WO2015173910A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2015173910A1
WO2015173910A1 PCT/JP2014/062833 JP2014062833W WO2015173910A1 WO 2015173910 A1 WO2015173910 A1 WO 2015173910A1 JP 2014062833 W JP2014062833 W JP 2014062833W WO 2015173910 A1 WO2015173910 A1 WO 2015173910A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
range
humidity
air
supply
Prior art date
Application number
PCT/JP2014/062833
Other languages
French (fr)
Japanese (ja)
Inventor
守 濱田
正樹 豊島
勇人 堀江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016519036A priority Critical patent/JP6305525B2/en
Priority to PCT/JP2014/062833 priority patent/WO2015173910A1/en
Publication of WO2015173910A1 publication Critical patent/WO2015173910A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an air conditioning system.
  • the air conditioning system has, for example, a compressor, a four-way valve, an outdoor heat exchanger, an expansion unit, and an indoor heat exchanger, and an air conditioning apparatus including a refrigerant circuit configured by connecting these with a refrigerant pipe; Some have a ventilator with a cooler.
  • the refrigerant compressed by the compressor becomes a high-temperature and high-pressure gas refrigerant and is sent to the outdoor heat exchanger.
  • the refrigerant flowing into the outdoor heat exchanger is liquefied by releasing heat to the air.
  • the liquefied refrigerant is decompressed by the expansion means to become a gas-liquid two-phase state, and is gasified by absorbing heat from ambient air in the indoor heat exchanger.
  • the indoor space can be cooled.
  • the gasified refrigerant returns to the compressor.
  • the ventilator is operated to replace indoor air with fresh outdoor air.
  • a cooling load outside air load
  • the outdoor air is temperature-controlled by the cooler of the ventilator and then introduced into the room.
  • the power consumption of the entire air conditioning system can be suppressed by changing the operation content of the ventilation device according to the outdoor air condition.
  • outdoor air conditions a technology that switches between humidity control that supplies air into the room after adjusting the temperature with a cooler and simple ventilation that supplies air into the room without cooling with a cooler is proposed (For example, refer to Patent Document 1).
  • Patent Document 1 since the technique described in Patent Document 1 is an air conditioning system that switches the outdoor air processing into two stages of simple ventilation operation and humidity control operation according to the outdoor air condition, it is highly efficient depending on the indoor air condition and the outdoor air condition. However, there is a problem that the outdoor air temperature cannot be controlled by switching the ventilation operation mode.
  • the present invention has been made to solve the above-described problems, and aims to suppress power consumption more efficiently in an air conditioning system that performs exhaust heat recovery by a total heat exchange unit.
  • An air conditioning system is an air conditioning system including a refrigerant circuit having an outdoor unit, an indoor unit, and a ventilation device.
  • the ventilation device includes a housing having an air supply passage and an exhaust air passage, and a housing. Connected to the refrigerant circuit, a total heat exchanging part provided in the body for exchanging total heat between the supply air and the exhaust, a switching unit provided in the housing for switching whether or not the exhaust gas is exchanged for total heat with the supply air.
  • a cooler provided downstream of the total heat exchanger in the supply air path, a refrigerant supply means connected to the refrigerant circuit and controlling supply of the refrigerant to the cooler, and outdoor air in the supply air path And a control unit for controlling the switching means and the refrigerant supply means based on the temperature and humidity of the air and the temperature and humidity of the indoor air in the exhaust air passage.
  • the air conditioning system according to the present invention has the above-described configuration, power consumption can be suppressed more efficiently in the air conditioning system that performs exhaust heat recovery by the total heat exchange unit.
  • FIG. FIG. 1 is a schematic diagram of an air conditioning system 100 according to the first embodiment. A schematic configuration of the air conditioning system will be described with reference to FIG. Since the air-conditioning system 100 according to Embodiment 1 is premised on the configuration during cooling operation including outside air cooling, the configuration and operation in the cooling operation will be described below.
  • the air-conditioning system 100 according to Embodiment 1 is an air-conditioning system that performs exhaust heat recovery by the total heat exchange unit, and is provided with an improvement that can suppress power consumption more efficiently.
  • the air conditioning system 100 includes one or a plurality of indoor units 1 and outdoor units 2, and the indoor unit 1 and the outdoor unit 2 are connected by a refrigerant pipe 101.
  • the air conditioning system 100 includes one or a plurality of ventilation devices 3 and an outdoor unit 4, and the ventilation device 3 and the outdoor unit 4 are connected by a refrigerant pipe 102.
  • a case where there are a plurality of indoor units 1 and a single ventilator 3 will be described as an example.
  • the indoor unit 1 and the ventilator 3 are used for air conditioning of a room, a room of a building, a warehouse, or the like, which is a space to be air-conditioned.
  • the outdoor unit 2 and the outdoor unit 4 are heat source units that are installed outside a building or on the roof of a building, for example.
  • the air conditioning system 100 also includes a centralized controller 50 that controls the indoor unit 1, the outdoor unit 2, the ventilation device 3, and the outdoor unit 4.
  • the centralized controller 50 is connected to the indoor unit 1, the outdoor unit 2, the ventilation device 3, and the outdoor unit 4 via a transmission line 51.
  • FIG. 2 is a schematic diagram of a refrigerant circuit of the air conditioning system 100 according to the first embodiment.
  • the air conditioning system 100 has two refrigerant circuits in which the refrigerant circulates.
  • the first refrigerant circuit 11 has a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion device 15, and an indoor heat exchanger 16, and these are connected by a refrigerant pipe to constitute a refrigeration cycle. is there.
  • the outdoor heat exchanger 14 is provided with an outdoor fan 17, and the indoor heat exchanger 16 is provided with an outdoor fan 18.
  • Each indoor unit 1 is provided with an expansion device 15, an indoor heat exchanger 16, and an outdoor fan 18.
  • the second refrigerant circuit 21 includes a compressor 22, a four-way valve 23, an outdoor heat exchanger 24, a throttling device 25, and a cooler 26, which are connected by a refrigerant pipe to constitute a refrigeration cycle.
  • a blower 27 is attached to the outdoor heat exchanger 24.
  • the expansion device 25 corresponds to a refrigerant supply unit used to control the supply of the refrigerant to the cooler 26.
  • FIG. 3 is a schematic configuration diagram of the ventilation device 3 of the air conditioning system 100 according to the present embodiment.
  • the ventilator 3 includes a housing 3A in which an air supply passage 3A1 and an exhaust air passage 3A2 are formed, a total heat exchanger 30 provided in the housing 3A, and a space outside the air-conditioning target space.
  • air outside the air conditioning target space is referred to as outdoor air and air supply
  • air in the air conditioning target space is also referred to as indoor air and exhaust.
  • the ventilator 3 has a cooler 26 that cools the air in the supply air passage 3A1.
  • the total heat exchanger 30 corresponds to the total heat exchange unit.
  • the ventilation device 3 is used to detect the temperature and humidity of the first temperature / humidity detection means 32 used to detect the temperature and humidity of the indoor air (exhaust), and the outdoor air (supply air).
  • the second temperature / humidity detecting means 31 is provided. The detection results of the second temperature / humidity detection means 31 and the first temperature / humidity detection means 32 are output to the control unit 53 of the ventilation device 3.
  • the ventilation device 3 includes a bypass air passage 34 for discharging the indoor air taken into the exhaust air passage 3A2 from the air-conditioning target space from the housing 3A so as not to flow into the total heat exchanger 30, and the bypass air passage 34 side.
  • switching means 33 for switching between flowing air to the total heat exchanger 30 side.
  • the switching means 33 can be constituted by, for example, an openable / closable damper portion for switching whether or not the exhaust air passage 3A2 and the bypass air passage 34 are communicated.
  • the damper portion When exhaust gas is caused to flow into the bypass air passage 34, the damper portion is rotated so as to open the opening on the bypass air passage 34 side.
  • the damper portion closes the opening on the bypass air passage 34 side and operates the exhaust fan 29 to forcibly exhaust the exhaust gas to the total heat exchanger 30. Pull in.
  • FIG. 4 is an explanatory diagram of three temperature / humidity ranges of the air-conditioning system 100 according to the first embodiment.
  • FIG. 4A shows three temperature / humidity ranges based on the detection result of the first temperature / humidity detection means 32 in the first time.
  • FIG. 4B shows three temperature / humidity ranges based on the detection result of the first temperature / humidity detection means 32 at a second time after a preset time has elapsed from the first time. That is, the reason for shifting from the state of FIG. 4A to the state of FIG. 4B is that the air-conditioning target space is being cooled.
  • the structure of the three temperature-humidity ranges divided according to dry-bulb temperature and absolute humidity is demonstrated.
  • the ventilator 3 divides the outside air into three temperature / humidity ranges (first temperature / humidity range, second temperature / humidity range and first temperature / humidity range) as shown in FIG. 4 based on the detection results tin, xin of the first temperature / humidity detection means 32. 3 temperature range).
  • zone I corresponds to the first temperature / humidity range
  • zone II corresponds to the second temperature / humidity range
  • zone III corresponds to the third temperature / humidity range.
  • the thresholds for dividing the first temperature and humidity range from the second temperature and humidity range are t_lo and x_lo.
  • the thresholds that separate the first temperature and humidity range from the third temperature and humidity range are t_hi and x_hi. That is, the control unit 53 of the ventilation device 3 determines the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi based on the detection result of the first temperature / humidity detection unit 32. Since the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi are determined based on the detection result of the first temperature / humidity detection means 32, the values change with time.
  • t_lo is smaller than the dry bulb temperature, which is the detection result of the first temperature / humidity detection means 32, by a first dry bulb temperature difference T1, which is a preset value, and t_hi is greater.
  • the value is larger by the second dry bulb temperature difference T2, which is a preset value.
  • x_lo is smaller than the absolute humidity which is the detection result of the first temperature / humidity detection means 32 by a first absolute humidity difference X1 which is a preset value, and x_hi is preset. This is a value that is larger by the second absolute humidity difference X2, which is the measured value.
  • the magnitudes of the first dry bulb temperature difference T1, the second dry bulb temperature difference T2, the first absolute humidity difference X1, and the second absolute humidity difference X2 can be appropriately set by the user.
  • the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi are determined based on the detection result of the first temperature and humidity detection means 32, the values change with time, but the first dry bulb temperature difference T1, The dry bulb temperature difference T2, the first absolute humidity difference X1, and the second absolute humidity difference X2 are not changed.
  • the ventilation device 3 determines which temperature / humidity range of the three temperature / humidity ranges the outside air (supply air) belongs to based on the detection result of the second temperature / humidity detection means 31.
  • the air conditioning system 100 is in a cooling operation so that the air-conditioning target space has a predetermined target temperature and a predetermined target humidity.
  • the detection result of the first temperature / humidity detection means 32 changes. Specifically, the position of the point A of the dry-bulb temperature and humidity of the indoor air corresponding to the detection result of the first temperature / humidity detection means 32 moves to the position of the point B shown in FIG.
  • the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi change, that is, the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range change.
  • the dry bulb temperature and humidity of the outdoor air corresponding to the detection result of the second temperature / humidity detection means 31 are the position of the point C. Since the point C belongs to the first temperature and humidity range, the ventilator 3 performs a first operation mode described later.
  • the dry bulb temperature and humidity of the indoor air corresponding to the detection result of the first temperature and humidity detection means 32 are changed. The position has moved from point A to point B. As shown in FIG. 4 (b), it can be seen that the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range are also moved accordingly.
  • the ventilator 3 performs a second operation mode described later.
  • first temperature / humidity range is a range in which the dry bulb temperature is t_lo or less and the absolute humidity is less than x_lo in the air diagram.
  • Second temperature and humidity range Zone II
  • the second temperature / humidity range is a range in which the dry bulb temperature is greater than t_lo and less than or equal to t_hi and the absolute humidity is greater than or equal to x_lo and less than x_hi in the air diagram.
  • Third temperature / humidity range zone III
  • the third temperature / humidity range is a range in which the dry bulb temperature is higher than t_hi and the absolute humidity is x_hi or higher in the air diagram.
  • FIG. 5 is a block diagram of the control unit 53 included in the air conditioning system 100 according to the first embodiment. A detailed configuration of the control unit 53 will be described with reference to FIG.
  • the cooling load generated in the air-conditioning target space is large in the order of the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range.
  • the following operation mode is performed for each temperature and humidity range. That is, in the first temperature / humidity range, the ventilator 3 switches the switching means 33 so that the exhaust gas is not totally exchanged with the supply air, and the first operation mode in which the refrigerant is not supplied to the cooler 26 is performed. Execute. In the second temperature / humidity range, the ventilator 3 switches the switching means so that the exhaust does not exchange heat with the supply air, and executes the second operation mode in which the refrigerant is supplied to the cooler 26.
  • the control unit 53 Based on the temperature and humidity of the outdoor air in the supply air passage 3A1 and the temperature and humidity of the outdoor air in the exhaust air passage 3A2, the control unit 53 switches the switching means 33 and switches the opening and closing of the expansion device 25 that is the refrigerant supply means. Is to control. That is, the control unit 53 switches the switching unit 33 and the refrigerant supply unit based on the detection results of the first temperature / humidity detection unit 32 and the second temperature / humidity detection unit 31. Then, the control unit 53 combines the switching of the switching unit 33 and the switching of the refrigerant supply unit based on the temperature and humidity of the outdoor air of the supply air passage 3A1 and the temperature and humidity of the indoor air of the exhaust air passage 3A2. Run the operation mode.
  • the ventilator 3 combines the switching of the switching unit 33 and the switching of the refrigerant supply unit, so that three operation modes of the first operation mode, the second operation mode, and the third operation mode are performed.
  • the control unit 53 includes a calculation unit 53A, a range determination unit 53B, a storage unit 53C, a switching control unit 53D, and a diaphragm control unit 53E.
  • the calculation unit 53A calculates the dry bulb temperature and the absolute value corresponding to each of the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range.
  • the range of humidity is calculated. That is, the calculation unit 53A determines the values of the dry bulb temperature threshold value t_lo, the dry bulb temperature threshold value t_hi, the absolute humidity threshold value x_lo, and the absolute humidity threshold value x_hi based on the detection result of the first temperature and humidity detection unit 32. For the operation.
