WO2015174075A1 - Method for rolling metal strip - Google Patents

Method for rolling metal strip Download PDF

Info

Publication number
WO2015174075A1
WO2015174075A1 PCT/JP2015/002401 JP2015002401W WO2015174075A1 WO 2015174075 A1 WO2015174075 A1 WO 2015174075A1 JP 2015002401 W JP2015002401 W JP 2015002401W WO 2015174075 A1 WO2015174075 A1 WO 2015174075A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolled
rolling
work roll
shift
roll
Prior art date
Application number
PCT/JP2015/002401
Other languages
French (fr)
Japanese (ja)
Inventor
英介 住田
慎也 山口
舘野 純一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2015174075A1 publication Critical patent/WO2015174075A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/40Control of flatness or profile during rolling of strip, sheets or plates using axial shifting of the rolls

Definitions

  • the present invention relates to a method of hot rolling a metal strip (rolled material), and more specifically, with respect to a plurality of rolled materials in a rolling cycle, by a rolling mill equipped with a shift mechanism that shifts a work roll in the axial direction in advance.
  • the present invention relates to a hot rolling method in which a work roll is shifted for each material to be rolled at a predetermined pitch while reciprocating between predetermined turning positions.
  • thermal crown In rolling a metal strip, friction occurs at the contact portion between the work roll and the metal strip (rolled material) (hereinafter referred to as “plate path”), and wear of the portion corresponding to the plate path of the work roll proceeds. go. Furthermore, in hot rolling, the material to be rolled becomes a high temperature of about 800 ° C. to 1100 ° C., and therefore thermal expansion occurs in a portion corresponding to the plate path of the work roll called a thermal crown.
  • the shift position change amount for each material to be rolled is made constant in the rolling cycle, and the shift position change amount and the turn-back position that reverses the shift movement direction are determined to be rolled in the rolling cycle.
  • the rolling order in a rolling cycle is narrow material to be rolled ⁇ narrow material to be rolled.
  • a wide rolled material having a width dimension larger than that of the material in particular, a narrow rolled material ⁇ a wide rolled material ⁇ a narrow rolled material (hereinafter referred to as “reverse rolling”).
  • reverse rolling a narrow rolled material ⁇ a wide rolled material ⁇ a narrow rolled material.
  • narrow and wide refer to a relative relationship in which the width of the wide rolled material is larger than the width of the narrow rolled material. It is not an absolute one. In the above-described width return rolling, the narrow rolled materials before and after the wide rolled material need not have the same width dimension.
  • the rolling cycle starts rolling with a rolling mill in which work rolls are incorporated by roll exchange, rolls several (50 to 100 inside / outside) materials to be rolled, and incorporates work rolls by next roll exchange.
  • a group of the above-mentioned several (about 50 to 100) materials to be rolled in order to start rolling by the rolling mill is referred to as one constituent unit.
  • the present invention employs the following means.
  • the material is rolled at a constant pitch while reciprocating between predetermined folding positions by a rolling mill having a shift mechanism for shifting the work roll in the axial direction.
  • the rolling method of the metal strip for shifting the work roll when rolling a material to be rolled that is wider than the preceding material to be rolled, the following formula (1) is used between the predetermined roll-back positions of the work roll shift.
  • a hot rolling method for a metal strip in which the work roll shift position is changed and rolled so as to minimize the obtained evaluation function J ⁇ CR .
  • the width of the wide rolled material is 10% or more larger than the width of the preceding rolled material, and the preceding rolled material is continuously rolled to a total rolling length of 5 km or more.
  • the width of the material to be rolled is larger than that of the preceding material to be rolled.
  • the profile can be improved, which makes it possible to relax the roll chance regulation and facilitate the process management of the rolling operation.
  • FIG. 1 shows simulation conditions for a material to be rolled in a rolling cycle.
  • FIG. 2 shows the profile (crown distribution in the width direction) after rolling of a wide material to be rolled in width return rolling.
  • FIG. 3 shows the relationship between the number of rolled materials with a narrow width and the high spot amount (maximum crown difference ⁇ CR).
  • FIG. 4 shows the roll crown in the width direction formed on the work roll of the F7 stand.
  • FIG. 5 shows the wear profile in the width direction formed on the work roll of the F7 stand.
  • FIG. 6 shows the roll crown in the width direction of each stand of the F5 to F7 stands after rolling a narrow material to be rolled.
  • FIG. 7 shows the thermal crown in the width direction of each stand of the F5 to F7 stands after rolling a narrow material to be rolled.
  • FIG. 8 shows the width-return rolling in the cyclic shift rolling with a constant shift pitch. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Shows the simulation conditions for shift change when rolling a wide workpiece.
  • FIG. 9 shows a profile (crown distribution in the width direction) after rolling of a wide material to be rolled in the width return rolling in five cases where the shift positions of the work rolls are different.
  • FIG. 10 shows the thermal crown maximum amount of the F5 stand work roll.
  • FIG. 11A shows the relationship between the distribution in the width direction of the thermal crown and the width of the material to be rolled (the material to be rolled and the material to be rolled).
  • FIG. 11B shows the relationship between the distribution in the width direction of the thermal crown and the width of the material to be rolled (the material to be rolled to be narrow and the material to be rolled to be wide).
  • FIG. 11C shows the relationship between the distribution in the width direction of the thermal crown and the width of the material to be rolled (the narrow material to be rolled and the wide material to be rolled).
  • FIG. 12 shows the rolling method of the present invention.
  • FIG. 13 shows an evaluation function calculation method.
  • FIG. 14 shows simulation conditions for applying the rolling method of the present invention.
  • FIG. 15A shows an evaluation function at the shift position of the work roll during the width return rolling under the conditions shown in FIG.
  • FIG. 15B shows the thickness distribution at the end in the width direction under the conditions shown in FIG.
  • FIG. 16 shows the rolling cycle of the example.
  • FIG. 17 shows the shift position of the work roll of the F5 stand for each material to be rolled.
  • FIG. 18 shows the thickness distribution of the material to be rolled at the end in the width direction on the F7 stand exit side.
  • FIG. 19 shows the width direction profile of the material to be rolled on which the edge buildup is formed.
  • High-speed rolls have high surface hardness and wear resistance, but are generally not used in the final F7 stand because of their high coefficient of thermal expansion. This is because when a work roll having a high thermal expansion coefficient is used in the final stand, the profile of the material to be rolled is not stable.
  • FIG. 1 shows a rolling cycle in which 100 materials are rolled, five times (with circled circles in FIG. 1) of width return rolling, that is, a material to be rolled (steel strip) having a width of 1000 mm.
  • width return rolling that is, a material to be rolled (steel strip) having a width of 1000 mm.
  • a simulation is performed in which a wide rolled material having a width of 1200 mm, in which one width dimension is enlarged by 200 mm, is rolled, and then rolling of a narrow rolled material in which the width dimension is returned to 1000 mm is followed. Conditions are indicated.
  • FIG. 2 shows a profile (crown distribution in the width direction) on the F7 stand exit side of a wide material to be rolled in width return rolling as a result of the simulation.
  • a material to be rolled having a width of 1000 mm is rolled in advance immediately before rolling a material to be rolled having a width of 1200 mm.
  • 14 narrow rolled materials are rolled in advance, just before the wide rolling, and counted from the “1” wide rolled material. This is the 15th material to be rolled.
  • the “30” indicated by the ⁇ mark is also rolled with 17 narrow rolled materials immediately before rolling the wide rolled material. From “1” wide rolled material, The 34th is counted.
  • “50” indicated by ⁇ is also rolled with 19 narrow materials to be rolled immediately before the wide rolling, and 54 from the “1” wide material to be rolled. This is true.
  • FIG. 3 shows the high spot amount (maximum crown difference ⁇ CR) based on the simulation result of FIG. “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, and “ ⁇ ” in the figure correspond to “1”, “15”, “30”, and “50”, respectively.
  • the roll crown and the wear profile formed by the upper and lower work rolls on the F7 stand were obtained, and these are shown in FIGS. 4 and 5, respectively.
  • the “roll crown” is a roll crown of the work roll obtained by adding the thermal expansion amount and the wear amount of the work roll to the initial value of the work roll radius.
  • the amount of thermal expansion and wear of the work roll can be predicted and calculated based on the rolling history under the simulation conditions described above.
  • FIG. 6 shows the roll crowns of the respective stands of the F5 to F7 stands when the number of rolling is “50”.
  • the roll crowns of the F5 and F6 stands increase toward the edge.
  • FIG. 7 shows a thermal crown (thermal expansion amount) which is one of the constituent elements. From FIG. 7, the thermal crown (thermal expansion amount) of the work rolls of the F5 and F6 stands is compared with that of the work roll of the F7 stand. (In FIG. 7, the curves of F5 and F6 almost overlap). This is because a nickel grain roll is used as a work roll in the F7 stand as the final stand, whereas a high-speed roll having a relatively high thermal expansion coefficient is used in the F5 and F6 stands.
  • the cause of the deterioration of the profile of the wide material to be rolled in the roll-back rolling is that the edge build-up generated on the exit side of the F5 stand or F6 stand is rolled by the work roll worn on the box shape of the F7 stand, and has an edge extension shape. It is thought that it was generated by the mechanism. Therefore, based on the mechanism at the time of the width return rolling, the following simulation was performed to search for means for reducing the influence of thermal expansion of the work rolls of the F5 and F6 stands.
  • Rolling (displayed with ⁇ mark) and shift position + 150mm (displayed with ⁇ mark), + 60mm (displayed with ⁇ mark), -40mm (displayed with ⁇ mark), -150mm (displayed with ⁇ mark) respectively. Shaking and changing the shift position, simulations were performed for five cases of rolling.
  • FIG. 9 shows the profiles on the F7 stand exit side for the above five cases with different work roll shift positions.
  • FIG. 10 shows the maximum thermal expansion amount of the work roll of the F5 stand for these five cases.
  • the profile is most improved in the case where the cycle shift position is ⁇ 150 mm. This is because the thermal crown of F5 at this shift position is minimized as shown in FIG.
  • FIGS. 11A to 11C show the thermal crown of the work roll and its maximum value (peak point) together with the material to be rolled (strip) in the case assumed in the rolling of the F5 stand.
  • FIG. 11A shows a case where a peak point at which the thermal expansion amount (thermal crown) is maximized exists near the center of the plate reference and a narrow material to be rolled (width 800 mm) is rolled.
  • FIG. 11B shows a case where a wide material to be rolled (width: 1000 mm) is rolled by shifting one pitch of the cyclic shift from there
  • FIG. 11C shows the rolling of FIG. A case where the shift position is shifted to the maximum shift amount is shown.
  • the peak point at which the amount of thermal expansion is the maximum is at the center of the plate (1/2 of the width), but when rolling a narrow material to be rolled, the crown amount by the thermal crown is Almost does not affect the rolled material profile.
  • FIG. 11B in which a wide rolled material is rolled, the position of the peak point is not substantially changed, and the thermal crown is transferred to the wide end of the wide rolled material as much as the thermal crown grows. Edge build up.
  • the steps (1) to (8) shown in FIG. 12 are performed when rolling the wide rolled material subsequent to the rolling of the narrow rolled material in the width return rolling or the like.
  • (1) Calculation of work roll shift limit The work roll shift limit value is calculated in consideration of the width of the material to be rolled and the equipment limit in the rolling cycle.
  • (2) Determination of work roll shift pitch The shift pitch of the work roll in the rolling cycle and the change limit from the cyclic shift are determined.
  • a shift position of the work roll is determined between the shift lower limit value and the shift upper limit value.
  • the shift lower limit value and the shift upper limit value are determined in consideration of the following values.
  • Shift upper limit MIN (cyclic shift upper limit, preceding material position + upper and lower limit values)
  • Shift lower limit MAX (cyclic shift lower limit, preceding material position-upper and lower limit)
  • Calculation of roll crown predicted value when rolling a wide material to be rolled Based on the rolling history of the rolling cycle, the roll crown predicted value CR is calculated from the thermal expansion amount and wear amount of the work roll.
  • a roll crown target value CR * is calculated by setting a predetermined formula.
  • the evaluation function J ⁇ CR is calculated from the roll crown predicted value and the target value obtained in the above (4) and (5). For example, it is obtained from the following formula for three points of 25 mm, 75 mm, and 150 mm from the width end.
  • the roll crown target value CRi * can be calculated and set to be a quadratic function in the width direction, for example (see FIG. 13).
  • CR0 is a value that varies depending on the work roll shift position
  • Wid is the width of the material to be rolled.
  • Calculate evaluation functions J ⁇ CR at all shift positions Calculate evaluation functions at all shift positions. The shift position is calculated with a pitch width (for example, 5 mm) smaller than the pitch width of cyclic shift rolling. Note that “No” in “Calculate at all shift positions” in FIG. 12 indicates that there is a part where J ⁇ CR is not calculated within the possible range of the work roll shift stroke, and “Yes” similarly indicates the work roll shift stroke. This indicates the case where all J ⁇ CR are calculated within the possible range.
  • the evaluation function J ⁇ CR is set to the minimum shift position ⁇ End (End) When the cyclic shift stroke is set to be less than ⁇ 150 mm, the shift position is determined within the setting range.
  • FIG. 14 and FIG. 15 show simulation results of calculating the work roll shift shift optimum position using this logic.
  • the simulation conditions are as follows. In the schedule for rolling 35 rolled materials by a cyclic shift method with a shift amount of 30 mm, 19 rolled materials with a width of 1000 mm are continuously rolled, and the 20th In rolling the material to be rolled, a plate material having a width of 1200 mm, that is, a wide material to be rolled having a width of 200 mm was rolled, and then 15 materials having a plate width of 1000 mm were continuously rolled.
  • FIG. 15A shows the simulation result of the evaluation function J ⁇ CR at the shift position ( ⁇ 150 mm to +150 mm) in the rolling of the 20th rolled material.
  • J ⁇ CR is minimized at the plus shift position +130 mm.
  • FIG. 15B shows a thickness profile based on the results of applying the conventional cyclic shift rolling method without changing the shift pitch and the thickness profile of the width end portion on the F7 stand exit side after rolling according to the simulation result of applying the logic of the present invention to FIG. And showed. It can be seen that the edge buildup is improved in the profile in the width direction of the wide material to be rolled to which the logic of the present invention is applied, as compared with the conventional rolling method applied (conventional example).
  • the most effective roll type of the work roll to which the present invention is applied is a roll in which the thermal crown which is a problem during rolling of a wide material to be rolled is dominant and roll wear is small. Therefore, it is most effective to use a high-speed roll stand with a high coefficient of thermal expansion and low wear characteristics, and a work roll using a nickel grain roll, which is often used in the final stand of a finishing mill. The amount of wear is large and the above effect is reduced.
  • the present invention is applicable not only to the rolling of a wide rolled material in the width return rolling, but also to the rolling in which the rolling subsequent to the rolling of the narrow rolled material is a wide rolled material. It is obvious that the present invention can be applied, but it is more effective in the case where a wide material to be rolled is rolled after a large number of rolling materials having a narrow width are continuously rolled.
  • the width of the wide rolled material is 10 to 20% or more, preferably 20% or more larger than the width of the preceding narrow rolled material, and the narrow rolled material It is more effective when the rolling is continuously performed for a total rolling length of 5 to 10 km or more, preferably 10 km or more.
  • the rolling length here is the length in the longitudinal direction (rolling direction) of the material to be rolled.
  • the tandem type rolling mills F5 and F6 comprising F1 to F7 stands are applied.
  • the present invention further includes one tandem type rolling mill having any number of stands. It is clear that the present invention can also be applied to a single stand rolling mill. The effect of the embodiment of the present invention was confirmed by applying it to an actual tandem rolling mill as follows.
  • the present invention was carried out in a hot rolling line having a tandem finish rolling mill consisting of F1 to F7 stands.
  • the work roll shift mechanism is provided in the F5 to F7 stands.
  • Table 1 shows the equipment specifications for each of the F5 to F7 stands. A high-speed roll was used for the work rolls of the F5 and F6 stands, and a nickel grain roll was used for the final F7 stand. Further, normal crown control is performed at the F1 to F4 stands.
  • the material to be rolled is a medium-carbon steel strip, and the thickness and width of the material to be rolled in the rolling cycle are shown in FIG.
  • the above-mentioned work roll shift position change of the present invention is carried out on the 139th rolled material (enclosed with a circle in FIG. 16), that is, a wide rolled material whose width dimension is 240 mm larger than the preceding material. did. In front of the wide material to be rolled, 30 narrow materials to be rolled are continuously rolled.
  • FIG. 17 shows the shift amount of the work roll of the F5 stand.
  • FIG. 18 shows the thickness profile on the exit side of the F7 stand, together with the results of the conventional example, for the example of the present invention to which the present invention is applied.
  • the work rolls of the F5 to F7 stands are set according to the cyclic shift.
  • ⁇ CR at the edge portion was about 30 ⁇ m exceeding 25 ⁇ m in the conventional example, whereas ⁇ CR was about 10 ⁇ m lower than 25 ⁇ m in the present invention example of the present invention.
  • the build-up amount generated at the edge portion of the rolled material after rolling can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

 The present invention provides a hot-rolling method for a metal strip by a cyclic shift method in which the work rolls are shifted in the axial direction, wherein the rolling method affords a metal strip having a good profile in the width direction, in instances in which the rolled material currently in the rolling cycle is a wide rolled material following a narrow rolled material. According to this hot-rolling method for a metal strip, for a rolled material currently in the rolling cycle, the work rolls are shifted by a constant pitch for each single rolled material while reciprocating between predetermined folding locations, by means of a rolling machine equipped with a shift mechanism for shifting the work rolls in the axial direction. When a rolled material wider than the preceding rolled material is to be rolled, rolling is carried out at a work roll shift position modified such that an evaluation function (JΔCR) calculated from the difference between the predicted value and the target value of the roll crown is minimized.

