WO2015174055A1 - 熱交換器及びそれを用いた冷却装置 - Google Patents

熱交換器及びそれを用いた冷却装置 Download PDF

Info

Publication number
WO2015174055A1
WO2015174055A1 PCT/JP2015/002343 JP2015002343W WO2015174055A1 WO 2015174055 A1 WO2015174055 A1 WO 2015174055A1 JP 2015002343 W JP2015002343 W JP 2015002343W WO 2015174055 A1 WO2015174055 A1 WO 2015174055A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat exchanger
refrigerant tube
plate fin
rectangular
Prior art date
Application number
PCT/JP2015/002343
Other languages
English (en)
French (fr)
Inventor
克則 堀井
砂田 正樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201590000566.2U priority Critical patent/CN207395551U/zh
Publication of WO2015174055A1 publication Critical patent/WO2015174055A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger in a household refrigerator, a commercial refrigerator, a showcase or the like, and a cooling device using the heat exchanger.
  • a dock bone type heat exchanger in which a serpentine-shaped aluminum refrigerant tube is inserted into a dogbone type long hole processed into a plate fin (see, for example, Patent Document 1 and Patent Document 2). .
  • FIG. 13 is a front view of a conventional heat exchanger
  • FIG. 14 is a side view of the conventional heat exchanger.
  • the heat exchanger 101a includes a refrigerant tube 102 in which a straight tube portion and a bent tube portion are continuously formed to form a plurality of rows and stages, and bent in a meandering manner at a predetermined pitch, and a rectangular shape. And a fin having a plurality of long holes 105 made of arcs provided on the short sides on both sides of the rectangular portion on the center surface of the plate.
  • a plurality of independent DB (DOG BONE, dogbone) plate fins 103a and a plurality of long holes 105 are provided on the center surface of the refrigerant tube every two rows, and a DB end fin 103b is provided on four or more rows of refrigerant tubes. ing.
  • a plurality of DB plate fins 103 a are arranged at intervals, a DB end fin 103 b is arranged in the vicinity of the curved pipe portion of the refrigerant tube 102, and the refrigerant tube 102 is fixed through the long hole 105. Further, as a through-fixing method, the refrigerant tube 102 is expanded by a hydraulic pressure and is closely fixed to the arc portion of the long hole 105.
  • the leading edge of the DB plate fins 103a appears many times in the row direction, that is, the air flow direction, and the heat transfer coefficient is maximized (boundary The leading edge effect).
  • the conventional heat exchanger 101a is improved in efficiency by the boundary layer leading edge effect.
  • the refrigerant tube 102 is expanded by a hydraulic pressure, and is firmly fixed to the arc portion of the long hole 105.
  • the pipe expansion is possible.
  • variations are absorbed and the adhesion between the refrigerant tube 102 and the long hole 105 is improved. That is, high efficiency is achieved by reducing the contact thermal resistance between the refrigerant tube 102 and the DB plate fin 103a.
  • the heat exchanger 101a can be made compact and the material cost can be rationalized by thinning the fin material.
  • the DB end fins 103b are arranged in the vicinity of the bent tube portion of the refrigerant tube 102, and the refrigerant tubes 102 are penetrated and fixed in the long holes 105, so that the shape of the heat exchanger of four or more rows of refrigerant tubes is maintained. .
  • the shape maintenance which the heat exchanger 101a which is only the structure of the DB plate fin 103a of the shape independent for every 2 rows becomes a subject is solved.
  • the dog bone type heat exchanger has an appropriate mixture of independent plate fins every two rows and plate fins integrated in four or more rows. Yes (see, for example, Patent Document 3).
  • FIG. 15 shows the conventional heat exchanger.
  • a conventional heat exchanger 101b shown in FIG. 15 is a dogbone heat exchanger, and includes four or more rows of meandered refrigerant tubes 102 and independent DB plate fins 103a for every two rows of refrigerant tubes.
  • DB end fins 103b are provided in four or more rows of refrigerant tubes.
  • a plurality of DB plate fins 103a and DB end fins 103b are arranged at a constant rate and spaced apart from each other, and the refrigerant tube 102 is fixed through the long hole (not shown).
  • a defrost heater 114 is disposed below the heat exchanger 101b.
  • the leading edge of the DB plate fins 103a appears many times in the row direction, that is, the air flow direction, and the heat transfer coefficient is maximized. That is, similar to the conventional heat exchanger 101a shown in FIGS. 13 and 14, the heat exchanger 101b is also highly efficient due to the boundary layer leading edge effect.
  • the DB plate fins 103a have independent shapes every two rows, the heat transfer area in the same arrangement space is smaller than the DB end fins 103b integrated in four or more rows, but the boundary layer leading edge effect As a result, higher efficiency is achieved.
  • the defrosting efficiency can be improved without reducing the heat exchange efficiency. That is, the heat of the defrost heater 114 disposed at the lower part of the heat exchanger 101b can be transferred to the DB end fin 103b and directly conducted to the upper part, so that the DB end fin 103b is configured at a specific ratio.
  • an improvement in heat exchange efficiency due to an increase in the heat transfer area and a decrease in heat exchange efficiency due to a decrease in the leading edge are balanced, and the defrosting efficiency can be improved without reducing the heat exchange efficiency.
  • the DB plate fins 103a have an independent shape at least every two rows, so the heat exchanger 101a is every two rows. It becomes independent, and the shape cannot be maintained as a heat exchanger unless the position is fixed with some fixture.
  • the shape of a heat exchanger having specifications of four or more rows is held using the DB end fin 103b, the DB end fin 103b is larger than the DB plate fin 103a, so that the processing mold becomes larger. It had the subject that it had to hold the metal mold
  • the DB plate fins 103a are independent every two rows, so there is heat conduction by the DB end fins 103b. Heat from the defrost heater 114 to be installed is not easily transmitted. For this reason, it has the subject that heating time becomes long and power consumption increases.
  • the ratio of the DB end fins 103b may be increased in order to improve the defrosting efficiency.
  • the ratio of the DB plate fins 103a is decreased, the boundary layer leading edge effect is reduced. The problem is that the heat exchange efficiency decreases and the heat exchange efficiency decreases.
  • the present invention compensates for the drawbacks of the conventional independent fin type heat exchanger, reduces the mold cost, improves the heat exchange efficiency and defrosting efficiency, saves energy, and improves the process quality. I will provide a.
  • the heat exchanger according to the present invention includes a refrigerant tube formed in a meandering manner at a predetermined pitch so that a plurality of rows and stages are formed in a straight tube portion and a bent tube portion continuously.
  • a DB (DOG BONE, dog bone) plate fin is provided in which a rectangular hole and a plurality of long holes made of arc portions provided on both short sides of the rectangular part are provided on the center surface of the plate.
  • an FB (FIST BONE, fistbone) plate fin provided with a plurality of semi-long holes consisting of a rectangular portion and a circular arc portion provided on one short side of the rectangular portion on the plate end surface, a rectangular portion and a rectangular portion on the center surface of the plate
  • Any of HB (HYBRID, hybrid) plate fins provided with a plurality of long holes made of circular arcs provided on the short sides on both sides and a rectangular part and a semi-long hole made of an arc part provided on one short side of the rectangular part on the plate end surface Or both.
  • a DB plate fin, an FB plate fin, an HB plate fin, or a combination of a plurality of both are arranged, and the refrigerant tube is fixed to the long hole and the semi-long hole.
  • the core plate of the heat exchanger can be obtained by combining DB plate fins, FB plate fins, HB plate fins, or both in the same refrigerant tube. Strength increases.
  • the FB plate fin or HB plate fin provided with a semi-long hole in the straight pipe portion where it is difficult to place the conventional DB plate fins increases the tube expansion strength when manufacturing the heat exchanger.
  • the heat of the defrost heater is transferred from the DB plate fin to the refrigerant tube, and from the refrigerant tube to the adjacent refrigerant tube via the FB plate fin or HB plate fin. It is transmitted directly to. Therefore, heat conduction is greatly promoted and defrosting efficiency is improved. Furthermore, since the boundary layer leading edge effect, which is an advantage of the independent fin, is maintained, cost performance is also improved.
  • FIG. 1 is a front view of a heat exchanger according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 3 is a front view of the DB plate fin according to the first embodiment of the present invention.
  • FIG. 4 is a front view of the FB plate fin according to the first embodiment of the present invention.
  • FIG. 5 is a front view of the heat exchanger according to the second embodiment of the present invention.
  • FIG. 6 is a front view of a heat exchanger according to the third embodiment of the present invention.
  • FIG. 7 is a front view of a heat exchanger according to the fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a cooling device according to the fourth embodiment of the present invention.
  • FIG. 9 is a front view of an HB plate fin according to the fifth embodiment of the present invention.
  • FIG. 10 is a front view of a heat exchanger according to the fifth embodiment of the present invention.
  • FIG. 11 is a front view of another DB plate fin according to the fifth embodiment of the present invention.
  • FIG. 12 is a side view of a heat exchanger in the sixth embodiment of the present invention.
  • FIG. 13 is a front view of a conventional heat exchanger.
  • FIG. 14 is a side view of a conventional heat exchanger.
  • FIG. 15 is a front view of another conventional heat exchanger.
  • FIG. 1 is a front view of a heat exchanger according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 3 is a front view of the DB plate fin according to the first embodiment of the present invention.
  • FIG. 4 is a front view of the FB plate fin according to the first embodiment of the present invention.
  • the heat exchanger 1 is a refrigerant tube that is bent in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in a curved pipe portion 2 a and a straight pipe portion 2 b. 2 is provided.
  • the heat exchanger 1 includes a DB (DOG BONE, dogbone) plate fin 3 in which a plurality of long holes 5 including a rectangular portion 5a and arc portions 5b provided on both short sides of the rectangular portion 5a are provided on the center surface of the plate. Prepare.
  • the heat exchanger 1 includes an FB (FIST BONE, fistbone) plate fin 4 provided with a plurality of semi-long holes 6 on the end surface of the rectangular portion 6a and a circular arc portion 6b provided on one short side of the rectangular portion 6a. Prepare.
  • FB FIST BONE, fistbone
  • the DB plate fins 3 and the FB plate fins 4 are independent for each of the two rows and two stages of the refrigerant tubes 2, and a plurality of the DB plate fins 3 and the FB plate fins 4 are arranged to be spaced from each other. Is fixed through.
  • the DB plate fins 3 and the FB plate fins 4 are arranged in combination for the same refrigerant tube 2.
  • the refrigerant tube 2 is a pipe body in which the refrigerant flows, and a single pipe body made of aluminum or aluminum alloy is bent to form a curved pipe portion 2a and a straight pipe portion 2b.
  • the refrigerant tube 2 is a serpentine tube bent in a meandering manner so as to be staggered in the step (left and right when viewed from the side) direction X and the column (up and down) direction Y, and is a connection that forms a curved pipe portion 2a.
  • One refrigerant flow path is formed without using a pipe.
  • the lead pipe 7 and the accumulator 8 are joined to the entrance / exit part of the refrigerant tube 2, and the piping which comprises a cooling device is connected to those tips.