  • the range determination means 53B Based on the detection result of the second temperature / humidity detection means 31, the range determination means 53B has the calculated dry bulb temperature and absolute humidity calculated by the calculation means 53A in the first temperature / humidity range and the second temperature / humidity. It is determined which of the range and the third temperature / humidity range corresponds to the range.
  • the storage means 53C stores various information.
  • the storage unit 53C stores, for example, information on the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range calculated by the calculation unit 53A.
  • the storage unit 53C can be configured with, for example, a hard disk, a flash memory, or the like.
  • the switching control unit 53D switches the damper portion so that the exhaust flows through the bypass air passage 34 when the range determination unit 53B determines that the first temperature / humidity range or the second temperature / humidity range is set, and the third temperature When it is determined that the humidity is within the range, the damper portion is switched so that the exhaust gas flows through the total heat exchanger 30.
  • the expansion device control means 53E closes the expansion device 25, which is the refrigerant supply means, when the range determination means 53B determines that it is in the first temperature / humidity range, and in the second temperature / humidity range or the third temperature / humidity range.
  • the expansion device 25 as the refrigerant supply means is opened to a preset opening degree.
  • the ventilation device 3 switches the switching means 33 so that the exhaust air and the supply air exchange total heat, and switches the switching means 33 and supplies the refrigerant to the cooler 26.
  • 3 operation mode is executed.
  • the operation mode performed by the ventilator 3 is set for each of the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range.
  • the cooling capacity corresponding to the generated cooling load can be achieved. Power consumption can be suppressed while driving.
  • Conventional ventilators are known that do not include a total heat exchanger and adopt a control system that switches between humidity control operation and simple ventilation operation.
  • the total heat exchanger 30 is not used, so by increasing the number of rotations of the compressor accordingly, It is necessary to ensure a sufficient cooling capacity with respect to the cooling load, which increases power consumption.
  • the total heat exchanger 30 can be used, and the increase in power consumption can be suppressed.
  • FIG. 6 is a diagram showing that the air conditioning system 100 according to Embodiment 1 is divided into three enthalpy ranges.
  • FIG. 6A shows three enthalpy ranges based on the detection result of the first temperature / humidity detection means 32 in the first time.
  • FIG. 6B shows an enthalpy range based on the detection result of the first temperature / humidity detection means 32 at a second time when a preset time has elapsed from the first time. That is, the reason for shifting from the state of FIG. 6A to the state of FIG. 6B is that the air-conditioning target space is being cooled.
  • the control unit 53 is configured to divide the outside air into three temperature and humidity ranges as shown in FIG.
  • the first temperature and humidity detection unit 32 based on the detection results tin and xin of the first temperature and humidity detection unit 32. It is not limited. As shown in FIG. 6, it may be configured to divide into three enthalpy ranges instead of the temperature and humidity range. The mode of enthalpy can also be described in correspondence with the content described in FIG.
  • the threshold value that separates the first enthalpy range and the second enthalpy range is I_lo.
  • the threshold value that separates the second enthalpy range and the third enthalpy range is I_hi. More specifically, it is as follows. (1) First enthalpy range (zone I) The first enthalpy range is a range in which the enthalpy value is I_lo or less in the air diagram. (2) Second enthalpy range (Zone II) The second enthalpy range is a range in which the enthalpy value is greater than I_lo and less than or equal to I_hi in the air diagram. (3) Third enthalpy range (zone III) The third enthalpy range is a range in which the enthalpy value is larger than I_hi in the air diagram.
  • the control unit 53 controls switching of the switching means 33 and switching of opening / closing of the expansion device 25 serving as the refrigerant supply means based on the enthalpy of outdoor air in the supply air passage 3A1 and the enthalpy of indoor air in the exhaust air passage 3A2. Is. Then, the control unit 53 combines the switching of the switching unit 33 and the switching of the refrigerant supply unit based on the enthalpy of the outdoor air of the supply air passage 3A1 and the enthalpy of the indoor air of the exhaust air passage 3A2, and thereby a plurality of operation modes. Execute.
  • the calculation means 53A calculates the enthalpy ranges corresponding to the first enthalpy range, the second enthalpy range, and the third enthalpy range based on the detection result of the first temperature and humidity detection means 32. calculate. That is, the calculation unit 53A performs a calculation for determining the values of the enthalpy threshold value I_lo and the enthalpy threshold value I_hi based on the detection result of the first temperature / humidity detection unit 32.
  • the range determination unit 53B calculates the enthalpy of the outside air based on the detection result of the second temperature / humidity detection unit 31. Then, the range determination unit 53B determines which of the first enthalpy range, the second enthalpy range, and the third enthalpy range calculated by the calculation unit 53A corresponds to the calculated enthalpy. .
  • I_lo is smaller than the enthalpy value calculated from the detection result of the first temperature / humidity detection means 32 by a first enthalpy difference I1, which is a preset value, and I_hi is greater in advance.
  • the value is larger by the second enthalpy difference I2, which is the set value. The user can appropriately set the magnitudes of the first enthalpy difference I1 and the second enthalpy difference I2.
  • the enthalpy threshold I_lo and the enthalpy threshold I_hi are determined based on the detection result of the first temperature / humidity detection means 32, the values change with time, but the first enthalpy difference I1 and the second enthalpy difference I2 The size is not changed.
  • the enthalpy value corresponding to the detection result of the second temperature / humidity detection means 31 is the position of the point C at the first time. Since the point C belongs to the first enthalpy range, the ventilator 3 performs the first operation mode.
  • the enthalpy value corresponding to the detection result of the first temperature / humidity detection means 32 is changed from the point A to the point B. Has moved to.
  • FIG. 6B it can be seen that the first enthalpy range, the second enthalpy range, and the third enthalpy range are also moved accordingly.
  • the ventilator 3 performs the second operation mode.
  • FIG. 7 is an operation explanatory diagram in each zone of the air-conditioning system 100 according to Embodiment 1.
  • FIG. 7A is an operation explanatory diagram in the zone I
  • FIG. 7B is an operation explanatory diagram in the zone II
  • FIG. 7C is an operation explanatory diagram in the zone III.
  • the switching means 33 is opened and the room air is introduced into the bypass air passage 34, and the outside air (supply air) in the total heat exchanger 30 and the room Avoid heat exchange of air (exhaust). Further, the expansion device 25 is fully closed so that the cooler 26 does not exchange heat between the outside air and the refrigerant.
  • the first temperature and humidity range since the enthalpy of the inside air is lower than the enthalpy of the outside air, the outside air is directly supplied into the room, and the air conditioning system can obtain the outside air cooling effect. That is, the first operation mode is an outside air condition that allows cooling even when outside air is introduced into the room.
  • the switching means 33 is opened and the room air is introduced into the bypass air passage 34 in the same manner as the first temperature / humidity range.
  • the expansion device 25 is opened and the cooler 26 exchanges heat between the outside air and the refrigerant.
  • the outside air is cooled and dehumidified in the cooler 26 and supplied to the room.
  • the second temperature / humidity range the conditions of the dry bulb temperature and the absolute humidity of the indoor air and the outdoor air are close, and even if the total heat exchange is performed by the total heat exchanger 30, the total heat exchange amount decreases. Therefore, by bypassing the total heat exchanger 30 and stopping the exhaust air blower 29 to reduce the power of the exhaust air blower 29, energy saving can be achieved.
  • the switching means 33 is closed, the indoor air and the outside air are heat-exchanged by the total heat exchanger 30, and the expansion device 25 is opened for cooling.
  • the vessel 26 heat exchange between the outside air after passing through the total heat exchanger 30 and the refrigerant is performed.
  • the outside air is cooled by the total heat exchanger 30, further cooled and dehumidified by the cooler 26, and supplied to the room.
  • the temperature or humidity of the outdoor air or the enthalpy is sufficiently higher than the indoor air, and the amount of heat exchange in the total heat exchanger 30 is increased.
  • the third operation mode when the condition of the dry bulb temperature and the absolute humidity of the outside air is in the third temperature and humidity range, it is more energy efficient to recover the exhaust heat of the indoor air. Yes.
  • FIG. 8 is an example of a control flowchart of the air conditioning system 100 according to the first embodiment.
  • FIG. 8 shows a control flow of air conditioning system switching.
  • step S1 indoor temperature and humidity are detected, and in step S2, zoning is performed.
  • step S3 the outside air temperature / humidity is detected, and in steps S4 and S5, it is determined which zone the current outside air is in. After the determination, the air conditioning system is switched in steps S6 to S8.
  • the air conditioning system 100 according to Embodiment 1 implements the first operation mode, the second operation mode, and the third operation mode according to the load. That is, the ventilator 3 uses the first operation mode in which cooling is possible even when outside air is introduced into the room, and the exhaust fan 29 is stopped because the total heat exchange amount is small, and the cooler 26 is used for cooling. The second operation mode, and the third operation mode in which exhaust heat of the indoor air is recovered using not only the cooler 26 but also the total heat exchanger 30, and the exhaust heat of the indoor air can be reduced. The operation which utilized is carried out. As described above, the air-conditioning system 100 according to Embodiment 1 can realize more detailed operation using the total heat exchanger 30, and can suppress power consumption more efficiently.
  • Embodiment 1 demonstrated the aspect in which the ventilation apparatus 3 was provided with the 1st temperature / humidity detection means 32 and the 2nd temperature / humidity detection means 31, it is not limited to it. It is only necessary that the air conditioning system 100 can acquire information corresponding to the detection result of the first temperature / humidity detection unit 32 and information corresponding to the detection result of the second temperature / humidity detection unit 31. For example, the air conditioning system 100 obtains temperature information in the air-conditioning target space and temperature information outside the air-conditioning target space from the outside, and uses them to determine whether the temperature / humidity ranges correspond to three temperature ranges (three enthalpy ranges). It is possible to determine and perform the first operation mode, the second operation mode, and the third operation mode.
  • the detection results of the first temperature / humidity detection unit 32 and the second temperature / humidity detection unit 31 are output to the control unit 53 of the ventilator 3, and the control unit 53 performs various calculations and various controls.
  • the present invention is not limited to this.
  • the ventilation unit 3 is not provided with the control unit 53, and instead, the detection results of the first temperature / humidity detection unit 32 and the second temperature / humidity detection unit 31 are output to the centralized controller 50. Good. That is, it is good also as an aspect which implements the various calculations and various controls which the control part 53 of the ventilation apparatus 3 demonstrated in Embodiment 1 implements by the concentration controller 50 side.
  • FIG. 9 shows a first modification of the air-conditioning system 100 according to the first embodiment.
  • the air conditioning system 110 includes a compressor frequency adjusting means 41 for controlling the frequencies (rotations) of the compressor 12 and the compressor 22, and an evaporation temperature detecting means for detecting the temperature of the evaporator. 42.
  • control is performed so that the detection value of the evaporation temperature detecting means 42 becomes the target evaporation temperature. Even with this air conditioning system 110, the same effects as those of the air conditioning system 100 according to Embodiment 1 can be obtained.
  • FIG. 10 is a second modification of the air-conditioning system 100 according to the first embodiment. Moreover, as shown in FIG. 10, even if it applies to the air conditioning system 111 of the aspect with which the indoor unit 1 and the ventilation apparatus 3 are connected to the same outdoor unit 2a via the refrigerant
  • the refrigerant supply means is the expansion device 25
  • the present invention is not limited to this.
  • the refrigerant supply means may be the compressor 22.
  • the control part 53 should just be provided with the compressor control means instead of the expansion device control means 53E.
  • This compressor control means stops the compressor 22 when the range determination means 53B determines that it is in the first temperature and humidity range, and determines that it is in the second temperature and humidity range or the third temperature and humidity range.
  • the compressor 22 is operated at a preset rotation speed.
  • this modification 3 the effect similar to the air conditioning system 100 which concerns on this Embodiment 1 can be acquired.
  • FIG. FIG. 11 is an operation explanatory diagram in each zone of the air-conditioning system 120 according to the second embodiment.
  • FIG. 12 is an example of a control flowchart of the air conditioning system 120 according to the second embodiment.
  • the air conditioning system 110 according to Embodiment 2 includes a rotary total heat exchanger 30 ⁇ / b> B instead of the total heat exchanger 30.
  • the total heat exchanger 30B is a structure corresponding to a total heat exchange part.
  • the switching means 33 has a motor unit 33B that rotates the total heat exchanger 30B that is a total heat exchange unit.
  • the switching control unit 53D of the control unit 53 stops the motor unit 33B when the range determination unit 53B determines that it is in the first temperature / humidity range or the second temperature / humidity range, and is in the third temperature / humidity range. If it is determined, the motor unit 33B is switched so as to operate the motor unit 33B.
  • the same effect as in the first embodiment can be obtained even when the total heat exchange unit is a rotary type.
  • the total heat exchanger 30B is stopped from rotation without providing the switching means 33 having the damper portion and the bypass air passage 34, so that the total heat exchange between the outside air and the room air is prevented. I can do it.
  • the control flow at this time is as shown in FIG. 12, and the damper opening in steps S6 to S8 in FIG. 8 is changed to stop the rotation of the total heat exchanger, and the damper closing is changed to the rotation of the total heat exchanger 30B.
  • the air conditioning system 120 according to the second embodiment has the same effects as the air conditioning system 100 according to the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Ventilation (AREA)

Abstract

A ventilation device according to the present invention is provided with: a housing that has a supply air duct and an exhaust air duct; a total heat exchanger that is provided in the housing and causes the supply air and exhaust air to undergo total heat exchange; a switching means that is provided in the housing and switches between causing the exhaust air to undergo total heat exchange with the supply air and not doing so; a cooler that is connected to a refrigerant circuit and is provided further downstream in the supply air duct than the total heat exchanger; a refrigerant supply means that is connected to the refrigerant circuit and controls the supply of a refrigerant to the cooler; and a control unit that controls the switching means and refrigerant supply means on the basis of the temperature and humidity of exterior air in the supply air duct and the temperature and humidity of interior air in the exhaust air duct. The abovementioned configuration makes it possible, in an air conditioning system that performs exhaust heat recovery using a total heat exchange unit, to suppress power consumption more efficiently.

