WO2015170469A1 - ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム - Google Patents
ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム Download PDFInfo
- Publication number
- WO2015170469A1 WO2015170469A1 PCT/JP2015/002306 JP2015002306W WO2015170469A1 WO 2015170469 A1 WO2015170469 A1 WO 2015170469A1 JP 2015002306 W JP2015002306 W JP 2015002306W WO 2015170469 A1 WO2015170469 A1 WO 2015170469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- network
- service
- transmission time
- communication control
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
- H04L47/805—QOS or priority aware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q3/00—Selecting arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
- H04W8/04—Registration at HLR or HSS [Home Subscriber Server]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
- H04W84/20—Master-slave selection or change arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/10—Arrangements in telecontrol or telemetry systems using a centralized architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/40—Arrangements in telecontrol or telemetry systems using a wireless architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/60—Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13196—Connection circuit/link/trunk/junction, bridge, router, gateway
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/1325—Priority service
Definitions
- the present invention relates to a node, a master device, and a communication control system, method, and program used for multi-hop communication.
- the main purpose of general multi-hop communication is often a single service such as an AMI (Advanced Metering Infrastructure) service, for example.
- AMI Advanced Metering Infrastructure
- a communication control system using multi-hop communication is used to use additional services (video distribution, Internet browsing, etc.) when the bandwidth is expanded using a communication method such as LTE (Long Term Evolution), for example. It is expected that At that time, a technique is required that can effectively and fairly use the surplus bandwidth while ensuring the bandwidth of the AMI service that is the main purpose.
- Patent Document 1 describes a communication control system including a master communication terminal and a slave communication terminal.
- a master communication terminal includes a contention management table that registers the transmission order of communication terminals, receives a participation request from a slave communication terminal, and causes the slave communication terminal to participate in the network.
- Patent Document 2 describes that a wireless communication device configuring a wireless ad hoc network recognizes that a new node has joined the ad hoc network.
- the node measures the usage status of the radio band within the communication range, and when the radio band usage rate exceeds a certain value, the beacon transmission interval is changed to increase the radio consumption band or packet by the beacon. It is described that the increase in the collision probability is suppressed.
- Patent Document 3 describes a system including a home communication adapter and a wide area communication adapter connected to the home communication adapter.
- a wide area communication adapter transmits and receives signals to and from a gas management server provided in a data center of a gas company using a wireless LAN communication function.
- communication between home communication adapters performs multistage relay transmission known as multi-hop transmission.
- JP 2004-363702 A (paragraph 0012) JP 2006-287463 A (paragraphs 0032 and 0036) International Publication No. 2013/062101 (paragraphs 0222, 0227, 0235)
- Patent Document 2 describes the suppression of the increase in the wireless consumption band and packet collision probability due to beacons, but does not describe the securing of the communication band for packet communication used for services.
- bandwidth allocation according to the service is not performed. Therefore, for example, when the slave terminal uses an additional service with a low priority, there is a possibility that a communication band for transmitting data with a high priority such as a power meter reading value in the AMI service may be insufficient.
- the present invention provides a node, a master device, and a communication control system capable of preferentially securing a band for communicating high priority data sent from a node participating in a network using multi-hop communication.
- An object is to provide a method and a program.
- a node according to the present invention is a node included in a communication control system that includes a plurality of nodes and a master device that performs flow control of multihop communication in a network including the plurality of nodes.
- Transmission per frame used for the second service in which the time obtained by subtracting the total transmission time of each node per frame used for the first service is set with a lower priority than the first service It is allocated as time.
- the master device is a master device that performs flow control of multi-hop communication in a network including a plurality of nodes, and determines the transmission time of each node per frame used for the first service from the frame period. The time obtained by subtracting the total is assigned to each node as a transmission time per frame used for the second service set with a lower priority than the first service.
- a communication control system is a communication control system that includes a plurality of nodes and a master device that performs flow control of multihop communication in a network including the plurality of nodes.
- Transmission per frame used for the second service set with a lower priority than the first service is obtained by subtracting the total transmission time of each node per frame used for one service. It is characterized by assigning each node as time.
- a communication control method is a communication control method used for a plurality of nodes and a master device that performs flow control of multi-hop communication of a network including the plurality of nodes.
- Transmission per frame used for the second service set with a lower priority than the first service is obtained by subtracting the total transmission time of each node per frame used for one service. It is characterized by assigning each node as time.
- a communication control program is a communication control program installed in a computer that performs flow control of multi-hop communication in a network including a plurality of nodes, and is used by the computer for a first service from a frame period. Processing for assigning to each node the time obtained by subtracting the total transmission time of each node per frame as the transmission time per frame used for the second service set with a lower priority than the first service Is executed.
- FIG. 1 is an explanatory diagram showing the configuration of the communication control system of the present embodiment.
- the communication control system of this embodiment includes a GW (Gateway) 10 and nodes 11 to 14 controlled by the GW 10.
- the GW 10 corresponds to the master device in the present invention.
- the GW 10 can communicate with only the node 11, but the GW 10 may communicate with two or more nodes.
- the network configuration of the communication control system shown in FIG. 1 is a tree type, but may be a mesh type, for example. In the example shown in FIG. 1, there are four nodes, but the number of nodes is not particularly limited. Multi-hop communication is used as communication between the nodes 11-14.
- the functions of the GW 10 and the nodes 11 to 14 are realized by, for example, hardware designed to perform specific arithmetic processing or the like, or an information processing device such as a CPU (Central Processing Unit) that operates according to a program.
- the program is stored in a non-transitory computer-readable storage medium.
