器86で水を加熱して蒸気を発生させて低温になり、蓄熱槽93、94に戻される。なお、以上の空気の循環も送風機87により行われる。蒸気発生器86で発生した蒸気は、蒸気タービン88を回し、その後、コンデンサー89、送風機90を経由して蒸気発生器86に戻される。発電機91は、蒸気タービン88の回転により電気を発生させる。
 本実施例は、実施例9の変形例であり、粒子径の小さい酸化金属粒子を用いて、酸化金属粒子を気流に同伴させて加熱器8から蓄熱槽93、94に移送する構成となっている。
 太陽が照っている時は、図12(a)に示すように、集光太陽光は受熱装置1に入射する。受熱装置1の外周に流動層式の加熱器8が設置されており、受熱装置1により受熱された集光太陽光の熱のほとんどが、加熱器8に収容された流動層81に急速に熱伝達される。このとき、加熱器8には、加熱器8の底部に設けられた導入口82から低温度の空気が供給され、加熱器8の側部に設けられた導入口83からは、流動層81を構成する蓄熱粒子としての酸化金属粒子が供給される。そして、導入口82から供給される空気により流動層81が激しく流動することによって、急速に空気と酸化金属粒子が加熱されて高温となる。また、加熱された酸化金属粒子は化学反応によって酸素を放出し、熱を蓄える。すなわち、酸化金属粒子は、顕熱と反応熱の両方の熱を蓄えることになる。
 高温の空気と酸化金属粒子の混合物は、加熱器8の上部から一方のサイクロン分離機97へ導かれ、高温の酸化金属粒子は、サイクロン分離機97により空気から分離され、蓄熱槽93へ送られる。同時に、他方の蓄熱槽94からは、低温の酸化金属粒子が払い出し装置96により加熱器8に供給される。この加熱器8から一方の蓄熱槽93への酸化金属粒子の移送と、他方の蓄熱槽94から加熱器8への酸化金属粒子の供給が終了すると、次は、高温の酸化金属粒子が加熱器8から他方のサイクロン分離機98によって空気から分離されて他方の蓄熱槽94へ送られ、同時に、低温の酸化金属粒子が払い出し装置95によって一方の蓄熱槽93から加熱器8に供給される。このように、以降、交替で蓄熱槽93、94への酸化金属粒子の移送が行われる。
 その後、サイクロン分離機97、98により酸化金属粒子が分離された空気は、蒸気発生器86に流れ、蒸気発生器86で水を加熱して蒸気を発生させて低温になり、加熱器8に戻される。なお、以上の空気の循環は送風機87により行われる。蒸気発生器86で発生した蒸気は、蒸気タービン88を回し、その後、コンデンサー89、送風機90を経由して蒸気発生器86に戻される。発電機91は、蒸気タービン88の回転により電気を発生させる。
 太陽が照っていない時は、図12(b)に示すようにバルブを切り替えて、蓄熱槽93、94と蒸気発生器86との間のみで空気を循環させる。すなわち、加熱器8と蒸気発生器86との間の空気の循環を停止させる。また、払い出し装置95、96を停止させる。空気は、蓄熱槽93、94の底部から蓄熱槽93、94に供給され、蓄熱槽93、94に収容された酸化金属粒子の間を通ってから蓄熱槽93、94の上部から蒸気発生器86に送られる。蓄熱槽93、94の内部では、酸化金属粒子が酸素と反応して発熱し、空気が加熱される。
 蓄熱槽93、94で加熱された空気は、蒸気発生器86に流れ、蒸気発生器86で水を加熱して蒸気を発生させて低温になり、蓄熱槽93、94に戻される。なお、以上の空気の循環も送風機87により行われる。蒸気発生器86で発生した蒸気は、蒸気タービン88を回し、その後、コンデンサー89、送風機90を経由して蒸気発生器86に戻される。発電機91は、蒸気タービン88の回転により電気を発生させる。
 実施例5の変形例を図13に示す。本実施例は、反応器4の内部において、受熱装置1の側部11の外側にドラフト管47を設置し、内循環型流動層式の反応装置として構成したものである。
 ドラフト管47は、直径が受熱装置1よりも大きい円筒からなり、導入口44は、上方から見て受熱装置1の側部11よりも外側、かつ、ドラフト管47よりも内側に配置されている。また、ドラフト管47は、流動層41に埋没して配置されている。これにより、導入口44から導入された水蒸気と流動用ガスが受熱装置1とドラフト管47の間に流入し、導入口44から導入された水蒸気と流動用ガスの流れに伴って、流動層41がドラフト管47の内側を上昇する。そして、流動層41がドラフト管47の内側を上昇した後にドラフト管47の外側を下降し、再びドラフト管47の内側を上昇する、いわゆる内循環型の流動が形成される。
 ここで、集光太陽光のエネルギーは、受熱装置1の内壁に吸収され、この内壁が最も高い温度になる。したがって、反応器4内で効率よく反応を進行させるためには、この内壁から反応器4内へ急速に熱を取り込む必要がある。
 本実施例で採用した内循環型流動層式の反応器4は、流動層41の粒子が組織的に流動するため、反応器4内における熱伝導効率が極めて高い。このため、受熱装置1の熱が反応器4内に速やかに取り込まれる。また、流動によって、流動層41の温度分布は、ほぼ一様となる。したがって、流動層41の全体において、効率よく反応を進行させることができる。
1 受熱装置
2,4 反応器
5,6,7,8 加熱器
11 側部
12 底部
13 天井部
14 開口部
15 空洞
16 反射体
17 反射体
47 ドラフト管
51,71 フィン
52,72 整流体
C 空洞15の中心線
D 空洞15の直径
d 開口部14の直径
L 空洞15の長さ
θ 空洞15の中心線Cからの仰角
α 集光太陽の入射角度で、空洞15の中心線Cからの仰角