Description

空気調和システムAir conditioning system
 本発明は、空気調和システムに関するものである。 The present invention relates to an air conditioning system.
 空気調和システムは、たとえば、圧縮機、四方弁、室外熱交換器、膨張手段及び室内熱交換器を有し、これらが冷媒配管で接続されて構成された冷媒回路を備えた空気調和装置と、冷却器を備えた換気装置とを有するものが存在する。 The air conditioning system has, for example, a compressor, a four-way valve, an outdoor heat exchanger, an expansion unit, and an indoor heat exchanger, and an air conditioning apparatus including a refrigerant circuit configured by connecting these with a refrigerant pipe; Some have a ventilator with a cooler.
 空気調和装置において、冷房時には、圧縮機で圧縮された冷媒が、高温高圧のガス冷媒となり、室外熱交換器に送り込まれる。室外熱交換器に流れ込んだ冷媒は、空気に熱を放出することで液化する。液化した冷媒は、膨張手段で減圧されて気液二相状態となり、室内熱交換器にて周囲空気から熱を吸収することでガス化する。一方で、空気は熱を奪われるため、室内空間を冷房することができる。ガス化した冷媒は圧縮機に戻る。 In the air conditioner, during cooling, the refrigerant compressed by the compressor becomes a high-temperature and high-pressure gas refrigerant and is sent to the outdoor heat exchanger. The refrigerant flowing into the outdoor heat exchanger is liquefied by releasing heat to the air. The liquefied refrigerant is decompressed by the expansion means to become a gas-liquid two-phase state, and is gasified by absorbing heat from ambient air in the indoor heat exchanger. On the other hand, since air is deprived of heat, the indoor space can be cooled. The gasified refrigerant returns to the compressor.
 一方、換気装置においては、室内の空気を室外の新鮮空気と入れ替える運転を行っている。冷房時には、外気から導入される空気のエンタルピが高い場合は、冷房負荷(外気負荷)となる。そのため、換気装置の冷却器で室外空気を温調してから室内に導入する。 On the other hand, the ventilator is operated to replace indoor air with fresh outdoor air. During cooling, if the enthalpy of air introduced from the outside air is high, a cooling load (outside air load) occurs. Therefore, the outdoor air is temperature-controlled by the cooler of the ventilator and then introduced into the room.
 このとき、室外空気条件に応じて換気装置の運転内容を変えることで、空気調和システム全体としての消費電力を抑制することができる。たとえば、室外空気条件に応じて、冷却器で温度調節してから室内に空気を供給する調湿運転と、冷却器で冷却せずに室内に空気を供給する単純換気運転とを切り替える技術が提案されている(たとえば、特許文献1参照)。 At this time, the power consumption of the entire air conditioning system can be suppressed by changing the operation content of the ventilation device according to the outdoor air condition. For example, according to outdoor air conditions, a technology that switches between humidity control that supplies air into the room after adjusting the temperature with a cooler and simple ventilation that supplies air into the room without cooling with a cooler is proposed (For example, refer to Patent Document 1).
特開2009-109088号公報JP 2009-109088 A
 しかしながら、特許文献1に記載の技術は、室外空気条件に応じて単純換気運転と調湿運転との2段階に外気処理を切り替える空気調和システムであるため、室内空気条件と室外空気条件により高効率に換気運転モードを切り替えて室外空気の温調をすることができないという課題がある。 However, since the technique described in Patent Document 1 is an air conditioning system that switches the outdoor air processing into two stages of simple ventilation operation and humidity control operation according to the outdoor air condition, it is highly efficient depending on the indoor air condition and the outdoor air condition. However, there is a problem that the outdoor air temperature cannot be controlled by switching the ventilation operation mode.
 本発明は、以上のような課題を解決するためになされたもので、全熱交換部による排熱回収を行う空気調和システムにおいて、より高効率に消費電力を抑制することを目的としている。 The present invention has been made to solve the above-described problems, and aims to suppress power consumption more efficiently in an air conditioning system that performs exhaust heat recovery by a total heat exchange unit.
 本発明に係る空気調和システムは、室外機と室内機及び換気装置とを有する冷媒回路を備えた空気調和システムであって、換気装置は、給気風路及び排気風路を有する筐体と、筐体内に設けられ、給気と排気とを全熱交換する全熱交換部と、筐体に設けられ、排気を給気と全熱交換させるか否かを切り替える切替手段と、冷媒回路に接続され、給気風路のうちの全熱交換器よりも下流側に設けられた冷却器と、冷媒回路に接続され、冷却器への冷媒の供給を制御する冷媒供給手段と、給気風路の室外空気の温湿度と排気風路の室内空気の温湿度とに基づいて、切替手段及び冷媒供給手段を制御する制御部と、を備えたものである。 An air conditioning system according to the present invention is an air conditioning system including a refrigerant circuit having an outdoor unit, an indoor unit, and a ventilation device. The ventilation device includes a housing having an air supply passage and an exhaust air passage, and a housing. Connected to the refrigerant circuit, a total heat exchanging part provided in the body for exchanging total heat between the supply air and the exhaust, a switching unit provided in the housing for switching whether or not the exhaust gas is exchanged for total heat with the supply air. A cooler provided downstream of the total heat exchanger in the supply air path, a refrigerant supply means connected to the refrigerant circuit and controlling supply of the refrigerant to the cooler, and outdoor air in the supply air path And a control unit for controlling the switching means and the refrigerant supply means based on the temperature and humidity of the air and the temperature and humidity of the indoor air in the exhaust air passage.
 本発明に係る空気調和システムによれば、上記構成を有しているため、全熱交換部による排熱回収を行う空気調和システムにおいて、より高効率に消費電力を抑制することができる。 Since the air conditioning system according to the present invention has the above-described configuration, power consumption can be suppressed more efficiently in the air conditioning system that performs exhaust heat recovery by the total heat exchange unit.
本発明の実施の形態1に係る空気調和システム100の概略図である。It is the schematic of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システム100の冷媒回路の概略図である。It is the schematic of the refrigerant circuit of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態に係る空気調和システム100の換気装置3の概要構成例図である。It is an example of outline composition of ventilator 3 of air harmony system 100 concerning an embodiment of the invention. 本発明の実施の形態1に係る空気調和システム100の有する3つの温湿度範囲の説明図である。It is explanatory drawing of the three temperature / humidity ranges which the air conditioning system 100 which concerns on Embodiment 1 of this invention has. 本発明の実施の形態1に係る空気調和システム100の有する制御部53のブロック図である。It is a block diagram of the control part 53 which the air conditioning system 100 which concerns on Embodiment 1 of this invention has. 本発明の実施の形態1に係る空気調和システム100の有する3つのエンタルピ範囲で分けたことを示す図である。It is a figure which shows having divided in the three enthalpy ranges which the air conditioning system 100 which concerns on Embodiment 1 of this invention has. 本発明の実施の形態1に係る空気調和システム100の各ゾーンにおける動作説明図である。It is operation | movement explanatory drawing in each zone of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システム100の制御フローチャートの一例である。It is an example of the control flowchart of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システム100の変形例1である。It is the modification 1 of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和システム100の変形例2である。It is the modification 2 of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和システム120の各ゾーンにおける動作説明図である。It is operation | movement explanatory drawing in each zone of the air conditioning system 120 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和システム120の制御フローチャートの一例である。It is an example of the control flowchart of the air conditioning system 120 which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態を説明する。
実施の形態1. 
 図1は、本実施の形態1に係る空気調和システム100の概略図である。図1を参照して空気調和システムの概略構成などについて説明する。本実施の形態1に係る空気調和システム100は、以下、外気冷房を含む冷房運転時の構成を前提とするものであるため、冷房運転における構成及び動作について説明する。
 本実施の形態1に係る空気調和システム100は、全熱交換部による排熱回収を行う空気調和システムにおいて、より高効率に消費電力を抑制することができる改良が加えられているものである。
Embodiments of the present invention will be described below.
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of an air conditioning system 100 according to the first embodiment. A schematic configuration of the air conditioning system will be described with reference to FIG. Since the air-conditioning system 100 according to Embodiment 1 is premised on the configuration during cooling operation including outside air cooling, the configuration and operation in the cooling operation will be described below.
The air-conditioning system 100 according to Embodiment 1 is an air-conditioning system that performs exhaust heat recovery by the total heat exchange unit, and is provided with an improvement that can suppress power consumption more efficiently.
[構成説明]
 空気調和システム100は、1台または複数の室内機1及び室外機2を有し、室内機1と室外機2とが冷媒配管101で接続されている。空気調和システム100は、1台または複数の換気装置3及び室外機4を有し、換気装置3と室外機4とが冷媒配管102で接続されている。本実施の形態1では、室内機1が複数台であり、換気装置3が1台である場合を例に説明する。
 室内機1及び換気装置3は、空調対象空間である室内、ビルの一室、倉庫などの空調に利用されるものである。また、室外機2及び室外機4は、たとえば、建物外、ビルの屋上などに設置される熱源機である。
[Description of configuration]
The air conditioning system 100 includes one or a plurality of indoor units 1 and outdoor units 2, and the indoor unit 1 and the outdoor unit 2 are connected by a refrigerant pipe 101. The air conditioning system 100 includes one or a plurality of ventilation devices 3 and an outdoor unit 4, and the ventilation device 3 and the outdoor unit 4 are connected by a refrigerant pipe 102. In the first embodiment, a case where there are a plurality of indoor units 1 and a single ventilator 3 will be described as an example.
The indoor unit 1 and the ventilator 3 are used for air conditioning of a room, a room of a building, a warehouse, or the like, which is a space to be air-conditioned. The outdoor unit 2 and the outdoor unit 4 are heat source units that are installed outside a building or on the roof of a building, for example.
 また、空気調和システム100は、室内機1、室外機2、換気装置3及び室外機4を制御する集中コントローラ50を有している。集中コントローラ50は、室内機1、室外機2、換気装置3及び室外機4に伝送線51を介して接続されている。なお、伝送線51のような有線ではなく、無線を用いることもできる。 The air conditioning system 100 also includes a centralized controller 50 that controls the indoor unit 1, the outdoor unit 2, the ventilation device 3, and the outdoor unit 4. The centralized controller 50 is connected to the indoor unit 1, the outdoor unit 2, the ventilation device 3, and the outdoor unit 4 via a transmission line 51. In addition, it is possible to use wireless instead of the wired line like the transmission line 51.
 図2は、本実施の形態1に係る空気調和システム100の冷媒回路の概略図である。空気調和システム100は、冷媒が循環する冷媒回路を2つ有している。第1の冷媒回路11は、圧縮機12、四方弁13、室外熱交換器14、絞り装置15及び室内熱交換器16を有し、これらが冷媒配管で接続されて冷凍サイクルを構成するものである。なお、室外熱交換器14には室外送風機17が付設され、室内熱交換器16には室外送風機18が付設されている。そして、各室内機1は、絞り装置15、室内熱交換器16及び室外送風機18が設けられている。 FIG. 2 is a schematic diagram of a refrigerant circuit of the air conditioning system 100 according to the first embodiment. The air conditioning system 100 has two refrigerant circuits in which the refrigerant circulates. The first refrigerant circuit 11 has a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion device 15, and an indoor heat exchanger 16, and these are connected by a refrigerant pipe to constitute a refrigeration cycle. is there. The outdoor heat exchanger 14 is provided with an outdoor fan 17, and the indoor heat exchanger 16 is provided with an outdoor fan 18. Each indoor unit 1 is provided with an expansion device 15, an indoor heat exchanger 16, and an outdoor fan 18.
 第2の冷媒回路21は、圧縮機22、四方弁23、室外熱交換器24、絞り装置25及び冷却器26を有し、これらが冷媒配管で接続されて冷凍サイクルを構成するものである。室外熱交換器24には、送風機27が付設されている。なお、絞り装置25が、冷却器26への冷媒の供給を制御するのに利用される冷媒供給手段に対応する構成である。 The second refrigerant circuit 21 includes a compressor 22, a four-way valve 23, an outdoor heat exchanger 24, a throttling device 25, and a cooler 26, which are connected by a refrigerant pipe to constitute a refrigeration cycle. A blower 27 is attached to the outdoor heat exchanger 24. The expansion device 25 corresponds to a refrigerant supply unit used to control the supply of the refrigerant to the cooler 26.
 図3は、本実施の形態に係る空気調和システム100の換気装置3の概要構成例図である。換気装置3は、図3に示すように、給気風路3A1と排気風路3A2が形成された筐体3Aと、筐体3A内に設けられた全熱交換器30と、空調対象空間外の空気を給気風路3A1に取り込むための給気用送風機28と、空調対象空間の空気を排気風路3A2に取り込むための排気用送風機29とを有している。ここで、以下の説明では、空調対象空間外の空気を室外空気及び給気と称し、空調対象空間の空気を室内空気及び排気とも称する。また、換気装置3は、給気風路3A1の空気を冷却する冷却器26を有している。なお、全熱交換器30が全熱交換部に対応する構成である。 FIG. 3 is a schematic configuration diagram of the ventilation device 3 of the air conditioning system 100 according to the present embodiment. As shown in FIG. 3, the ventilator 3 includes a housing 3A in which an air supply passage 3A1 and an exhaust air passage 3A2 are formed, a total heat exchanger 30 provided in the housing 3A, and a space outside the air-conditioning target space. An air supply blower 28 for taking air into the supply air passage 3A1 and an exhaust blower 29 for taking air in the air-conditioning target space into the exhaust air passage 3A2. Here, in the following description, air outside the air conditioning target space is referred to as outdoor air and air supply, and air in the air conditioning target space is also referred to as indoor air and exhaust. The ventilator 3 has a cooler 26 that cools the air in the supply air passage 3A1. The total heat exchanger 30 corresponds to the total heat exchange unit.
 換気装置3は、室内空気(排気)の温度と湿度を検出するのに利用される第1の温湿度検出手段32と、室外空気(給気)の温度と湿度を検出するのに利用される第2の温湿度検出手段31とを有している。第2の温湿度検出手段31及び第1の温湿度検出手段32の検出結果は、換気装置3の制御部53に出力される。 The ventilation device 3 is used to detect the temperature and humidity of the first temperature / humidity detection means 32 used to detect the temperature and humidity of the indoor air (exhaust), and the outdoor air (supply air). The second temperature / humidity detecting means 31 is provided. The detection results of the second temperature / humidity detection means 31 and the first temperature / humidity detection means 32 are output to the control unit 53 of the ventilation device 3.