Description

金属帯の圧延方法Metal strip rolling method
 本発明は、金属帯(被圧延材)の熱間圧延方法に関わり、詳しくは圧延サイクル内の複数の被圧延材について、ワークロールを軸方向にシフトするシフト機構を備えた圧延機により、予め定めた折り返し位置の間を往復しながら所定のピッチで被圧延材1本毎にワークロールをシフトする熱間圧延方法に関わる。 The present invention relates to a method of hot rolling a metal strip (rolled material), and more specifically, with respect to a plurality of rolled materials in a rolling cycle, by a rolling mill equipped with a shift mechanism that shifts a work roll in the axial direction in advance. The present invention relates to a hot rolling method in which a work roll is shifted for each material to be rolled at a predetermined pitch while reciprocating between predetermined turning positions.
 金属帯の圧延においては、ワークロールと金属帯(被圧延材)の接触部分(以下、「板道」と呼ぶ)で摩擦が生じ、ワークロールの板道に相当する部分の摩耗が進行してゆく。さらに熱間圧延においては、被圧延材が800℃ から1100℃ 程度の高温になるため、サーマルクラウンと呼ばれるワークロールの板道に相当する部分において熱膨張が生じる。 In rolling a metal strip, friction occurs at the contact portion between the work roll and the metal strip (rolled material) (hereinafter referred to as “plate path”), and wear of the portion corresponding to the plate path of the work roll proceeds. go. Furthermore, in hot rolling, the material to be rolled becomes a high temperature of about 800 ° C. to 1100 ° C., and therefore thermal expansion occurs in a portion corresponding to the plate path of the work roll called a thermal crown.
 このため、圧延本数の増加とともに、ワークロールの部分的な摩耗と熱膨張によりワークロールのプロフィルが変化することによって、被圧延材の幅方向の厚み分布や形状が悪化し、製品品質や通板安定性の低下を招くという問題があった。
 例えば、幅狭の被圧延材を続けて圧延した場合では、部分的な板道の摩耗が進行するため、後続して圧延される幅広の被圧延材の厚み分布に異常が生じる。これを避けるために被圧延材の幅の広いものから狭いものへと段階的に圧延するなどの、圧延サイクルにおいて被圧延材の幅規制をする工程管理(ロールチャンス規制)を余儀なくされていた。
For this reason, as the number of rolling rolls increases, the work roll profile changes due to partial wear and thermal expansion of the work rolls, so that the thickness distribution and shape in the width direction of the material to be rolled deteriorates, resulting in product quality and threading. There was a problem that the stability was lowered.
For example, in the case where a narrow material to be rolled is continuously rolled, wear of a partial plate path progresses, so that an abnormality occurs in the thickness distribution of a wide material to be rolled subsequently. In order to avoid this, process management (roll chance regulation) for restricting the width of the material to be rolled in a rolling cycle, such as rolling in a stepwise manner from a wide material to a narrow material, has been forced.
 これらを抑止するために、例えば特許文献1、特許文献2に記載されているように、被圧延材を圧延する毎にワークロールの軸方向位置を一定のピッチ(以下、「シフトピッチ」と呼ぶ)で数mmずつずらしていき、ワークロールの軸方向シフト量が最大もしくは最小に達したら、折り返してシフトを続けるサイクリックシフト法が広く用いられている。
 また特許文献3では圧延サイクル内において全被圧延材について、ワークロールプロフィールの予測計算値と目標値の誤差を求め、評価関数を用いて、この誤差をひとつの圧延サイクルの全被圧延材について最小にする圧延方法などが考案されている。
In order to suppress these, as described in, for example, Patent Document 1 and Patent Document 2, each time the material to be rolled is rolled, the axial position of the work roll is called a constant pitch (hereinafter referred to as “shift pitch”). ), A cyclic shift method is widely used in which the shift is continued when the amount of axial shift of the work roll reaches the maximum or minimum, and the shift is continued.
Further, in Patent Document 3, an error between a predicted calculation value of a work roll profile and a target value is obtained for all rolled materials in a rolling cycle, and this error is minimized for all rolled materials in one rolling cycle using an evaluation function. A rolling method has been devised.
特開平06-154823号公報Japanese Patent Laid-Open No. 06-154823 特開平11-254015号公報Japanese Patent Laid-Open No. 11-254015 特開2013-111649号公報JP 2013-111649 A
 しかしながら、特許文献3では、「被圧延材1本毎のシフト位置変更量を圧延サイクル内で一定とし、該シフト位置変更量とシフト移動方向を反転する折り返し位置とを、圧延サイクルにおける圧延予定の全被圧延材について、被圧延材とワークロールの接触部分におけるワークロールプロフィルの予測計算値とワークロールプロフィル目標値との誤差を求め、該誤差を当該圧延サイクルの全被圧延材について合計した値が最小となるように決定」している。そのため、例えば、先行する被圧延材として幅狭のものが多数続いた後に、この材料よりも幅が例えば200mm以上大きい幅広の被圧延材を1本だけ圧延し、その後に再び多数の幅狭の被圧延材が後続する特殊なケースでは、数多くの幅狭の被圧延材の圧延では誤差が小さくても、1本の幅広の被圧延材の圧延では誤差が大きくなり、この誤差が許容範囲外となるケースがある。若しくは、幅広の1本の被圧延材の誤差を最小とするようにシフト位置を設定すれば、幅広の被圧延材の前後の幅狭の被圧延材が犠牲となるケースがある。このように、特許文献3の技術では、先行する被圧延材として幅狭のものが続いた後に、この材料よりも幅が大きい幅広の被圧延材を1本だけ圧延し、その後に再び幅狭の被圧延材が後続するような幅戻り圧延において、被圧延材の良好なプロフィルが得られないという問題があった。 However, in Patent Document 3, “the shift position change amount for each material to be rolled is made constant in the rolling cycle, and the shift position change amount and the turn-back position that reverses the shift movement direction are determined to be rolled in the rolling cycle. For all rolled materials, find the error between the predicted calculated value of the work roll profile and the work roll profile target value at the contact part of the rolled material and the work roll, and sum the error for all the rolled material in the rolling cycle. Is determined to be minimal. For this reason, for example, after a large number of narrow materials as the preceding material to be rolled continue, only one wide material to be rolled having a width of, for example, 200 mm or more larger than this material is rolled. In special cases followed by the material to be rolled, even if the error is small when rolling a large number of narrow materials, the error is large when rolling a single wide material, and this error is outside the allowable range. There are cases where Alternatively, if the shift position is set so as to minimize the error of one wide rolled material, the narrow rolled material before and after the wide rolled material may be sacrificed. As described above, in the technique of Patent Document 3, after a narrow material is continued as the preceding material to be rolled, only one wide material to be rolled having a width larger than this material is rolled, and then the width is again narrowed. In the width return rolling in which the material to be rolled follows, there is a problem that a good profile of the material to be rolled cannot be obtained.
 本発明は、ワークロールを軸方向にシフトするシフト機構を備えた圧延機による金属帯のサイクリックシフト圧延において、圧延サイクル内での圧延順が、幅狭の被圧延材→幅狭の被圧延材よりも幅寸法の大きい幅広の被圧延材である場合、とりわけ、幅狭の被圧延材→幅広の被圧延材→幅狭の被圧延材(以下、これを「幅戻り圧延」という)である場合において、幅広の被圧延材を圧延する際に幅方向に良好なプロフィルの金属帯を得る圧延方法を提供することを目的とする。
 ここで「幅狭」と「幅広」は、幅広の被圧延材の幅が幅狭の被圧延材の幅よりも大きい相対的な関係を指しており、幅が何ミリ以下あるいは何ミリ以上という絶対的なものを指しているのではない。上記の幅戻り圧延において、幅広の被圧延材の前後の幅狭の被圧延材同士は同じ幅寸法である必要はない。
In the present invention, in the cyclic shift rolling of a metal strip by a rolling mill equipped with a shift mechanism for shifting a work roll in the axial direction, the rolling order in a rolling cycle is narrow material to be rolled → narrow material to be rolled. In the case of a wide rolled material having a width dimension larger than that of the material, in particular, a narrow rolled material → a wide rolled material → a narrow rolled material (hereinafter referred to as “reverse rolling”). In some cases, an object of the present invention is to provide a rolling method for obtaining a metal band having a good profile in the width direction when rolling a wide material to be rolled.
Here, “narrow” and “wide” refer to a relative relationship in which the width of the wide rolled material is larger than the width of the narrow rolled material. It is not an absolute one. In the above-described width return rolling, the narrow rolled materials before and after the wide rolled material need not have the same width dimension.
 圧延サイクルとは、ロール交換によりワークロールが組み込まれた圧延機により圧延を開始し、何本か(50ないし100本内外)の被圧延材を圧延して、次のロール交換によりワークロールが組み込まれた圧延機による圧延を開始するまでの一群の前記何本か(50ないし100本程度)の被圧延材を圧延順に並べたものを一つの構成単位として称したものである。 The rolling cycle starts rolling with a rolling mill in which work rolls are incorporated by roll exchange, rolls several (50 to 100 inside / outside) materials to be rolled, and incorporates work rolls by next roll exchange. A group of the above-mentioned several (about 50 to 100) materials to be rolled in order to start rolling by the rolling mill is referred to as one constituent unit.
 上記の課題を達成するために、本発明は、以下の手段を採用する。
