WO2015172714A1 - 一种混凝土应变计组装置 - Google Patents
一种混凝土应变计组装置 Download PDFInfo
- Publication number
- WO2015172714A1 WO2015172714A1 PCT/CN2015/078816 CN2015078816W WO2015172714A1 WO 2015172714 A1 WO2015172714 A1 WO 2015172714A1 CN 2015078816 W CN2015078816 W CN 2015078816W WO 2015172714 A1 WO2015172714 A1 WO 2015172714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain gauge
- strut
- strain
- support
- concrete
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/26—Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
Definitions
- the utility model relates to a field of stress and strain monitoring of concrete, in particular to a concrete strain gauge group device for monitoring stress and strain of mass concrete.
- the stress and strain of mass concrete is often monitored by concrete strain gauge.
- the buried unidirectional strain gauge cannot accurately monitor the direction and magnitude of the principal stress.
- the multi-directional strain gauge group is often buried and calculated.
- the magnitude and direction of the principal stress are obtained.
- 5-9 strain gauges are often selected to form a 5-9 strain gauge group.
- the 9-direction strain gauge components are arranged in three planes (1, 2, 3, 4). (5, 6, 3, 7), (1, 8, 5, 9) respectively form three planes x, y, z perpendicular to each other, and the four instruments in each plane form an angle of 45°.
- the new combination (shown in Figure 2) is first made of 6mm thin steel bars (wrapped with plastic cloth) to make a bracket.
- the four steel bars on the bottom of the bracket and the vertical reinforcing bars are respectively 35cm long, and the remaining steel bars are determined according to their geometric relationship.
- This bracket can be used to mount one-way, two-way, three-way, four-way, five-way, seven-way and nine-way strain gauge sets.
- the technical problem to be solved by the utility model is to provide a concrete strain gauge assembly device, which can solve the problem that the steel bracket has influence on the local concrete stress, and ensure that the direction and angle of the strain gauge in the concrete embedding process meet the design requirements, avoid or reduce as much as possible.
- the strain gauge assembly device interferes with the stress of the concrete in the test area and improves the survival rate of the implanted instrument.
- a concrete strain gauge assembly device comprising a quadrangular pyramid bracket composed of a plurality of poles
- the support is disposed at five vertices of the quadrangular pyramid bracket and the center point of the bottom quadrilateral, and the corresponding struts are screwed to the support;
- the plurality of struts are composed of a plurality of first strain gauge struts with connecting struts and a plurality of second strain gauge struts with strain gauges;
- One end of the second strain gauge rod is screwed to the support, and the other end of the second strain gauge rod is connected to the bottom flange of the strain gauge by a bolt;
- One end of the first strain gauge struts is connected to the connecting struts by bolts, and the other end of the first strain gauge struts is screwed with the support;
- a reverse joint is mounted on the cable outlet end of the strain gauge, and the reverse joint is connected to the support through the screw.
- the support is a porous support.
- the reverse joint is fixedly connected to the upper flange of the strain gage by means of a tightening screw.
- the connecting struts, the first strain gauge struts, the second strain gauge struts and the strain gauges are wrapped with a layer of plastic or chemical fiber cloth to isolate the concrete.
- the second strain gauge struts have a second struts having an inner diameter larger than the outer diameter of the second strain gauge struts, and the second strain gauge struts and the second struts are flexibly connected by at least one rubber ring.
- the first strain gauge strut outer sleeve has a first strut sleeve having an inner diameter larger than the outer diameter of the first strain gauge strut, and the first strain gauge strut and the first strut sleeve are flexibly connected by at least one rubber ring.
- the number of rubber rings is two, which are respectively disposed at two ends of the second strain gauge struts.
- the number of rubber rings is two, which are respectively disposed at two ends of the first strain gauge struts.
- the utility model provides a concrete strain gauge assembly device, which comprises the two flanges of the strain gauge being modified, the bottom flange is connected with the support through the strain gauge support rod, and the upper flange is connected with the support by the screw, a strain gage, a strain gauge strut, a second strain gauge strut with a strain gauge connected to the support, and a diagonal and a bottom diagonal of the quadrangular pyramid support formed by the connecting strut and the first strain gauge strut, A rubber ring is added between the strain gauge support rod and the second strain gauge support rod and the respective support rod sleeve to realize flexible connection, and the first strain gauge support rod and the second strain gauge support rod can have a certain deformation amount in the axial direction.