 換気装置3は、空調対象空間から排気風路3A2内に取り込まれた室内空気を全熱交換器30に流入しないように筐体3Aから排出させるためのバイパス風路34と、バイパス風路34側に空気を流すか、全熱交換器30側に空気を流すかを切り替えるための切替手段33とを有している。切替手段33は、たとえば、排気風路3A2とバイパス風路34とを連通させるか否かを切り替えるための開閉自在のダンパー部で構成することができる。バイパス風路34に排気を流入させる場合には、ダンパー部は、バイパス風路34側の開口を開放するように回転させられる。一方、全熱交換器30に排気を流入させる場合には、ダンパー部は、バイパス風路34側の開口を閉塞し、排気用送風機29を運転して全熱交換器30に強制的に排気を引き込む。 The ventilation device 3 includes a bypass air passage 34 for discharging the indoor air taken into the exhaust air passage 3A2 from the air-conditioning target space from the housing 3A so as not to flow into the total heat exchanger 30, and the bypass air passage 34 side. And switching means 33 for switching between flowing air to the total heat exchanger 30 side. The switching means 33 can be constituted by, for example, an openable / closable damper portion for switching whether or not the exhaust air passage 3A2 and the bypass air passage 34 are communicated. When exhaust gas is caused to flow into the bypass air passage 34, the damper portion is rotated so as to open the opening on the bypass air passage 34 side. On the other hand, when the exhaust gas is caused to flow into the total heat exchanger 30, the damper portion closes the opening on the bypass air passage 34 side and operates the exhaust fan 29 to forcibly exhaust the exhaust gas to the total heat exchanger 30. Pull in.
 図4は、本実施の形態1に係る空気調和システム100の有する3つの温湿度範囲の説明図である。図4(a)は第1の時間における第1の温湿度検出手段32の検出結果に基づく3つの温湿度範囲を示している。また、図4(b)は、第1の時間から予め設定された時間が経過した第2の時間における第1の温湿度検出手段32の検出結果に基づく3つの温湿度範囲を示している。すなわち、図4(a)の状態から図4(b)の状態へ移行しているのは、空調対象空間の冷房が進んでいるからである。図4を参照して乾球温度及び絶対湿度に応じて区分された3つの温湿度範囲の構成について説明する。 FIG. 4 is an explanatory diagram of three temperature / humidity ranges of the air-conditioning system 100 according to the first embodiment. FIG. 4A shows three temperature / humidity ranges based on the detection result of the first temperature / humidity detection means 32 in the first time. FIG. 4B shows three temperature / humidity ranges based on the detection result of the first temperature / humidity detection means 32 at a second time after a preset time has elapsed from the first time. That is, the reason for shifting from the state of FIG. 4A to the state of FIG. 4B is that the air-conditioning target space is being cooled. With reference to FIG. 4, the structure of the three temperature-humidity ranges divided according to dry-bulb temperature and absolute humidity is demonstrated.
 換気装置3は、第1の温湿度検出手段32の検出結果tin、xinに基づいて図4のように外気を3つの温湿度範囲(第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲)に分割する。なお、図中におけるゾーンIが第1の温湿度範囲に対応し、ゾーンIIが第2の温湿度範囲に対応し、ゾーンIIIが第3の温湿度範囲に対応している。 The ventilator 3 divides the outside air into three temperature / humidity ranges (first temperature / humidity range, second temperature / humidity range and first temperature / humidity range) as shown in FIG. 4 based on the detection results tin, xin of the first temperature / humidity detection means 32. 3 temperature range). In the figure, zone I corresponds to the first temperature / humidity range, zone II corresponds to the second temperature / humidity range, and zone III corresponds to the third temperature / humidity range.
 ここで、第1の温湿度範囲と第2の温湿度範囲とを分ける閾値は、t_lo及びx_loである。第1の温湿度範囲と第3の温湿度範囲とを分ける閾値は、t_hi及びx_hiである。すなわち、換気装置3の制御部53は、第1の温湿度検出手段32の検出結果に基づいて閾値t_lo、閾値x_lo、閾値t_hi及び閾値x_hiを決定する。閾値t_lo、閾値x_lo、閾値t_hi及び閾値x_hiは、第1の温湿度検出手段32の検出結果に基づいて決定されるため、時間とともに値が変化する。 Here, the thresholds for dividing the first temperature and humidity range from the second temperature and humidity range are t_lo and x_lo. The thresholds that separate the first temperature and humidity range from the third temperature and humidity range are t_hi and x_hi. That is, the control unit 53 of the ventilation device 3 determines the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi based on the detection result of the first temperature / humidity detection unit 32. Since the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi are determined based on the detection result of the first temperature / humidity detection means 32, the values change with time.
 また、第1の温湿度検出手段32の検出結果である乾球温度よりも、t_loの方が予め設定された値である第1の乾球温度差T1だけ小さい値であり、t_hiの方が予め設定された値である第2の乾球温度差T2だけ大きい値である。また、第1の温湿度検出手段32の検出結果である絶対湿度よりも、x_loの方が予め設定された値である第1の絶対湿度差X1だけ小さい値であり、x_hiの方が予め設定された値である第2の絶対湿度差X2だけ大きい値である。第1の乾球温度差T1、第2の乾球温度差T2、第1の絶対湿度差X1及び第2の絶対湿度差X2の大きさは、適宜ユーザー側が設定することができる。 In addition, t_lo is smaller than the dry bulb temperature, which is the detection result of the first temperature / humidity detection means 32, by a first dry bulb temperature difference T1, which is a preset value, and t_hi is greater. The value is larger by the second dry bulb temperature difference T2, which is a preset value. Further, x_lo is smaller than the absolute humidity which is the detection result of the first temperature / humidity detection means 32 by a first absolute humidity difference X1 which is a preset value, and x_hi is preset. This is a value that is larger by the second absolute humidity difference X2, which is the measured value. The magnitudes of the first dry bulb temperature difference T1, the second dry bulb temperature difference T2, the first absolute humidity difference X1, and the second absolute humidity difference X2 can be appropriately set by the user.
 閾値t_lo、閾値x_lo、閾値t_hi及び閾値x_hiは、第1の温湿度検出手段32の検出結果に基づいて決定されるため、時間とともに値が変化するが、第1の乾球温度差T1、第2の乾球温度差T2、第1の絶対湿度差X1及び第2の絶対湿度差X2の大きさは変化させない。 Since the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi are determined based on the detection result of the first temperature and humidity detection means 32, the values change with time, but the first dry bulb temperature difference T1, The dry bulb temperature difference T2, the first absolute humidity difference X1, and the second absolute humidity difference X2 are not changed.
 また、換気装置3は、第2の温湿度検出手段31の検出結果に基づいて、外気(給気)が3つの温湿度範囲のうちのどの温湿度範囲に属するかを判定する。ここで、空気調和システム100は、空調対象空間が所定の目標温度及び所定の目標湿度となるように冷房運転している。たとえば室内機1側による冷房運転により、空調対象空間の温度が下がると、第1の温湿度検出手段32の検出結果が変化していく。具体的には、第1の温湿度検出手段32の検出結果に対応する室内空気の乾球温度及び湿度の点Aの位置が、たとえば図4に示す点Bの位置に移動する。このため、閾値t_lo、閾値x_lo、閾値t_hi及び閾値x_hiが変化、すなわち第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲が変化する。 Further, the ventilation device 3 determines which temperature / humidity range of the three temperature / humidity ranges the outside air (supply air) belongs to based on the detection result of the second temperature / humidity detection means 31. Here, the air conditioning system 100 is in a cooling operation so that the air-conditioning target space has a predetermined target temperature and a predetermined target humidity. For example, when the temperature of the air-conditioning target space decreases due to the cooling operation on the indoor unit 1 side, the detection result of the first temperature / humidity detection means 32 changes. Specifically, the position of the point A of the dry-bulb temperature and humidity of the indoor air corresponding to the detection result of the first temperature / humidity detection means 32 moves to the position of the point B shown in FIG. For this reason, the threshold value t_lo, the threshold value x_lo, the threshold value t_hi, and the threshold value x_hi change, that is, the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range change.
 図4(a)に示すように、第1の時間では、第2の温湿度検出手段31の検出結果に対応する室外空気の乾球温度及び湿度が点Cの位置である。点Cは、第1の温湿度範囲に属しているので、換気装置3は、後述する第1の運転モードを実施する。一方、図4(b)に示すように、第1の時間から時間が経過した第2の時間では、第1の温湿度検出手段32の検出結果に対応する室内空気の乾球温度及び湿度の位置が、点Aから点Bに移動している。図4(b)に示すように、これに伴って、第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲も移動していることが分かる。第2の時間においても、第1の時間から外気条件は変化していないものとする。すなわち、第2の時間でも、第2の温湿度検出手段31の検出結果に対応する室外空気の乾球温度及び湿度は点Cのままである。点Cは、第2の温湿度範囲に属しているので、換気装置3は、後述する第2の運転モードを実施する。 As shown in FIG. 4A, in the first time, the dry bulb temperature and humidity of the outdoor air corresponding to the detection result of the second temperature / humidity detection means 31 are the position of the point C. Since the point C belongs to the first temperature and humidity range, the ventilator 3 performs a first operation mode described later. On the other hand, as shown in FIG. 4B, in the second time after the first time, the dry bulb temperature and humidity of the indoor air corresponding to the detection result of the first temperature and humidity detection means 32 are changed. The position has moved from point A to point B. As shown in FIG. 4 (b), it can be seen that the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range are also moved accordingly. Also in the second time, it is assumed that the outside air condition has not changed from the first time. That is, even in the second time, the dry bulb temperature and humidity of the outdoor air corresponding to the detection result of the second temperature and humidity detection means 31 remain at the point C. Since the point C belongs to the second temperature / humidity range, the ventilator 3 performs a second operation mode described later.
 第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲は、より具体的には、次の通りである。
(1)第1の温湿度範囲(ゾーンI)
 第1の温湿度範囲は、空気線図において乾球温度がt_lo以下であって絶対湿度がx_lo未満の範囲である。
(2)第2の温湿度範囲(ゾーンII)
 第2の温湿度範囲は、空気線図において乾球温度がt_loより大きくt_hi以下であって絶対湿度がx_lo以上でありx_hi未満の範囲である。
(3)第3の温湿度範囲(ゾーンIII)
 第3の温湿度範囲は、空気線図において乾球温度がt_hiより大きく、絶対湿度がx_hi以上の範囲である。
More specifically, the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range are as follows.
(1) First temperature and humidity range (zone I)
The first temperature / humidity range is a range in which the dry bulb temperature is t_lo or less and the absolute humidity is less than x_lo in the air diagram.
(2) Second temperature and humidity range (Zone II)
The second temperature / humidity range is a range in which the dry bulb temperature is greater than t_lo and less than or equal to t_hi and the absolute humidity is greater than or equal to x_lo and less than x_hi in the air diagram.
(3) Third temperature / humidity range (zone III)
The third temperature / humidity range is a range in which the dry bulb temperature is higher than t_hi and the absolute humidity is x_hi or higher in the air diagram.
 図5は、本実施の形態1に係る空気調和システム100の有する制御部53のブロック図である。図5を参照して制御部53の詳細な構成について説明する。
 第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲の順番に、空調対象空間で発生している冷房負荷が大きい。空気調和システム100では、各温湿度範囲ごとに次の運転モードを実行する。すなわち、換気装置3は、第1の温湿度範囲の場合には、排気を給気と全熱交換させないように切替手段33を切り替えるとともに、冷却器26に冷媒を供給しない第1の運転モードを実行する。換気装置3は、第2の温湿度範囲の場合には、排気を給気と全熱交換させないように切替手段を切り替えるとともに、冷却器26に冷媒を供給する第2の運転モードを実行する。
FIG. 5 is a block diagram of the control unit 53 included in the air conditioning system 100 according to the first embodiment. A detailed configuration of the control unit 53 will be described with reference to FIG.
The cooling load generated in the air-conditioning target space is large in the order of the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range. In the air conditioning system 100, the following operation mode is performed for each temperature and humidity range. That is, in the first temperature / humidity range, the ventilator 3 switches the switching means 33 so that the exhaust gas is not totally exchanged with the supply air, and the first operation mode in which the refrigerant is not supplied to the cooler 26 is performed. Execute. In the second temperature / humidity range, the ventilator 3 switches the switching means so that the exhaust does not exchange heat with the supply air, and executes the second operation mode in which the refrigerant is supplied to the cooler 26.
 制御部53は、給気風路3A1の室外空気の温湿度及び排気風路3A2の室外空気の温湿度に基づいて、切替手段33の切り替えと、冷媒供給手段である絞り装置25の開閉の切り替えとを制御するものである。すなわち、制御部53は、第1の温湿度検出手段32及び第2の温湿度検出手段31の検出結果に基づいて切替手段33の切り替え及び冷媒供給手段の切り替えをするものである。そして、制御部53は、給気風路3A1の室外空気の温湿度と排気風路3A2の室内空気の温湿度とに基づいて、切替手段33の切り替えと冷媒供給手段の切り替えとを組み合わせて複数の運転モードを実行する。本実施の形態1では、換気装置3は、切替手段33の切り替えと冷媒供給手段の切り替えとを組み合わせて、第1の運転モード、第2の運転モード及び第3の運転モードの3つの運転モードを実行する。
 制御部53は、算出手段53Aと、範囲判定手段53Bと、記憶手段53Cと、切替制御手段53Dと、絞り装置制御手段53Eとを有している。
Based on the temperature and humidity of the outdoor air in the supply air passage 3A1 and the temperature and humidity of the outdoor air in the exhaust air passage 3A2, the control unit 53 switches the switching means 33 and switches the opening and closing of the expansion device 25 that is the refrigerant supply means. Is to control. That is, the control unit 53 switches the switching unit 33 and the refrigerant supply unit based on the detection results of the first temperature / humidity detection unit 32 and the second temperature / humidity detection unit 31. Then, the control unit 53 combines the switching of the switching unit 33 and the switching of the refrigerant supply unit based on the temperature and humidity of the outdoor air of the supply air passage 3A1 and the temperature and humidity of the indoor air of the exhaust air passage 3A2. Run the operation mode. In the first embodiment, the ventilator 3 combines the switching of the switching unit 33 and the switching of the refrigerant supply unit, so that three operation modes of the first operation mode, the second operation mode, and the third operation mode are performed. Execute.