[1]圧延サイクル内の被圧延材について、ワークロールを軸方向にシフトするシフト機構を備えた圧延機により、予め定めた折り返し位置の間を往復しながら一定ピッチで被圧延材1本毎にワークロールをシフトする金属帯の圧延方法において、先行する被圧延材よりも幅広の被圧延材を圧延する際に、予め定めたワークロールシフトの折り返し位置の間で、下記の式(1)により求まる評価関数JΔCRを最小にするように、ワークロールシフト位置を変更して圧延する金属帯の熱間圧延方法。
Figure JPOXMLDOC01-appb-M000001
[2]前記幅広の被圧延材の幅寸法が前記先行する被圧延材の幅寸法よりも10%以上大きく、かつ前記先行する被圧延材が連続して総圧延長にして5km以上圧延される[1]に記載の金属帯の熱間圧延方法。
[3]前記ワークロールを軸方向にシフトするシフト機構を備えた圧延機がタンデム型圧延機の1つ以上のスタンドに設けられている[1]又は[2]に記載の金属帯の熱間圧延方法。
[4]前記ワークロールを軸方向にシフトするシフト機構を備えた圧延機のワークロールがハイスロールである[1]~[3]のいずれかに記載の金属帯の熱間圧延方法。
In order to achieve the above object, the present invention employs the following means.
[1] For each material to be rolled in a rolling cycle, the material is rolled at a constant pitch while reciprocating between predetermined folding positions by a rolling mill having a shift mechanism for shifting the work roll in the axial direction. In the rolling method of the metal strip for shifting the work roll, when rolling a material to be rolled that is wider than the preceding material to be rolled, the following formula (1) is used between the predetermined roll-back positions of the work roll shift. A hot rolling method for a metal strip, in which the work roll shift position is changed and rolled so as to minimize the obtained evaluation function J ΔCR .
Figure JPOXMLDOC01-appb-M000001
[2] The width of the wide rolled material is 10% or more larger than the width of the preceding rolled material, and the preceding rolled material is continuously rolled to a total rolling length of 5 km or more. The method for hot rolling a metal strip according to [1].
[3] The hot strip of the metal strip according to [1] or [2], wherein a rolling mill provided with a shift mechanism for shifting the work roll in the axial direction is provided on one or more stands of a tandem rolling mill. Rolling method.
[4] The method for hot rolling a metal strip according to any one of [1] to [3], wherein a work roll of a rolling mill provided with a shift mechanism that shifts the work roll in the axial direction is a high-speed roll.
 本発明の金属帯の圧延方法により、ワークロールを軸方向にシフトするシフト機構を備えた圧延機によるサイクリックシフト圧延方法において、先行する被圧延材よりも幅寸法が大きい幅広の被圧延材のプロフィルを改善することができ、そのことにより、ロールチャンス規制を緩和することが可能になり、圧延操業の工程管理が容易に行える。 In the cyclic shift rolling method using a rolling mill equipped with a shift mechanism that shifts the work roll in the axial direction by the metal strip rolling method of the present invention, the width of the material to be rolled is larger than that of the preceding material to be rolled. The profile can be improved, which makes it possible to relax the roll chance regulation and facilitate the process management of the rolling operation.
図1は、圧延サイクルにおける被圧延材のシミュレーション条件を示す。FIG. 1 shows simulation conditions for a material to be rolled in a rolling cycle. 図2は、幅戻り圧延における幅広の被圧延材の圧延後のプロフィル(幅方向のクラウン分布)を示す。FIG. 2 shows the profile (crown distribution in the width direction) after rolling of a wide material to be rolled in width return rolling. 図3は、幅狭の被圧延材の圧延本数とハイスポット量(最大クラウン差ΔCR)の関係を示す。FIG. 3 shows the relationship between the number of rolled materials with a narrow width and the high spot amount (maximum crown difference ΔCR). 図4は、F7スタンドのワークロールに形成される幅方向のロールクラウンを示す。FIG. 4 shows the roll crown in the width direction formed on the work roll of the F7 stand. 図5は、F7スタンドのワークロールに形成される幅方向の摩耗プロフィルを示す。FIG. 5 shows the wear profile in the width direction formed on the work roll of the F7 stand. 図6は、幅狭の被圧延材を圧延した後のF5~F7スタンドの各スタンドの幅方向のロールクラウンを示す。FIG. 6 shows the roll crown in the width direction of each stand of the F5 to F7 stands after rolling a narrow material to be rolled. 図7は、幅狭の被圧延材を圧延した後のF5~F7スタンドの各スタンドの幅方向のサーマルクラウンを示す。FIG. 7 shows the thermal crown in the width direction of each stand of the F5 to F7 stands after rolling a narrow material to be rolled. 図8は、シフトピッチ一定のサイクリックシフト圧延において、幅戻り圧延における。  幅広の被圧延材の圧延時におけるシフト変更のシミュレーション条件を示す。FIG. 8 shows the width-return rolling in the cyclic shift rolling with a constant shift pitch.シ ミ ュ レ ー シ ョ ン Shows the simulation conditions for shift change when rolling a wide workpiece. 図9は、ワークロールのシフト位置の異なる5つの場合について、幅戻り圧延における幅広の被圧延材の圧延後のプロフィル(幅方向のクラウン分布)を示す。FIG. 9 shows a profile (crown distribution in the width direction) after rolling of a wide material to be rolled in the width return rolling in five cases where the shift positions of the work rolls are different. 図10は、F5スタンドのワークロールのサーマルクラウン最大量を示す。FIG. 10 shows the thermal crown maximum amount of the F5 stand work roll. 図11Aは、サーマルクラウンの幅方向分布と被圧延材(幅狭の被圧延材と幅広の被圧延材)の被圧延材の幅との関係を示す。FIG. 11A shows the relationship between the distribution in the width direction of the thermal crown and the width of the material to be rolled (the material to be rolled and the material to be rolled). 図11Bは、サーマルクラウンの幅方向分布と被圧延材(幅狭の被圧延材と幅広の被圧延材)の幅との関係を示す。FIG. 11B shows the relationship between the distribution in the width direction of the thermal crown and the width of the material to be rolled (the material to be rolled to be narrow and the material to be rolled to be wide). 図11Cは、サーマルクラウンの幅方向分布と被圧延材(幅狭の被圧延材と幅広の被圧延材)の幅との関係を示す。FIG. 11C shows the relationship between the distribution in the width direction of the thermal crown and the width of the material to be rolled (the narrow material to be rolled and the wide material to be rolled). 図12は、本発明の圧延方法を示す。FIG. 12 shows the rolling method of the present invention. 図13は、評価関数の計算方法を示す。FIG. 13 shows an evaluation function calculation method. 図14は、本発明の圧延方法を適用するシミュレーション条件を示す。FIG. 14 shows simulation conditions for applying the rolling method of the present invention. 図15Aは、図14に示す条件において、幅戻り圧延時のワークロールのシフト位置での評価関数を示す。FIG. 15A shows an evaluation function at the shift position of the work roll during the width return rolling under the conditions shown in FIG. 図15Bは、図14に示す条件において、幅方向の端部の厚み分布を示す。FIG. 15B shows the thickness distribution at the end in the width direction under the conditions shown in FIG. 図16は、実施例の圧延サイクルを示す。FIG. 16 shows the rolling cycle of the example. 図17は、各被圧延材について、F5スタンドのワークロールのシフト位置を示す。FIG. 17 shows the shift position of the work roll of the F5 stand for each material to be rolled. 図18は、F7スタンド出側での幅方向端部の被圧延材の厚み分布を示す。FIG. 18 shows the thickness distribution of the material to be rolled at the end in the width direction on the F7 stand exit side. 図19は、エッジビルドアップが形成されている被圧延材の幅方向プロフィルを示す。FIG. 19 shows the width direction profile of the material to be rolled on which the edge buildup is formed.
 シミュレーターを用いて、圧延サイクルにおいて、先行する幅狭の被圧延材の被圧延材の幅寸法よりも200mm以上の幅寸法が大きい幅広の被圧延材の圧延時に発生するプロフィル不良のメカニズムを以下に考察する。
 F1~F7スタンドで構成される7スタンドのタンデム型圧延機により熱間圧延を行う場合について、シミュレーションを行った。
 金属帯である被圧延材を1本毎にワークロール(以下、「WR」と表記することがある)を一定のピッチでロール軸方向にシフトするサイクリックシフト圧延をF5~F7スタンドで実施した。
 ワークロール材質として、F1~F6の各スタンドではハイスロール、F7スタンドではニッケルグレインロールを使用した。ハイスロールは、表面硬度が高く耐摩耗性であるが、熱膨張率が高いため、通常は最終のF7スタンドには使用されない。最終スタンドで熱膨張率の高いワークロールを使用すると、被圧延材のプロフィルが安定しないためである。
Using the simulator, in the rolling cycle, the mechanism of the profile failure that occurs during rolling of a wide rolled material having a width of 200 mm or more larger than the width of the rolled material of the preceding narrow rolled material is described below. Consider.
A simulation was performed for hot rolling with a 7-stand tandem rolling mill composed of F1 to F7 stands.
Cyclic shift rolling, in which work rolls (hereinafter sometimes referred to as “WR”) of each material to be rolled, which is a metal strip, are shifted in the roll axis direction at a constant pitch, was performed at the F5 to F7 stands. .
As work roll materials, high-speed rolls were used for the stands F1 to F6, and nickel grain rolls were used for the F7 stand. High-speed rolls have high surface hardness and wear resistance, but are generally not used in the final F7 stand because of their high coefficient of thermal expansion. This is because when a work roll having a high thermal expansion coefficient is used in the final stand, the profile of the material to be rolled is not stable.