- the GW 10 controls multi-hop communication of the network including the nodes 11 to 14.
- the GW 10 is, for example, a general Gateway device for connecting a certain network to networks with different protocols.
- the GW 10 holds a management table in which nodes participating in the network are recorded.
- the GW 10 holds the management table shown in Table 1 as a management table corresponding to the network configuration shown in FIG.
- the GW 10 may hold a management table including upper nodes of each node participating in the network. For example, the GW 10 selects, as an upper node of each node, a node that transmits a radio wave having the strongest electric field strength among radio waves received by each node. The GW 10 dynamically controls the flow of each node using the management table. For example, when the electric field strength changes due to the movement of the node, the GW 10 changes the upper node of the management table according to the change, and sends an instruction to change the upper node to the moved node.
- the GW 10 assigns to each node participating in the network a bandwidth used for the first service (first service bandwidth) and a bandwidth used for the second service (second Service bandwidth).
- the GW 10 stores a bandwidth (physical bandwidth) that can be used in the network.
- bandwidth physical bandwidth
- the first service is a service with high priority, for example, an AMI service.
- AMI service for example, meter reading values of power, gas, or water are communicated.
- the first service may be a service used by an information terminal mounted on an automobile, for example.
- the downlink information in the first service is traffic jam information
- the uplink information is position information.
- the second service is a service having a lower priority than the first service, and is an additional service such as video or music distribution or Internet browsing.
- the second service bandwidth is equal to or greater than the minimum guaranteed service bandwidth defined by the contract.
- the minimum guaranteed service bandwidth is the same for all nodes in this embodiment, but may differ for each node depending on the contract.
- Nodes 11 to 14 are communication devices capable of performing multi-hop wireless communication.
- the nodes 11 to 14 are, for example, wireless LAN (Local Area Network) routers or information collection devices for HEMS (Home Energy Management System).
- the node 11 is disposed at a position where wireless communication with the GW 10, the node 12, and the node 13 is possible.
- the node 13 is arranged at a position where wireless communication with the node 14 is possible.
- the nodes 11 to 14 are, for example, smart meters, and the GW 10 is, for example, a concentrator.
- the nodes 11 to 14 transmit data (for example, a power meter reading value) to the GW 10 every predetermined time.
- the GW 10 collects data from the nodes 11 to 14 and transmits it to MDMS (Meter Data Management System).
- the GW 10 subtracts the total transmission time per frame (hereinafter referred to as first service transmission time) used for the first service assigned to each node from the frame period. Then, the GW 10 assigns the subtracted time to each node as a transmission time per frame used for the second service (hereinafter referred to as a second service transmission time).
- the time allocated to the second service is at least a predetermined minimum guaranteed transmission time and is allocated fairly to each node.
- the GW 10 may determine the time allocated to the second service according to a contract predetermined for each node, and may be a time different for each node.
- the GW 10 uses a frame period in the network, a first service transmission time, and a minimum guaranteed transmission time per frame used for the second service (hereinafter referred to as a second service minimum guaranteed transmission time). Based on the above, it is determined whether or not a node that newly requests to participate in the network can participate.
- the GW 10 determines whether or not a node participating in the network can participate by control called call admission control (CAC: Call Admission Control).
- CAC Call Admission Control
- the maximum number of participating nodes that can participate in the network is obtained by the following equation (2).
- Maximum number of participating nodes frame period / (first service transmission time per node + 1 second service minimum guaranteed transmission time per node) (2)
- the GW 10 confirms whether the following expression (3) is satisfied when a new node joins the network. .
- the GW 10 permits the participation if the expression (3) is satisfied, and rejects the participation if the expression is not satisfied.
- a bandwidth is preferentially allocated to a service with high importance, and therefore a communication bandwidth (transmission time) for transmitting data with high priority is set. It can be prevented from becoming insufficient.
- a node often moves.
- communication of a node that has already participated due to a new node joining the network is possible. Not disturbed.
- the communication control system according to the present embodiment secures a predetermined minimum guaranteed bandwidth even for a service with a low priority, so that a service stop can be avoided.
- FIG. 2 is a flowchart showing the operation when some of the nodes leave the network.
- FIG. 3 is an explanatory diagram showing the state of the network when some of the nodes leave the network.
- Each node periodically confirms connection with the nodes connected to the lower level.
- connection confirmation for example, a beacon used for a general wireless communication device is used.
- the band used for connection confirmation is the multi-hop construction band of the first service band.
- the node 11 determines (detects) that the node 12 cannot receive the radio wave from the node 12 and has left the network (step S1-1).
- the node 13 determines (detects) that the node 14 cannot receive radio waves from the node 14 and has left the network (step S1-2).
- the reason why the node cannot receive radio waves from other nodes is, for example, a case where wireless communication becomes impossible due to a power failure, equipment failure, or movement of the node. Note that the order of step S1-1 and step S1-2 may be reversed.
- step S2-1 the node 11 notifies the GW 10 that the node 12 has left the network.
- step S2-2 the node 13 notifies the GW 10 via the node 11 that the node 14 has left the network. Note that the order of step S2-1 and step S2-2 may be reversed.
- the GW 10 receives the notification that the nodes 12 and 14 have left the network, and recalculates the bandwidth when the nodes 12 and 14 are deleted from the management table (step S3).
- the GW 10 deletes the node 12 and the node 14 from the management table, and performs flow control of each node based on the recalculated flow (step S4).
- the GW 10 may recalculate the bandwidth based on the management table after deleting the nodes 12 and 14 from the management table. Specifically, the GW 10 deletes the node 12 and the node 14 from the management table shown in Table 1 and updates them to the management table shown in Table 3.