  • the lead pipe 7 and the accumulator 8 are processed into various shapes according to the shape of the piping side to be attached.
  • the curved pipe portion 2a and the straight pipe portion 2b of the refrigerant tube 2 are inserted into the plate center surface of the independent DB plate fin 3 every two rows to form a block every two rows. Moreover, since the DB plate fins 3 and the FB plate fins 4 are arranged in combination with respect to the same refrigerant tube 2, the core strength of the heat exchanger 1 can be increased.
  • the FB plate fins 4 are arranged so as to straddle the blocks of every two rows of the DB plate fins 3, the shape of the heat exchanger 1 can be maintained, and the rigidity of the heat exchanger 1 becomes strong.
  • the DB plate fin 3 cannot be arranged in the straight pipe portion 2 b of the refrigerant tube 2 directly below them. Further, when the length of the straight tube portion 2b of the refrigerant tube 2 is shorter than the other rows due to the influence of the cooling device air path, air volume distribution, temperature / humidity distribution, frost distribution, etc., the DB plate fins 3 are also arranged. Some parts cannot be generated.
  • the FB plate fins 4 are arranged in the straight pipe portion 2b where the DB plate fins 3 are difficult to arrange. This reduces the risk of rupture in the hydraulic expansion process. That is, when the refrigerant tube 2 is expanded by injecting and pressurizing liquid inside the tube, the portion where the FB plate fins 4 are present is less likely to swell than the bare tube portion. Thus, the possibility of the refrigerant tube 2 bursting can be reduced.
  • the heat exchanger 1 can maintain the shape and increase the core strength by combining the DB plate fins 3 and the FB plate fins 4 because the heat exchanger 1 is not independent every two rows even in the case of specifications of four or more rows. . Further, since no extra mold is required, the mold cost can be reduced. Moreover, if the FB plate fins 4 are arranged in the straight pipe portion 2b where the DB plate fins 3 are difficult to arrange, the risk of rupture of the hydraulic pressure expansion pipe can be avoided.
  • the heat exchanger of the present embodiment compensates for the disadvantages of the independent fin type in the dog bone type heat exchanger having DB plate fins, reduces the die cost, improves the heat exchange efficiency and defrosting efficiency, and saves energy. Therefore, it is possible to provide a heat exchanger in which process quality is improved.
  • FIG. 5 is a front view of a heat exchanger according to the second embodiment of the present invention.
  • the same constituent elements as those in the first embodiment of the present invention will be described with the same reference numerals.
  • the heat exchanger 1 includes a refrigerant tube 2 bent in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in a curved pipe portion 2 a and a straight pipe portion 2 b, and a rectangular shape
  • a plurality of long holes 5 each having a circular arc part 5b provided on both short sides of the part 5a and the rectangular part 5a are provided in the center surface of the plate, and independent DB plate fins 3 (see FIG. 3) are provided for every two rows.
  • the heat exchanger 1 in this Embodiment arrange
  • the DB plate fin 3 cannot be arranged in the straight pipe portion 2 b of the refrigerant tube 2 directly below them. Further, when the length of the straight pipe portion 2b of the refrigerant tube 2 is shorter than the other columns due to the influence of the air path, the air volume distribution, the temperature / humidity distribution, the frost formation distribution of the cooling device, the DB plate fin 3 is also used. Some places cannot be placed.
  • the work hardening part 2c which is hardened before pipe expansion, is provided in the straight pipe part 2b in which the DB plate fins 3 are difficult to arrange, the risk of rupture in the hydraulic pipe expansion process is reduced.
  • Work hardening methods include twisting and bending back. By performing these processes on the work hardening part 2c before the pipe expansion, the work hardening part 2c is less likely to swell, so that the risk of rupture in the hydraulic pipe expanding process is reduced. That is, when the refrigerant tube 2 is expanded by injecting and pressurizing a liquid inside the tube, the work hardening portion 2c is less likely to swell than the straight tube portion 2b on which the DB plate fins 3 are arranged, so that the variation in expansion of the tube is large. Under these special conditions, it is possible to reduce the possibility of the refrigerant tube 2 bursting in the hydraulic expansion process.
  • FIG. 6 is a front view of a heat exchanger according to the third embodiment of the present invention.
  • the same constituent elements as those in the first embodiment to the second embodiment of the present invention will be described with the same reference numerals.
  • the heat exchanger 1 includes a refrigerant tube 2 that is bent in a meandering manner at a predetermined pitch so that a plurality of rows and steps are continuously formed in a curved pipe portion 2a and a straight pipe portion 2b, and a rectangular shape.
  • a plurality of long holes 5 each having a circular arc part 5b provided on both short sides of the part 5a and the rectangular part 5a are provided in the center surface of the plate, and independent DB plate fins 3 (see FIG. 3) are provided for every two rows.
  • the heat exchanger 1 has a plurality of DB plate fins 3 spaced apart from each other, penetrates the refrigerant tube 2 through the long hole 5, and is expanded and fixed by the hydraulic pressure injected into the pipe of the refrigerant tube 2. This is the configuration.
  • the straight tube portion 2b where the DB plate fins 3 are difficult to place is formed into a reduced diameter portion 2d smaller than the diameter of the refrigerant tube 2 due to the shape of the refrigerant tube 2 bent in a meandering manner. .
  • the DB plate fins 3 cannot be arranged in the straight pipe portion 2b of the refrigerant tube 2 directly below them. Further, when the length of the straight tube portion 2b of the refrigerant tube 2 is shorter than the other rows due to the influence of the cooling device air path, air volume distribution, temperature / humidity distribution, frost distribution, etc., the DB plate fins 3 are also arranged. Some parts cannot be generated.
  • the straight pipe portion 2b in which the DB plate fins 3 are difficult to place is made smaller than the diameter of the refrigerant tube 2, the risk of rupture in the hydraulic pressure expansion process is reduced.
  • a method of reducing the diameter there are a swaging process, a joining of a small diameter pipe, and the like.
  • the reduced diameter portion 2d becomes difficult to expand, and the risk of rupture in the hydraulic expansion process is reduced. That is, when the refrigerant tube 2 is expanded by injecting and pressurizing liquid inside the tube, the diameter-reduced portion 2d is less likely to swell than the straight tube portion 2b on which the DB plate fins 3 are arranged, so that the variation in expansion of the tube is large. In this special condition, it is possible to reduce the possibility of the refrigerant tube 2 bursting in the hydraulic expansion process.
  • the heat exchanger of the present embodiment since the diameter of the bare pipe portion of the straight pipe portion 2b is reduced, it is difficult to swell due to liquid pressure compared to other straight pipe portions, and also avoids the risk of rupture of the hydraulic pressure expansion pipe. it can. Therefore, the process quality is improved, the yield is also improved, and an economical heat exchanger can be provided.
  • the heat exchanger 1 is configured by connecting independent DB plate fins 3 every two rows.
  • the DB end fin 103b shown in the conventional example is used.
  • the FB plate fin 4 described in the first embodiment of the present invention may be used to maintain the shape and improve the rigidity. Thereby, the effect demonstrated in the 1st Embodiment of this invention can be acquired collectively.
  • the heat exchanger 1 demonstrated in the 2nd Embodiment of this invention and the 3rd Embodiment of this invention connected the DB plate fin 3 independently for the refrigerant
  • the refrigerant tubes 2 may be connected to the DB plate fins 3 independently in three or more rows.
  • FIG. 7 is a front view of a heat exchanger according to the fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a cooling device according to the fourth embodiment of the present invention.
  • the heat exchanger 1 includes the DB plate fins 3 independent for every two rows and the FB plate fins 4 independent for every two rows in the heat exchanger 1 described in the first embodiment of the present invention. Are appropriately arranged so as to conduct heat efficiently in the row direction from the DB plate fin 3 to the refrigerant tube 2 and from the refrigerant tube 2 to the FB plate fin 4.
  • the cooling device in the present embodiment uses the heat exchanger 1 of FIG. 7 as the evaporator 12, and includes a compressor 9, a condenser 10, a decompression device 11, an evaporator 12, A blower 13 disposed at the top of the evaporator 12 and a defrost heater 14 disposed at the bottom of the evaporator 12 are provided.
  • DB plate fins 3 are arranged in the first and second rows from the bottom, and FB plate fins 4 are arranged in the second and third rows.
  • the DB plate fins 3 are arranged in the third to fourth rows, the fifth to sixth rows, the seventh to eighth rows, and the ninth to tenth rows, and the fourth to fifth rows, the sixth to seventh rows, and the eighth to ninth rows.
  • the FB plate fins 4 are arranged in the rows. Further, the DB plate fins 3 and the FB plate fins 4 are alternately arranged in a good balance in the left-right direction of the heat exchanger 1.
  • the heat from the defrost heater 14 is directly transmitted from the DB plate fin 3 ⁇ the refrigerant tube 2 ⁇ the FB plate fin 4 ⁇ the refrigerant tube 2. Since the heat conduction is performed by the number of the DB plate fins 3 and the FB plate fins 4, the defrosting efficiency is improved greatly.
  • the DB plate fin 3 and the FB are arranged such that the DB plate fin 3 is in the first and second rows, the FB plate fin 4 is in the second and third rows, and the DB plate fin 3 is in the third to fourth rows.
  • Plate fins 4 are arranged alternately.
  • FIG. 9 is a front view of an HB plate fin according to the fifth embodiment of the present invention
  • FIG. 10 is a front view of a heat exchanger according to the fifth embodiment of the present invention
  • FIG. 11 is a fifth embodiment of the present invention. It is a front view of the other DB plate fin in the form.
  • the same constituent elements as those in the first to fourth embodiments of the present invention will be described with the same reference numerals.
  • the heat exchanger 21 is a refrigerant tube that is bent in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in the curved pipe portion 2 a and the straight pipe portion 2 b. 2 is provided. Further, the heat exchanger 21 includes a DB plate fin 3 in which a plurality of long holes 5 each including a rectangular portion 5a and a circular arc portion 5b provided on both short sides of the rectangular portion 5a are provided on the center surface of the plate, a rectangular portion 6a, and a rectangular portion. An FB plate fin 4 is provided in which a plurality of semi-long holes 6 each having a circular arc portion 6b provided on one short side of 6a are provided on the plate end surface.
  • the heat exchanger 21 is provided with a rectangular portion 26a and a semi-long hole 26 made of a circular arc portion 26b provided on one short side of the rectangular portion 26a on the plate end surface, and provided on both short sides of the rectangular portion 25a and the rectangular portion 25a.
  • HB (HYBRID, hybrid) plate fins 24 each provided with a plurality of long holes 25 each having a circular arc portion 25b on the center surface of the plate are provided.
  • the heat exchanger 21 has 10 rows of refrigerant tubes 2 arranged in the vertical direction.
  • the HB plate fins 24 straddling the refrigerant tubes 2 from the bottom row to the third row and the DB plate fins 3 straddling the refrigerant tubes 2 from the bottom row to the second row are arranged with a predetermined interval.
  • the DB plate fins 3 are arranged at a predetermined interval across the refrigerant tubes 2 in the third and fourth rows from the bottom row.