 図1は、100本の材料が圧延される圧延サイクルにおいて、5回(図1において〇の囲みを施したもの)の幅戻り圧延、すなわち幅1000mmの幅狭の被圧延材(鋼帯)を圧延した後に、1本の幅寸法が200mm拡大した幅1200mmの幅広の被圧延材の圧延が行われ、その後に再び幅寸法が1000mmに幅戻りした幅狭の被圧延材の圧延が後続するシミュレーション条件が示されている。 FIG. 1 shows a rolling cycle in which 100 materials are rolled, five times (with circled circles in FIG. 1) of width return rolling, that is, a material to be rolled (steel strip) having a width of 1000 mm. After rolling, a simulation is performed in which a wide rolled material having a width of 1200 mm, in which one width dimension is enlarged by 200 mm, is rolled, and then rolling of a narrow rolled material in which the width dimension is returned to 1000 mm is followed. Conditions are indicated.
 図2には、シミュレーションの結果として、幅戻り圧延における幅広の被圧延材のF7スタンド出側でのプロフィル(幅方向のクラウン分布)が示されている。
 ◆印で示される「1本」は、幅1200mmの幅広の被圧延材の圧延の直前に、幅1000mmの幅狭の被圧延材1本が先行して圧延されている。■印で示される「15本」は、同じく幅広圧延の直前に、14本の幅狭の被圧延材が先行して圧延されており、「1本」の幅広の被圧延材から起算して15本目の被圧延材である。▲印で示される「30本」は同じく幅広の被圧延材の圧延の直前に、幅狭の被圧延材17本が先行して圧延されており、「1本」の幅広の被圧延材から起算して34本目である。
そして、●で示される「50本」は同じく幅広圧延の直前に、幅狭の被圧延材19本が先行して圧延されており、「1本」の幅広の被圧延材から起算して54本目である。
FIG. 2 shows a profile (crown distribution in the width direction) on the F7 stand exit side of a wide material to be rolled in width return rolling as a result of the simulation.
In “1” indicated by a mark, a material to be rolled having a width of 1000 mm is rolled in advance immediately before rolling a material to be rolled having a width of 1200 mm. In the case of “15” indicated by the mark (1), 14 narrow rolled materials are rolled in advance, just before the wide rolling, and counted from the “1” wide rolled material. This is the 15th material to be rolled. The “30” indicated by the ▲ mark is also rolled with 17 narrow rolled materials immediately before rolling the wide rolled material. From “1” wide rolled material, The 34th is counted.
In addition, “50” indicated by ● is also rolled with 19 narrow materials to be rolled immediately before the wide rolling, and 54 from the “1” wide material to be rolled. This is true.
 図3には、図2のシミュレーション結果に基づいて、ハイスポット量(最大クラウン差ΔCR)が示されている。図中の「◆」「■」「▲」および「●」は、上記の「1本」「15本」「30本」および「50本」にそれぞれ対応している。 FIG. 3 shows the high spot amount (maximum crown difference ΔCR) based on the simulation result of FIG. “♦”, “■”, “▲”, and “●” in the figure correspond to “1”, “15”, “30”, and “50”, respectively.
 図2および図3から分かるように、幅狭の被圧延材を継続して圧延した後に幅広の被圧延材を圧延する場合、「1本」を除いて「15本」、「30本」および「50本」の場合では、幅広の被圧延材の幅端部近傍にはΔCRの大きな局所的な突起部(ハイスポット)が形成されて、そのΔCRは圧延本数が増えるにしたがって大きくなっている。
 このように、幅狭の被圧延材を継続して行った後に幅広の被圧延材を圧延した場合、幅広の被圧延材には、ワークロールのプロフィルが転写されて、被圧延材の幅端部において局部的に厚みが厚くなるエッジビルドアップと呼ばれる突起部が発生し、被圧延材のプロフィルの悪化を招いていると考えられる(エッジビルドアップについては図19参照)。
As can be seen from FIG. 2 and FIG. 3, when rolling the wide rolled material after continuously rolling the narrow rolled material, except for “1”, “15”, “30” and In the case of “50”, a local protrusion (high spot) having a large ΔCR is formed in the vicinity of the wide end of the wide material to be rolled, and the ΔCR increases as the number of rolling increases. .
In this way, when the wide rolled material is rolled after continuously performing the narrow rolled material, the work roll profile is transferred to the wide rolled material, and the wide edge of the rolled material is transferred. It is considered that a protrusion called edge buildup that locally increases in thickness occurs at the part, which causes deterioration of the profile of the material to be rolled (see FIG. 19 for edge buildup).
 このハイスポットの形成メカニズムを探るために、F7スタンドでの上下のワークロールが形成するロールクラウンと摩耗プロフィルを求め、それぞれを図4および図5にそれぞれ示した。
 「ロールクラウン」とは、ここではワークロール半径の初期値に、ワークロールの熱膨張量および摩耗量を合計して求めたワークロールのロールクラウンである。
 なお、ワークロールの熱膨張量と摩耗量は、前述のシミュレーション条件の圧延履歴に基づいて、それぞれ予測計算することができる。
In order to investigate the formation mechanism of this high spot, the roll crown and the wear profile formed by the upper and lower work rolls on the F7 stand were obtained, and these are shown in FIGS. 4 and 5, respectively.
Here, the “roll crown” is a roll crown of the work roll obtained by adding the thermal expansion amount and the wear amount of the work roll to the initial value of the work roll radius.
The amount of thermal expansion and wear of the work roll can be predicted and calculated based on the rolling history under the simulation conditions described above.
 図4および図5より幅狭の被圧延材の圧延本数が増加するのに伴い、ワークロールの摩耗が増加していることが分かる。これはロールクラウンがマイナス側に振れる原因であり、F7スタンドでのロールクラウンは、ロール摩耗に支配されて、図6に示すように幅端部に近づくにつれてロールクラウンがプラス側に振れることにはならず、エッジビルドアップ形成の要素はほとんど無い。 4 and 5, it can be seen that the wear of the work rolls increases with an increase in the number of rolled materials having a narrow width. This is the cause of the roll crown swinging to the minus side. The roll crown at the F7 stand is dominated by roll wear, and as shown in FIG. 6, the roll crown swings to the plus side as it approaches the width end. There is almost no element of edge buildup formation.
 一方、図6に圧延本数「50本」時のF5~F7スタンドの各スタンド別ロールクラウンを示すが、F5およびF6スタンドのロールクラウンがエッジにかけて増加している。
 この構成要素の一つであるサーマルクラウン(熱膨張量)を図7に示すが、この図7からF5およびF6スタンドのワークロールのサーマルクラウン(熱膨張量)はF7スタンドのワークロールのそれに比べて大きいことが分かる(なお、図7においてF5とF6の曲線はほとんど重なっている)。
 これは最終スタンドのF7スタンドでは、ワークロールにニッケルグレインロールが使用されているのに対して、F5、F6スタンドでは熱膨張率が比較的大きいハイスロールが使用されているためである。
On the other hand, FIG. 6 shows the roll crowns of the respective stands of the F5 to F7 stands when the number of rolling is “50”. The roll crowns of the F5 and F6 stands increase toward the edge.
FIG. 7 shows a thermal crown (thermal expansion amount) which is one of the constituent elements. From FIG. 7, the thermal crown (thermal expansion amount) of the work rolls of the F5 and F6 stands is compared with that of the work roll of the F7 stand. (In FIG. 7, the curves of F5 and F6 almost overlap).
This is because a nickel grain roll is used as a work roll in the F7 stand as the final stand, whereas a high-speed roll having a relatively high thermal expansion coefficient is used in the F5 and F6 stands.
 即ち幅戻り圧延における幅広の被圧延材のプロフィルの悪化の原因は、F5スタンドやF6スタンドの出側で発生したエッジビルドアップがF7スタンドのボックス型に摩耗したワークロールで圧延されて耳伸び形状となるメカニズムで発生したものと考えられる。
 そこで、以上の幅戻り圧延時のメカニズムを踏まえて、以下のシミュレーションを行い、F5およびF6スタンドのワークロールの熱膨張の影響を低減する手段を探求した。
In other words, the cause of the deterioration of the profile of the wide material to be rolled in the roll-back rolling is that the edge build-up generated on the exit side of the F5 stand or F6 stand is rolled by the work roll worn on the box shape of the F7 stand, and has an edge extension shape. It is thought that it was generated by the mechanism.
Therefore, based on the mechanism at the time of the width return rolling, the following simulation was performed to search for means for reducing the influence of thermal expansion of the work rolls of the F5 and F6 stands.
 図8に示す圧延条件でも、図1に示したものと同様に、7スタンドのタンデム型圧延機で、F5~F7の後段スタンドのワークロールをシフト上限値+150mm、下限値-150mm、シフトピッチ30mmでシフトして先行する幅1000mmの幅狭の被圧延材の圧延を50本行い、次いで(本数67本目で)幅1200mmの幅広の被圧延材の圧延を行った。
 本数67本目の幅1200mmの幅広の被圧延材の圧延では、図8に示すように、F5、F6スタンドのワークロールのシフト位置を一定ピッチのままシフトを続行した「0(現状設定値)」(▲印で表示)の圧延、およびシフト位置+150mm(◆印で表示)、+60mm(■印で表示)、-40mm(●印で表示)、-150mm(○印で表示)にそれぞれシフト位置を振って、シフト位置を変更して圧延の5つのケースについて、シミュレーションを行った。
Also in the rolling conditions shown in FIG. 8, in the same way as shown in FIG. 1, the work rolls of the subsequent stands of F5 to F7 are shifted to the upper limit value +150 mm, the lower limit value −150 mm, and the shift pitch 30 mm. Then, 50 rolls of the narrow rolled material having a width of 1000 mm were performed, followed by rolling of the wide rolled material having a width of 1200 mm (at the 67th number).
As shown in FIG. 8, in the rolling of the 67-th wide 1200 mm wide workpiece, as shown in FIG. 8, “0 (current setting value)” in which the shift position of the work rolls of the F5 and F6 stands was continued at a constant pitch. Rolling (displayed with ▲ mark) and shift position + 150mm (displayed with ♦ mark), + 60mm (displayed with ■ mark), -40mm (displayed with ● mark), -150mm (displayed with ◯ mark) respectively. Shaking and changing the shift position, simulations were performed for five cases of rolling.