- step S4 will be specifically described on the premise that communication by time division multiplexing is used in the network. Since the first service band is a fixed band with high priority, the GW 10 gives the node 11 and the node 13 the same transmission time as the transmission time before the nodes 12 and 14 leave the first service transmission time. Assign as.
- the GW 10 assigns a transmission time obtained by the following equation (4) to the node 11 and the node 13 as the second service transmission time.
- the number of participating nodes is the number of nodes included in the updated management table.
- Second service transmission time (frame period ⁇ first service transmission time ⁇ number of participating nodes) ⁇ number of participating nodes (4)
- FIG. 4 is an explanatory diagram showing the state of the network when flow control is performed with the recalculated bandwidth.
- the GW 10 After recalculation, the GW 10 notifies each node of the allocated transmission time per frame and the transmission timing within the frame. Each node performs communication based on the notified transmission time and transmission timing.
- the second service bandwidth (transmission time) that can be used by the node 11 and the node 13 increases as compared to before the node 12 and the node 14 leave.
- FIG. 5 is a flowchart showing the operation when the detached node requests to join the network again.
- FIG. 6 is an explanatory diagram showing the state of the network after returning the second service band.
- step S11-1 When the node 12 becomes communicable with the node 11, it sends a request to join the network to the node 11 (step S11-1).
- the node 14 When the node 14 becomes communicable with the node 13, the node 14 sends a request to join the network to the node 13 (step S11-2).
- the reason why the node newly becomes communicable with another node is, for example, the case where wireless communication is possible due to restoration of a power failure, restoration of equipment failure, or movement of the node. Note that the order of step S11-1 and step S11-2 may be reversed.
- the node 11 When the node 11 receives the participation request from the node 12, the node 11 notifies the GW 10 of the received content (step S12-1). When receiving the participation request from the node 14, the node 13 notifies the GW 10 of the received content via the node 11 (step S12-2).
- the GW 10 when receiving the participation request of the node 12 and the node 14 from the node 11 and the node 13, the GW 10 recalculates the bandwidth when the node 12 and the node 14 are added to the management table (step S13). Specifically, the GW 10 calculates the expression (2) or the expression (3) including the node 12 and the node 14, and determines whether the node 12 and the node 14 can participate. In addition, if the node 12 and the node 14 can participate, the GW 10 updates the number of participating nodes to a number including the node 12 and the node 14 and calculates Equation (4) again.
- the GW 10 adds the node 12 and the node 14 to the management table (Step S14).
- the GW 10 may recalculate the bandwidth based on the management table after adding the nodes 12 and 14 to the management table.
- the GW 10 performs flow control of the nodes 11 to 14 based on the recalculated flow (step S15). Specifically, the GW 10 returns the second service bandwidth of the nodes 11 and 13 to the bandwidth before the nodes 12 and 14 leave the network according to the calculation result, and then the nodes 12 and 12 14 is assigned a bandwidth.
- the bandwidth shown in FIG. 6 shows a state after the GW 10 returns the second service bandwidth of the node 11 and the node 13. For example, when nodes other than the nodes 11 to 14 newly join the network, the bandwidth of each node may not return to the bandwidth before the nodes 12 and 14 leave.
- the communication control system updates the management table by recalculating the surplus bandwidth when some nodes leave the network due to a power failure or the like in a network in which multi-hop communication is performed. Therefore, the communication control system can dynamically use the bandwidth dynamically, and can improve the convenience for the user. In addition, when some nodes rejoin the network, the communication control system can secure a dynamic bandwidth that achieves fairness with the existing nodes by recalculating the surplus bandwidth. .
- FIG. 7 is an explanatory diagram showing the configuration of the communication control system of the second embodiment (Embodiment 2).
- the functions of the GW and the node in the communication control system in FIG. 7 are the same as the functions of the GW and the node shown in the first embodiment unless otherwise described.
- the communication control system of this embodiment includes a GW 10, a node 11 and a node 12 controlled by the GW 10, a GW 20, and a node 21 and a node 22 controlled by the GW 20.
- the GW 10 can communicate only with the node 11.
- the GW 20 can communicate only with the node 21.
- Multi-hop communication is used for communication between the node 11 and the node 12, and communication between the node 21 and the node 22.
- the node 12 is in a position where it can communicate with the node 21.
- FIG. 8 is a flowchart showing the operation of the communication control system of the second embodiment.
- Step S21 Since the node 12 is at a distance communicable with the node 21, it transmits a network participation request to the GW 20 via the node 21 (step S22), and starts communication with the node 21 if the participation is possible (step S22). S23).
- FIG. 9 is an explanatory diagram showing the state of a network when some nodes join another network.
- the GW 20 determines whether or not a node can participate by using Expression (2) or Expression (3). Further, the GW 20 calculates the second service bandwidth by using the formula (4) as shown in the first embodiment. As shown in FIG. 9, when the node 12 participates in the network controlled by the GW 20, the second service bandwidths of the node 12, the node 21, and the node 22 become smaller than the state shown in FIG.
- FIG. 10 is an explanatory diagram showing the state of the network when the detached node returns. Since there are two or more networks that can communicate with each other, the node 12 inquires of the GW 10 and the GW 20 about the free bandwidth of the network (step S25).
- Free transmission time frame period ⁇ ( ⁇ (first service transmission time per node) + ⁇ (second service minimum guaranteed transmission time per node)) (6)
- the node 12 determines a network to make a participation request based on the idle transmission time notified from the GW 10 and the GW 20. Since Expression (5) and Expression (6) include the transmission time used by the node 12 itself, the node 12 is, for example, a time obtained by subtracting the empty transmission time of the GW 20 from the empty transmission time of the GW 10. When it is above, a participation request is sent to GW10. This predetermined time is, for example, the first service transmission time of the node 12 + the second service minimum guaranteed transmission time.