  • the FB plate fins 4 are arranged at a predetermined interval across the refrigerant tubes 2 in the fourth and fifth rows from the bottom row.
  • the DB plate fins 3 and the FB plate fins 4 are alternately arranged in two rows.
  • the HB plate fins 24 straddling the refrigerant tubes 2 from the uppermost row to the third row and the DB plate fins 3 straddling the refrigerant tubes 2 from the uppermost row to the second row are arranged with a predetermined interval. Has been.
  • the portion where the DB plate fins 3 cannot be arranged below the portion where the lead pipe 7 and the accumulator 8 are joined is the next row in order from the second row of refrigerant tubes 2 as shown on the right side of FIG.
  • the DB plate fins 3, the FB plate fins 4, and the HB plate fins 24 are efficiently arranged across.
  • the surface area of the plate fins can be maximized by the efficient arrangement of the HB plate fins 24 in addition to the operational effects of the heat exchanger described in the fourth embodiment of the present invention.
  • HB plate fins 24 straddling the three rows of refrigerant tubes, heat from a defrost heater (not shown) disposed at the lower part of the heat exchanger 21 can be efficiently conducted to the upper part.
  • the heat from the defrost heater 14 is transferred from the DB plate fin 3 and the HB plate fin 24 to the refrigerant tube 2 ⁇ the FB plate fin 4 ⁇ the refrigerant tube 2. It will be communicated directly. And since the heat conduction is performed for the number of the DB plate fins 3, the FB plate fins 4, and the HB plate fins 24, it is greatly promoted and the defrosting efficiency is further improved.
  • the number of rows of the refrigerant tubes 2 has been described as 10 even rows.
  • DB plate fins 23 as shown in FIG. 11 are used. May be.
  • the DB plate fin 23 is provided with a plurality of long holes 25 formed in the center surface of the rectangular portion 25a and arc portions 25b provided on both short sides of the rectangular portion 25a, and further provided with a long hole 27 in the horizontal direction below.
  • the DB plate fins 23 can arrange the refrigerant tubes 2 in three rows. Therefore, it is possible to save energy by improving the heat exchange efficiency and the defrosting efficiency of the heat exchanger in which the refrigerant tubes 2 are arranged in odd rows.
  • FIG. 12 is a side view of a heat exchanger according to the sixth embodiment of the present invention.
  • the same constituent elements as those in the first to fifth embodiments of the present invention will be described with the same reference numerals.
  • the heat exchanger 31 includes a refrigerant tube 2 that is bent in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in the curved pipe portion 2a and the straight pipe portion 2b. . Further, the heat exchanger 31 includes a rectangular plate 5 (see FIG. 3) having a plurality of long holes 5 formed on the center surface of the rectangular portion 5a and arc portions 5b provided on both short sides of the rectangular portion 5a, and a rectangular shape.
  • the FB plate fin 4 (refer FIG. 4) provided with multiple semi-long holes 6 which consist of the circular arc part 6b provided in the one side short side of the part 6a and the rectangular part 6a on the board end surface is provided.
  • the heat exchanger 31 has a rectangular portion 26a and a semi-long hole 26 formed of an arc portion 26b provided on one short side of the rectangular portion 26a on the plate end surface, and an arc provided on both short sides of the rectangular portion 25a and the rectangular portion 25a.
  • the HB plate fin 24 (refer FIG. 9) which provided the long hole 25 which consists of a part 25b in each plate center surface is provided.
  • An arc-shaped notch 32 is formed in a part of the end face of the DB plate fin 3, the FB plate fin 4, and the HB plate fin 24.
  • the notches 32 are provided at a predetermined pitch, and pipe heaters 33 are fitted into the notches 32.
  • the long side of the heat exchanger 1 is vertically arranged (airflow is in the vertical direction).
  • heat exchange is performed.
  • the long side of the vessel 31 is arranged in the horizontal direction (airflow is in the horizontal direction). Therefore, the freedom degree of arrangement
  • positioning of a heat exchanger can be raised.
  • the defrost heater 14 (for example, a radiant heater) as described in the fourth embodiment of the present invention is used as the heat exchanger 1. It is technically difficult to arrange in the lower part from the viewpoint of securing the defrosting performance. Therefore, in the present embodiment, arc-shaped cutout portions 32 are provided in part of the end surfaces of the DB plate fins 3, the FB plate fins 4, and the HB plate fins 24. The notches 32 are provided at a predetermined pitch, and pipe heaters 33 are fitted into the notches 32.
  • the pipe heater 33 is fitted to the notch 32 on the lower side of the heat exchanger 31, but the pipe heater 33 is fitted to the notch 32 on the lower and upper sides of the heat exchanger 31. May be combined. Thereby, optimal defrosting performance can be secured.
  • the heat exchanger described in the fifth to sixth embodiments of the present invention can be used.
  • the present invention includes a refrigerant tube formed in a meandering manner at a predetermined pitch so that a plurality of rows and steps are formed continuously in a curved pipe portion and a straight pipe portion.
  • a rectangular plate and a DB plate fin provided with a plurality of long holes formed on the short side of the rectangular part on the both sides of the rectangular part on the center surface of the plate, and a half formed of a circular arc provided on one side of the rectangular part and the rectangular part.
  • An FB plate fin provided with a plurality of long holes on the plate end surface is provided.
  • a plurality of DB plate fins and FB plate fins are arranged in combination, and the refrigerant tube is penetrated and fixed in the long hole and the half long hole.
  • boundary layer leading edge effect which is an advantage of independent fins, is maintained, so the cost performance is high.
  • the present invention includes a refrigerant tube that is formed in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in a straight pipe portion and a curved pipe portion.
  • the DB plate fin which provided the long hole which consists of a circular arc part provided in the both sides short side of a rectangular part and a rectangular part in the board center surface is comprised.
  • the provided HB plate fin is provided. Then, a plurality of DB plate fins and HB plate fins may be arranged in combination, and the refrigerant tube may be fixed through the long hole and the semi-long hole.
  • the core strength of the heat exchanger is increased by combining the DB plate fins and the HB plate fins in the same refrigerant tube.
  • the combination of the DB plate fins and the HB plate fins increases the degree of freedom in setting the number of stages of the refrigerant tubes.
  • the present invention includes a refrigerant tube that is formed in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in a straight pipe portion and a curved pipe portion.
  • the DB plate fin which provided the long hole which consists of a circular arc part provided in the both sides short side of a rectangular part and a rectangular part in the board center surface is comprised.
  • an FB plate fin provided with a plurality of semi-long holes formed on a rectangular edge and an arc portion provided on one short side of the rectangular portion on the plate end surface, and an arc provided on both short sides of the rectangular portion and the rectangular portion on the plate center surface
  • HB plate fins provided with a plurality of long holes made of a plurality of holes and a plurality of semi-long holes made of a circular arc part provided on one side short side of the rectangular part on the plate end surface.
  • the combination of the DB plate fin, the DB plate fin, and the HB plate fin further increases the degree of freedom in setting the number of stages of the refrigerant tubes.
  • the FB plate fin or the HB plate fin may be arranged in the straight pipe portion where the DB plate fin of the refrigerant tube is difficult to arrange.
  • the FB plate fin or HB plate fin provided with a semi-long hole is arranged in the straight pipe portion where it is difficult to arrange the conventional DB plate fin, thereby increasing the tube expansion strength at the time of manufacturing the heat exchanger. Therefore, the process quality can be improved and an economical heat exchanger can be provided.
  • the straight pipe portion in which the DB plate fin of the refrigerant tube is difficult to place may be work-hardened.
  • the bare pipe portion of the straight pipe portion is subjected to work hardening, so that the expansion strength at the time of manufacturing the heat exchanger is increased as compared with other straight pipe portions. Therefore, the process quality can be improved and an economical heat exchanger can be provided.
  • the diameter of the straight pipe portion where the DB plate fin of the refrigerant tube is difficult to arrange may be smaller than the diameter of the refrigerant tube.
  • the diameter of the bare pipe portion of the straight pipe portion is reduced, and the pipe expansion strength at the time of manufacturing the heat exchanger is increased compared to other straight pipe portions. Therefore, the process quality can be improved and an economical heat exchanger can be provided.
  • DB plate fins and FB plate fins or HB plate fins may be combined with the same refrigerant tube.
  • the present invention includes a refrigerant tube that is formed in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in a straight pipe portion and a curved pipe portion.
  • the DB plate fin which provided the long hole which consists of a circular arc part provided in the both sides short side of a rectangular part and a rectangular part in the board center surface is comprised.
  • a heat exchanger in which a refrigerant tube is passed through and fixed to a long hole of a DB plate fin arranged at a predetermined interval, and a straight pipe portion of a portion where the DB plate fin of a meandering refrigerant tube is difficult to arrange is provided. Work hardening may be performed.
  • the bare pipe portion of the straight pipe portion is subjected to work hardening, so that the expansion strength at the time of manufacturing the heat exchanger is increased as compared with other straight pipe portions. Therefore, the process quality can be improved and an economical heat exchanger can be provided.
  • the present invention includes a refrigerant tube that is formed in a meandering manner at a predetermined pitch so that a plurality of rows and stages are continuously formed in a straight pipe portion and a curved pipe portion.
  • the DB plate fin which provided the long hole which consists of a circular arc part provided in the both sides short side of a rectangular part and a rectangular part in the board center surface is comprised.
  • position is set. It may be smaller than the diameter.
  • the diameter of the bare pipe portion of the straight pipe portion is reduced, and the pipe expansion strength at the time of manufacturing the heat exchanger is increased compared to other straight pipe portions. Therefore, the process quality can be improved and an economical heat exchanger can be provided.
  • the present invention may be a cooling device including any of the heat exchangers of the present invention described above, a defrosting heater disposed at a lower portion of the heat exchanger, a compressor, a condenser, and a pressure reducing device.
  • boundary layer leading edge effect which is an advantage of independent fins, is also maintained, so the cost performance is increased.
  • both the heat exchange efficiency and the defrosting efficiency can be improved, and an environmentally friendly cooling device that can contribute to energy saving can be provided.
  • the heat exchanger of the present invention and the cooling device using the same compensate for the disadvantages of the independent fin type in the dog bone type heat exchanger, reduce the mold cost, improve the heat exchange efficiency and defrosting efficiency, and save energy. Can be planned. Furthermore, since it is economical that process quality can be improved, it can be widely used as a cooler or radiator for refrigeration equipment ranging from household use to industrial use such as refrigerators and vending machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Defrosting Systems (AREA)