- the structure thus formed can ensure the free deformation of the strain gauge in the axial direction, which not only eliminates the influence of the steel bracket on the stress test area, but also ensures the installation direction and angle of the strain gauge, and can solve the influence of the steel bracket on the local concrete stress.
- the problem is to ensure that the strain gauges meet the design requirements in the direction and angle of the concrete embedding process, avoiding or minimizing the stress interference and impact of the strain gauge assembly on the concrete in the test area. While improving instrument laying survival.
- strain gauge struts with strain gauges can also be replaced with connecting struts, which can be used for unidirectional, two-way, three-way, four-way, five-way, seven-direction strain gauges.
- Figure 1 is a schematic view of a conventional combination of strain gauge sets
- Figure 2 is a schematic diagram of a new combination of strain gauge sets
- Figure 3 is a schematic structural view of the present invention.
- Figure 4 is a schematic view of the strain gauge of the present invention
- Figure 5 is a schematic view of the components of the first strain gauge strut of the present invention.
- Figure 6 is a schematic view of the components of the second strain gauge strut of the present invention.
- Figure 7 is a schematic structural view of the support of the present invention.
- Figure 8 is a plan view of the holder of the present invention.
- the utility model comprises a quadrangular pyramid bracket 1 composed of thirteen struts.
- the support 2 is disposed at five vertices of the quadrangular pyramid bracket 1 and a central point of the bottom quadrilateral, and the corresponding struts are screwed to the support 2;
- the thirteen struts are composed of four first strain gauge struts 16 with connecting struts 3 and nine second strain gauge struts 4 with strain gauges 6;
- One end of the second strain gauge strut 4 is screwed to the support 2, and the other end of the second strain gauge strut 4 is connected to the bottom end flange 7 of the strain gauge 6 by bolts 5;
- One end of the first strain gauge strut 16 is connected to the connecting strut 3 by a bolt 5, and the other end of the first strain gauge strut 16 is screwed with the support 2;
- a reverse joint 10 is mounted on the leading end of the cable 14 of the strain gauge 6, and the reverse joint 10 is connected to the support 2 via the screw 11.
- the support 2 is a porous support as shown in Figures 7 and 8.
- the counter joint 10 is fixedly connected to the upper flange 15 of the strain gauge 6 by a tightening screw 13.
- the number of rubber rings 9 is two, which are respectively disposed at both ends of the strain gauge strut 4.
- the connecting strut 3, the first strain gauge strut 16, the second strain gauge strut 4, and the strain gauge 6 are wrapped with a layer of plastic or chemical fiber cloth to be isolated from the concrete.
- the second strain gauge strut 4 is jacketed with a second strut sleeve 8 having an inner diameter larger than the outer diameter of the second strain gauge strut 4, and the passage between the second strain gauge strut 4 and the second strut sleeve 8 is located in the second
- the two rubber rings 9 at both ends of the strain gauge strut 4 are flexibly connected.
- the first strain gauge strut 16 is jacketed with a first strut sleeve 17 having an inner diameter larger than the outer diameter of the first strain gauge strut 16, and the first strain gauge strut 16 and the first strut sleeve 17 are located first.
- the two rubber rings 9 of the strain gauge struts 16 are flexibly connected.
- the support 2 the four strain gauge struts 16 with the first strain gauge struts 16 and the nine strain gauges 6 are combined as shown in FIG. 3 to form the utility model, and the node is the support 2
- the first strain gauge strut 16 and the second strain gauge strut 4 can have a certain amount of deformation in the axial direction
- the structure thus formed can ensure the free deformation of the strain gauge in the axial direction, and can solve the steel bracket to the local part.
- the problem of concrete stress is to ensure that the direction and angle of the strain gauge in the concrete embedding process meets the design requirements, avoiding or minimizing the stress interference and influence of the strain gauge assembly on the concrete in the test area, and improving the survival rate of the implanted instrument.
- Part of the strain gauge 6 can also be removed and replaced by the connecting rod 3, which can be used for unidirectional, two-way, three-way, four-way, five-way, seven-direction strain gauge assembly installation.