- the node 12 since the idle transmission time is longer in the network controlled by the GW 10, the node 12 notifies the GW 10 of a participation request and starts communication with the node 11 again (step S27). Then, when the GW 10 and the GW 20 recalculate the flow and update the management table, the network state returns to the state illustrated in FIG. That is, the second service bandwidth of the node 12, the node 21, and the node 22 is increased. The GW 10 and the GW 20 may recalculate the flow based on the management table after updating the management table.
- the communication control system in the present embodiment can continue the service because it can communicate with a node belonging to another network when a certain node becomes unable to communicate with an upper node.
- the communication control system according to the present embodiment participates in a network having a long idle transmission time when there are a plurality of networks in which a certain node can participate. Therefore, it is possible to effectively use bandwidth and maintain fairness for each node. it can.
- FIG. 11 is a block diagram showing the configuration of the main part of the communication control system according to the present invention.
- the communication control system according to the present invention includes, as main components, a plurality of nodes 31 and a master device 30 that performs flow control of multihop communication in a network including the plurality of nodes 31.
- the master device 30 sets a second priority in which the priority lower than that of the first service is set by subtracting the total transmission time of each node per frame used for the first service from the frame period. The transmission time per frame used for the service is assigned to each node.
- the nodes described in the following (1) to (10) and the communication control system described in (11) to (13) are also disclosed.
- a communication control system including a plurality of nodes (for example, nodes 11 to 14) and a master device (for example, GW 10 or GW 20) that performs flow control of multi-hop communication in a network including the plurality of nodes.
- the node subtracts the total transmission time of each node per frame used for the first service from the frame period to the second service with a lower priority than the first service. It is assigned as a transmission time per frame to be used.
- the node newly joins the network based on the frame period, the transmission time per frame used for the first service, and the minimum guaranteed transmission time per frame used for the second service. It may be configured to determine whether to participate in the request. According to such a node, when a new node joins the network, communication of a node that has already joined is not hindered.
- a node operates by flow control using a management table in which nodes participating in the network are recorded. When a participating node leaves the network, the node is deleted from the management table, and management after deletion is performed. You may be comprised so that it may operate
- the node may be configured to notify the master device that the node has left the network when detecting that the node connected to the lower level has left the network.
- a node may be configured to determine that the node has left the network when radio waves from a node connected at a lower level cannot be received. According to such a node, it can be automatically determined that the node has left the network.
- the node may be configured to make a participation request to another communicable network when there is no node or master device communicable in the network to which the node belongs. According to such a node, the service can be continued even when there is no node or master device that can communicate with the network to which it belongs.
- the node inquires of a master device that controls the network about an available frame transmission time, and determines a network to which a participation request is made based on the available transmission time. It may be configured. According to such a node, it is possible to effectively use the bandwidth and maintain fairness for each node.
- the node may be configured to send a participation request to a network whose idle transmission time is a predetermined time or more. According to such a node, it is possible to prevent the free transmission time of the network that originally participated due to the node participating in another network from increasing, and to immediately return to the original network.
- the node is configured such that the predetermined time is the sum of the transmission time per frame used for the first service of the node and the minimum guaranteed transmission time per frame used for the second service. May be.
- the node may be configured such that the time allocated to the second service is determined according to a contract predetermined for each node. According to such a node, it is possible for the user of the node to change the band used for the additional service as necessary, so that convenience for the user is improved.
- the communication control system includes a plurality of nodes (for example, nodes 11 to 14) and a master device (for example, GW 10 or GW 20) that performs flow control of multi-hop communication in a network including the plurality of nodes.
- the master device sets a second service in which a lower priority than the first service is set by subtracting the total transmission time of each node per frame used for the first service from the frame period. Is assigned to each node as the transmission time per frame used in
- the master device is based on the frame period, the transmission time per frame used for the first service, and the minimum guaranteed transmission time per frame used for the second service. Alternatively, it may be configured to determine whether or not a node that newly requests to participate in the network can participate. According to such a communication control system, when a new node joins the network, communication of a node that has already joined is not hindered.
- the master device performs flow control using the management table in which nodes participating in the network are recorded, and when the participating node leaves the network, the node is deleted from the management table.
- the flow control to each node may be performed based on the management table after deletion. According to such a communication control system, it is possible to effectively use the bandwidth dynamically, and the convenience for the user can be improved.
- FIG. 12 is a block diagram showing a specific configuration of the main part of the communication control system according to the present invention.
- Each means of the following nodes and communication control system is realized by hardware designed to perform specific arithmetic processing or the like, or a computer that operates according to a program.
- the program is stored in a non-transitory computer-readable storage medium.
- a node is a master device (for example, master device 30, GW 10 or the like) that performs flow control of multi-hop communication of a network including a plurality of nodes (for example, nodes 31, 32 or nodes 11 to 14). GW 20).
- the node subtracts the total transmission time of each node per frame used for the first service from the frame period to the second service with a lower priority than the first service.
- the transmission time per frame used is allocated by an allocation unit (for example, the allocation unit 32).
- the node newly joins the network based on the frame period, the transmission time per frame used for the first service, and the minimum guaranteed transmission time per frame used for the second service. Whether or not to participate in the request may be determined by a determination unit (for example, the determination unit 33). According to such a node, when a new node joins the network, communication of a node that has already joined is not hindered.