Abstract

直管部(2b)及び曲管部(2a)が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブ(2)を具備する。また、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィン(3)と、矩形部および矩形部の片側短辺に設けた円弧部からなる半長孔を板端面に複数設けたFBプレートフィン(4)を具備する。また、DBプレートフィン(3)及びFBプレートフィン(4)を複数組み合わせて配置し、長孔及び半長孔に冷媒チューブ(2)を貫通固定させる。

Description

熱交換器及びそれを用いた冷却装置
 本発明は、家庭用冷蔵庫、業務用冷蔵庫、ショーケース等における熱交換器及びそれを用いた冷却装置に関する。
 近年、家庭用冷蔵庫において、外形寸法を変えず庫内容量を大きくするため、冷却装置の機能部品はコンパクト化、高効率化が要求されている。また、業務用冷蔵庫においても同様である。
 一方、原材料高騰により部品材料の合理化の要求も高まり、熱交換器の高性能化とともに、使用材料の合理化(薄肉化)が求められている。
 一例として、プレートフィンに加工されたドッグボーン型の長孔に、サーペンタイン状のアルミニウム製冷媒チューブを挿入したドックボーン式熱交換器が知られている(例えば、特許文献1、特許文献2参照)。
 図13は従来の熱交換器の正面図であり、図14は従来の熱交換器の側面図である。
 図13、図14において、熱交換器101aは、直管部及び曲管部が連続して複数の列および段が形成され、所定のピッチで蛇行状に曲げ加工された冷媒チューブ102と、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔105を板中央面に複数設けたフィンを有する。
 そして、2列ごとの冷媒チューブに、独立したDB(DOG BONE、ドッグボーン)プレートフィン103aと長孔105を板中央面に複数設けるとともに、4列以上の冷媒チューブに、DBエンドフィン103bを設けている。DBプレートフィン103aを相互に間隔を有して複数配置し、DBエンドフィン103bを冷媒チューブ102の曲管部近傍に配置し、長孔105に冷媒チューブ102を貫通固定させた構成である。また、貫通固定の方法は、冷媒チューブ102を液圧により拡管して長孔105の円弧部と密着固定させてある。
 以上のように構成された熱交換器101aについて、以下にその動作を説明する。
 まず、DBプレートフィン103aは2列ごとに独立した形状となっているため、列方向つまり気流方向に対し、DBプレートフィン103aの前縁が何度も現れ、熱伝達率が最大化する(境界層前縁効果と言う)。従来の熱交換器101aは、この境界層前縁効果により高効率化が図られている。
 また、冷媒チューブ102は液圧により拡管して長孔105の円弧部と密着固定されている。これにより、冷媒チューブ102の管径精度や曲げ精度などのバラツキにより、複数配置されたDBプレートフィン103aの長孔105への貫通時に冷媒チューブ102と長孔105の接触状態が悪くても、拡管時にバラツキを吸収して冷媒チューブ102と長孔105の密着性が向上する。つまり、冷媒チューブ102とDBプレートフィン103aとの接触熱抵抗の低減により高効率化が図られる。
 上記により、熱交換器101aはコンパクト化やフィン材の薄肉化による材料コストの合理化が図られる。
 また、DBエンドフィン103bが冷媒チューブ102の曲管部近傍に配置され、長孔105に冷媒チューブ102を貫通固定されたことにより、4列以上の冷媒チューブの熱交換器の形状は保持される。これにより、2列ごとに独立した形状のDBプレートフィン103aだけの構成である熱交換器101aが課題とする形状保持を解決している。
 一方、ドッグボーン式熱交換器は、除霜特性を改善して省エネルギー化を促進するために、2列ごとに独立したプレートフィンと4列以上で一体化したプレートフィンとを適度に混ぜるものがある(例えば、特許文献3参照)。
 図15に、その従来の熱交換器を示す。
 図15に示す従来の熱交換器101bは、ドッグボーン式熱交換器であり、4列以上の蛇行曲げされた冷媒チューブ102と、冷媒チューブ2列ごとに、独立したDBプレートフィン103aを具備し、4列以上の冷媒チューブに、DBエンドフィン103bを具備している。
 DBプレートフィン103aとDBエンドフィン103bを一定の割合で複数相互に間隔を有して配置し、長孔(図示せず)に冷媒チューブ102を貫通固定させている。熱交換器101bの下部には除霜ヒータ114が配置されている。
 以上のように構成された熱交換器101bについて、以下にその動作を説明する。
 DBプレートフィン103aは2列ごとに独立した形状であるため、列方向、つまり気流方向に対し、DBプレートフィン103aの前縁が何度も現れ、熱伝達率が最大化する。すなわち、図13、図14に示した従来の熱交換器101aと同様に、熱交換器101bも境界層前縁効果により高効率化が図られている。
 つまり、DBプレートフィン103aが2列ごとに独立した形状であるため、4列以上で一体化したDBエンドフィン103bよりも、同じ配置スペース内での伝熱面積は少ないが、境界層前縁効果により高効率化が図られている。
 したがって、冷却器としての熱交換効率を考えればDBプレートフィン103aだけで熱交換器を構成すればコストパフォーマンスが高くなる。
 一方、DBプレートフィン103aだけで熱交換器を構成すれば、除霜時における下部から上部への熱伝導が悪く除霜効率が低下する。しかし、DBエンドフィン103bを特定の割合で混ぜることにより、熱交換効率を低下させずに、除霜効率を向上させることができる。すなわち、熱交換器101bの下部に配置された除霜ヒータ114の熱が、DBエンドフィン103bを伝熱し上部に直接熱伝導させることができるので、DBエンドフィン103bを特定の比率で構成することで、伝熱面積が増えることによる熱交換効率の向上と前縁が減ることによる熱交換効率の低下とがバランスし、熱交換効率を低下させずに、除霜効率を向上させることができる。
 しかしながら、従来の熱交換器101aの構成では、熱交換器が4列以上の仕様の場合、DBプレートフィン103aが少なくとも2列ごとに独立した形状であるため、熱交換器101aは2列ごとに独立してしまい、何らかの固定具で位置固定しないと熱交換器として形状を保持できない。また、4列以上の仕様の熱交換器を、DBエンドフィン103bを使って形状を保持する場合、DBエンドフィン103bはDBプレートフィン103aに比べ大きいので、加工用の金型も大きくなり、そのサイズごとに金型を保有しなければならずコストアップになるという課題を有していた。
 また、列ごとに冷媒チューブ102の直管部長さが違う場合、冷媒チューブ102がDBプレートフィン103aの円弧部に接触固定できない箇所が発生し液圧拡管工程での破裂リスクが高くなる。すなわち、管内側に液体を注入して加圧することで冷媒チューブ102を拡管する場合、DBプレートフィン103aが存在する箇所は膨らみにくく、存在しない箇所が膨らみやすい。したがって、液圧拡管工程で冷媒チューブ102が破裂する可能性があり工程品質が低下するという課題を有していた。
 また、従来の熱交換器101aの構成では、冷媒チューブ102が4列以上の場合、DBプレートフィン103aが2列ごとに独立しているため、DBエンドフィン103bによる熱伝導があるが、下部に設置する除霜ヒータ114からの熱が伝わりにくい。このため、加熱時間が長くなり消費電力量が増えるという課題を有していた。
 また、従来の熱交換器101bの構成では、除霜効率を向上させるには、DBエンドフィン103bの比率を高めればよいが、DBプレートフィン103aの比率が低下するので、境界層前縁効果が少なくなり、熱交換効率が低下してしまうという課題を有していた。
 本発明は、従来の独立フィンタイプの熱交換器の欠点を補い、金型コストの低減を図り、熱交換効率と除霜効率の向上と省エネを図り、工程品質の向上も図った熱交換器を提供する。
特開平04-086491号公報 特開2007-093036号公報 特開2010-261678号公報
 本発明の熱交換器は、直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブを具備する。また、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDB(DOG BONE、ドッグボーン)プレートフィンを具備する。加えて、矩形部および矩形部の片側短辺に設けた円弧部からなる半長孔を板端面に複数設けたFB(FIST BONE、フィストボーン)プレートフィン、板中央面に矩形部および矩形部の両側短辺に設けた円弧部からなる長孔と板端面に矩形部および矩形部の片側短辺に設けた円弧部からなる半長孔とを複数設けたHB(HYBRID、ハイブリッド)プレートフィンのいずれか、または両方を具備する。そして、DBプレートフィンと、FBプレートフィン、HBプレートフィンのいずれか、または両方を複数組み合わせて配置し、長孔及び半長孔に冷媒チューブを貫通固定させる。
 これにより、冷媒チューブが多数列配置された熱交換において、同一の冷媒チューブにDBプレートフィンと、FBプレートフィンあるいはHBプレートフィンのいずれか、または両方が組合わされることで、熱交換器のコア強度が高まる。
 さらに、冷媒チューブを多数貫通固定するDBエンドフィン用の余分な大型の金型も不要で金型コストも低減できる。
 また、従来のDBプレートフィンが配置困難な直管部に半長孔を備えているFBプレートフィンあるいはHBプレートフィンが配置されることで、熱交換器製造時の拡管強度が高まる。