- the length of the second strain gauge strut 4, the first strain gauge strut 16 and the connecting strut 3 is determined according to the length of the strain gauge 6, the length of the reverse joint 10, and the length of the rib and the length of the base of the quadrangular pyramid support 1.
- the thin steel bar 12 in the bracket shown in Fig. 2 into a fine wooden stick.
- the diameter of the fine wooden stick is 30-50 mm, and the longitudinal direction of the wooden stick is parallel to the axial direction, and the mounting method is the same as that of Fig. 2.
- the innovation of this scheme is that the elastic modulus of the longitudinal direction of the fine wooden stick is much smaller than that of the steel, and it is closer to the concrete, and the stress stress and deformation constraint on the concrete are small, which can ensure the free deformation of the strain gauge to accurately test the concrete stress.
- the utility model provides a concrete strain gauge assembly device, which comprises the two flanges of the strain gauge being modified, the bottom flange is connected with the support through the strain gauge support rod, and the upper flange is connected with the support by the screw, a strain gage, a strain gauge strut, a second strain gauge strut with a strain gauge connected to the support, and a diagonal and a bottom diagonal of the quadrangular pyramid support formed by the connecting strut and the first strain gauge strut, A rubber ring is added between the strain gauge support rod and the second strain gauge support rod and the respective support rod sleeve to realize flexible connection, and the first strain gauge support rod and the second strain gauge support rod can have a certain deformation amount in the axial direction.
- the structure thus formed can ensure the free deformation of the strain gauge in the axial direction, which not only eliminates the influence of the steel bracket on the stress test area, but also ensures the installation direction and angle of the strain gauge, and can solve the influence of the steel bracket on the local concrete stress.
- the problem is to ensure that the strain gauges meet the design requirements in the direction and angle of the concrete embedding process, avoiding or minimizing the stress interference and impact of the strain gauge assembly on the concrete in the test area. While improving instrument laying survival.