- the node operates according to the flow control of the control means (for example, the control means 34) using the management table in which the nodes participating in the network are recorded, and when the participating node leaves the network, the management table
- the node may be deleted from the node, and the operation may be performed by the flow control of the control unit to each node based on the management table after the deletion. According to such a node, it is possible to dynamically use the bandwidth dynamically, and the convenience for the user can be improved.
- the node includes notifying means (for example, notifying means 35) for notifying the master device that the node has left the network when detecting that the node connected to the lower level has left the network. It may be configured as follows.
- the node is configured to include a leaving determination unit (for example, a leaving determination unit 36) that determines that the node has left the network when radio waves from a node connected at a lower level cannot be received. May be. According to such a node, it can be automatically determined that the node has left the network.
- a leaving determination unit for example, a leaving determination unit 36
- the node includes participation request means (for example, participation request means 37) for requesting participation in another network that can communicate when there is no node or master device that can communicate with the network to which the node belongs. It may be configured. According to such a node, the service can be continued even when there is no node or master device that can communicate with the network to which it belongs.
- participation request means for example, participation request means 37
- the node inquires a master apparatus that controls the network about an available frame transmission time, and determines a network for which a participation request is made based on the available transmission time.
- Network determination means for example, participation network determination means 38
- the node it is possible to effectively use the bandwidth and maintain fairness for each node.
- the node may be configured such that the participation request means (for example, the participation request means 37) sends a participation request to a network whose idle transmission time is a predetermined time or more. According to such a node, it is possible to prevent the free transmission time of the network that originally participated due to the node participating in another network from increasing, and to immediately return to the original network.
- the participation request means for example, the participation request means 37
- the node is configured such that the predetermined time is the sum of the transmission time per frame used for the first service of the node and the minimum guaranteed transmission time per frame used for the second service. May be.
- the node may be configured such that the time allocated to the second service by the allocation unit (for example, the allocation unit 32) is determined according to a contract predetermined for each node. According to such a node, it is possible for the user of the node to change the band used for the additional service as necessary, so that convenience for the user is improved.
- the allocation unit for example, the allocation unit 32
- the communication control system includes a plurality of nodes (for example, nodes 11 to 14) and a master device (for example, GW 10 or GW 20) that performs flow control of multi-hop communication in a network including the plurality of nodes.
- the master device sets a second service in which a lower priority than the first service is set by subtracting the total transmission time of each node per frame used for the first service from the frame period.
- Allocating means for example, allocating means 32 for allocating to each node as the transmission time per frame used in the above.
- the master device is based on the frame period, the transmission time per frame used for the first service, and the minimum guaranteed transmission time per frame used for the second service.