 ワークロールのシフト位置の異なる上記の5つのケースについて、F7スタンド出側でのプロフィルを図9に示した。また、図10に、この5つのケースについて、F5スタンドのワークロールの熱膨張量の最大値を示した。
 図9から分かるように、サイクルシフト位置が-150mmのケースで最もプロフィルが改善されている。これは図10に示すように当シフト位置のF5のサーマルクラウンが最小になるためである。
FIG. 9 shows the profiles on the F7 stand exit side for the above five cases with different work roll shift positions. FIG. 10 shows the maximum thermal expansion amount of the work roll of the F5 stand for these five cases.
As can be seen from FIG. 9, the profile is most improved in the case where the cycle shift position is −150 mm. This is because the thermal crown of F5 at this shift position is minimized as shown in FIG.
 その理由を図11A~Cに基づいて示すと以下のとおりである。
 図11A~Cは、F5スタンドの圧延で想定される場合について、ワークロールのサーマルクラウンおよびその最大値(peak point)を被圧延材(strip)とともに示したものである。
 図11Aは、熱膨張量(サーマルクラウン)が最大となるpeak pointは板基準の中心付近に存在し、幅狭の被圧延材(幅800mm)を圧延するケースを示している。図11Bは、そこからサイクリックシフトの1ピッチ分がシフトし、かつ幅が広がった幅広の被圧延材(幅1000mm)の圧延をした場合、そして図11Cは、図11Bにおける圧延をワークロールのシフト位置を最大シフト量にシフトして行ったケースを示している。
The reason is as follows based on FIGS. 11A to 11C.
FIGS. 11A to 11C show the thermal crown of the work roll and its maximum value (peak point) together with the material to be rolled (strip) in the case assumed in the rolling of the F5 stand.
FIG. 11A shows a case where a peak point at which the thermal expansion amount (thermal crown) is maximized exists near the center of the plate reference and a narrow material to be rolled (width 800 mm) is rolled. FIG. 11B shows a case where a wide material to be rolled (width: 1000 mm) is rolled by shifting one pitch of the cyclic shift from there, and FIG. 11C shows the rolling of FIG. A case where the shift position is shifted to the maximum shift amount is shown.
 図11Aのケースでは、熱膨張量が最大となるpeak pointが板基準の中心(幅の1/2の部位)にあるが、幅狭の被圧延材を圧延する場合はサーマルクラウンによるクラウン量はほとんど被圧延材プロフィルには影響しない。しかし、幅広の被圧延材を圧延する図11Bのケースでは、peak pointの位置がほぼ変わらず、サーマルクラウンが成長した分、幅広の被圧延材の幅端部にはそのままサーマルクラウンが転写してエッジビルドアップとなる。 In the case of FIG. 11A, the peak point at which the amount of thermal expansion is the maximum is at the center of the plate (1/2 of the width), but when rolling a narrow material to be rolled, the crown amount by the thermal crown is Almost does not affect the rolled material profile. However, in the case of FIG. 11B in which a wide rolled material is rolled, the position of the peak point is not substantially changed, and the thermal crown is transferred to the wide end of the wide rolled material as much as the thermal crown grows. Edge build up.
 一方、幅広の被圧延材の圧延時にワークロールのシフト位置を、図11Bのサイクリックシフト予定の位置ではなく、最大シフト量の部位まで移動させた図11Cの場合、peak pointを圧延時に幅中心部から端部付近に移動させることができ、その結果、サーマルクラウンの転写を最小限に抑制できると考えられる。
 図9でシフトを+150mmにした場合はエッジビルドアップが改善していないが、これは直前のワークロールシフト動作が+150⇒+120⇒+90⇒+60⇒+30の順序のため、シフト位置のマイナス側域に比べてシフト位置のプラス側域にサーマルクラウンがより大きく存在したことにより効果が薄れたものである。
On the other hand, in the case of FIG. 11C in which the shift position of the work roll is moved not to the position where the cyclic shift is planned in FIG. 11B but to the portion of the maximum shift amount when rolling a wide material to be rolled, the peak point is set to the width center at the time of rolling. It is considered that the transfer of the thermal crown can be suppressed to the minimum as a result.
When the shift is set to +150 mm in FIG. 9, the edge buildup is not improved, but this is because the last work roll shift operation is + 150⇒ + 120⇒ + 90⇒ + 60⇒ + 30. In comparison, the effect was weakened by the presence of a larger thermal crown in the positive side region of the shift position.
 以上の分析を踏まえて、本発明では、幅戻り圧延などにおける幅狭の被圧延材の圧延に後続する幅広の被圧延材を圧延する際に、図12に示すステップ(1)~(8)により評価関数JΔCRを計算しサーマルクラウンの影響を最も小さくすることができる最適のワークロールシフト位置を決定する。以下にこの決定方法を説明する。
(1)ワークロールのシフト限界の計算
 圧延サイクルにおける被圧延材の幅や設備限界を考慮して、ワークロールのシフト限界値を計算する。
(2)ワークロールシフトピッチの決定
 圧延サイクルにおけるワークロールのサイクリックシフトのシフトピッチおよびサイクリックシフトからの変更限界を決定する。
(3)ワークロールシフト位置を変更(シフト下限~シフト上限)
 シフト下限値とシフト上限値の間において、ワークロールのシフト位置を決定する。
 なお、シフト下限値とシフト上限値は、以下の値を考慮して決定する。
  シフト上限値=MIN(サイクリックシフト上限、先行材位置+上下限値)
  シフト下限値=MAX(サイクリックシフト下限、先行材位置-上下限値)
(4)幅広の被圧延材を圧延する際のロールクラウン予測値の計算
 圧延サイクルの圧延履歴に基づいて、ワークロールの熱膨張量と摩耗量からロールクラウンの予測値CRを計算する。
(5)幅広の被圧延材を圧延する際のロールクラウン目標値の計算
 圧延サイクルの圧延履歴に基づいて、所定の式を設定してのロールクラウン目標値CR*を計算する。
(6)評価関数JΔCR(目標との誤差)を計算
 評価関数JΔCRは、上記の(4)、(5)で求めたロールクラウンの予測値と目標値とから、幅のエッジ部数箇所(例えば幅端部から25mm、75mm、150mmの3点)について下記の式より求める。
Figure JPOXMLDOC01-appb-M000002
 なお、ロールクラウンの目標値CRi*は、例えば幅方向の2次関数となるように設定して、計算して求めることができる(図13参照)。図13におけるCR0はワークロールシフト位置により変化する値であり、Widは被圧延材の幅である。
(7)全てのシフト位置で評価関数JΔCRを計算
 全てのシフト位置での評価関数を計算する。なお、シフト位置はサイクリックシフト圧延のピッチ幅よりも小さいピッチ幅(例えば5mm)で計算する。
 なお、図12における「全てのシフト位置で計算」における「No」はワークロールのシフトストローク可能な範囲でJΔCRを計算していない箇所がある場合を、同じく「Yes」はワークロールのシフトストローク可能な範囲において全てのJΔCRを計算した場合をそれぞれ指している。
(8)評価関数JΔCRが最小となるシフト位置に設定→終了(End)
 サイクリックシフトストロークが±150mm未満の設定の場合はその設定の範囲内でシフト位置を決定する。
Based on the above analysis, in the present invention, the steps (1) to (8) shown in FIG. 12 are performed when rolling the wide rolled material subsequent to the rolling of the narrow rolled material in the width return rolling or the like. To calculate the evaluation function J ΔCR and determine the optimum work roll shift position at which the influence of the thermal crown can be minimized . This determination method will be described below.
(1) Calculation of work roll shift limit The work roll shift limit value is calculated in consideration of the width of the material to be rolled and the equipment limit in the rolling cycle.
(2) Determination of work roll shift pitch The shift pitch of the work roll in the rolling cycle and the change limit from the cyclic shift are determined.
(3) Change work roll shift position (shift lower limit to shift upper limit)
A shift position of the work roll is determined between the shift lower limit value and the shift upper limit value.
The shift lower limit value and the shift upper limit value are determined in consideration of the following values.
Shift upper limit = MIN (cyclic shift upper limit, preceding material position + upper and lower limit values)
Shift lower limit = MAX (cyclic shift lower limit, preceding material position-upper and lower limit)
(4) Calculation of roll crown predicted value when rolling a wide material to be rolled Based on the rolling history of the rolling cycle, the roll crown predicted value CR is calculated from the thermal expansion amount and wear amount of the work roll.
(5) Calculation of roll crown target value when rolling a wide material to be rolled Based on the rolling history of the rolling cycle, a roll crown target value CR * is calculated by setting a predetermined formula.
(6) Calculate the evaluation function J ΔCR (error with respect to the target) The evaluation function J ΔCR is calculated from the roll crown predicted value and the target value obtained in the above (4) and (5). For example, it is obtained from the following formula for three points of 25 mm, 75 mm, and 150 mm from the width end.
Figure JPOXMLDOC01-appb-M000002
The roll crown target value CRi * can be calculated and set to be a quadratic function in the width direction, for example (see FIG. 13). In FIG. 13, CR0 is a value that varies depending on the work roll shift position, and Wid is the width of the material to be rolled.
(7) Calculate evaluation functions JΔCR at all shift positions. Calculate evaluation functions at all shift positions. The shift position is calculated with a pitch width (for example, 5 mm) smaller than the pitch width of cyclic shift rolling.
Note that “No” in “Calculate at all shift positions” in FIG. 12 indicates that there is a part where J ΔCR is not calculated within the possible range of the work roll shift stroke, and “Yes” similarly indicates the work roll shift stroke. This indicates the case where all J ΔCR are calculated within the possible range.
(8) The evaluation function J ΔCR is set to the minimum shift position → End (End)