Claims (13)

  1. 側部と、この側部の下端に接続する底部と、前記側部の上端に接続する天井部とを備え、前記天井部に開口部を有し、前記側部、前記底部、前記天井部によって、前記開口部が開口した空洞と、太陽光を吸収する内壁とが形成されるとともに、前記側部又は前記底部の内壁には太陽光を前記内壁に向けて反射する反射体が設けられたことを特徴とする集光太陽光の受熱装置。
  2. 前記空洞の内部における前記開口部を含む天井部の面積をS、前記開口部の面積をsとしたときに、s=S/4以下としたことを特徴とする請求項1記載の集光太陽光の受熱装置。
  3. 前記空洞は略円柱形、前記開口部は略円形であって、前記空洞の直径をD、前記空洞の長さをL、前記開口部の直径をdとしたときに、d=D/2以下、L=2D以上としたことを特徴とする請求項1記載の集光太陽光の受熱装置。
  4. 前記底部の中心部に円錐状の反射体が設けられるとともに、この反射体は、直径がd以上の円錐であって、前記空洞の中心線からの仰角が30度~60度であることを特徴とする請求項3記載の集光太陽光の受熱装置。
  5. 前記底部にさらに同心円上に配置された反射体が設けられたことを特徴とする請求項4記載の集光太陽光の受熱装置。
  6. 前記空洞の天井部と底部の直径を異ならせたことを特徴とする請求項3~5のいずれかに記載の集光太陽光の受熱装置。
  7. インコネル、アルミナ、炭化珪素、ステンレス鋼のいずれかから構成されたことを特徴とする請求項1~6のいずれかに記載の集光太陽光の受熱装置。
  8. 黒い材質から構成され、又は内壁に黒色の塗装が施されたことを特徴とする請求項7記載の集光太陽光の受熱装置。
  9. 請求項1~8のいずれかに記載の集光太陽光の受熱装置と、この受熱装置の周囲に前記受熱装置と所定の間隔をおいて前記受熱装置の側部と底部を覆うように設けられた反応器とからなることを特徴する反応装置。
  10. 前記反応器の内部にドラフト管を設けたことを特徴とする請求項9記載の反応装置。
  11. 請求項1~8のいずれかに記載の集光太陽光の受熱装置と、この受熱装置の周囲に前記受熱装置と所定の間隔をおいて前記受熱装置の側部と底部を覆うように設けられた加熱器とからなることを特徴する加熱装置。
  12. 前記加熱器の内壁にフィンを設けたことを特徴とする請求項11記載の加熱装置。
  13. 前記加熱器の底部に整流体を設けたことを特徴とする請求項12記載の加熱装置。
PCT/JP2015/062332 2014-05-13 2015-04-23 集光太陽光の受熱装置、反応装置及び加熱装置 Ceased WO2015174236A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/310,354 US10260014B2 (en) 2014-05-13 2015-04-23 Concentrated solar heat receiver, reactor, and heater
JP2016519188A JP6440267B2 (ja) 2014-05-13 2015-04-23 集光太陽光の受熱装置、反応装置及び加熱装置
AU2015260468A AU2015260468B2 (en) 2014-05-13 2015-04-23 Concentrated sunlight heat receiver, reactor, and heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-099859 2014-05-13
JP2014099859 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015174236A1 true WO2015174236A1 (ja) 2015-11-19