 また、熱交換器の下部に除霜ヒータが配置された場合、除霜ヒータの熱が、DBプレートフィンから冷媒チューブへ、そして冷媒チューブからFBプレートフィンあるいはHBプレートフィンを介して隣接する冷媒チューブへと直接的に伝わる。したがって熱伝導が大幅に促進され除霜効率も良くなる。さらに独立フィンの利点である境界層前縁効果も維持されるのでコストパフォーマンスも高くなる。
図1は、本発明の第1の実施の形態における熱交換器の正面図である。 図2は、本発明の第1の実施の形態における熱交換器の側面図である。 図3は、本発明の第1の実施の形態におけるDBプレートフィンの正面図である。 図4は、本発明の第1の実施の形態におけるFBプレートフィンの正面図である。 図5は、本発明の第2の実施の形態における熱交換器の正面図である。 図6は、本発明の第3の実施の形態における熱交換器の正面図である。 図7は、本発明の第4の実施の形態における熱交換器の正面図である。 図8は、本発明の第4の実施の形態における冷却装置の模式図である。 図9は、本発明の第5の実施の形態におけるHBプレートフィンの正面図である。 図10は、本発明の第5の実施の形態における熱交換器の正面図である。 図11は、本発明の第5の実施の形態における他のDBプレートフィンの正面図である。 図12は、本発明の第6の実施の形態における熱交換器の側面図である。 図13は、従来の熱交換器の正面図である。 図14は、従来の熱交換器の側面図である。 図15は、従来の別の熱交換器の正面図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。
 (第1の実施の形態)
 図1は本発明の第1の実施の形態における熱交換器の正面図である。図2は本発明の第1の実施の形態における熱交換器の側面図である。図3は本発明の第1の実施の形態におけるDBプレートフィンの正面図である。図4は本発明の第1の実施の形態におけるFBプレートフィンの正面図である。
 図1から図4において、熱交換器1は、曲管部2a及び直管部2bが連続して複数の列および段が形成されるように所定のピッチで蛇行状に曲げ加工された冷媒チューブ2を備える。また、熱交換器1は、矩形部5aおよび矩形部5aの両側短辺に設けた円弧部5bからなる長孔5を板中央面に複数設けたDB(DOG BONE、ドッグボーン)プレートフィン3を備える。さらに、熱交換器1は、矩形部6aおよび矩形部6aの片側短辺に設けた円弧部6bからなる半長孔6を板端面に複数設けたFB(FIST BONE、フィストボーン)プレートフィン4を備える。
 DBプレートフィン3、FBプレートフィン4は、冷媒チューブ2の2列2段ごとに独立したもので、それぞれ複数相互に間隔を有して配置し、長孔5及び半長孔6に冷媒チューブ2を貫通固定させている。
 また、同一の冷媒チューブ2に対して、DBプレートフィン3とFBプレートフィン4を組み合わせて配置している。
 冷媒チューブ2は、内部を冷媒が流動する管体で、アルミ製あるいはアルミ合金製の一本の管体を折り曲げ、曲管部2aと直管部2bを形成する。また、冷媒チューブ2は、段(側面から見て左右)方向Xおよび列(上下)方向Yにおいて千鳥状になるよう蛇行状に曲げ加工されたサーペンタインチューブであり、曲管部2aを形成する接続管を用いることなく一本の冷媒流路を形成している。
 冷媒チューブ2の出入口部には、リードパイプ7やアキュムレータ8が接合されており、それらの先には冷却装置を構成する配管が接続される。リードパイプ7やアキュムレータ8は取付ける配管側の形状にあわせてさまざまな形に加工される。
 以上のように構成された熱交換器1について、以下その動作、作用を説明する。
 まず、冷媒チューブ2の曲管部2aと直管部2bは、2列ごとに独立したDBプレートフィン3の板中央面に挿入されており、2列ごとのブロックを形成している。また、同一の冷媒チューブ2に対して、DBプレートフィン3とFBプレートフィン4を組み合わせて配置しているので、熱交換器1のコア強度を高めることができる。
 すなわち、FBプレートフィン4がDBプレートフィン3の2列ごとのブロックを跨ぐように配置しているため、熱交換器1の形状を保持でき、熱交換器1の剛性が強くなる。
 また、図13、図15に示すように従来の熱交換器101aのDBエンドフィン103bのような一体化したプレートフィンを使用すれば、形状を保持することができる。しかし、DBエンドフィン103bはFBプレートフィン4に比べ大きいので、加工用の金型も大きくなり、コストアップになる。その上熱交換器サイズ(段数、列数)が変われば、それぞれ金型を保有しなければならないのでコストアップになる。しかし本実施の形態で示したFBプレートフィンを使えば1種類のフィンで熱交換器サイズが変わっても対応でき、金型コストを低減できる。
 また、図1のようなリードパイプ7やアキュムレータ8の配置状態の場合、これらの真下にある冷媒チューブ2の直管部2bは、DBプレートフィン3を配置できない。また、冷却装置の風路や風量分布、温湿度の分布、着霜分布などの影響で、冷媒チューブ2の直管部2b長さが他の列よりも短い場合、やはりDBプレートフィン3を配置できない箇所が発生する。
 このようなDBプレートフィン3が配置困難な部分の直管部2bであっても、半長孔6を備えているFBプレートフィン4であれば配置することができる。本実施の形態の熱交換器1はDBプレートフィン3が配置困難な部分の直管部2bにFBプレートフィン4が配置されている。これにより、液圧拡管工程での破裂リスクが低減される。つまり、管内側に液体を注入して加圧することで冷媒チューブ2を拡管する場合、FBプレートフィン4が存在する箇所は裸管部に比べ膨らみ難いので、拡管バラツキが大きい場合、液圧拡管工程で冷媒チューブ2が破裂する可能性を低減できる。
 このように、熱交換器1は、DBプレートフィン3とFBプレートフィン4を組合せることで、4列以上の仕様の場合でも2列ごとに独立しないため、形状を保持できコア強度が高くなる。さらに、余分な金型も必要としないので金型コストも低減できる。また、DBプレートフィン3が配置困難な直管部2bに、FBプレートフィン4を配置すれば、液圧拡管破裂リスクも回避できる。
 また、この熱交換器の下部に除霜ヒータを設けた場合、除霜ヒータの熱が、DBプレートフィン3から冷媒チューブ2へ伝わり、そして冷媒チューブ2からFBプレートフィン4を介して隣接する冷媒チューブ2へと直接的に伝わる。この熱伝導がDBプレートフィン3、FBプレートフィン4のそれぞれで行われるので熱伝導が大幅に促進され除霜効率が良くなる。
 しかも独立フィンの利点である境界層前縁効果も維持されるので熱交換効率が高くコストパフォーマンスも高くなる。
 本実施の形態の熱交換器は、DBプレートフィンを有するドッグボーン型熱交換器における独立フィンタイプの欠点を補い、金型コストの低減を図り、熱交換効率と除霜効率の向上及び省エネを図り、工程品質の向上も図った熱交換器を提供することができる。
 (第2の実施の形態)
 図5は本発明の第2の実施の形態における熱交換器の正面図である。なお、本発明の第1の実施の形態と同様の構成要件については、同一の符号を付して説明する。
 図5において、熱交換器1は、曲管部2a及び直管部2bが連続して複数の列および段が形成されるよう所定のピッチで蛇行状に曲げ加工された冷媒チューブ2と、矩形部5aおよび矩形部5aの両側短辺に設けた円弧部5bからなる長孔5を板中央面に複数設け、2列ごとに独立したDBプレートフィン3(図3参照)を具備している。
 そして、本実施の形態における熱交換器1は、DBプレートフィン3を複数相互に間隔を有して配置し、長孔5に冷媒チューブ2を貫通させ、冷媒チューブ2の管内に注入した液圧により拡管して固定した構成である。そして、蛇行状に曲げ加工された冷媒チューブ2の形状により、DBプレートフィン3が配置困難な部分の直管部2bを、拡管前に加工硬化させた加工硬化部2cを設けたものである。
 以上のように構成された熱交換器の動作、作用を、以下に説明する。
 図5のようなリードパイプ7やアキュムレータ8の配置状態の場合、これらの真下にある冷媒チューブ2の直管部2bは、DBプレートフィン3を配置できない。また、冷却装置の風路や風量分布、温湿度の分布、着霜分布などの影響で、冷媒チューブ2の直管部2bの長さが他の列よりも短い場合、やはりDBプレートフィン3を配置できない箇所が発生する。
 このようなDBプレートフィン3が配置困難な直管部2bに、拡管前に加工硬化させた加工硬化部2cを設ければ、液圧拡管工程での破裂リスクが低減される。
 加工硬化の方法としては、ひねり加工や曲げ戻し加工などがある。これらの加工を拡管前に加工硬化部2cに施すことで、加工硬化部2cが膨らみ難くなるので液圧拡管工程での破裂リスクが低減される。つまり、管内側に液体を注入して加圧することで冷媒チューブ2を拡管する場合、加工硬化部2cはDBプレートフィン3が配置された直管部2bよりも膨らみ難いので、拡管バラツキが大きいなどの特殊な条件において、液圧拡管工程で冷媒チューブ2が破裂する可能性を低減できる。
 このようにこの熱交換器では、直管部2bの裸管部分を加工硬化しているため、他の直管部分に比べ液圧により膨らみ難いなり、液圧拡管破裂リスクも回避できる。よって、工程品質が向上し歩留まりも改善可能な経済的な熱交換器を提供することができる。
 (第3の実施の形態)
 図6は本発明の第3の実施の形態における熱交換器の正面図である。なお、本発明の第1の実施の形態ないし本発明の第2の実施の形態と同様の構成要件については、同一の符号を付して説明する。
 図6において、熱交換器1は、曲管部2a及び直管部2bが連続して複数の列および段が形成されるよう所定のピッチで蛇行状に曲げ加工された冷媒チューブ2と、矩形部5aおよび矩形部5aの両側短辺に設けた円弧部5bからなる長孔5を板中央面に複数設け、2列ごとに独立したDBプレートフィン3(図3参照)を具備している。