- a determination unit (for example, determination unit 33) that determines whether or not a node that newly requests to participate in the network may participate may be included. According to such a communication control system, when a new node joins the network, communication of a node that has already joined is not hindered.
- the master device performs flow control using the management table in which nodes participating in the network are recorded, and deletes the nodes from the management table when the participating nodes leave the network.
- the control unit (for example, the control unit 34) that performs flow control to each node based on the management table after deletion may be included. According to such a communication control system, it is possible to effectively use the bandwidth dynamically, and the convenience for the user can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
以下、本発明の第1の実施形態(実施形態1)を、図面を参照して説明する。図1は、本実施形態の通信制御システムの構成を示す説明図である。図1に示すように、本実施形態の通信制御システムは、GW(Gateway)10と、GW10が制御するノード11~14とを備える。なお、GW10は、本発明におけるマスタ装置に相当する。図1に示す通信制御システムにおいて、GW10は、ノード11のみ通信可能であるが、GW10は2以上のノードと通信可能であってもよい。また、図1に示す通信制御システムのネットワーク構成は、ツリー型であるが、例えばメッシュ型であってもよい。また、図1に示す例ではノードは4つであるが、ノードの数は、特に限定されない。ノード11~14の間の通信として、マルチホップ通信が用いられる。
固定帯域(第1のサービス帯域)=検針値送付用帯域+マルチホップ構築用帯域+QoS制御用帯域・・・(1)
最大参加ノード数=フレームの周期÷(1ノードあたりの第1のサービス送信時間+1ノードあたりの第2のサービス最低保証送信時間)・・・(2)
フレームの周期>Σ(1ノードあたりの第1のサービス送信時間)+Σ(1ノードあたりの第2のサービス最低保証送信時間)・・・(3)
第2のサービス送信時間=(フレーム周期-第1のサービス送信時間×参加ノード数)÷参加ノード数・・・(4)
次に、あるノードが停電等により上位のノードと通信できなくなった場合に他のネットワークに属するノードと通信する例を説明する。図7は、第2の実施形態(実施形態2)の通信制御システムの構成を示す説明図である。図7における通信制御システムにおけるGWおよびノードの機能は、特に説明しない場合は第1の実施形態に示すGWおよびノードの機能と同様である。
空き送信時間=フレーム周期-(1ノードあたりの第1のサービス送信時間+1ノードあたりの第2のサービス最低保証送信時間)×参加ノード数・・・(5)
空き送信時間=フレーム周期-(Σ(1ノードあたりの第1のサービス送信時間)+Σ(1ノードあたりの第2のサービス最低保証送信時間))・・・(6)
11~14,21,22,31 ノード
30 マスタ装置
32 割り当て手段
33 決定手段
34 制御手段
35 通知手段
36 離脱判定手段
37 参加要求手段
38 参加ネットワーク決定手段
Claims (31)
- 複数のノードと、当該複数のノードを含むネットワークのマルチホップ通信のフロー制御を行うマスタ装置とを備えた通信制御システムに含まれるノードであって、
フレーム周期から、第1のサービスに利用される1フレームあたりの各ノードの送信時間の合計を減算した時間が、前記第1のサービスよりも低い優先度が設定された第2のサービスに利用される1フレームあたりの送信時間として割り当てられる
ことを特徴とするノード。 - フレーム周期、第1のサービスに利用される1フレームあたりの送信時間、および第2のサービスに利用される1フレームあたりの最低保証送信時間に基づいて、新たに当該ネットワークに参加要求する場合の参加可否が決定される
請求項1記載のノード。 - ネットワークに参加するノードが記録された管理テーブルを用いたフロー制御により動作し、参加中の前記ノードがネットワークから離脱した場合に、前記管理テーブルから当該ノードが削除され、当該削除後の管理テーブルに基づいてフロー制御により動作する
請求項1または請求項2記載のノード。 - 下位に接続されているノードがネットワークから離脱したことを検知した場合に、当該ノードがネットワークから離脱したことをマスタ装置に通知する
請求項3記載のノード。 - 下位に接続されているノードからの電波が受信できなくなった場合に、当該ノードがネットワークから離脱したと判断する
請求項4記載のノード。 - 属するネットワークに通信可能なノードまたはマスタ装置がなくなった場合に、通信可能な他のネットワークに参加要求を行う
請求項1から請求項5のうちのいずれか1項に記載のノード。 - 通信可能なネットワークが複数ある場合に、当該ネットワークの制御を行うマスタ装置に当該ネットワークにおけるフレームの空き送信時間を問い合わせ、当該空き送信時間に基づいて、参加要求を行うネットワークを決定する
請求項1から請求項6のうちのいずれか1項に記載のノード。 - 空き送信時間が所定時間以上であるネットワークに、参加要求を送る
請求項7記載のノード。 - 所定時間は、ノードの第1のサービスに利用される1フレームあたりの送信時間と第2のサービスに利用される1フレームあたりの最低保証送信時間の合計である
請求項8記載のノード。 - 第2のサービスに割り当てられる時間が、ノード毎に予め定められた契約に応じて決定される
請求項1から請求項9のうちのいずれか1項に記載のノード。 - 複数のノードを含むネットワークのマルチホップ通信のフロー制御を行うマスタ装置であって、
フレーム周期から、第1のサービスに利用される1フレームあたりの各ノードの送信時間の合計を減算した時間を、前記第1のサービスよりも低い優先度が設定された第2のサービスに利用される1フレームあたりの送信時間として各ノードに割り当てる
ことを特徴とするマスタ装置。 - フレーム周期、第1のサービスに利用される1フレームあたりの送信時間、および第2のサービスに利用される1フレームあたりの最低保証送信時間に基づいて、新たに当該ネットワークに参加要求するノードの参加可否を決定する
請求項11記載のマスタ装置。 - ネットワークに参加するノードが記録された管理テーブルを用いてフロー制御を行い、参加中の前記ノードがネットワークから離脱した場合に、前記管理テーブルから当該ノードを削除し、当該削除後の管理テーブルに基づいて各ノードへのフロー制御を行う
請求項11または請求項12記載のマスタ装置。 - 第2のサービスに割り当てる時間を、ノード毎に予め定められた契約に応じて決定する
請求項11から請求項13のうちのいずれか1項に記載のマスタ装置。 - 複数のノードと、当該複数のノードを含むネットワークのマルチホップ通信のフロー制御を行うマスタ装置とを備えた通信制御システムであって、
前記マスタ装置は、フレーム周期から、第1のサービスに利用される1フレームあたりの各ノードの送信時間の合計を減算した時間を、前記第1のサービスよりも低い優先度が設定された第2のサービスに利用される1フレームあたりの送信時間として各ノードに割り当てる
ことを特徴とする通信制御システム。 - マスタ装置は、フレーム周期、第1のサービスに利用される1フレームあたりの送信時間、および第2のサービスに利用される1フレームあたりの最低保証送信時間に基づいて、新たに当該ネットワークに参加要求するノードの参加可否を決定する
請求項15記載の通信制御システム。 - マスタ装置は、ネットワークに参加するノードが記録された管理テーブルを用いてフロー制御を行い、参加中の前記ノードがネットワークから離脱した場合に、前記管理テーブルから当該ノードを削除し、当該削除後の管理テーブルに基づいて各ノードへのフロー制御を行う
請求項15または請求項16記載の通信制御システム。 - 複数のノードと、当該複数のノードを含むネットワークのマルチホップ通信のフロー制御を行うマスタ装置とに用いられる通信制御方法であって、
前記マスタ装置が、フレーム周期から、第1のサービスに利用される1フレームあたりの各ノードの送信時間の合計を減算した時間を、前記第1のサービスよりも低い優先度が設定された第2のサービスに利用される1フレームあたりの送信時間として各ノードに割り当てる
ことを特徴とする通信制御方法。 - マスタ装置が、フレーム周期、第1のサービスに利用される1フレームあたりの送信時間、および第2のサービスに利用される1フレームあたりの最低保証送信時間に基づいて、新たに当該ネットワークに参加要求するノードの参加可否を決定する