Family

ID=54479780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062332 Ceased WO2015174236A1 (ja) 2014-05-13 2015-04-23 集光太陽光の受熱装置、反応装置及び加熱装置

Country Status (4)

Country Link
US (1) US10260014B2 (ja)
JP (1) JP6440267B2 (ja)
AU (1) AU2015260468B2 (ja)
WO (1) WO2015174236A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623744A (zh) * 2015-12-31 2016-06-01 西北大学 一种太阳能驱动的煤热解耦合半焦气化的反应器及方法
CN107413284A (zh) * 2017-05-08 2017-12-01 西安交通大学 一种太阳能颗粒催化式腔体吸热反应器及其使用方法
ES2648148A1 (es) * 2017-03-09 2017-12-28 Universidad Carlos Iii De Madrid Sistema óptico de haz descendente lineal solar
JP2019156705A (ja) * 2018-03-16 2019-09-19 株式会社Ihi 水素製造装置および水素製造方法
EP3715744A1 (fr) 2019-03-28 2020-09-30 Four Solaire Developpement Usine solaire et procédé de transformation
CN115304029A (zh) * 2022-08-26 2022-11-08 西安交通大学 一种优化能量分配策略的被动热管理式太阳能高温反应器
JP2023522531A (ja) * 2020-02-03 2023-05-31 マガルディ パワー ソシエタ ペル アチオニ 多重反射に基づく太陽起源の熱エネルギーの貯蔵のための装置
CN118836584A (zh) * 2024-07-18 2024-10-25 北京理工大学 一种并联式太阳能光热化学耦合月面资源利用系统及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3212925T3 (pl) * 2014-10-31 2020-05-18 Solar Wind Reliance Initiatives (Swri) Ltd. Połączony system wytwarzania energii wiatrowej i słonecznej
ITUB20152907A1 (it) * 2015-08-05 2017-02-05 Magaldi Ind Srl Dispositivo, impianto e metodo ad alto livello di efficienza energetica per l?impiego di energia termica di origine solare
TW201839259A (zh) * 2017-02-01 2018-11-01 義大利商馬加帝電力公司 使用源自太陽之熱能之高能效率裝置、系統及方法
WO2019204337A1 (en) * 2018-04-16 2019-10-24 National Technology & Engineering Solutions Of Sandia, Llc Multi-stage falling particle receivers
US20220026163A1 (en) * 2019-01-29 2022-01-27 National University Corporation Tokai National Higher Education And Research System Heat storage device
CN110864465B (zh) * 2019-11-29 2025-03-14 广东技术师范大学 一种光聚热发电装置
KR102361493B1 (ko) * 2021-07-05 2022-02-09 한국교통대학교산학협력단 확대된 광노출 구조를 갖는 입자기반 태양열 흡수장치
CN113578209A (zh) * 2021-08-19 2021-11-02 西安交通大学 一种可昼夜连续运行的磁约束太阳能光热互补流化床反应器
US12222137B2 (en) * 2023-06-26 2025-02-11 Sol Energia Inc. Thermal energy storage systems and methods
CN119333976B (zh) * 2024-11-05 2025-07-11 浙江大学 一种基于新型腔式吸收器的塔式太阳能聚光吸热系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1661473A (en) * 1924-06-10 1928-03-06 Robert H Goddard Accumulator for radiant energy
US4033118A (en) * 1974-08-19 1977-07-05 Powell William R Mass flow solar energy receiver
JPS54108944A (en) * 1978-02-15 1979-08-27 Kaname Yamazoe Heat receiving device of solar heat
JPS55144091A (en) * 1979-04-13 1980-11-10 Us Government Generating of combustible gas from carbonaceous material
JP2008523351A (ja) * 2004-12-15 2008-07-03 シェク ラボズ−ソーラー ハイドロゲン エナジー コーポレイション 太陽エネルギー収集装置および方法
US20090205638A1 (en) * 2008-02-19 2009-08-20 Peter Corcoran Solar Receiver for a Photo-Bioreactor
JP2009535599A (ja) * 2006-04-30 2009-10-01 紀文 張 集光及び集熱を行う太陽エネルギー装置
JP2011163593A (ja) * 2010-02-05 2011-08-25 Mitsubishi Heavy Ind Ltd 太陽熱受熱器
US20120186251A1 (en) * 2009-09-10 2012-07-26 Yeda Research And Development Co. Ltd. Solar power plant
US8378280B2 (en) * 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
WO2014026746A1 (en) * 2012-08-17 2014-02-20 Solar Tower Technologies Ag A solar receiver with a heliostat field