 そして、熱交換器1は、DBプレートフィン3を複数相互に間隔を有して配置し、長孔5に冷媒チューブ2を貫通させ、冷媒チューブ2の管内に注入した液圧により拡管して固定した構成である。そして、蛇行状に曲げ加工された冷媒チューブ2の形状により、DBプレートフィン3が配置困難な部分の直管部2bを、冷媒チューブ2の径よりも小さくした縮径部2dとしたものである。
 以上のように構成された熱交換器の動作、作用を、以下に説明する。
 図6のようなリードパイプ7やアキュムレータ8の配置状態の場合、これらの真下にある冷媒チューブ2の直管部2bは、DBプレートフィン3を配置できない。また、冷却装置の風路や風量分布、温湿度の分布、着霜分布などの影響で、冷媒チューブ2の直管部2b長さが他の列よりも短い場合、やはりDBプレートフィン3を配置できない箇所が発生する。
 このようなDBプレートフィン3が配置困難な直管部2bを、冷媒チューブ2の径よりも小さくすれば、液圧拡管工程での破裂リスクが低減される。細径化の方法としては、スウェージング加工、細径管を接合するなどがある。
 拡管前にこれらの方法で縮径部2dを形成することで、縮径部2dが膨らみ難くなり液圧拡管工程での破裂リスクが低減される。つまり、管内側に液体を注入して加圧することで冷媒チューブ2を拡管する場合、縮径部2dはDBプレートフィン3が配置された直管部2bよりも膨らみ難いので、拡管バラツキが大きいなどの特殊な条件においては、液圧拡管工程で冷媒チューブ2が破裂する可能性を低減できる。
 このように、本実施の形態の熱交換器は、直管部2bの裸管部分は縮径されているため、他の直管部分に比べ液圧により膨らみ難く、液圧拡管破裂リスクも回避できる。よって、工程品質が向上し、歩留まりも改善され経済的な熱交換器を提供することができる。
 なお、本発明の第2の実施の形態及び本発明の第3の実施の形態で説明した熱交換器は、2列ごとに独立したDBプレートフィン3を連結して熱交換器1を構成し、その形状を保持するため、従来例で示したDBエンドフィン103bを用いたもので説明した。しかし、DBエンドフィン103bを用いずに本発明の第1の実施の形態で説明したFBプレートフィン4に置き換えて形状保持し剛性を向上させてもよい。これにより、本発明の第1の実施の形態で説明した効果を併せて得ることができる。
 また、本発明の第2の実施の形態及び本発明の第3の実施の形態で説明した熱交換器1は、冷媒チューブ2を2列ごとに独立してDBプレートフィン3を連結したもので説明したが、冷媒チューブ2を3列以上で独立してDBプレートフィン3を連結したものとしてもよい。
 (第4の実施の形態)
 図7は本発明の第4の実施の形態における熱交換器の正面図である。図8は本発明の第4の実施の形態における冷却装置の模式図である。
 図7において、熱交換器1は、本発明の第1の実施の形態に記載の熱交換器1において、2列ごとに独立したDBプレートフィン3と、2列ごとに独立したFBプレートフィン4とを、DBプレートフィン3から冷媒チューブ2、冷媒チューブ2からFBプレートフィン4へと列方向に、効率よく熱伝導するよう適切に配置したものである。
 図8において、本実施の形態における冷却装置は、図7の熱交換器1を蒸発器12として用いたもので、圧縮機9と、凝縮器10と、減圧装置11と、蒸発器12と、蒸発器12の上部に配置した送風機13と、蒸発器12の下部に配置した除霜ヒータ14とを備えている。
 以上のように構成された熱交換器及びそれを用いた冷却装置の動作、作用を、以下に説明する。
 熱交換器1は、下部から1~2列目にDBプレートフィン3が配置され、2~3列目にFBプレートフィン4が配置されている。同様に、3~4列目、5~6列目、7~8列目、9~10列目にDBプレートフィン3が配置され、4~5列目、6~7列目、8~9列目にFBプレートフィン4が配置されている。さらに、DBプレートフィン3とFBプレートフィン4は熱交換器1の左右方向に交互にバランス良く配設されている。
 図8において、熱交換器1を組み込んだ冷却装置においては、熱交換器1の下部に配置した除霜ヒータ14からの熱を効率よく上部へ伝導させることができる。
 すなわち、本発明の第1の実施の形態でも説明したように、除霜ヒータ14からの熱は、DBプレートフィン3→冷媒チューブ2→FBプレートフィン4→冷媒チューブ2へと直接的に伝わっていき、その熱伝導がDBプレートフィン3、FBプレートフィン4の枚数分行われることになるので大幅に促進されることになり除霜効率も良くなる。
 特に、本実施の形態では、1~2列目にDBプレートフィン3、2~3列目にFBプレートフィン4、3~4列目にDBプレートフィン3というように、DBプレートフィン3とFBプレートフィン4を交互に配置している。これにより、DBプレートフィン3、冷媒チューブ2、FBプレートフィン4、冷媒チューブ2へと直接的に伝わる熱を途切れさせることなく連続的、かつ確実に熱伝導させることができ、除霜効率を一段と向上させることができる。
 そして、独立フィンの利点である境界層前縁効果も維持されるので熱交換効率が高くコストパフォーマンスも高くなる。したがって、熱交換効率と除霜効率を共に向上させて、省エネに寄与できる環境にやさしい熱交換器と冷却装置を提供することができる。
 なお、本実施の形態では、図7に示す熱交換器を組み込んだ冷却装置の場合を説明したが、本発明の第1~第3の実施の形態に示す熱交換器を組み込んだ冷却装置としてもよく、この場合は各熱交換器が有する効果を奏する冷却装置とすることができる。
 (第5の実施の形態)
 図9は本発明の第5の実施の形態におけるHBプレートフィンの正面図、図10は本発明の第5の実施の形態における熱交換器の正面図、図11は本発明の第5の実施の形態における他のDBプレートフィンの正面図である。なお、本発明の第1~第4の実施の形態と同様の構成要件については、同一の符号を付して説明する。
 図9、図10において、熱交換器21は、曲管部2a及び直管部2bが連続して複数の列および段が形成されるように所定のピッチで蛇行状に曲げ加工された冷媒チューブ2を備える。また、熱交換器21は、矩形部5aおよび矩形部5aの両側短辺に設けた円弧部5bからなる長孔5を板中央面に複数設けたDBプレートフィン3と、矩形部6aおよび矩形部6aの片側短辺に設けた円弧部6bからなる半長孔6を板端面に複数設けたFBプレートフィン4を備える。さらに、熱交換器21は矩形部26aおよび矩形部26aの片側短辺に設けた円弧部26bからなる半長孔26を板端面に設け、矩形部25aおよび矩形部25aの両側短辺に設けた円弧部25bからなる長孔25を板中央面にそれぞれ複数設けたHB(HYBRID、ハイブリッド)プレートフィン24を備える。
 熱交換器21は、上下方向に冷媒チューブ2が10列配置されている。最下列から3列目までの冷媒チューブ2に跨るHBプレートフィン24と、最下列から2列目までの冷媒チューブ2に跨るDBプレートフィン3とが所定の間隔を有して配置されている。
 最下列から3列目と4列目の冷媒チューブ2に跨ってDBプレートフィン3が所定の間隔を有して配置されている。
 最下列から4列目と5列目の冷媒チューブ2に跨ってFBプレートフィン4が所定の間隔を有して配置されている。
 同様に、2列ずつDBプレートフィン3とFBプレートフィン4とが交互に配置されている。
 そして、上部は、最上列から3列目までの冷媒チューブ2に跨るHBプレートフィン24と最上列から2列目までの冷媒チューブ2に跨るDBプレートフィン3とが所定の間隔を有して配置されている。
 なお、リードパイプ7やアキュムレータ8が接合された部分の下方でDBプレートフィン3が配置できない部分は、図10の右側に示すように、最上列から2列目の冷媒チューブ2から順に次の列に跨ってDBプレートフィン3とFBプレートフィン4とHBプレートフィン24が効率的に配置される。
 上記構成により、本発明の第4の実施の形態で説明した熱交換器の作用効果に加え、HBプレートフィン24の効率的配置により、プレートフィンの表面積を最大化することができる。
 また、3列の冷媒チューブに跨るHBプレートフィン24を用いることにより、熱交換器21の下部に配置した除霜ヒータ(図示せず)からの熱を効率よく上部へ伝導させることができる。
 すなわち、本発明の第1の実施の形態4での効果に加え、除霜ヒータ14からの熱は、DBプレートフィン3とHBプレートフィン24から冷媒チューブ2→FBプレートフィン4→冷媒チューブ2へと直接的に伝わっていく。そして、その熱伝導がDBプレートフィン3、FBプレートフィン4、HBプレートフィン24の枚数分行われることになるので大幅に促進され、さらに除霜効率が良くなる。
 また、独立フィンの利点である境界層前縁効果を維持しながら、前縁部が隣り合わない部分を多く配置することができ、着霜時の目詰まり性能も向上することができる。
 なお、本実施の形態では、冷媒チューブ2の列数を偶数列の10列のもので説明したが、9列などの奇数列で構成した場合、図11に示すようなDBプレートフィン23を用いてもよい。DBプレートフィン23は、矩形部25aおよび矩形部25aの両側短辺に設けた円弧部25bからなる長孔25を板中央面に複数設け、さらに下方で水平方向に長孔27を備えた。これにより、DBプレートフィン23は冷媒チューブ2を3列配置できる。したがって、冷媒チューブ2を奇数列配置した熱交換器の熱交換効率と除霜効率の向上で省エネを図ることができる。
 (第6の実施の形態)
 図12は本発明の第6の実施の形態における熱交換器の側面図である。なお、本発明の第1~第5の実施の形態と同様の構成要件については、同一の符号を付して説明する。