The control unit 53 includes a calculation unit 53A, a range determination unit 53B, a storage unit 53C, a switching control unit 53D, and a diaphragm control unit 53E.
(算出手段53A)
 算出手段53Aは、第1の温湿度検出手段32の検出結果に基づいて、第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲のそれぞれに対応する乾球温度及び絶対湿度の範囲を算出するものである。すなわち、算出手段53Aは、第1の温湿度検出手段32の検出結果に基づいて、上述した乾球温度閾値t_lo、乾球温度閾値t_hi、絶対湿度閾値x_lo及び絶対湿度閾値x_hiの値を決定するための演算を実施する。
(Calculating means 53A)
Based on the detection result of the first temperature / humidity detection unit 32, the calculation unit 53A calculates the dry bulb temperature and the absolute value corresponding to each of the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range. The range of humidity is calculated. That is, the calculation unit 53A determines the values of the dry bulb temperature threshold value t_lo, the dry bulb temperature threshold value t_hi, the absolute humidity threshold value x_lo, and the absolute humidity threshold value x_hi based on the detection result of the first temperature and humidity detection unit 32. For the operation.
(範囲判定手段53B)
 範囲判定手段53Bは、第2の温湿度検出手段31の検出結果に基づいて、算出した乾球温度及び絶対湿度が、算出手段53Aで算出された第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲のうちのいずれの範囲に該当するかを判定するものである。
(Range determination means 53B)
Based on the detection result of the second temperature / humidity detection means 31, the range determination means 53B has the calculated dry bulb temperature and absolute humidity calculated by the calculation means 53A in the first temperature / humidity range and the second temperature / humidity. It is determined which of the range and the third temperature / humidity range corresponds to the range.
(記憶手段53C)
 記憶手段53Cは、各種情報を記憶するものである。記憶手段53Cは、たとえば算出手段53Aで算出した第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲の情報などを記憶する。記憶手段53Cは、たとえば、ハードディスク、フラッシュメモリなどで構成することができる。
(Storage means 53C)
The storage means 53C stores various information. The storage unit 53C stores, for example, information on the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range calculated by the calculation unit 53A. The storage unit 53C can be configured with, for example, a hard disk, a flash memory, or the like.
(切替制御手段53D)
 切替制御手段53Dは、範囲判定手段53Bが第1の温湿度範囲又は第2の温湿度範囲であると判定した場合にバイパス風路34に排気が流れるようにダンパー部を切り替え、第3の温湿度範囲であると判定した場合に全熱交換器30に排気が流れるようにダンパー部を切り替えるものである。
(Switching control means 53D)
The switching control unit 53D switches the damper portion so that the exhaust flows through the bypass air passage 34 when the range determination unit 53B determines that the first temperature / humidity range or the second temperature / humidity range is set, and the third temperature When it is determined that the humidity is within the range, the damper portion is switched so that the exhaust gas flows through the total heat exchanger 30.
(絞り装置制御手段53E)
 絞り装置制御手段53Eは、範囲判定手段53Bが第1の温湿度範囲であると判定した場合に冷媒供給手段である絞り装置25を閉じ、第2の温湿度範囲又は第3の温湿度範囲であると判定した場合に冷媒供給手段である絞り装置25を予め設定された開度に開くものである。
(Aperture control means 53E)
The expansion device control means 53E closes the expansion device 25, which is the refrigerant supply means, when the range determination means 53B determines that it is in the first temperature / humidity range, and in the second temperature / humidity range or the third temperature / humidity range. When it is determined that the expansion device 25 is present, the expansion device 25 as the refrigerant supply means is opened to a preset opening degree.
 換気装置3は、第3の温湿度範囲の場合には、排気と給気とが全熱交換するように、切替制御手段53Dが切替手段33を切り替えるとともに、冷却器26に冷媒を供給する第3の運転モードを実行する。このように、空気調和システム100は、第1の温湿度範囲、第2の温湿度範囲及び第3の温湿度範囲ごとに、換気装置3が実施する運転モードが設定されている。すなわち、空気調和システム100では、各温湿度範囲に対応する冷房負荷に応じて、消費電力をできるだけ低減できるような機器を選択的に用いることで、発生している冷房負荷に対応する冷房能力で運転しながらも、消費電力を抑制することができるようになっている。 In the third temperature / humidity range, the ventilation device 3 switches the switching means 33 so that the exhaust air and the supply air exchange total heat, and switches the switching means 33 and supplies the refrigerant to the cooler 26. 3 operation mode is executed. As described above, in the air conditioning system 100, the operation mode performed by the ventilator 3 is set for each of the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range. In other words, in the air conditioning system 100, by selectively using a device that can reduce power consumption as much as possible according to the cooling load corresponding to each temperature and humidity range, the cooling capacity corresponding to the generated cooling load can be achieved. Power consumption can be suppressed while driving.
 従来の換気装置は、全熱交換器を備えず、調湿運転と単純換気運転とを切り替える制御方式を採用しているものが知られている。このような、従来の換気装置であると、たとえば高い冷房負荷がかかる第3の温湿度範囲において、全熱交換器30が用いられないので、その分、圧縮機の回転数を上げることで、冷房負荷に対する不足分の冷房能力を確保する必要があり、消費電力が増大してしまう。しかし、本実施の形態1に係る空気調和システム100においては、全熱交換器30を利用することができ、消費電力が増大することを抑制することができる。 Conventional ventilators are known that do not include a total heat exchanger and adopt a control system that switches between humidity control operation and simple ventilation operation. In such a conventional ventilator, for example, in the third temperature and humidity range where a high cooling load is applied, the total heat exchanger 30 is not used, so by increasing the number of rotations of the compressor accordingly, It is necessary to ensure a sufficient cooling capacity with respect to the cooling load, which increases power consumption. However, in the air conditioning system 100 according to Embodiment 1, the total heat exchanger 30 can be used, and the increase in power consumption can be suppressed.
 図6は、本実施の形態1に係る空気調和システム100の有する3つのエンタルピ範囲で分けたことを示す図である。図6(a)は第1の時間における第1の温湿度検出手段32の検出結果に基づく3つのエンタルピ範囲を示している。また、図6(b)は、第1の時間から予め設定された時間が経過した第2の時間における第1の温湿度検出手段32の検出結果に基づくエンタルピ範囲を示している。すなわち、図6(a)の状態から図6(b)の状態へ移行しているのは、空調対象空間の冷房が進んでいるからである。
 図4における説明では制御部53は、第1の温湿度検出手段32の検出結果tin、xinに基づいて図4のように外気を3つの温湿度範囲に分割する構成であったが、これに限定されるものではない。図6に示すように、温湿度範囲ではなく、3つのエンタルピ範囲に分割する構成であってもよい。エンタルピの態様についても、図4で説明した内容と対応して説明することができる。
FIG. 6 is a diagram showing that the air conditioning system 100 according to Embodiment 1 is divided into three enthalpy ranges. FIG. 6A shows three enthalpy ranges based on the detection result of the first temperature / humidity detection means 32 in the first time. FIG. 6B shows an enthalpy range based on the detection result of the first temperature / humidity detection means 32 at a second time when a preset time has elapsed from the first time. That is, the reason for shifting from the state of FIG. 6A to the state of FIG. 6B is that the air-conditioning target space is being cooled.
In the description of FIG. 4, the control unit 53 is configured to divide the outside air into three temperature and humidity ranges as shown in FIG. 4 based on the detection results tin and xin of the first temperature and humidity detection unit 32. It is not limited. As shown in FIG. 6, it may be configured to divide into three enthalpy ranges instead of the temperature and humidity range. The mode of enthalpy can also be described in correspondence with the content described in FIG.
 第1のエンタルピ範囲と第2のエンタルピ範囲とを分ける閾値は、I_loである。第2のエンタルピ範囲と第3のエンタルピ範囲とを分ける閾値は、I_hiである。より具体的には、次の通りである。
(1)第1のエンタルピ範囲(ゾーンI)
 第1のエンタルピ範囲は、空気線図においてエンタルピ値がI_lo以下の範囲である。
(2)第2のエンタルピ範囲(ゾーンII)
 第2のエンタルピ範囲は、空気線図においてエンタルピ値がI_loより大きくI_hi以下の範囲である。
(3)第3のエンタルピ範囲(ゾーンIII)
 第3のエンタルピ範囲は、空気線図においてエンタルピ値がI_hiより大きい範囲である。
The threshold value that separates the first enthalpy range and the second enthalpy range is I_lo. The threshold value that separates the second enthalpy range and the third enthalpy range is I_hi. More specifically, it is as follows.
(1) First enthalpy range (zone I)
The first enthalpy range is a range in which the enthalpy value is I_lo or less in the air diagram.
(2) Second enthalpy range (Zone II)
The second enthalpy range is a range in which the enthalpy value is greater than I_lo and less than or equal to I_hi in the air diagram.
(3) Third enthalpy range (zone III)
The third enthalpy range is a range in which the enthalpy value is larger than I_hi in the air diagram.
 制御部53は、給気風路3A1の室外空気のエンタルピ及び排気風路3A2の室内空気のエンタルピに基づいて、切替手段33の切り替えと冷媒供給手段である絞り装置25の開閉の切り替えとを制御するものである。そして、制御部53は、給気風路3A1の室外空気のエンタルピと排気風路3A2の室内空気のエンタルピとに基づいて、切替手段33の切り替えと冷媒供給手段の切り替えとを組み合わせて複数の運転モードを実行する。 The control unit 53 controls switching of the switching means 33 and switching of opening / closing of the expansion device 25 serving as the refrigerant supply means based on the enthalpy of outdoor air in the supply air passage 3A1 and the enthalpy of indoor air in the exhaust air passage 3A2. Is. Then, the control unit 53 combines the switching of the switching unit 33 and the switching of the refrigerant supply unit based on the enthalpy of the outdoor air of the supply air passage 3A1 and the enthalpy of the indoor air of the exhaust air passage 3A2, and thereby a plurality of operation modes. Execute.
 図6において、算出手段53Aは、第1の温湿度検出手段32の検出結果に基づいて、第1のエンタルピ範囲、第2のエンタルピ範囲及び第3のエンタルピ範囲のそれぞれに対応するエンタルピの範囲を算出する。すなわち、算出手段53Aは、第1の温湿度検出手段32の検出結果に基づいて、エンタルピ閾値I_lo及びエンタルピ閾値I_hiの値を決定するための演算を実施する。
 また、範囲判定手段53Bは、第2の温湿度検出手段31の検出結果に基づいて外気のエンタルピを算出する。そして、範囲判定手段53Bは、算出したエンタルピが、算出手段53Aで算出された第1のエンタルピ範囲、第2のエンタルピ範囲及び第3のエンタルピ範囲のうちのいずれの範囲に該当するかを判定する。
In FIG. 6, the calculation means 53A calculates the enthalpy ranges corresponding to the first enthalpy range, the second enthalpy range, and the third enthalpy range based on the detection result of the first temperature and humidity detection means 32. calculate. That is, the calculation unit 53A performs a calculation for determining the values of the enthalpy threshold value I_lo and the enthalpy threshold value I_hi based on the detection result of the first temperature / humidity detection unit 32.
The range determination unit 53B calculates the enthalpy of the outside air based on the detection result of the second temperature / humidity detection unit 31. Then, the range determination unit 53B determines which of the first enthalpy range, the second enthalpy range, and the third enthalpy range calculated by the calculation unit 53A corresponds to the calculated enthalpy. .
 また、第1の温湿度検出手段32の検出結果から算出されるエンタルピ値よりも、I_loの方が予め設定された値である第1のエンタルピ差I1だけ小さい値であり、I_hiの方が予め設定された値である第2のエンタルピ差I2だけ大きい値である。第1のエンタルピ差I1及び第2のエンタルピ差I2の大きさは、適宜ユーザー側が設定することができる。 In addition, I_lo is smaller than the enthalpy value calculated from the detection result of the first temperature / humidity detection means 32 by a first enthalpy difference I1, which is a preset value, and I_hi is greater in advance. The value is larger by the second enthalpy difference I2, which is the set value. The user can appropriately set the magnitudes of the first enthalpy difference I1 and the second enthalpy difference I2.
 エンタルピ閾値I_lo及びエンタルピ閾値I_hiは、第1の温湿度検出手段32の検出結果に基づいて決定されるため、時間とともに値が変化するが、第1のエンタルピ差I1及び第2のエンタルピ差I2の大きさは変化させない。 Since the enthalpy threshold I_lo and the enthalpy threshold I_hi are determined based on the detection result of the first temperature / humidity detection means 32, the values change with time, but the first enthalpy difference I1 and the second enthalpy difference I2 The size is not changed.
 図6(a)に示すように、第1の時間では、第2の温湿度検出手段31の検出結果に対応するエンタルピ値が点Cの位置である。点Cは、第1のエンタルピ範囲に属しているので、換気装置3は、第1の運転モードを実施する。一方、図6(b)に示すように、第1の時間から時間が経過した第2の時間では、第1の温湿度検出手段32の検出結果に対応するエンタルピ値が、点Aから点Bに移動している。図6(b)に示すように、これに伴って、第1のエンタルピ範囲、第2のエンタルピ範囲及び第3のエンタルピ範囲も移動していることが分かる。第2の時間においても、第1の時間から外気条件は変化していないものとする。すなわち、第2の時間でも、第2の温湿度検出手段31の検出結果に対応するエンタルピ値は点Cのままである。点Cは、第2のエンタルピ範囲に属しているので、換気装置3は、第2の運転モードを実施する。 As shown in FIG. 6A, the enthalpy value corresponding to the detection result of the second temperature / humidity detection means 31 is the position of the point C at the first time. Since the point C belongs to the first enthalpy range, the ventilator 3 performs the first operation mode. On the other hand, as shown in FIG. 6B, at the second time after the first time, the enthalpy value corresponding to the detection result of the first temperature / humidity detection means 32 is changed from the point A to the point B. Has moved to. As shown in FIG. 6B, it can be seen that the first enthalpy range, the second enthalpy range, and the third enthalpy range are also moved accordingly. Also in the second time, it is assumed that the outside air condition has not changed from the first time. That is, the enthalpy value corresponding to the detection result of the second temperature / humidity detection means 31 remains at the point C even in the second time. Since the point C belongs to the second enthalpy range, the ventilator 3 performs the second operation mode.