When the cyclic shift stroke is set to be less than ± 150 mm, the shift position is determined within the setting range.
 このようにして、評価関数JΔCRが最小になるワークロールシフト位置、即ちエッジビルドアップが最小になる位置を決定することができる。
 このロジックを使用して、ワークロールシフトシフト最適位置を計算したシミュレーション結果を図14および図15に示す。
 シミュレーション条件は、図14に示したように、35本の被圧延材をシフト量30mmのサイクリックシフト法により圧延するスケジュールにおいて、幅1000mmの被圧延材を19本連続して圧延し、20本目の被圧延材の圧延では幅1200mmの板材、すなわち幅が200mm拡大した幅広の被圧延材の圧延を施し、次いで板幅1000mmの材料を15本連続して圧延した。
In this way, it is possible to determine the work roll shift position where the evaluation function J ΔCR is minimized, that is, the position where the edge buildup is minimized.
FIG. 14 and FIG. 15 show simulation results of calculating the work roll shift shift optimum position using this logic.
As shown in FIG. 14, the simulation conditions are as follows. In the schedule for rolling 35 rolled materials by a cyclic shift method with a shift amount of 30 mm, 19 rolled materials with a width of 1000 mm are continuously rolled, and the 20th In rolling the material to be rolled, a plate material having a width of 1200 mm, that is, a wide material to be rolled having a width of 200 mm was rolled, and then 15 materials having a plate width of 1000 mm were continuously rolled.
 図15Aに、20本目の被圧延材の圧延において、シフト位置(-150mm~+150mm)で評価関数JΔCRのシミュレーション結果を示した。
 図15Aから分かるように、プラス側のシフト位置+130mmでJΔCRが最小になっている。
 図15Bに本発明のロジックを適用したシミュレーション結果による圧延後のF7スタンド出側での幅端部の厚みプロフィルと従来のシフトピッチを変更しないサイクリックシフト圧延方法を適用した実績に基づく厚みのプロフィルとを示した。
 本発明のロジックを適用した幅広の被圧延材の幅方向のプロフィルでは、従来の圧延方法が適用されたもの(従来例)に比べて、エッジビルドアップが改善されていることが分かる。
FIG. 15A shows the simulation result of the evaluation function J ΔCR at the shift position (−150 mm to +150 mm) in the rolling of the 20th rolled material.
As can be seen from FIG. 15A, J ΔCR is minimized at the plus shift position +130 mm.
FIG. 15B shows a thickness profile based on the results of applying the conventional cyclic shift rolling method without changing the shift pitch and the thickness profile of the width end portion on the F7 stand exit side after rolling according to the simulation result of applying the logic of the present invention to FIG. And showed.
It can be seen that the edge buildup is improved in the profile in the width direction of the wide material to be rolled to which the logic of the present invention is applied, as compared with the conventional rolling method applied (conventional example).
 本発明を適用するのに最も効果的なワークロールのロール種別は、幅広の被圧延材の圧延時に問題となるサーマルクラウンが支配的で、ロール摩耗が少ないロールである。
 したがって、一般的に熱膨張係数の大きく摩耗が少ない特性を持つハイスロールを使用のスタンドでの実施が最も効果的であり、仕上げミル最終スタンドで多く利用されるニッケルグレインロールを使用するワークロールでは摩耗量が大きく上記の効果が減少する。
The most effective roll type of the work roll to which the present invention is applied is a roll in which the thermal crown which is a problem during rolling of a wide material to be rolled is dominant and roll wear is small.
Therefore, it is most effective to use a high-speed roll stand with a high coefficient of thermal expansion and low wear characteristics, and a work roll using a nickel grain roll, which is often used in the final stand of a finishing mill. The amount of wear is large and the above effect is reduced.
 本発明の決定方法から、本発明は幅戻り圧延における幅広の被圧延材の圧延のみならず、幅狭の被圧延材の圧延に後続する圧延が幅広の被圧延材である圧延の場合にも適用できることは明らかであるが、幅狭の被圧延材の圧延が連続して多数行われた後に幅広の被圧延材が圧延される場合により効果的である。
 被圧延材が鋼帯である場合、幅広の被圧延材の幅が先行する幅狭の被圧延材の幅よりも10~20%以上、好ましくは20%以上大きく、また幅狭の被圧延材の圧延が、連続して総圧延長にして5~10km以上、好ましくは10km以上行われる場合により効果的である。ここでの圧延長は被圧延材の長手方向(圧延方向)の長さである。
 また、上記のシミュレーションでは、F1~F7スタンドからなるタンデム型圧延機のF5、F6のスタンドに適用したが、本発明は、スタンド数がいかなるタンデム型圧延機にも、さらには、1基からなる単独スタンドの圧延機にも適用できることは明らかである。
 本発明の実施例を実機のタンデム型圧延機に以下のように適用して、その効果を確認した。
From the determination method of the present invention, the present invention is applicable not only to the rolling of a wide rolled material in the width return rolling, but also to the rolling in which the rolling subsequent to the rolling of the narrow rolled material is a wide rolled material. It is obvious that the present invention can be applied, but it is more effective in the case where a wide material to be rolled is rolled after a large number of rolling materials having a narrow width are continuously rolled.
When the material to be rolled is a steel strip, the width of the wide rolled material is 10 to 20% or more, preferably 20% or more larger than the width of the preceding narrow rolled material, and the narrow rolled material It is more effective when the rolling is continuously performed for a total rolling length of 5 to 10 km or more, preferably 10 km or more. The rolling length here is the length in the longitudinal direction (rolling direction) of the material to be rolled.
In the above simulation, the tandem type rolling mills F5 and F6 comprising F1 to F7 stands are applied. However, the present invention further includes one tandem type rolling mill having any number of stands. It is clear that the present invention can also be applied to a single stand rolling mill.
The effect of the embodiment of the present invention was confirmed by applying it to an actual tandem rolling mill as follows.
 F1~F7スタンドからなるタンデム型の仕上げ圧延機を有する熱間圧延ラインにて本発明を実施した。ワークロールシフト機構はF5~F7スタンドに備えられている。F5~F7スタンドの各スタンドの設備仕様を表1に示す。
 なお、F5、F6スタンドのワークロールにはハイスロールを、最終のF7スタンドにニッケルグレインロールをそれぞれ使用した。また、F1~F4スタンドでは、通常のクラウン制御が行われている。
The present invention was carried out in a hot rolling line having a tandem finish rolling mill consisting of F1 to F7 stands. The work roll shift mechanism is provided in the F5 to F7 stands. Table 1 shows the equipment specifications for each of the F5 to F7 stands.
A high-speed roll was used for the work rolls of the F5 and F6 stands, and a nickel grain roll was used for the final F7 stand. Further, normal crown control is performed at the F1 to F4 stands.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 F5~F7の3スタンドでは、ワークロールを被圧延材1本毎に一定のシフトピッチ30mmでシフトするサイクリックシフト圧延を行った。
 そして、本発明のワークロールシフト位置変更はF5、F6スタンドにおいて実施した。なお、F7スタンドのワークロールは摩耗大のためサイクリックシフト通りの設定である。
In the three stands F5 to F7, cyclic shift rolling was performed in which the work roll was shifted at a constant shift pitch of 30 mm for each material to be rolled.
And the work roll shift position change of this invention was implemented in F5 and F6 stand. The work roll of the F7 stand is set according to the cyclic shift because of large wear.
 被圧延材は中炭クラスの鋼帯であり、圧延サイクルにおける被圧延材の厚みと幅を図16に示した。
 本発明の上記のワークロールシフト位置変更は、139本目の被圧延材(図16において〇印で囲みを施したもの)、すなわち先行材よりも幅寸法が240mm大きい幅広の被圧延材について、実施した。
 この幅広の被圧延材の前には、30本の幅狭の被圧延材の圧延が連続して行われている。
 図17にF5スタンドのワークロールのシフト量を示した。
The material to be rolled is a medium-carbon steel strip, and the thickness and width of the material to be rolled in the rolling cycle are shown in FIG.
The above-mentioned work roll shift position change of the present invention is carried out on the 139th rolled material (enclosed with a circle in FIG. 16), that is, a wide rolled material whose width dimension is 240 mm larger than the preceding material. did.
In front of the wide material to be rolled, 30 narrow materials to be rolled are continuously rolled.
FIG. 17 shows the shift amount of the work roll of the F5 stand.
 図18に本発明を適用した本発明例について、F7スタンド出側での厚みプロフィルを、従来例の結果とともに示した。
 従来例では、F5~F7スタンドのワークロールはサイクリックシフト通りの設定である。
 圧延後の被圧延材について、エッジ部でのΔCRが従来例では25μmを超える30μm程度であるのに対して、本発明の本発明例ではΔCRが25μmを下回る10μm程度であった。
 このように、本発明によれば圧延後の被圧延材のエッジ部に発生するビルドアップ量を低減することができた。
FIG. 18 shows the thickness profile on the exit side of the F7 stand, together with the results of the conventional example, for the example of the present invention to which the present invention is applied.
In the conventional example, the work rolls of the F5 to F7 stands are set according to the cyclic shift.
Regarding the material to be rolled after rolling, ΔCR at the edge portion was about 30 μm exceeding 25 μm in the conventional example, whereas ΔCR was about 10 μm lower than 25 μm in the present invention example of the present invention.
Thus, according to the present invention, the build-up amount generated at the edge portion of the rolled material after rolling can be reduced.