請求項18記載の通信制御方法。 - マスタ装置が、ネットワークに参加するノードが記録された管理テーブルを用いてフロー制御を行い、参加中の前記ノードがネットワークから離脱した場合に、前記管理テーブルから当該ノードを削除し、当該削除後の管理テーブルに基づいて各ノードへのフロー制御を行う
請求項18または請求項19記載の通信制御方法。 - ノードが、下位に接続されているノードがネットワークから離脱したことを検知した場合に、当該ノードがネットワークから離脱したことをマスタ装置に通知する
請求項20記載の通信制御方法。 - ノードが、下位に接続されているノードからの電波が受信できなくなった場合に、当該ノードがネットワークから離脱したと判断する
請求項21記載の通信制御方法。 - ノードが、属するネットワークに通信可能なノードまたはマスタ装置がなくなった場合に、通信可能な他のネットワークに参加要求を行う
請求項18から請求項22のうちのいずれか1項に記載の通信制御方法。 - ノードが、通信可能なネットワークが複数ある場合に、当該ネットワークの制御を行うマスタ装置に当該ネットワークにおけるフレームの空き送信時間を問い合わせ、当該空き送信時間に基づいて、参加要求を行うネットワークを決定する
請求項18から請求項23のうちのいずれか1項に記載の通信制御方法。 - ノードが、空き送信時間が所定時間以上であるネットワークに、参加要求を送る
請求項24記載の通信制御方法。 - 所定時間が、ノードの第1のサービスに利用される1フレームあたりの送信時間と第2のサービスに利用される1フレームあたりの最低保証送信時間の合計である
請求項25記載の通信制御方法。 - マスタ装置は、第2のサービスに割り当てる時間を、ノード毎に予め定められた契約に応じて決定する
請求項18から請求項26のうちのいずれか1項に記載の通信制御方法。 - 複数のノードを含むネットワークのマルチホップ通信のフロー制御を行うコンピュータに搭載される通信制御プログラムであって、
前記コンピュータに、
フレーム周期から、第1のサービスに利用される1フレームあたりの各ノードの送信時間の合計を減算した時間を、前記第1のサービスよりも低い優先度が設定された第2のサービスに利用される1フレームあたりの送信時間として各ノードに割り当てる処理を
実行させるための通信制御プログラム。 - コンピュータに、
フレーム周期、第1のサービスに利用される1フレームあたりの送信時間、および第2のサービスに利用される1フレームあたりの最低保証送信時間に基づいて、新たに当該ネットワークに参加要求するノードの参加可否を決定する処理を実行させる
請求項28記載の通信制御プログラム。 - コンピュータに、
ネットワークに参加するノードが記録された管理テーブルを用いてフロー制御を行い、参加中の前記ノードがネットワークから離脱した場合に、前記管理テーブルから当該ノードを削除し、当該削除後の管理テーブルに基づいて各ノードへのフロー制御を行う処理を実行させる
請求項28または請求項29記載の通信制御プログラム。 - コンピュータに、
第2のサービスに割り当てる時間を、ノード毎に予め定められた契約に応じて決定する処理を実行させる
請求項28から請求項30のうちのいずれか1項に記載の通信制御プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016517812A JP6176394B2 (ja) | 2014-05-07 | 2015-05-01 | ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム |
US15/309,096 US20170093751A1 (en) | 2014-05-07 | 2016-05-01 | Node, master device, and communication control system, method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014095960 | 2014-05-07 | ||
JP2014-095960 | 2014-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015170469A1 true WO2015170469A1 (ja) | 2015-11-12 |
Family
ID=54392327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/002306 WO2015170469A1 (ja) | 2014-05-07 | 2015-05-01 | ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170093751A1 (ja) |
JP (1) | JP6176394B2 (ja) |
WO (1) | WO2015170469A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019047175A (ja) * | 2017-08-30 | 2019-03-22 | 沖電気工業株式会社 | 通信制御装置、プログラム及び方法、並びに、通信装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002165248A (ja) * | 2000-11-22 | 2002-06-07 | Mitsubishi Electric Corp | 無線アクセスシステムおよび無線アクセス方法 |
WO2005041609A1 (ja) * | 2003-10-27 | 2005-05-06 | Fujitsu Limited | 接続先基地局決定装置 |
JP2009152755A (ja) * | 2007-12-19 | 2009-07-09 | Nec Corp | ネットワーク監視システムおよびネットワーク監視方法 |
JP2010147991A (ja) * | 2008-12-22 | 2010-07-01 | Nec Corp | 無線通信システム、基地局、無線通信方法、プログラム |
JP2013172227A (ja) * | 2012-02-20 | 2013-09-02 | Hitachi Ltd | データ通信システムおよびデータ通信方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW484283B (en) * | 2000-08-11 | 2002-04-21 | Ind Tech Res Inst | Dynamic scheduling scheduler framework and method for mobile communication |
US7783759B2 (en) * | 2002-12-10 | 2010-08-24 | International Business Machines Corporation | Methods and apparatus for dynamic allocation of servers to a plurality of customers to maximize the revenue of a server farm |
DE60335298D1 (de) * | 2003-01-14 | 2011-01-20 | Ericsson Telefon Ab L M | Betriebsmittelzuteilungsverwaltung |
US8086741B2 (en) * | 2003-02-28 | 2011-12-27 | Microsoft Corporation | Method and system for delayed allocation of resources |
JP4450832B2 (ja) * | 2003-07-09 | 2010-04-14 | インターデイジタル テクノロジー コーポレーション | 時分割型通信システムにおける無線リソースを管理する方法およびシステム |
US7860074B2 (en) * | 2003-07-31 | 2010-12-28 | Motorola, Inc. | Method and apparatus for allocating communication resources |
US8380528B2 (en) * | 2004-07-13 | 2013-02-19 | At&T Intellectual Property I, L. P. | Controlling service provided by a packet switched network based on bids from consumer equipment |
WO2008108169A1 (ja) * | 2007-03-06 | 2008-09-12 | Sharp Kabushiki Kaisha | 送信機、スケジューリング方法および通信システム |
US8243600B2 (en) * | 2008-08-27 | 2012-08-14 | Fujitsu Limited | System and method for allocating resources in a non-transparent multi-hop relay network |
US20120307668A1 (en) * | 2010-02-16 | 2012-12-06 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and Devices Which Enable Considering a Number of Active User Stations Linked Via Relays When Allocating Radio Resources |