- strain gauge struts with strain gauges can also be replaced with connecting struts, which can be used for unidirectional, two-way, three-way, four-way, five-way, seven-direction strain gauges.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
一种混凝土应变计组装置,包括由多根支杆组成的四棱锥体支架(1),其中支座(2)设置于四棱锥体支架(1)的五个顶点以及底面四边形中心点,对应的各支杆与支座(2)螺纹连接;多根支杆由多根带连接支杆(3)的第一应变计支杆(16)和多根带应变计(6)的第二应变计支杆(4)组成;第二应变计支杆(4)一端与支座(2)螺纹连接,第二应变计支杆(4)另一端通过螺栓(5)与应变计(6)的底端法兰盘(7)连接;第一应变计支杆(16)一端与连接支杆(3)通过螺栓(5)连接,第一应变计支杆(16)另一端与支座(2)螺纹连接;应变计(6)的电缆(14)引出端上安装有反向接头(10),反向接头(10)通过螺杆(11)与支座(2)连接。
Description
本实用新型涉及一种混凝土应力应变监测领域,尤其是一种用于大体积混凝土应力应变监测的混凝土应变计组装置。
大体积混凝土的应力应变常采用混凝土应变计监测,当混凝土应力为平面或空间应力状态时,埋设单向应变计无法准确监测到主应力方向与大小,此时常埋设多向应变计组,通过计算得出主应力大小和方向。根据混凝土结构应力状态,常选择5-9支应变计组成5-9向应变计组,如下图1所示,9向应变计组分三个平面布置,(1、2、3、4),(5、6、3、7),(1、8、5、9)分别组成互相垂直的三个平面x、y、z,每个平面内的四支仪器成45°夹角。现行规范DL/T
5178-2003《混凝土坝安全监测技术规范》规定应变计采用支座支杆连接,其中支杆伸缩量大于0.5mm。实践表明采用上述应变计组组合方式难以保证各支应变计的方向和角度,有人提出采用如下图2的组合方式埋设应变计组。
新组合(如图2所示)先采用6mm的细钢筋(用塑料布包裹)制作一个支架,支架底面4根钢筋和垂直向钢筋分别长35cm,其余钢筋长度按其几何关系确定。应变计组埋设前将各支应变计轻轻绑在相应的支杆上,然后按常规方法将支架连同应变计埋设到混凝土中。这个支架可用来安装单向、两向、三向、四向、五向、七向和九向应变计组。虽然这种新组合的结构可以保证仪器的方向和角度、提高仪器存活率,但由于钢筋支架的存在,显然对局部混凝土应力产生了一定影响,导致混凝土应力应变测试的准确性和代表性降低,为了避免或者尽可能降低这种影响,在图2所示新组合的钢筋连接节点和支架材料进行研究,应发明一种柔性连接的新组合结构。
本实用新型所要解决的技术问题是提供一种混凝土应变计组装置,可以解决钢筋支架对局部混凝土应力产生影响的问题,确保应变计在混凝土埋设过程方向和角度满足设计要求,避免或者尽可能降低这种应变计组装置对测试区混凝土应力干扰和影响,同时提高仪器埋设的存活率。
为解决上述技术问题,本实用新型所采用的技术方案是:一种混凝土应变计组装置,包括由多根支杆组成的四棱锥体支架,
支座设置于四棱锥体支架的五个顶点以及底面四边形中心点,对应的各支杆与支座螺纹连接;
多根支杆由多根带连接支杆的第一应变计支杆和多根带应变计的第二应变计支杆组成;
第二应变计支杆一端与支座螺纹连接,第二应变计支杆另一端通过螺栓与应变计的底端法兰盘连接;
第一应变计支杆一端与连接支杆通过螺栓连接,第一应变计支杆另一端与支座螺纹连接;
应变计的电缆引出端上安装有反向接头,反向接头通过螺杆与支座连接。
支座为多孔支座。
反向接头通过止紧螺丝与应变计的上法兰盘固定连接。
连接支杆、第一应变计支杆、第二应变计支杆和应变计外包裹有一层塑料布或化纤布,以与混凝土隔离。
第二应变计支杆外套有内径大于第二应变计支杆外径的第二支杆套管,第二应变计支杆与第二支杆套管之间通过至少一个橡胶圈柔性连接。
第一应变计支杆外套有内径大于第一应变计支杆外径的第一支杆套管,第一应变计支杆与第一支杆套管之间通过至少一个橡胶圈柔性连接。
优选地,橡胶圈的数量为两个,分别设置于第二应变计支杆两端。
优选地,橡胶圈的数量为两个,分别设置于第一应变计支杆两端。
本实用新型提供的一种混凝土应变计组装置,将应变计两法兰盘通过改装,底端法兰盘通过应变计支杆与支座连接,上法兰盘通过螺杆与支座连接,由应变计、应变计支杆、支座连接成的带应变计的第二应变计支杆以及连接支杆和第一应变计支杆组成的四棱锥体支架的棱和底边对角线,第一应变计支杆和第二应变计支杆与其各自支杆套管之间加装橡胶圈实现柔性连接,第一应变计支杆和第二应变计支杆可以在轴线方向具有一定的变形量,所以由此组成的结构可以保证应变计在轴线方向的自由变形,既消除了钢支架对应力测试区的影响,也保证了应变计安装方向与角度,可以解决钢筋支架对局部混凝土应力产生影响的问题,确保应变计在混凝土埋设过程方向和角度满足设计要求,避免或者尽可能降低这种应变计组装置对测试区混凝土应力干扰和影响,同时提高仪器埋设的存活率。
还可将部分带应变计的应变计支杆替换成连接支杆,可用于单向、两向、三向、四向、五向、七向应变计组安装埋设。
下面结合附图和实施例对本实用新型作进一步说明:
图1为应变计组常规组合示意图;
图2为应变计组新组合示意图;
图3为本实用新型的结构示意图;
图4为本实用新型应变计的示意图