[ゾーン別の動作説明]
 図7は、本実施の形態1に係る空気調和システム100の各ゾーンにおける動作説明図である。なお、図7(a)は、ゾーンIにおける動作説明図であり、図7(b)は、ゾーンIIにおける動作説明図であり、図7(c)は、ゾーンIIIにおける動作説明図である。
[Description of operation by zone]
FIG. 7 is an operation explanatory diagram in each zone of the air-conditioning system 100 according to Embodiment 1. In FIG. 7A is an operation explanatory diagram in the zone I, FIG. 7B is an operation explanatory diagram in the zone II, and FIG. 7C is an operation explanatory diagram in the zone III.
(ゾーンIにおける第1の運転モードについて)
 第1の温湿度範囲(第1のエンタルピ範囲)の場合は、切替手段33を開にして、室内空気をバイパス風路34に導入し、全熱交換器30での外気(給気)と室内空気(排気)の熱交換はさせないようにする。また、絞り装置25を全閉とし、冷却器26において、外気と冷媒の熱交換はさせないようにする。第1の温湿度範囲の場合は、外気のエンタルピに比べて内気のエンタルピが低いため、外気が直接室内に供給され、外気冷房効果が得られる空調方式となっている。つまり、第1の運転モードは、外気を室内に導入しても冷房が可能である外気条件となっているということである。
(Regarding the first operation mode in zone I)
In the case of the first temperature / humidity range (first enthalpy range), the switching means 33 is opened and the room air is introduced into the bypass air passage 34, and the outside air (supply air) in the total heat exchanger 30 and the room Avoid heat exchange of air (exhaust). Further, the expansion device 25 is fully closed so that the cooler 26 does not exchange heat between the outside air and the refrigerant. In the case of the first temperature and humidity range, since the enthalpy of the inside air is lower than the enthalpy of the outside air, the outside air is directly supplied into the room, and the air conditioning system can obtain the outside air cooling effect. That is, the first operation mode is an outside air condition that allows cooling even when outside air is introduced into the room.
(ゾーンIIにおける第2の運転モードついて)
 第2の温湿度範囲(第2のエンタルピ範囲)の場合は、切替手段33を開にして、室内空気をバイパス風路34に導入するところは、第1の温湿度範囲と同じである。一方、第2の温湿度範囲の場合は、絞り装置25を開にして冷却器26において、外気と冷媒の熱交換をさせるようにする。結果として、外気が冷却器26において、冷却除湿されて室内に供給される。
 第2の温湿度範囲では、室内空気と室外空気との乾球温度及び絶対湿度の条件が近く、仮に全熱交換器30で全熱交換させたとしてもその全熱交換量が少なくなる。したがって、全熱交換器30をバイパスして排気用送風機29を停止させて排気用送風機29の動力を減らしたほうが省エネとなるため、このような空調方式としている。
(About the second operation mode in Zone II)
In the case of the second temperature / humidity range (second enthalpy range), the switching means 33 is opened and the room air is introduced into the bypass air passage 34 in the same manner as the first temperature / humidity range. On the other hand, in the second temperature / humidity range, the expansion device 25 is opened and the cooler 26 exchanges heat between the outside air and the refrigerant. As a result, the outside air is cooled and dehumidified in the cooler 26 and supplied to the room.
In the second temperature / humidity range, the conditions of the dry bulb temperature and the absolute humidity of the indoor air and the outdoor air are close, and even if the total heat exchange is performed by the total heat exchanger 30, the total heat exchange amount decreases. Therefore, by bypassing the total heat exchanger 30 and stopping the exhaust air blower 29 to reduce the power of the exhaust air blower 29, energy saving can be achieved.
(ゾーンIIIにおける第3の運転モードについて)
 第3の温湿度範囲(第3のエンタルピ範囲)の場合は、切替手段33を閉にして、室内空気と外気を全熱交換器30で熱交換させ、かつ、絞り装置25を開にして冷却器26において、全熱交換器30通過後の外気と冷媒の熱交換をさせるようにする。結果として、外気が全熱交換器30で冷却され、さらに、冷却器26で冷却除湿されて室内に供給される。
 第3の温湿度範囲は、室内空気に対して、室外空気の温度または湿度、あるいはエンタルピが十分高く、全熱交換器30における熱交換量が多くなる。第3の運転モードは、外気の乾球温度及び絶対湿度の条件が第3の温湿度範囲の場合には、室内空気の排熱を回収した方が省エネとなるので、このような空調方式としている。
(About the third operation mode in Zone III)
In the case of the third temperature / humidity range (third enthalpy range), the switching means 33 is closed, the indoor air and the outside air are heat-exchanged by the total heat exchanger 30, and the expansion device 25 is opened for cooling. In the vessel 26, heat exchange between the outside air after passing through the total heat exchanger 30 and the refrigerant is performed. As a result, the outside air is cooled by the total heat exchanger 30, further cooled and dehumidified by the cooler 26, and supplied to the room.
In the third temperature and humidity range, the temperature or humidity of the outdoor air or the enthalpy is sufficiently higher than the indoor air, and the amount of heat exchange in the total heat exchanger 30 is increased. In the third operation mode, when the condition of the dry bulb temperature and the absolute humidity of the outside air is in the third temperature and humidity range, it is more energy efficient to recover the exhaust heat of the indoor air. Yes.
[制御部53の制御フローについて]
 図8は、本実施の形態1に係る空気調和システム100の制御フローチャートの一例である。図8に空調方式切替の制御フローを示す。ステップS1で室内温湿度を検出、ステップS2でゾーン分けを行う。ステップS3では、外気温湿度を検出し、ステップS4、ステップS5で現在の外気がどのゾーンにあるかを判定する。判定後、ステップS6~ステップS8で空調方式の切り替えを行う。
[Control Flow of Control Unit 53]
FIG. 8 is an example of a control flowchart of the air conditioning system 100 according to the first embodiment. FIG. 8 shows a control flow of air conditioning system switching. In step S1, indoor temperature and humidity are detected, and in step S2, zoning is performed. In step S3, the outside air temperature / humidity is detected, and in steps S4 and S5, it is determined which zone the current outside air is in. After the determination, the air conditioning system is switched in steps S6 to S8.
[本実施の形態1に係る空気調和システム100の有する効果]
 本実施の形態1に係る空気調和システム100は、負荷に応じて第1の運転モード及び第2の運転モード、及び第3の運転モードを実施するものである。すなわち、換気装置3は、外気を室内に導入しても冷房が可能である第1の運転モードと、全熱交換量が少ないため排気用送風機29を停止して冷却器26を利用して冷却する第2の運転モードと、冷却器26だけでなく全熱交換器30を利用して室内空気の排熱を回収する第3の運転モードとを実施することができ、室内空気の排熱を利用した運転を実施するものである。このように、本実施の形態1に係る空気調和システム100は、全熱交換器30を利用したよりきめ細やかな運転が実現することができ、より高効率に消費電力を抑制することができる。
[Effects of Air Conditioning System 100 according to Embodiment 1]
The air conditioning system 100 according to Embodiment 1 implements the first operation mode, the second operation mode, and the third operation mode according to the load. That is, the ventilator 3 uses the first operation mode in which cooling is possible even when outside air is introduced into the room, and the exhaust fan 29 is stopped because the total heat exchange amount is small, and the cooler 26 is used for cooling. The second operation mode, and the third operation mode in which exhaust heat of the indoor air is recovered using not only the cooler 26 but also the total heat exchanger 30, and the exhaust heat of the indoor air can be reduced. The operation which utilized is carried out. As described above, the air-conditioning system 100 according to Embodiment 1 can realize more detailed operation using the total heat exchanger 30, and can suppress power consumption more efficiently.
 本実施の形態1では、換気装置3が第1の温湿度検出手段32及び第2の温湿度検出手段31を備えた態様について説明したが、それに限定されるものではない。
 空気調和システム100が第1の温湿度検出手段32の検出結果に対応する情報及び第2の温湿度検出手段31の検出結果に対応する情報を取得することができればよい。たとえば、空気調和システム100が、空調対象空間内の温度情報、空調対象空間外の温度情報を外部から取得し、それを利用して3つの温湿度範囲(3つのエンタルピ範囲)に該当するかを判定し、第1の運転モード、第2の運転モード及び第3の運転モードを実施する態様であってもよい。
Although Embodiment 1 demonstrated the aspect in which the ventilation apparatus 3 was provided with the 1st temperature / humidity detection means 32 and the 2nd temperature / humidity detection means 31, it is not limited to it.
It is only necessary that the air conditioning system 100 can acquire information corresponding to the detection result of the first temperature / humidity detection unit 32 and information corresponding to the detection result of the second temperature / humidity detection unit 31. For example, the air conditioning system 100 obtains temperature information in the air-conditioning target space and temperature information outside the air-conditioning target space from the outside, and uses them to determine whether the temperature / humidity ranges correspond to three temperature ranges (three enthalpy ranges). It is possible to determine and perform the first operation mode, the second operation mode, and the third operation mode.
 また、本実施の形態1では、第1の温湿度検出手段32及び第2の温湿度検出手段31の検出結果が換気装置3の制御部53に出力され、制御部53が各種演算及び各種制御を実施する場合を例に説明したが、それに限定されるものではない。たとえば、換気装置3に制御部53を設けず、その代わりに、集中コントローラ50に第1の温湿度検出手段32及び第2の温湿度検出手段31などの検出結果が出力されるようにしてもよい。すなわち、集中コントローラ50側で、実施の形態1で説明した換気装置3の制御部53の実施する各種演算及び各種制御を実施する態様としてもよい。 In the first embodiment, the detection results of the first temperature / humidity detection unit 32 and the second temperature / humidity detection unit 31 are output to the control unit 53 of the ventilator 3, and the control unit 53 performs various calculations and various controls. However, the present invention is not limited to this. For example, the ventilation unit 3 is not provided with the control unit 53, and instead, the detection results of the first temperature / humidity detection unit 32 and the second temperature / humidity detection unit 31 are output to the centralized controller 50. Good. That is, it is good also as an aspect which implements the various calculations and various controls which the control part 53 of the ventilation apparatus 3 demonstrated in Embodiment 1 implements by the concentration controller 50 side.
[変形例1]
 図9は、本実施の形態1に係る空気調和システム100の変形例1である。
 また、図9に示すように、空気調和システム110が、圧縮機12及び圧縮機22の周波数(回転数)を制御する圧縮機周波数調整手段41と、蒸発器の温度を検出する蒸発温度検出手段42とを有している。空気調和システム110では、蒸発温度検出手段42の検出値が目標蒸発温度になるように制御する。この空気調和システム110であっても、本実施の形態1に係る空気調和システム100と同様の効果を得ることができる。
[Modification 1]
FIG. 9 shows a first modification of the air-conditioning system 100 according to the first embodiment.
Further, as shown in FIG. 9, the air conditioning system 110 includes a compressor frequency adjusting means 41 for controlling the frequencies (rotations) of the compressor 12 and the compressor 22, and an evaporation temperature detecting means for detecting the temperature of the evaporator. 42. In the air conditioning system 110, control is performed so that the detection value of the evaporation temperature detecting means 42 becomes the target evaporation temperature. Even with this air conditioning system 110, the same effects as those of the air conditioning system 100 according to Embodiment 1 can be obtained.
[変形例2]
 図10は、本実施の形態1に係る空気調和システム100の変形例2である。
 また、図10に示すように、室内機1と換気装置3が同一の室外機2aに冷媒配管104を介して接続される態様の空気調和システム111において適用しても、本実施の形態1に係る空気調和システム100と同様の効果を得ることができる。
[Modification 2]
FIG. 10 is a second modification of the air-conditioning system 100 according to the first embodiment.
Moreover, as shown in FIG. 10, even if it applies to the air conditioning system 111 of the aspect with which the indoor unit 1 and the ventilation apparatus 3 are connected to the same outdoor unit 2a via the refrigerant | coolant piping 104, it is in this Embodiment 1. The effect similar to the air conditioning system 100 which concerns can be acquired.
[変形例3]
 なお、本実施の形態1では、冷媒供給手段が絞り装置25である場合を例に説明したが、それに限定されるものではない。たとえば、冷媒供給手段が圧縮機22であってもよい。この場合には、制御部53は、絞り装置制御手段53Eの代わりに圧縮機制御手段を備えていればよい。この圧縮機制御手段は、範囲判定手段53Bが第1の温湿度範囲であると判定した場合に圧縮機22を停止し、第2の温湿度範囲又は第3の温湿度範囲であると判定した場合に圧縮機22を予め設定された回転数で運転する。この変形例3においても、本実施の形態1に係る空気調和システム100と同様の効果を得ることができる。
[Modification 3]
In the first embodiment, the case where the refrigerant supply means is the expansion device 25 has been described as an example. However, the present invention is not limited to this. For example, the refrigerant supply means may be the compressor 22. In this case, the control part 53 should just be provided with the compressor control means instead of the expansion device control means 53E. This compressor control means stops the compressor 22 when the range determination means 53B determines that it is in the first temperature and humidity range, and determines that it is in the second temperature and humidity range or the third temperature and humidity range. In this case, the compressor 22 is operated at a preset rotation speed. Also in this modification 3, the effect similar to the air conditioning system 100 which concerns on this Embodiment 1 can be acquired.
実施の形態2.