Claims (4)

  1.  圧延サイクル内の被圧延材について、ワークロールを軸方向にシフトするシフト機構を備えた圧延機により、予め定めた折り返し位置の間を往復しながら一定ピッチで被圧延材1本毎にワークロールをシフトする金属帯の圧延方法において、先行する被圧延材よりも幅広の被圧延材を圧延する際に、予め定めたワークロールシフトの折り返し位置の間で、下記の式(1)により求まる評価関数JΔCRを最小にするように、ワークロールシフト位置を変更して圧延する金属帯の熱間圧延方法。
    Figure JPOXMLDOC01-appb-M000003
    About a material to be rolled in a rolling cycle, a work roll is provided for each material to be rolled at a constant pitch while reciprocating between predetermined folding positions by a rolling mill having a shift mechanism for shifting the work roll in the axial direction. In the rolling method of the metal strip to be shifted, when rolling a material to be rolled wider than the preceding material to be rolled, an evaluation function obtained by the following equation (1) between the turn-back positions of a predetermined work roll shift A hot rolling method for a metal strip that is rolled while changing the work roll shift position so as to minimize J ΔCR .
    Figure JPOXMLDOC01-appb-M000003
  2.  前記幅広の被圧延材の幅寸法が前記先行する被圧延材の幅寸法よりも10%以上大きく、かつ前記先行する被圧延材が連続して総圧延長にして5km以上圧延される請求項1に記載の金属帯の熱間圧延方法。 The width dimension of the wide rolled material is 10% or more larger than the width dimension of the preceding rolled material, and the preceding rolled material is continuously rolled to a total rolling length of 5 km or more. A method for hot rolling a metal strip as described in 1.
  3.  前記ワークロールを軸方向にシフトするシフト機構を備えたスタンドがタンデム型圧延機の1つ以上のスタンドに設けられている請求項1又は2に記載の金属帯の熱間圧延方法。 The method for hot rolling a metal strip according to claim 1 or 2, wherein a stand having a shift mechanism for shifting the work roll in the axial direction is provided on one or more stands of a tandem rolling mill.
  4.  前記ワークロールを軸方向にシフトするシフト機構を備えたスタンドのワークロールがハイスロールである請求項1~3のいずれか一項に記載の金属帯の熱間圧延方法。 The method of hot rolling a metal strip according to any one of claims 1 to 3, wherein a work roll of a stand provided with a shift mechanism for shifting the work roll in the axial direction is a high-speed roll.
PCT/JP2015/002401 2014-05-15 2015-05-12 Method for rolling metal strip WO2015174075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-101430 2014-05-15
JP2014101430A JP6044589B2 (en) 2014-05-15 2014-05-15 Metal strip rolling method