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH609089A5 (ja) * 1976-04-22 1979-02-15 Willy Keller
US4455153A (en) * 1978-05-05 1984-06-19 Jakahi Douglas Y Apparatus for storing solar energy in synthetic fuels
US4472367A (en) * 1978-11-17 1984-09-18 Geruldine Gibson Method for the carbothermic reduction of metal oxides using solar energy
US4290779A (en) * 1980-05-15 1981-09-22 Nasa Solar heated fluidized bed gasification system
US4706651A (en) * 1986-02-24 1987-11-17 The United States Of America As Represented By The United States Department Of Energy Solar solids reactor
US5947114A (en) * 1995-02-15 1999-09-07 Yeda Research And Development Company Ltd. Central solar receiver with a multi component working medium
JP4324828B2 (ja) * 1999-10-27 2009-09-02 株式会社Ihi ソーラーガス化炉
US7140181B1 (en) * 2002-03-01 2006-11-28 Reed Jensen Reactor for solar processing of slightly-absorbing or transparent gases
CN101522862A (zh) * 2006-08-29 2009-09-02 科罗拉多大学评议会公司 将生物质快速太阳能-热转换为合成气
FR2923732B1 (fr) * 2007-11-16 2011-03-04 Nicolas Ugolin Procede utilisant l'energie thermique solaire couplee a des plasmas pour produire un carburant liquide et du dihydrogene a partir de biomasse ou de charbon fossile (procede p-sl et p-sh)
US20100154782A1 (en) * 2008-12-23 2010-06-24 Wai Man Hon Solar furnace
US20100242354A1 (en) * 2009-06-09 2010-09-30 Sundrop Fuels, Inc. Systems and methods for reactor chemistry and control
JP5739818B2 (ja) 2009-12-03 2015-06-24 国立大学法人 新潟大学 水熱分解による水素製造法及び水素製造装置
IT1399952B1 (it) * 2010-04-29 2013-05-09 Magaldi Ind Srl Dispositivo e sistema di stoccaggio e trasporto ad alto livello di efficienza energetica
EP2794086A4 (en) * 2011-12-22 2015-12-30 Univ Florida SOORTHERMOCHEMICAL REACTOR, METHOD OF MANUFACTURE AND USE AND THERMOGRAVIMETER
US9605219B2 (en) * 2012-02-07 2017-03-28 Regents Of The University Of Minnesota Solar gasifier
US10072224B2 (en) * 2013-06-11 2018-09-11 University Of Florida Research Foundation, Inc. Solar thermochemical reactor and methods of manufacture and use thereof
JP6232923B2 (ja) 2013-10-28 2017-11-22 国立大学法人 新潟大学 内循環流動層を用いた石炭コークスのガス化装置及びガス化法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1661473A (en) * 1924-06-10 1928-03-06 Robert H Goddard Accumulator for radiant energy
US4033118A (en) * 1974-08-19 1977-07-05 Powell William R Mass flow solar energy receiver
JPS54108944A (en) * 1978-02-15 1979-08-27 Kaname Yamazoe Heat receiving device of solar heat
JPS55144091A (en) * 1979-04-13 1980-11-10 Us Government Generating of combustible gas from carbonaceous material
JP2008523351A (ja) * 2004-12-15 2008-07-03 シェク ラボズ−ソーラー ハイドロゲン エナジー コーポレイション 太陽エネルギー収集装置および方法
JP2009535599A (ja) * 2006-04-30 2009-10-01 紀文 張 集光及び集熱を行う太陽エネルギー装置
US8378280B2 (en) * 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
US20090205638A1 (en) * 2008-02-19 2009-08-20 Peter Corcoran Solar Receiver for a Photo-Bioreactor
US20120186251A1 (en) * 2009-09-10 2012-07-26 Yeda Research And Development Co. Ltd. Solar power plant
JP2011163593A (ja) * 2010-02-05 2011-08-25 Mitsubishi Heavy Ind Ltd 太陽熱受熱器
WO2014026746A1 (en) * 2012-08-17 2014-02-20 Solar Tower Technologies Ag A solar receiver with a heliostat field