 図12において、熱交換器31は、曲管部2a及び直管部2bが連続して複数の列および段が形成されるように所定のピッチで蛇行状に曲げ加工された冷媒チューブ2を備える。また、熱交換器31は、矩形部5aおよび矩形部5aの両側短辺に設けた円弧部5bからなる長孔5を板中央面に複数設けたDBプレートフィン3(図3参照)と、矩形部6aおよび矩形部6aの片側短辺に設けた円弧部6bからなる半長孔6を板端面に複数設けたFBプレートフィン4(図4参照)を備える。さらに、熱交換器31は矩形部26aおよび矩形部26aの片側短辺に設けた円弧部26bからなる半長孔26を板端面に、矩形部25aおよび矩形部25aの両側短辺に設けた円弧部25bからなる長孔25を板中央面にそれぞれ複数設けたHBプレートフィン24(図9参照)を具備している。
 DBプレートフィン3、FBプレートフィン4、HBプレートフィン24の端面の一部に円弧状の切欠部32を形成している。切欠部32は所定のピッチで設けられ、切欠部32にパイプヒータ33を嵌合している。
 本発明の第1~第5の実施の形態では、熱交換器1の長辺が垂直方向に立てられて配置したもの(気流が垂直方向)で説明したが、本実施の形態では、熱交換器31の長辺が水平方向に向けられて配置したもの(気流が水平方向)である。したがって、熱交換器の配置の自由度を高めることができる。
 また、熱交換器31の長辺が水平方向に向けられて配置した場合、本発明の第4の実施の形態で説明したような除霜ヒータ14(例えば、ラジアントヒータ)を熱交換器1の下部に配置することは、除霜性能確保という観点から技術的に難しい。そのため、本実施の形態では、DBプレートフィン3、FBプレートフィン4、HBプレートフィン24の端面の一部に円弧状の切欠部32を備えている。切欠部32は所定のピッチで設けられ、切欠部32にパイプヒータ33を嵌合している。
 これにより、熱交換器31の長辺が水平方向に向けられて配置した場合でも、除霜性能を確保することができる。
 なお、本実施の形態では、熱交換器31の下辺の切欠部32にパイプヒータ33を嵌合したもので説明したが、熱交換器31の下辺と上辺の切欠部32にパイプヒータ33を嵌合してもよい。これにより、最適な除霜性能を確保することができる。
 また、本発明の第4の実施の形態で説明した冷却装置の熱交換器に替わり、本発明の第5~第6の実施の形態で説明した熱交換器を用いることができる。
 以上説明したように、本発明は、曲管部及び直管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブを具備する。また、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンと、矩形部および矩形部の片側短辺に設けた円弧部からなる半長孔を板端面に複数設けたFBプレートフィンを具備する。また、DBプレートフィン及びFBプレートフィンを複数組み合わせて配置し、長孔及び半長孔に冷媒チューブを貫通固定させる。
 これにより、冷媒チューブが多数列配置された熱交換において、同一の冷媒チューブにDBプレートフィンと、FBプレートフィンが組合わされることで、熱交換器のコア強度が高まる。
 また、冷媒チューブを多数貫通固定するDBエンドフィン用の余分な大型の金型も必要としないので金型コストも低減できる。
 また、独立フィンの利点である境界層前縁効果も維持されるのでコストパフォーマンスも高くなる。
 また、本発明は、直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブを具備する。また、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンを具備する。また、板中央面に矩形部および矩形部の両側短辺に設けた円弧部からなる長孔と板端面に矩形部および矩形部の片側短辺に設けた円弧部からなる半長孔とを複数設けたHBプレートフィンを具備する。そして、DBプレートフィン及びHBプレートフィンを複数組み合わせて配置し、長孔及び半長孔に冷媒チューブを貫通固定させてもよい。
 これにより、冷媒チューブが多数列配置された熱交換において、同一の冷媒チューブにDBプレートフィンと、HBプレートフィンが組合わされることで、熱交換器のコア強度が高まる。
 また、DBプレートフィンと、HBプレートフィンが組合わされることで、冷媒チューブの段数設定の自由度が高まる。
 また、本発明は、直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブを具備する。また、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンを具備する。また、矩形部および矩形部の片側短辺に設けた円弧部からなる半長孔を板端面に複数設けたFBプレートフィンと、板中央面に矩形部および矩形部の両側短辺に設けた円弧部からなる長孔と板端面に矩形部および矩形部の片側短辺に設けた円弧部からなる半長孔とを複数設けたHBプレートフィンを具備する。そして、DBプレートフィン、FBプレートフィン及びHBプレートフィンを複数組み合わせて配置し、長孔及び半長孔に冷媒チューブを貫通固定させてもよい。
 これにより、冷媒チューブが多数列配置された熱交換において、同一の冷媒チューブにDBプレートフィンと、FBプレートフィンと、HBプレートフィンが組合わされることで、熱交換器のコア強度が高まる。
 また、DBプレートフィンと、DBプレートフィンと、HBプレートフィンが組合わされることで、冷媒チューブの段数設定の自由度がさらに高まる。
 また、本発明は、冷媒チューブのDBプレートフィンが配置困難な直管部にFBプレートフィンあるいはHBプレートフィンを配置してもよい。
 これにより、従来のDBプレートフィンが配置困難な直管部に半長孔を備えているFBプレートフィンあるいはHBプレートフィンが配置されることで、熱交換器製造時の拡管強度が高まる。したがって、工程品質が向上し経済的な熱交換器を提供することができる。
 また、本発明は、冷媒チューブのDBプレートフィンが配置困難な直管部を加工硬化させてもよい。
 これにより、直管部の裸管部分は加工硬化によって他の直管部分に比べ、熱交換器製造時の拡管強度が高まる。したがって、工程品質が向上し経済的な熱交換器を提供することができる。
 また、本発明は、冷媒チューブのDBプレートフィンが配置困難な直管部の径を冷媒チューブの径より小さくしてもよい。
 これにより、直管部の裸管部分は縮径されて他の直管部分に比べ、熱交換器製造時の拡管強度が高まる。したがって、工程品質が向上し経済的な熱交換器を提供することができる。
 また、本発明は、同一の冷媒チューブに対して、DBプレートフィンとFBプレートフィン、あるいはHBプレートフィンを組み合わせて配置してもよい。
 これにより、熱交換器の下部に除霜ヒータが配置された場合、除霜ヒータの熱が、DBプレートフィンから冷媒チューブへ伝わり、そして冷媒チューブからFBプレートフィンあるいはHBプレートフィンを介して隣接する冷媒チューブへと直接的に伝わる。したがって熱伝導が大幅に促進され除霜効率が良くなる。また、熱交換器のコア強度を高めることができる。
 また、本発明は、直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブを具備する。また、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンを具備する。また、所定間隔を有して配置したDBプレートフィンの長孔に冷媒チューブを貫通させ固定した熱交換器であって、蛇行状の冷媒チューブのDBプレートフィンが配置困難な部分の直管部を加工硬化してもよい。
 これにより、直管部の裸管部分は加工硬化によって他の直管部分に比べ、熱交換器製造時の拡管強度が高まる。したがって、工程品質が向上し経済的な熱交換器を提供することができる。
 また、本発明は、直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブを具備する。また、矩形部および矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンを具備する。そして、所定間隔を有して配置したDBプレートフィンの長孔に冷媒チューブを貫通させ固定するとともに、蛇行状の冷媒チューブのDBプレートフィンが配置困難な部分の直管部の径を冷媒チューブの径よりも小さくしてもよい。
 これにより、直管部の裸管部分は縮径されて他の直管部分に比べ、熱交換器製造時の拡管強度が高まる。したがって、工程品質が向上し経済的な熱交換器を提供することができる。
 また、本発明は、上述した本発明の熱交換器のいずれかと、熱交換器の下部に配置した除霜ヒータと、圧縮機と、凝縮器と、減圧装置を備える冷却装置としてもよい。
 これにより、下部に配置した除霜ヒータの熱を上部に効率よく伝えることができるので、除霜効率も良くなる。
 さらに、独立フィンの利点である境界層前縁効果も維持されるのでコストパフォーマンスも高くなる。
 したがって、熱交換効率と除霜効率を共に向上させて、省エネに寄与できる環境にやさしい冷却装置を提供することができる。
 本発明の熱交換器とそれを用いた冷却装置は、ドッグボーン型熱交換器における独立フィンタイプの欠点を補い、金型コストの低減を図り、熱交換効率と除霜効率の向上及び省エネを図ることができる。更に、工程品質の向上も行える経済的なものなので、冷蔵庫、自販機等のように家庭用から産業用に亘る冷凍機器の冷却器、あるいは放熱器として幅広く利用することができる。
 1,21,31,101a,101b 熱交換器
 2,102 冷媒チューブ
 2a,22a 曲管部
 2b,22b 直管部
 2c 加工硬化部
 2d 縮径部
 3,23,103a DBプレートフィン
 4 FBプレートフィン
 5,25,27,105 長孔
 5a,25a 矩形部
 5b,25b 円弧部
 6,26 半長孔
 6a,26a 矩形部
 6b,26b 円弧部
 7 リードパイプ
 8 アキュムレータ
 9 圧縮機
 10 凝縮器
 11 減圧装置
 12 蒸発器
 13 送風機
 14,114 除霜ヒータ
 24 HBプレートフィン
 32 切欠部
 33 パイプヒータ
 103b DBエンドフィン