图5为本实用新型第一应变计支杆的部件示意图;
图6为本实用新型第二应变计支杆的部件示意图;
图7为本实用新型支座的结构示意图;
图8为本实用新型支座的俯视图。
如图3、图4、图5和图6所示,本实用新型包括由十三根支杆组成的四棱锥体支架1,
支座2设置于四棱锥体支架1的五个顶点以及底面四边形中心点,对应的各支杆与支座2螺纹连接;
十三根支杆由四根带连接支杆3的第一应变计支杆16和九根带应变计6的第二应变计支杆4组成;
第二应变计支杆4一端与支座2螺纹连接,第二应变计支杆4另一端通过螺栓5与应变计6的底端法兰盘7连接;
第一应变计支杆16一端与连接支杆3通过螺栓5连接,第一应变计支杆16另一端与支座2螺纹连接;
应变计6的电缆14引出端上安装有反向接头10,反向接头10通过螺杆11与支座2连接。
支座2为多孔支座,如图7和图8所示。
反向接头10通过止紧螺丝13与应变计6的上法兰盘15固定连接。
橡胶圈9的数量为两个,分别设置于应变计支杆4两端。
连接支杆3、第一应变计支杆16、第二应变计支杆4和应变计6外包裹有一层塑料布或化纤布,以与混凝土隔离。
第二应变计支杆4外套有内径大于第二应变计支杆4外径的第二支杆套管8,第二应变计支杆4与第二支杆套管8之间通过位于第二应变计支杆4两端的两橡胶圈9柔性连接。
第一应变计支杆16外套有内径大于第一应变计支杆16外径的第一支杆套管17,第一应变计支杆16与第一支杆套管17之间通过位于第一应变计支杆16的两个橡胶圈9柔性连接。
使用时,将支座2、四根带第一应变计支杆16及九根带应变计6的第二应变计支杆4按照图3所示组合形成本实用新型,其节点为支座2,因为第一应变计支杆16和第二应变计支杆4可以在轴线方向具有一定的变形量,所以由此组成的结构可以保证应变计在轴线方向的自由变形,可以解决钢筋支架对局部混凝土应力产生影响的问题,确保应变计在混凝土埋设过程方向和角度满足设计要求,避免或者尽可能降低这种应变计组装置对测试区混凝土应力干扰和影响,同时提高仪器埋设的存活率。
还可将部分应变计6去掉,由连接支杆3替换,可用于单向、两向、三向、四向、五向、七向应变计组安装埋设。
第二应变计支杆4、第一应变计支杆16和连接支杆3的长度根据应变计6的长度、反向接头10的长度以及四棱锥体支架1的棱长和底边长确定。
还可以将图2所示的支架中的细钢筋12改为细木棍,细木棍的直径为30-50mm,木棍纵纹与轴向平行,安装方法同图2的方法。该方案的创新点在于利用细木棍纵纹方向的弹性模量远小于钢筋,且比较接近混凝土,对混凝土应力影响和变形约束很小,可以保证应变计自由变形,以准确测试混凝土应力。
本实用新型提供的一种混凝土应变计组装置,将应变计两法兰盘通过改装,底端法兰盘通过应变计支杆与支座连接,上法兰盘通过螺杆与支座连接,由应变计、应变计支杆、支座连接成的带应变计的第二应变计支杆以及连接支杆和第一应变计支杆组成的四棱锥体支架的棱和底边对角线,第一应变计支杆和第二应变计支杆与其各自支杆套管之间加装橡胶圈实现柔性连接,第一应变计支杆和第二应变计支杆可以在轴线方向具有一定的变形量,所以由此组成的结构可以保证应变计在轴线方向的自由变形,既消除了钢支架对应力测试区的影响,也保证了应变计安装方向与角度,可以解决钢筋支架对局部混凝土应力产生影响的问题,确保应变计在混凝土埋设过程方向和角度满足设计要求,避免或者尽可能降低这种应变计组装置对测试区混凝土应力干扰和影响,同时提高仪器埋设的存活率。
还可将部分带应变计的应变计支杆替换成连接支杆,可用于单向、两向、三向、四向、五向、七向应变计组安装埋设。
Claims (6)
- 一种混凝土应变计组装置,包括由多根支杆组成的四棱锥体支架(1),其特征在于:支座(2)设置于四棱锥体支架(1)的五个顶点以及底面四边形中心点,对应的各支杆与支座(2)螺纹连接;多根支杆由多根带连接支杆(3)的第一应变计支杆(16)和多根带应变计(6)的第二应变计支杆(4)组成;第二应变计支杆(4)一端与支座(2)螺纹连接,第二应变计支杆(4)另一端通过螺栓(5)与应变计(6)的底端法兰盘(7)连接;第一应变计支杆(16)一端与连接支杆(3)通过螺栓(5)连接,第一应变计支杆(16)另一端与支座(2)螺纹连接;应变计(6)的电缆(14)引出端上安装有反向接头(10),反向接头(10)通过螺杆(11)与支座(2)连接。
- 根据权利要求1所述的一种混凝土应变计组装置,其特征在于:支座(2)为多孔支座。
- 根据权利要求1所述的一种混凝土应变计组装置,其特征在于:反向接头(10)通过止紧螺丝(13)与应变计(6)的上法兰盘(15)固定连接。
- 根据权利要求1所述的一种混凝土应变计组装置,其特征在于:连接支杆(3)、第一应变计支杆(16)、第二应变计支杆(4)和应变计(6)外包裹有一层塑料布或化纤布。
- 根据权利要求1所述的一种混凝土应变计组装置,其特征在于:第二应变计支杆(4)外套有内径大于第二应变计支杆(4)外径的第二支杆套管(8),第二应变计支杆(4)与第二支杆套管(8)之间通过至少一个橡胶圈(9)柔性连接。
- 根据权利要求1所述的一种混凝土应变计组装置,其特征在于:第一应变计支杆(16)外套有内径大于第一应变计支杆(16)外径的第一支杆套管(17),第一应变计支杆(16)与第一支杆套管(17)之间通过至少一个橡胶圈(9)柔性连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202015104881.5U DE202015104881U1 (de) | 2015-05-12 | 2015-09-15 | Betondehnungsmessarrayvorrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420241817.3U CN203811306U (zh) | 2014-05-13 | 2014-05-13 | 一种混凝土应变计组装置 |