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623744B (zh) * 2015-12-31 2018-06-12 西北大学 一种太阳能驱动的煤热解耦合半焦气化的反应器及方法
CN105623744A (zh) * 2015-12-31 2016-06-01 西北大学 一种太阳能驱动的煤热解耦合半焦气化的反应器及方法
ES2648148A1 (es) * 2017-03-09 2017-12-28 Universidad Carlos Iii De Madrid Sistema óptico de haz descendente lineal solar
CN107413284A (zh) * 2017-05-08 2017-12-01 西安交通大学 一种太阳能颗粒催化式腔体吸热反应器及其使用方法
CN107413284B (zh) * 2017-05-08 2022-10-25 西安交通大学 一种太阳能颗粒催化式腔体吸热反应器及其使用方法
JP7110634B2 (ja) 2018-03-16 2022-08-02 株式会社Ihi 水素製造装置および水素製造方法
JP2019156705A (ja) * 2018-03-16 2019-09-19 株式会社Ihi 水素製造装置および水素製造方法
FR3094465A1 (fr) 2019-03-28 2020-10-02 Four Solaire Developpement Usine solaire et procede de transformation
EP3715744A1 (fr) 2019-03-28 2020-09-30 Four Solaire Developpement Usine solaire et procédé de transformation
JP2023522531A (ja) * 2020-02-03 2023-05-31 マガルディ パワー ソシエタ ペル アチオニ 多重反射に基づく太陽起源の熱エネルギーの貯蔵のための装置
JP7604504B2 (ja) 2020-02-03 2024-12-23 マガルディ パワー ソシエタ ペル アチオニ 多重反射に基づく太陽起源の熱エネルギーの貯蔵のための装置
CN115304029A (zh) * 2022-08-26 2022-11-08 西安交通大学 一种优化能量分配策略的被动热管理式太阳能高温反应器
CN115304029B (zh) * 2022-08-26 2023-08-22 西安交通大学 一种优化能量分配策略的被动热管理式太阳能高温反应器
CN118836584A (zh) * 2024-07-18 2024-10-25 北京理工大学 一种并联式太阳能光热化学耦合月面资源利用系统及方法

Also Published As

Publication number Publication date
US10260014B2 (en) 2019-04-16
JP6440267B2 (ja) 2018-12-19
US20170145324A1 (en) 2017-05-25
AU2015260468A1 (en) 2016-12-15
JPWO2015174236A1 (ja) 2017-04-20
AU2015260468B2 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6440267B2 (ja) 集光太陽光の受熱装置、反応装置及び加熱装置
Xu et al. Concentrating solar assisted biomass-to-fuel conversion through gasification: A review
Liu et al. A new solar hybrid clean fuel-fired distributed energy system with solar thermochemical conversion
Ozalp et al. Solar decomposition of fossil fuels as an option for sustainability
CN101597025A (zh) 太阳能热驱动的生物质超临界水气化制氢吸收反应器
CN102126704B (zh) 多碟太阳能聚热耦合生物质超临界水气化制氢系统及方法
CN104862010B (zh) 一种基于槽‑塔结合聚光方式的太阳能气化系统
CN105888996B (zh) 多模式塔式太阳能热发电装置
CN108592419B (zh) 一种太阳能热发电用延缓下落式固体颗粒吸热器
Hosseini et al. Optimization of SMR process for syngas production through a solar-assisted thermo-chemical reactor with a multi-layered porous core
Lu et al. A new solar mid-and-low temperature receiver/reactor with linear Fresnel reflector
CN116492956A (zh) 分层式腔体结构的太阳能热化学反应器
CN111111586B (zh) 一种均匀传热的太阳能甲烷重整反应装置和方法
Zhao et al. A novel multi-objective optimization model of solar-driven methanol steam reforming system combining response surface methodology and three-dimensional numerical simulation
CN102141301B (zh) 管腔一体化碟式太阳能热接收器
Shi et al. Proposal of a parabolic-trough-oriented photo-thermo-reactor with coaxial baffles and dual-bed for high-efficient solar-driven hydrogen production from methanol steam reforming
CN106374815A (zh) 基于纳米催化剂的太阳能光伏‑热化学复合装置及发电系统
CN105838450A (zh) 一种实现多产品输出的生物质-太阳能热化学利用系统
US20230347313A1 (en) Solar-thermal catalytic reactor
CN117680048A (zh) 一种基于太阳能驱动的气体反应器
Taylan et al. Fuel production using concentrated solar energy
Yang et al. Study on a novel dual heat transfer fluid central receiver based on two-level division of non-uniform solar flux
CN202442516U (zh) 基于化学链燃烧的间接式中温太阳能热化学储能装置
CN111892954B (zh) 聚光太阳能驱动纳米流体气化生物质制备合成气的系统
CN112344572A (zh) 一种直接光照加热的氢化物储热系统以及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519188

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15310354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015260468

Country of ref document: AU

Date of ref document: 20150423

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15792807

Country of ref document: EP

Kind code of ref document: A1