US20120127951A1 (en) * | 2010-11-11 | 2012-05-24 | Qualcomm Incorporated | Method and apparatus for assigning wireless network packet resources to wireless terminals |
US8850065B2 (en) * | 2012-01-04 | 2014-09-30 | Alcatel Lucent | Diameter route learning |
US9129532B2 (en) * | 2012-04-24 | 2015-09-08 | Zetta Research and Development LLC, ForC series | Hybrid protocol transceiver for V2V communication |
DE102012210126A1 (de) * | 2012-06-15 | 2013-12-19 | Siemens Aktiengesellschaft | Verfahren zum Betreiben einer Netzwerkanordnung, Netzwerkeinrichtung und Netzwerkanordnung |
US20150304411A1 (en) * | 2012-09-20 | 2015-10-22 | Telcordia Technologies, Inc. | Self-Organizing Distributed Service Overlay for Wireless Ad Hoc Networks |
WO2014153770A1 (en) * | 2013-03-29 | 2014-10-02 | Broadcom Corporation | Method and apparatus for reestablishing communication with a network |
US9907088B2 (en) * | 2014-12-30 | 2018-02-27 | Electronics And Telecommunications Research Institute | Method of sharing resource allocation information and base station apparatus therefor |
-
2015
- 2015-05-01 WO PCT/JP2015/002306 patent/WO2015170469A1/ja active Application Filing
- 2015-05-01 JP JP2016517812A patent/JP6176394B2/ja active Active
-
2016
- 2016-05-01 US US15/309,096 patent/US20170093751A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002165248A (ja) * | 2000-11-22 | 2002-06-07 | Mitsubishi Electric Corp | 無線アクセスシステムおよび無線アクセス方法 |
WO2005041609A1 (ja) * | 2003-10-27 | 2005-05-06 | Fujitsu Limited | 接続先基地局決定装置 |
JP2009152755A (ja) * | 2007-12-19 | 2009-07-09 | Nec Corp | ネットワーク監視システムおよびネットワーク監視方法 |
JP2010147991A (ja) * | 2008-12-22 | 2010-07-01 | Nec Corp | 無線通信システム、基地局、無線通信方法、プログラム |
JP2013172227A (ja) * | 2012-02-20 | 2013-09-02 | Hitachi Ltd | データ通信システムおよびデータ通信方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019047175A (ja) * | 2017-08-30 | 2019-03-22 | 沖電気工業株式会社 | 通信制御装置、プログラム及び方法、並びに、通信装置 |
Also Published As
Publication number | Publication date |
---|---|
US20170093751A1 (en) | 2017-03-30 |
JPWO2015170469A1 (ja) | 2017-04-20 |
JP6176394B2 (ja) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105103582B (zh) | 基站和基站所执行的方法 | |
US7693122B2 (en) | Resource reservation in a wireless network with distributed medium access control | |
KR100950357B1 (ko) | 무선 네트워크에서 채널들을 할당하는 시스템 및 방법 | |
EP2115958B1 (en) | Apparatus, method and computer program product providing enhanced resource allocation for a wireless mesh network | |
Cicconetti et al. | Bandwidth balancing in multi-channel IEEE 802.16 wireless mesh networks | |
TW201733317A (zh) | 用於副鏈路數據傳輸的方法以及終端 | |
US20150124623A1 (en) | System and Method for Traffic Splitting | |
CN101577938B (zh) | 无线网状网络拥塞控制方法及系统和基站 | |
US20080043747A1 (en) | Apparatus, method, system and software product for a scheduling synchronization mechanism in a multi-hop environment | |
JP5392266B2 (ja) | ネットワークシステム、公衆網リソース管理装置、公衆網無線基地局、自営網リソース管理装置、自営網無線基地局 | |
CN101730311A (zh) | 一种无线接入承载管理方法、装置和系统 | |
JP6426759B2 (ja) | リソーススケジューリングの方法、装置、およびシステム | |
KR20090114042A (ko) | 무선 메쉬 네트워크에서의 패킷 스케쥴링 방법 | |
JP6176394B2 (ja) | ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム | |
Kim et al. | New delay-efficient TDMA-based distributed schedule in wireless mesh networks | |
JP5733449B1 (ja) | ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム | |
WO2016169122A1 (zh) | 一种数据调度方法及装置 | |
JP2009182522A (ja) | ネットワークシステム、ノード、パケットフォワーディング方法、プログラム及び記録媒体 | |
JP4829906B2 (ja) | 無線通信システム、無線基地局および通信制御装置 | |
JP2010283543A (ja) | 経路切替方法および中継局 | |
JP2011071922A (ja) | 無線端末及び無線端末におけるリソース割当制御方法 | |
Ambika et al. | Efficient admission control mechanism for multiple traffic flows in mobile ad hoc network | |
KR101268628B1 (ko) | 무선 분산 비코닝 네트워크에서 병렬 비코닝 방법 및 장치 | |
Liu et al. | A dynamic approach for transmission holdoff time in IEEE 802.16 mesh networks | |
JP2011049784A (ja) | 無線通信システムおよび通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15789458 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016517812 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15309096 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15789458 Country of ref document: EP Kind code of ref document: A1 |