Claims (18)

  1. 直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブと、矩形部および前記矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンと、矩形部および前記矩形部の片側短辺に設けた円弧部からなる半長孔を板端面に複数設けたFBプレートフィンと、を具備し、前記DBプレートフィン及び前記FBプレートフィンを複数組み合わせて配置し、前記長孔及び前記半長孔に前記冷媒チューブを貫通固定させた熱交換器。
  2. 直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブと、矩形部および前記矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンと、板中央面に矩形部および前記矩形部の両側短辺に設けた円弧部からなる長孔と板端面に矩形部および前記矩形部の片側短辺に設けた円弧部からなる半長孔とを複数設けたHBプレートフィンと、を具備し、前記DBプレートフィン及び前記HBプレートフィンを複数組み合わせて配置し、前記長孔及び前記半長孔に前記冷媒チューブを貫通固定させた熱交換器。
  3. 直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブと、矩形部および前記矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンと、矩形部および前記矩形部の片側短辺に設けた円弧部からなる半長孔を板端面に複数設けたFBプレートフィンと、板中央面に矩形部および前記矩形部の両側短辺に設けた円弧部からなる長孔と板端面に矩形部および前記矩形部の片側短辺に設けた円弧部からなる半長孔とを複数設けたHBプレートフィンと、を具備し、前記DBプレートフィン、前記FBプレートフィン、及び前記HBプレートフィンを複数組み合わせて配置し、前記長孔及び前記半長孔に前記冷媒チューブを貫通固定させた熱交換器。
  4. 前記冷媒チューブの前記DBプレートフィンが配置困難な前記直管部に前記FBプレートフィンを配置した請求項1に記載の熱交換器。
  5. 前記冷媒チューブの前記DBプレートフィンが配置困難な前記直管部に前記HBプレートフィンを配置した請求項2に記載の熱交換器。
  6. 前記冷媒チューブの前記DBプレートフィンが配置困難な前記直管部に前記FBプレートフィンあるいは前記HBプレートフィンを配置した請求項3に記載の熱交換器。
  7. 前記冷媒チューブの前記DBプレートフィンが配置困難な前記直管部が加工硬化された請求項1に記載の熱交換器。
  8. 前記冷媒チューブの前記DBプレートフィンが配置困難な前記直管部が加工硬化された請求項2に記載の熱交換器。
  9. 前記冷媒チューブの前記DBプレートフィンが配置困難な前記直管部が加工硬化された請求項3に記載の熱交換器。
  10. 前記冷媒チューブの前記DBプレートフィンが配置困難な直管部の径が前記冷媒チューブの径より小さい請求項1に記載の熱交換器。
  11. 前記冷媒チューブの前記DBプレートフィンが配置困難な直管部の径が前記冷媒チューブの径より小さい請求項2に記載の熱交換器。
  12. 前記冷媒チューブの前記DBプレートフィンが配置困難な直管部の径が前記冷媒チューブの径より小さい請求項3に記載の熱交換器。
  13. 同一の前記冷媒チューブに対して、前記DBプレートフィンと前記FBプレートフィンを組み合わせて配置した請求項1に記載の熱交換器。
  14. 同一の前記冷媒チューブに対して、前記DBプレートフィンと前記HBプレートフィンを組み合わせて配置した請求項2に記載の熱交換器。
  15. 同一の前記冷媒チューブに対して、前記DBプレートフィンと前記FBプレートフィン、あるいは前記HBプレートフィンを組み合わせて配置した請求項3に記載の熱交換器。
  16. 直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブと、矩形部および前記矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンとを具備し、所定間隔を有して配置した前記DBプレートフィンの前記長孔に前記冷媒チューブを貫通させ固定した熱交換器であって、蛇行状の冷媒チューブの前記DBプレートフィンが配置困難な部分の直管部が加工硬化された熱交換器。
  17. 直管部及び曲管部が連続して複数の列および段が形成されるよう所定のピッチで蛇行状に形成された冷媒チューブと、矩形部および前記矩形部の両側短辺に設けた円弧部からなる長孔を板中央面に複数設けたDBプレートフィンとを具備し、所定間隔を有して配置した前記DBプレートフィンの前記長孔に前記冷媒チューブを貫通させ固定した熱交換器であって、蛇行状の冷媒チューブの前記DBプレートフィンが配置困難な部分の直管部の径が前記冷媒チューブの径よりも小さい熱交換器。
  18. 請求項1から17のいずれか一項に記載の熱交換器と、前記熱交換器の下部に配置した除霜ヒータと、圧縮機と、凝縮器と、減圧装置とを備えた冷却装置。
PCT/JP2015/002343 2014-05-13 2015-05-08 熱交換器及びそれを用いた冷却装置 WO2015174055A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590000566.2U CN207395551U (zh) 2014-05-13 2015-05-08 热交换器和使用其的冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-099181 2014-05-13
JP2014099181A JP2015215141A (ja) 2014-05-13 2014-05-13 熱交換器及びそれを用いた冷却システム

Publications (1)

Publication Number Publication Date
WO2015174055A1 true WO2015174055A1 (ja) 2015-11-19

Family

ID=54479606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002343 WO2015174055A1 (ja) 2014-05-13 2015-05-08 熱交換器及びそれを用いた冷却装置

Country Status (3)

Country Link
JP (1) JP2015215141A (ja)
CN (1) CN207395551U (ja)
WO (1) WO2015174055A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605833A (zh) * 2016-03-13 2016-05-25 合肥长城制冷科技有限公司 一种冷冻室专用直拉翅片蒸发器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571211A (zh) * 2016-02-11 2016-05-11 合肥长城制冷科技有限公司 一种新型超薄单孔翅片蒸发器
CN105627637A (zh) * 2016-03-15 2016-06-01 合肥长城制冷科技有限公司 一种新型冷藏室专用双排扭斜翅片蒸发器
CN105758068A (zh) * 2016-04-19 2016-07-13 合肥太通制冷科技有限公司 一种六层垒密降噪除霜翅片蒸发器
CN110285612A (zh) * 2019-06-14 2019-09-27 合肥美的电冰箱有限公司 水气分离装置、制冷设备及分离空气中水蒸气的方法
CN116887567A (zh) * 2020-08-26 2023-10-13 广东美的暖通设备有限公司 电控盒及空调系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145282A (ja) * 1995-11-20 1997-06-06 Hitachi Ltd 熱交換器とその製造方法
JP2005326063A (ja) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd 熱交換器及びその製造方法
JP2011202855A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 冷蔵庫
JP2012107769A (ja) * 2010-11-15 2012-06-07 Panasonic Corp 熱交換器およびその熱交換器を備えた物品貯蔵装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145282A (ja) * 1995-11-20 1997-06-06 Hitachi Ltd 熱交換器とその製造方法
JP2005326063A (ja) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd 熱交換器及びその製造方法
JP2011202855A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 冷蔵庫
JP2012107769A (ja) * 2010-11-15 2012-06-07 Panasonic Corp 熱交換器およびその熱交換器を備えた物品貯蔵装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605833A (zh) * 2016-03-13 2016-05-25 合肥长城制冷科技有限公司 一种冷冻室专用直拉翅片蒸发器

Also Published As

Publication number Publication date
JP2015215141A (ja) 2015-12-03
CN207395551U (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2015174055A1 (ja) 熱交換器及びそれを用いた冷却装置
JP6017047B2 (ja) 熱交換器、空調機、冷凍サイクル装置及び熱交換器の製造方法
US8973647B2 (en) Heat exchanger and air conditioner having the same
US6928833B2 (en) Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger
US9874402B2 (en) Heat exchanger, refrigeration cycle apparatus, and method of manufacturing heat exchanger
WO2014091782A1 (ja) 扁平管熱交換器、及びそれを備えた空気調和機の室外機
US11346609B2 (en) Heat exchanger
EP2447656B1 (en) Heat Exchanger with louvered transversal fins
JP4796800B2 (ja) 蒸発器
JP2007046868A (ja) 蒸発器
JP5627635B2 (ja) 空気調和機
EP2784427B1 (en) Heat transfer fin, fin-tube heat exchanger, and heat pump device
JP2011158250A (ja) 熱交換器及びこの熱交換器を搭載した冷凍冷蔵庫
JP6053693B2 (ja) 空気調和機
US10907904B2 (en) Microchannel-type aluminum heat exchanger and method of manufacturing the same
EP2713135B1 (en) Heat exchanger
JP4762266B2 (ja) 熱交換器及びこの熱交換器を搭載した冷凍冷蔵庫
JP2013096651A (ja) 内面溝付伝熱管及び内面溝付伝熱管を備えた熱交換器及びその製造方法
JP2010230300A (ja) 熱交換器、及びこの熱交換器を備えた空気調和機
JP4337259B2 (ja) 熱交換器
KR100635811B1 (ko) 핀-관 일체형 증발기 및 그 제조방법
JP2005531748A (ja) 熱交換器
JP2010276206A (ja) 熱交換器および物品貯蔵装置
KR102719518B1 (ko) 냉동사이클의 열교환기
KR102361198B1 (ko) 증발기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792631

Country of ref document: EP

Kind code of ref document: A1