 図11は、本実施の形態2に係る空気調和システム120の各ゾーンにおける動作説明図である。図12は、本実施の形態2に係る空気調和システム120の制御フローチャートの一例である。
 実施の形態2では、実施の形態1と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態2に係る空気調和システム110は、全熱交換器30の代わりに回転式の全熱交換器30Bを有する。なお、全熱交換器30Bが全熱交換部に対応する構成である。
Embodiment 2. FIG.
FIG. 11 is an operation explanatory diagram in each zone of the air-conditioning system 120 according to the second embodiment. FIG. 12 is an example of a control flowchart of the air conditioning system 120 according to the second embodiment.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. The air conditioning system 110 according to Embodiment 2 includes a rotary total heat exchanger 30 </ b> B instead of the total heat exchanger 30. In addition, the total heat exchanger 30B is a structure corresponding to a total heat exchange part.
 実施の形態2では、切替手段33は、全熱交換部である全熱交換器30Bを回転させるモータ部33Bを有している。制御部53の切替制御手段53Dは、範囲判定手段53Bが第1の温湿度範囲又は第2の温湿度範囲であると判定した場合にモータ部33Bを停止し、第3の温湿度範囲であると判定した場合にモータ部33Bを運転するようにモータ部33Bを切り替える。 In Embodiment 2, the switching means 33 has a motor unit 33B that rotates the total heat exchanger 30B that is a total heat exchange unit. The switching control unit 53D of the control unit 53 stops the motor unit 33B when the range determination unit 53B determines that it is in the first temperature / humidity range or the second temperature / humidity range, and is in the third temperature / humidity range. If it is determined, the motor unit 33B is switched so as to operate the motor unit 33B.
 図11に示すように、全熱交換部が回転型の場合でも実施の形態1と同様の効果を得ることができる。回転型の場合には、ダンパー部を有する切替手段33及びバイパス風路34を設けずに、全熱交換器30Bを回転停止することで、外気と室内空気とを全熱交換をさせないようにすることが出来る。このときの制御フローは図12に示す通りで、図8のステップS6~ステップS8のダンパー開が全熱交換器回転停止、ダンパー閉が全熱交換器30Bの回転に変わる。 As shown in FIG. 11, the same effect as in the first embodiment can be obtained even when the total heat exchange unit is a rotary type. In the case of the rotary type, the total heat exchanger 30B is stopped from rotation without providing the switching means 33 having the damper portion and the bypass air passage 34, so that the total heat exchange between the outside air and the room air is prevented. I can do it. The control flow at this time is as shown in FIG. 12, and the damper opening in steps S6 to S8 in FIG. 8 is changed to stop the rotation of the total heat exchanger, and the damper closing is changed to the rotation of the total heat exchanger 30B.
[実施の形態2に係る空気調和システム120の有する効果]
 本実施の形態2に係る空気調和システム120は、実施の形態1に係る空気調和システム100と同様の効果を有する。
[Effects of Air Conditioning System 120 According to Embodiment 2]
The air conditioning system 120 according to the second embodiment has the same effects as the air conditioning system 100 according to the first embodiment.
 1 室内機、2 室外機、2a 室外機、3 換気装置、3A 筐体、3A1 給気風路、3A2 排気風路、4 室外機、11 第1の冷媒回路、12 圧縮機、13 四方弁、14 室外熱交換器、15 絞り装置、16 室内熱交換器、17 室外送風機、18 室外送風機、21 第2の冷媒回路、22 圧縮機、23 四方弁、24 室外熱交換器、25 絞り装置、26 冷却器、27 送風機、28 給気用送風機、29 排気用送風機、30 全熱交換器、30B 全熱交換器、31 第2の温湿度検出手段、32 第1の温湿度検出手段、33 切替手段、33B モータ部、34 バイパス風路、41 圧縮機周波数調整手段、42 蒸発温度検出手段、50 集中コントローラ、51 伝送線、53 制御部、53A 算出手段、53B 範囲判定手段、53C 記憶手段、53D 切替制御手段、53E 絞り装置制御手段、100 空気調和システム、101 冷媒配管、102 冷媒配管、104 冷媒配管、110 空気調和システム、111 空気調和システム、120 空気調和システム。 1 indoor unit, 2 outdoor unit, 2a outdoor unit, 3 ventilator, 3A housing, 3A1 supply air passage, 3A2 exhaust air passage, 4 outdoor unit, 11 first refrigerant circuit, 12 compressor, 13 four-way valve, 14 Outdoor heat exchanger, 15 throttle device, 16 indoor heat exchanger, 17 outdoor fan, 18 outdoor fan, 21 second refrigerant circuit, 22 compressor, 23 four-way valve, 24 outdoor heat exchanger, 25 throttle device, 26 cooling , 27 blower, 28 air supply blower, 29 exhaust blower, 30 total heat exchanger, 30B total heat exchanger, 31 second temperature and humidity detection means, 32 first temperature and humidity detection means, 33 switching means, 33B motor part, 34 bypass air passage, 41 compressor frequency adjustment means, 42 evaporation temperature detection means, 50 centralized controller, 51 transmission line, 53 control part, 53 Calculation means, 53B range determination means, 53C storage means, 53D switching control means, 53E throttle device control means, 100 air conditioning system, 101 refrigerant piping, 102 refrigerant piping, 104 refrigerant piping, 110 air conditioning system, 111 air conditioning system, 120 Air conditioning system.

Claims (12)

  1.  室外機と室内機及び換気装置とを有する冷媒回路を備えた空気調和システムであって、
     前記換気装置は、
     給気風路及び排気風路を有する筐体と、
     前記筐体内に設けられ、給気と排気とを全熱交換する全熱交換部と、
     前記筐体に設けられ、前記排気を前記給気と全熱交換させるか否かを切り替える切替手段と、
     前記冷媒回路に接続され、前記給気風路のうちの前記全熱交換器よりも下流側に設けられた冷却器と、
     前記冷媒回路に接続され、前記冷却器への冷媒の供給を制御する冷媒供給手段と、
     前記給気風路の室外空気の温湿度と前記排気風路の室内空気の温湿度とに基づいて、前記切替手段及び前記冷媒供給手段を制御する制御部と、
     を備えた
     空気調和システム。
    An air conditioning system including a refrigerant circuit having an outdoor unit, an indoor unit, and a ventilation device,
    The ventilator is
    A housing having an air supply passage and an exhaust air passage;
    A total heat exchanging portion provided in the housing for exchanging total heat between the supply air and the exhaust;
    Switching means provided in the housing, for switching whether or not the exhaust gas is to be subjected to total heat exchange with the supply air;
    A cooler connected to the refrigerant circuit and provided downstream of the total heat exchanger in the supply air path;
    A refrigerant supply means connected to the refrigerant circuit for controlling supply of the refrigerant to the cooler;
    A controller that controls the switching means and the refrigerant supply means based on the temperature and humidity of the outdoor air in the supply air path and the temperature and humidity of the indoor air in the exhaust air path;
    Air conditioning system with
  2.  前記制御部は、
     第1の乾球温度以下であって第1の絶対湿度よりも低い範囲を第1の温湿度範囲とし、前記第1の乾球温度より大きい第2の乾球温度以下であり前記第1の乾球温度より大きく、前記第1の絶対湿度よりも大きい第2の絶対湿度未満であり前記第1の絶対湿度以上である範囲を第2の温湿度範囲とし、前記第2の乾球温度より大きく、前記第2の絶対湿度以上である範囲を第3の温湿度範囲としたとき、
     前記第1の温湿度範囲の場合には、
     前記排気を前記給気と全熱交換させないように前記切替手段を切り替えるとともに、前記冷却器に冷媒を供給しないように前記冷媒供給手段を切り替える第1の運転モードを実行し、
     前記第2の温湿度範囲の場合には、
     前記排気を前記給気と全熱交換させないように前記切替手段を切り替えるとともに、前記冷却器に冷媒を供給するように前記冷媒供給手段を切り替える第2の運転モードを実行し、
     前記第3の温湿度範囲の場合には、
     前記排気と前記給気とが全熱交換するように前記切替手段を切り替えるとともに、前記冷却器に冷媒を供給するように前記冷媒供給手段を切り替える第3の運転モードを実行する請求項1に記載の空気調和システム。
    The controller is
    A range below the first dry bulb temperature and lower than the first absolute humidity is defined as a first temperature and humidity range, which is below a second dry bulb temperature greater than the first dry bulb temperature and the first dry bulb temperature. A range that is greater than the dry bulb temperature, less than the second absolute humidity greater than the first absolute humidity, and greater than or equal to the first absolute humidity is defined as a second temperature and humidity range, and is greater than the second dry bulb temperature. When the range that is larger than the second absolute humidity is the third temperature and humidity range,
    In the case of the first temperature and humidity range,
    Switching the switching means so as not to exchange total heat with the supply air, and executing a first operation mode for switching the refrigerant supply means so as not to supply the refrigerant to the cooler;
    In the case of the second temperature and humidity range,
    Switching the switching means so as not to exchange total heat with the supply air, and executing a second operation mode for switching the refrigerant supply means to supply the refrigerant to the cooler;
    In the case of the third temperature and humidity range,
    2. The third operation mode is executed in which the switching unit is switched so that the exhaust gas and the supply air exchange total heat and the refrigerant supply unit is switched so as to supply the refrigerant to the cooler. Air conditioning system.
  3.  前記排気風路の室内空気の温度及び湿度を検出する第1の温湿度検出手段と、
     前記給気風路の室外空気の温度及び湿度を検出する第2の温湿度検出手段と、
     をさらに備え、
     前記制御部は、
     前記第1の温湿度検出手段及び第2の温湿度検出手段の検出結果に基づいて前記切替手段の切り替え及び前記冷媒供給手段の切り替えをし、
     前記第1の温湿度検出手段の検出結果に基づいて、前記第1の温湿度範囲、前記第2の温湿度範囲及び前記第3の温湿度範囲のそれぞれに対応する前記乾球温度及び前記絶対湿度の範囲を算出する算出手段と、
     前記第2の温湿度検出手段の検出結果に対応する前記乾球温度及び前記絶対湿度が、前記算出手段で算出された前記第1の温湿度範囲、前記第2の温湿度範囲及び前記第3の温湿度範囲のうちのいずれの範囲に該当するかを判定する範囲判定手段とを有する請求項2に記載の空気調和システム。
    First temperature and humidity detection means for detecting the temperature and humidity of the indoor air in the exhaust air passage;
    Second temperature / humidity detection means for detecting the temperature and humidity of the outdoor air in the supply air passage;
    Further comprising
    The controller is
    Based on the detection results of the first temperature / humidity detection means and the second temperature / humidity detection means, the switching means and the refrigerant supply means are switched,
    Based on the detection result of the first temperature / humidity detecting means, the dry bulb temperature and the absolute corresponding to the first temperature / humidity range, the second temperature / humidity range, and the third temperature / humidity range, respectively. A calculating means for calculating a humidity range;
    The dry bulb temperature and the absolute humidity corresponding to the detection result of the second temperature / humidity detection means are the first temperature / humidity range, the second temperature / humidity range, and the third calculated by the calculation means. The air conditioning system according to claim 2, further comprising: a range determination unit that determines which of the temperature and humidity ranges falls within the range.
  4.  室外機と室内機及び換気装置とを有する冷媒回路を備えた空気調和システムであって、
     前記換気装置は、
     給気風路及び排気風路を有する筐体と、
     前記筐体内に設けられ、給気と排気とを全熱交換する全熱交換部と、
     前記筐体に設けられ、前記排気を前記給気と全熱交換させるか否かを切り替える切替手段と、
     前記冷媒回路に接続され、前記給気風路のうちの前記全熱交換器よりも下流側に設けられた冷却器と、
     前記冷媒回路に接続され、前記冷却器への冷媒の供給を制御する冷媒供給手段と、
     前記給気風路の室外空気のエンタルピと前記排気風路の室内空気のエンタルピとに基づいて、前記切替手段及び前記冷媒供給手段を制御する制御部と、
     を備えた
     空気調和システム。
    An air conditioning system including a refrigerant circuit having an outdoor unit, an indoor unit, and a ventilation device,
    The ventilator is
    A housing having an air supply passage and an exhaust air passage;
    A total heat exchanging portion provided in the housing for exchanging total heat between the supply air and the exhaust;
    Switching means provided in the housing, for switching whether or not the exhaust gas is to be subjected to total heat exchange with the supply air;
    A cooler connected to the refrigerant circuit and provided downstream of the total heat exchanger in the supply air path;
    A refrigerant supply means connected to the refrigerant circuit for controlling supply of the refrigerant to the cooler;
    A control unit for controlling the switching means and the refrigerant supply means based on the enthalpy of the outdoor air in the supply air passage and the enthalpy of the indoor air in the exhaust air passage;
    Air conditioning system with
  5.  前記制御部は、
     第1のエンタルピ以下である範囲を第1のエンタルピ範囲とし、前記第1のエンタルピより大きい第2のエンタルピ以下であり、前記第1のエンタルピより大きい範囲を第2のエンタルピ範囲とし、前記第2のエンタルピよりも大きい範囲を第3のエンタルピ範囲としたとき、
     前記第1のエンタルピ範囲の場合には、
     前記排気を前記給気と全熱交換させないように前記切替手段を切り替えるとともに、前記冷却器に冷媒を供給しないように前記冷媒供給手段を切り替える第1の運転モードを実行し、
     前記第2のエンタルピ範囲の場合には、
     前記排気を前記給気と全熱交換させないように前記切替手段を切り替えるとともに、前記冷却器に冷媒を供給するように前記冷媒供給手段を切り替える第2の運転モードを実行し、
     前記第3のエンタルピ範囲の場合には、
     前記排気と前記給気とが全熱交換するように前記切替手段を切り替えるとともに、前記冷却器に冷媒を供給するように前記冷媒供給手段を切り替える第3の運転モードを実行する
     請求項4に記載の空気調和システム。
    The controller is
    A range that is less than or equal to the first enthalpy is defined as a first enthalpy range, a second enthalpy that is greater than or equal to the first enthalpy, a range greater than the first enthalpy is defined as a second enthalpy range, and the second enthalpy range. When the range larger than the enthalpy of the third is the third enthalpy range,
    In the case of the first enthalpy range,
    Switching the switching means so as not to exchange total heat with the supply air, and executing a first operation mode for switching the refrigerant supply means so as not to supply the refrigerant to the cooler;
    In the case of the second enthalpy range,
    Switching the switching means so as not to exchange total heat with the supply air, and executing a second operation mode for switching the refrigerant supply means to supply the refrigerant to the cooler;
    In the case of the third enthalpy range,
    5. The third operation mode is performed in which the switching unit is switched so that the exhaust gas and the supply air exchange total heat, and the refrigerant supply unit is switched so as to supply the refrigerant to the cooler. Air conditioning system.