CN201420241817.3 | 2014-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015172714A1 true WO2015172714A1 (zh) | 2015-11-19 |
Family
ID=51450043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/078816 WO2015172714A1 (zh) | 2014-05-13 | 2015-05-12 | 一种混凝土应变计组装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN203811306U (zh) |
WO (1) | WO2015172714A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109029338A (zh) * | 2018-08-03 | 2018-12-18 | 长江勘测规划设计研究有限责任公司 | 一种埋入式混凝土应变测量装置及其施工方法 |
CN111810317A (zh) * | 2020-08-11 | 2020-10-23 | 安徽九州云箭航天技术有限公司 | 一种火箭发动机机架 |
CN112945424A (zh) * | 2021-01-19 | 2021-06-11 | 南京工程学院 | 一种振弦式表面应变计及其使用方法 |
CN114323371A (zh) * | 2021-12-22 | 2022-04-12 | 中铁七局集团有限公司 | 自平衡混凝土应力测定仪 |
CN115420251A (zh) * | 2022-11-02 | 2022-12-02 | 煤炭科学研究总院有限公司 | 一种十二分量小孔径孔底应变计 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203811306U (zh) * | 2014-05-13 | 2014-09-03 | 葛洲坝集团试验检测有限公司 | 一种混凝土应变计组装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2593286B3 (fr) * | 1986-01-17 | 1988-03-11 | Dal Dan Felice | Perfectionnements aux capteurs a jauges de contrainte etanches |
JPH09236479A (ja) * | 1996-03-01 | 1997-09-09 | Shoei Denki Kk | 歪ゲージを用いた重量センサの構造 |
WO2002044655A1 (en) * | 2000-11-28 | 2002-06-06 | Michelin Recherche Et Technique S.A. | Three-axis sensor assembly for use in an elastomeric material |
CN101329208A (zh) * | 2008-07-02 | 2008-12-24 | 燕山大学 | 整体预紧双层上下对称八杆并联结构六维力传感器 |
DE102008037032A1 (de) * | 2008-08-08 | 2010-02-11 | Dr.Ing.H.C.F.Porsche Aktiengesellschaft | Vorrichtung zur Herstellung einer mechanischen Verbindung zwischen einem ersten Verbindungspartner und einem zweiten Verbindungspartner |
CN203811306U (zh) * | 2014-05-13 | 2014-09-03 | 葛洲坝集团试验检测有限公司 | 一种混凝土应变计组装置 |
-
2014
- 2014-05-13 CN CN201420241817.3U patent/CN203811306U/zh not_active Expired - Fee Related
-
2015
- 2015-05-12 WO PCT/CN2015/078816 patent/WO2015172714A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2593286B3 (fr) * | 1986-01-17 | 1988-03-11 | Dal Dan Felice | Perfectionnements aux capteurs a jauges de contrainte etanches |
JPH09236479A (ja) * | 1996-03-01 | 1997-09-09 | Shoei Denki Kk | 歪ゲージを用いた重量センサの構造 |
WO2002044655A1 (en) * | 2000-11-28 | 2002-06-06 | Michelin Recherche Et Technique S.A. | Three-axis sensor assembly for use in an elastomeric material |