Publications (1)

Publication Number Publication Date
WO2015174075A1 true WO2015174075A1 (en) 2015-11-19

Family

ID=54479625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002401 WO2015174075A1 (en) 2014-05-15 2015-05-12 Method for rolling metal strip

Country Status (3)

Country Link
JP (1) JP6044589B2 (en)
TW (1) TW201603904A (en)
WO (1) WO2015174075A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824617B (en) * 2017-09-26 2019-06-21 北京科技大学 A kind of asynchronous roll shifting control method for hot continuous rolling downstream rack working roll

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225407A (en) * 1999-02-05 2000-08-15 Kawasaki Steel Corp Method for correcting predicting model of roll profile
JP2003305510A (en) * 1995-12-26 2003-10-28 Jfe Steel Kk Method for controlling continuous rolling mill
JP2013180334A (en) * 2012-03-02 2013-09-12 Jfe Steel Corp Rolling method of metal band

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305510A (en) * 1995-12-26 2003-10-28 Jfe Steel Kk Method for controlling continuous rolling mill
JP2000225407A (en) * 1999-02-05 2000-08-15 Kawasaki Steel Corp Method for correcting predicting model of roll profile
JP2013180334A (en) * 2012-03-02 2013-09-12 Jfe Steel Corp Rolling method of metal band

Also Published As

Publication number Publication date
JP2015217405A (en) 2015-12-07
TW201603904A (en) 2016-02-01
JP6044589B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US10639688B2 (en) Strip profile control method of hot finishing tandem rolling mill and hot finishing tandem rolling mill
CN107530748A (en) Method for manufacturing sheet metal strip
KR20110066216A (en) Method for providing at least one work roll for rolling rolling stock
JP6056718B2 (en) Metal strip rolling method
WO2015174075A1 (en) Method for rolling metal strip
JP5862248B2 (en) Metal strip rolling method
US11938528B2 (en) Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip
JP4986463B2 (en) Shape control method in cold rolling
JP5929328B2 (en) Metal strip rolling method
JP6645453B2 (en) Rolling method of metal strip
JP2010017751A (en) Method for manufacturing shape steel
JP4617929B2 (en) Hot rolled steel sheet rolling method
JP5862247B2 (en) Metal strip rolling method
JP2007268566A (en) Method for controlling shape in cold rolling
CN104209345B (en) Pass design method of continuous rolling machine
JP3244117B2 (en) Edge drop control method in sheet rolling
US11292039B2 (en) Method for producing H-shaped steel
JP7343779B2 (en) Manufacturing method of asymmetric H-beam steel with different left and right flange thickness
JP2019072757A (en) Leveling setting method of rolling mill, leveling setting device of rolling mill and manufacturing method of steel plate
JP2005296985A (en) Control method for plate crown shape and plate shape in plate rolling
JP5691948B2 (en) Tandem finish rolling mill, its operation control method, hot-rolled steel plate manufacturing apparatus, and hot-rolled steel plate manufacturing method
WO2013108418A1 (en) Method for manufacturing t-shaped steel and rolling equipment
JP6747256B2 (en) Method for manufacturing H-section steel
JP6172015B2 (en) Tapered steel sheet rolling method
JP2012176429A (en) Method for manufacturing hot-rolled steel strip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792088

Country of ref document: EP

Kind code of ref document: A1