  6.  前記排気風路の室内空気の温度及び湿度を検出する第1の温湿度検出手段と、
     前記給気風路の室外空気の温度及び湿度を検出する第2の温湿度検出手段と、
     をさらに備え、
     前記制御部は、
     前記第1の温湿度検出手段及び第2の温湿度検出手段の検出結果に基づいて前記切替手段の切り替え及び前記冷媒供給手段の切り替えをし、
     前記第1の温湿度検出手段の検出結果に基づいて、前記第1のエンタルピ範囲、前記第2のエンタルピ範囲及び前記第3のエンタルピ範囲のそれぞれに対応するエンタルピの範囲を算出する算出手段と、
     前記第2の温湿度検出手段の検出結果に基づいて算出した前記エンタルピが、前記算出手段で算出された前記第1のエンタルピ範囲、前記第2のエンタルピ範囲及び前記第3のエンタルピ範囲のうちのいずれの範囲に該当するかを判定する範囲判定手段とを有する請求項5に記載の空気調和システム。
    First temperature and humidity detection means for detecting the temperature and humidity of the indoor air in the exhaust air passage;
    Second temperature / humidity detection means for detecting the temperature and humidity of the outdoor air in the supply air passage;
    Further comprising
    The controller is
    Based on the detection results of the first temperature / humidity detection means and the second temperature / humidity detection means, the switching means and the refrigerant supply means are switched,
    Calculation means for calculating an enthalpy range corresponding to each of the first enthalpy range, the second enthalpy range, and the third enthalpy range based on a detection result of the first temperature and humidity detection means;
    The enthalpy calculated based on the detection result of the second temperature / humidity detection means is selected from the first enthalpy range, the second enthalpy range, and the third enthalpy range calculated by the calculation means. The air conditioning system according to claim 5, further comprising: a range determination unit that determines which range corresponds to the range.
  7.  前記全熱交換部が全熱交換器で構成されているものにおいて、
     前記切替手段は、
     前記排気風路のうちの前記全熱交換部をバイパスするように設けられたバイパス風路と、
     前記排気風路のうちの前記全熱交換部よりも上流側の排気を前記バイパス風路に流すか、前記全熱交換部に流すかを切り替える開閉自在のダンパー部とを有する請求項1~6のいずれか一項に記載の空気調和システム。
    In what the total heat exchange part is composed of a total heat exchanger,
    The switching means is
    A bypass air passage provided so as to bypass the total heat exchange section of the exhaust air passage;
    An openable and closable damper portion that switches whether exhaust gas upstream of the total heat exchange portion of the exhaust air passage flows to the bypass air passage or to the total heat exchange portion is provided. The air conditioning system according to any one of the above.
  8.  前記制御部は、
     前記範囲判定手段が前記第1の温湿度範囲又は前記第2の温湿度範囲であると判定した場合に前記バイパス風路に前記排気が流れるように前記ダンパー部を切り替え、前記第3の温湿度範囲であると判定した場合に前記全熱交換部に前記排気が流れるように前記ダンパー部を切り替える切替制御手段を有する請求項3又は6に従属する請求項7に記載の空気調和システム。
    The controller is
    When the range determination means determines that the first temperature / humidity range or the second temperature / humidity range, the damper portion is switched so that the exhaust flows through the bypass air passage, and the third temperature / humidity The air conditioning system according to claim 7, further comprising a switching control unit that switches the damper unit so that the exhaust flows through the total heat exchange unit when it is determined that the range is within the range.
  9.  前記全熱交換部が回転自在の全熱交換器で構成されているものにおいて、
     前記切替手段は、
     前記全熱交換部を回転させるモータ部を有する請求項1~6のいずれか一項に記載の空気調和システム。
    The total heat exchanging part is composed of a rotatable total heat exchanger,
    The switching means is
    The air conditioning system according to any one of claims 1 to 6, further comprising a motor unit that rotates the total heat exchange unit.
  10.  前記制御部は、
     前記範囲判定手段が前記第1の温湿度範囲又は前記第2の温湿度範囲であると判定した場合に前記モータ部を停止し、前記第3の温湿度範囲であると判定した場合に前記モータ部を運転するように前記モータ部を切り替える切替制御手段を有する請求項3又は6に従属する請求項9に記載の空気調和システム。
    The controller is
    The motor is stopped when the range determining means determines that it is the first temperature / humidity range or the second temperature / humidity range, and when it is determined that the range is the third temperature / humidity range, the motor The air conditioning system according to claim 9, which is dependent on claim 3 or 6, comprising switching control means for switching the motor unit so as to operate the unit.
  11.  前記冷媒供給手段は、
     前記冷却器に接続され、前記冷却器に冷媒を供給するかを切り替える絞り装置であり、
     前記制御部は、
     前記範囲判定手段が前記第1の温湿度範囲であると判定した場合に前記絞り装置を閉じ、前記第2の温湿度範囲又は前記第3の温湿度範囲であると判定した場合に前記絞り装置を開く絞り装置制御手段を有する請求項3、6、8、10、請求項3、6に従属する請求項7、9のいずれか一項に記載の空気調和システム。
    The refrigerant supply means includes
    A throttling device that is connected to the cooler and switches between supplying refrigerant to the cooler,
    The controller is
    When the range determining means determines that it is the first temperature / humidity range, the expansion device is closed, and when it is determined that the range is the second temperature / humidity range or the third temperature / humidity range, the expansion device. The air conditioning system according to any one of claims 3, 6, 8, 10, and claim 7, 9, which is dependent on claim 3, 6, comprising throttle device control means for opening the aperture.
  12.  前記冷媒供給手段は、
     前記冷却器に冷媒を供給する圧縮機であり、
     前記制御部は、
     前記範囲判定手段が前記第1の温湿度範囲であると判定した場合に前記圧縮機を停止し、前記第2の温湿度範囲又は前記第3の温湿度範囲であると判定した場合に前記圧縮機を運転する圧縮機制御手段を有する請求項3、6、8、10、請求項3、6に従属する請求項7、9のいずれか一項に記載の空気調和システム。
    The refrigerant supply means includes
    A compressor for supplying a refrigerant to the cooler;
    The controller is
    The compressor is stopped when the range determining means determines that the temperature is within the first temperature / humidity range, and the compression is performed when it is determined that the temperature is within the second temperature / humidity range or the third temperature / humidity range. The air conditioning system according to any one of claims 3, 6, 8, 10, and claim 3, which depends on claim 3, 6, comprising compressor control means for operating the machine.
PCT/JP2014/062833 2014-05-14 2014-05-14 Air conditioning system WO2015173910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016519036A JP6305525B2 (en) 2014-05-14 2014-05-14 Air conditioning system
PCT/JP2014/062833 WO2015173910A1 (en) 2014-05-14 2014-05-14 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062833 WO2015173910A1 (en) 2014-05-14 2014-05-14 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2015173910A1 true WO2015173910A1 (en) 2015-11-19

Family

ID=54479480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062833 WO2015173910A1 (en) 2014-05-14 2014-05-14 Air conditioning system

Country Status (2)

Country Link
JP (1) JP6305525B2 (en)
WO (1) WO2015173910A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723159A (en) * 2016-01-15 2016-06-29 吴鹏 An air conditioning system capable of rapidly exhausting smoke
WO2018189790A1 (en) * 2017-04-10 2018-10-18 三菱電機株式会社 Air conditioning ventilation device, air conditioning system, and control method
KR20180123744A (en) * 2017-05-08 2018-11-20 주식회사 경동원 Control method of air conditioner
KR20190063681A (en) * 2017-11-30 2019-06-10 브이테크 주식회사 Supply damper structure
WO2020003405A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Air-conditioning control system
JP2020514653A (en) * 2016-12-28 2020-05-21 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Dehumidifying / evaporative cooling type 100% outdoor air conditioning system and control method thereof
JP2020186822A (en) * 2019-05-10 2020-11-19 ダイキン工業株式会社 Air conditioning system
JP2022515015A (en) * 2018-12-07 2022-02-17 ダイキン工業株式会社 Air conditioner
US11536474B2 (en) 2017-06-01 2022-12-27 Mitsubishi Electric Corporation Air-conditioning system controlling evaporating temperatures of indoor units and ventilator
JP7312894B1 (en) 2022-07-19 2023-07-21 日立ジョンソンコントロールズ空調株式会社 Air conditioners and air conditioning systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124668A1 (en) * 2020-12-08 2022-06-16 삼성전자주식회사 Ventilation system, integrated air-conditioning system, and control method therefor
KR20230026824A (en) * 2021-08-18 2023-02-27 삼성전자주식회사 Ventilation apparatus and ventilation system having the same
KR102319187B1 (en) * 2021-09-06 2021-10-29 박희문 Energy-saving Constant Temperature and Humidity Air Conditioning System using Waste Heat from Outdoor Unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123236A (en) * 1985-11-21 1987-06-04 Matsushita Electric Ind Co Ltd Controlling of ventilation device
JPH09159254A (en) * 1995-12-06 1997-06-20 Hitachi Ltd Operation control for air conditioner
JP2002188841A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2013204899A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Air conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123236A (en) * 1985-11-21 1987-06-04 Matsushita Electric Ind Co Ltd Controlling of ventilation device
JPH09159254A (en) * 1995-12-06 1997-06-20 Hitachi Ltd Operation control for air conditioner
JP2002188841A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2013204899A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Air conditioning system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017120891A1 (en) * 2016-01-15 2017-07-20 吴鹏 Air conditioning system for quick withdrawal of smoke
CN105723159A (en) * 2016-01-15 2016-06-29 吴鹏 An air conditioning system capable of rapidly exhausting smoke
JP2020514653A (en) * 2016-12-28 2020-05-21 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Dehumidifying / evaporative cooling type 100% outdoor air conditioning system and control method thereof
JP7036495B2 (en) 2016-12-28 2022-03-15 アイユーシーエフ-エイチワイユー(インダストリー-ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Dehumidifying / evaporative cooling 100% outdoor air conditioning system and its control method
WO2018189790A1 (en) * 2017-04-10 2018-10-18 三菱電機株式会社 Air conditioning ventilation device, air conditioning system, and control method
JPWO2018189790A1 (en) * 2017-04-10 2019-11-07 三菱電機株式会社 Air conditioning ventilator, air conditioning system, and control method
CN110462295A (en) * 2017-04-10 2019-11-15 三菱电机株式会社 Air-conditioning air-breather equipment, air handling system and control method
US11181285B2 (en) 2017-04-10 2021-11-23 Mitsubishi Electric Corporation Air conditioning ventilation device, air conditioning system, and control method
CN110462295B (en) * 2017-04-10 2021-08-24 三菱电机株式会社 Air conditioner ventilator, air conditioning system, and control method
KR102368815B1 (en) * 2017-05-08 2022-03-03 주식회사 경동나비엔 Control method of air conditioner and air conditioner
KR20180123744A (en) * 2017-05-08 2018-11-20 주식회사 경동원 Control method of air conditioner
US11536474B2 (en) 2017-06-01 2022-12-27 Mitsubishi Electric Corporation Air-conditioning system controlling evaporating temperatures of indoor units and ventilator
KR102070029B1 (en) 2017-11-30 2020-03-02 브이테크 주식회사 Supply damper structure
KR20190063681A (en) * 2017-11-30 2019-06-10 브이테크 주식회사 Supply damper structure
JPWO2020003405A1 (en) * 2018-06-27 2021-04-08 三菱電機株式会社 Air conditioning control system
WO2020003405A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Air-conditioning control system
JP2022515015A (en) * 2018-12-07 2022-02-17 ダイキン工業株式会社 Air conditioner
JP7258143B2 (en) 2018-12-07 2023-04-14 ダイキン工業株式会社 Air conditioner
JP2020186822A (en) * 2019-05-10 2020-11-19 ダイキン工業株式会社 Air conditioning system
JP7457229B2 (en) 2019-05-10 2024-03-28 ダイキン工業株式会社 air conditioning system
JP7312894B1 (en) 2022-07-19 2023-07-21 日立ジョンソンコントロールズ空調株式会社 Air conditioners and air conditioning systems
JP2024013040A (en) * 2022-07-19 2024-01-31 日立ジョンソンコントロールズ空調株式会社 Air conditioner and air-conditioning system

Also Published As

Publication number Publication date
JPWO2015173910A1 (en) 2017-04-20
JP6305525B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6305525B2 (en) Air conditioning system
JP5328951B2 (en) Air conditioning system
JP3740637B2 (en) Air conditioner
US9534804B2 (en) Air conditioning system and air conditioning control method for server room
WO2018079034A1 (en) Heat pump cycle apparatus
JPH04295568A (en) Air-conditioning machine, indoor unit for said air-conditioning machine and operating method of air-conditioning machine
JP2008175490A (en) Air conditioner
JP2011075179A (en) Air conditioning system
JP2008157557A (en) Air-conditioning system
CN104822998A (en) Air conditioning system
JP2016138666A (en) Air conditioner
JP2006284175A (en) Air conditioning device
JP3884591B2 (en) Air conditioner
JP3852553B2 (en) Air conditioner
JP7002918B2 (en) Ventilation system, air conditioning system, ventilation method and program
JP2013002749A (en) Air conditioning device
JP5868552B1 (en) External air conditioner
JP5537832B2 (en) External air conditioner and external air conditioning system
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2011191016A (en) Temperature control system for direct expansion type air conditioner
JP2005291553A (en) Multiple air conditioner
JP2018071864A (en) Air conditioner
CN110953699B (en) Air conditioning system and control method thereof
JP4274886B2 (en) Heat pump air conditioner
JP2006266677A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891735

Country of ref document: EP

Kind code of ref document: A1