CN101329208A (zh) * | 2008-07-02 | 2008-12-24 | 燕山大学 | 整体预紧双层上下对称八杆并联结构六维力传感器 |
DE102008037032A1 (de) * | 2008-08-08 | 2010-02-11 | Dr.Ing.H.C.F.Porsche Aktiengesellschaft | Vorrichtung zur Herstellung einer mechanischen Verbindung zwischen einem ersten Verbindungspartner und einem zweiten Verbindungspartner |
CN203811306U (zh) * | 2014-05-13 | 2014-09-03 | 葛洲坝集团试验检测有限公司 | 一种混凝土应变计组装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109029338A (zh) * | 2018-08-03 | 2018-12-18 | 长江勘测规划设计研究有限责任公司 | 一种埋入式混凝土应变测量装置及其施工方法 |
CN109029338B (zh) * | 2018-08-03 | 2024-01-05 | 长江勘测规划设计研究有限责任公司 | 一种埋入式混凝土应变测量装置及其施工方法 |
CN111810317A (zh) * | 2020-08-11 | 2020-10-23 | 安徽九州云箭航天技术有限公司 | 一种火箭发动机机架 |
CN112945424A (zh) * | 2021-01-19 | 2021-06-11 | 南京工程学院 | 一种振弦式表面应变计及其使用方法 |
CN114323371A (zh) * | 2021-12-22 | 2022-04-12 | 中铁七局集团有限公司 | 自平衡混凝土应力测定仪 |
CN114323371B (zh) * | 2021-12-22 | 2022-11-04 | 中铁七局集团有限公司 | 自平衡混凝土应力测定仪 |
CN115420251A (zh) * | 2022-11-02 | 2022-12-02 | 煤炭科学研究总院有限公司 | 一种十二分量小孔径孔底应变计 |
Also Published As
Publication number | Publication date |
---|---|
CN203811306U (zh) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015172714A1 (zh) | 一种混凝土应变计组装置 | |
CN104792611A (zh) | 混凝土受压破坏应力-应变全曲线测试装置 | |
WO2013157732A1 (ko) | 복부재가 다양한 형태의 문양을 갖는 복합거더 | |
CN204556381U (zh) | 混凝土受压破坏应力-应变全曲线测试装置 | |
CN202663053U (zh) | 一种壁挂式电缆夹 | |
CN107907192A (zh) | 一种稳定性好的汽车衡秤台 | |
CN207379671U (zh) | 一种sf6检测装置 | |
CN114165021B (zh) | 一种网络架空地板 | |
CN112833257B (zh) | 一种柔性建筑横向管道支吊架 | |
CN210978949U (zh) | 一种高层给水管道固定支撑结构 | |
CN208859081U (zh) | 一种基于橡胶阻尼减振的抗震支吊架 | |
CN206695817U (zh) | 光电传感器防护装置 | |
CN106441784B (zh) | 测定悬索管道桥静力三分力系数的试验装置 | |
CN219410565U (zh) | 一种伸缩受力杆及其施工模组 | |
CN218543400U (zh) | 一种装配式抗震支架 | |
JPS61503024A (ja) | 飛行機の重量センサを飛行機の着陸装置の管状軸の内部に取り付けるための方法及び装置 | |
CN206339359U (zh) | 测定悬索管道桥静力三分力系数的试验装置 | |
CN217874923U (zh) | 一种房建工程高支模工程施工用变形监测装置 | |
CN219833601U (zh) | 一种柔性导管过变形缝的固定件 | |
CN214889700U (zh) | 一种抗震支架管束 | |
CN210344529U (zh) | 一种抗震水管管道支撑结构 | |
CN205562275U (zh) | 一种电杆检测平台 | |
CN206459904U (zh) | 一种精准测量的钢筋混凝土排水管的拉拔实验装置 | |
CN215529018U (zh) | 一种具备光纤通信通断实时在线检测功能的光纤接续盘 | |
CN212645679U (zh) | 一种碳纤维板直线度检测工装 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15792646 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/03/2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15792646 Country of ref document: EP Kind code of ref document: A1 |