WO2015169030A1 - 视差挡板及其制备方法、显示面板和显示装置 - Google Patents

视差挡板及其制备方法、显示面板和显示装置 Download PDF

Info

Publication number
WO2015169030A1
WO2015169030A1 PCT/CN2014/087141 CN2014087141W WO2015169030A1 WO 2015169030 A1 WO2015169030 A1 WO 2015169030A1 CN 2014087141 W CN2014087141 W CN 2014087141W WO 2015169030 A1 WO2015169030 A1 WO 2015169030A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
common
layer
common electrode
forming
Prior art date
Application number
PCT/CN2014/087141
Other languages
English (en)
French (fr)
Inventor
郭会斌
张振宇
王守坤
李梁梁
冯玉春
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,763 priority Critical patent/US10146059B2/en
Publication of WO2015169030A1 publication Critical patent/WO2015169030A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/229Image signal generators using stereoscopic image cameras using a single 2D image sensor using lenticular lenses, e.g. arrangements of cylindrical lenses

Definitions

  • the invention relates to a parallax barrier and a preparation method thereof, a display panel and a display device.
  • a parallax barrier 12 is provided on one surface of the display screen of the display panel 11.
  • the parallax barrier is provided with a slit grating.
  • Light from an image of a pixel on the display panel 11 is propagated through a slit on the parallax barrier 12 to an observation point.
  • the left eye 13 and the right eye 14 at the observation point can observe that the pixels of the display panel are different, so that the observer's left eye 13 and right eye 14 can be observed at the observation point.
  • Two different images form a 3D display.
  • parallax barriers are generally fabricated in a fixed pattern or fabricated using an LCD.
  • a parallax barrier is generally manufactured using an LCD.
  • a parallax barrier manufactured by an inventor using an LCD includes: a two-layer pair of transparent substrates 21 and 22, and a liquid crystal 23 filled between the two transparent substrates 21 and 22. .
  • transparent conductive layers 24 and 25 are respectively disposed on the two transparent substrates 21 and 22, and the upper transparent conductive layer 24 is continuously distributed to cover the entire panel, and the lower transparent conductive layer 25 is disposed.
  • the signal electrode lines 252 and the common electrode lines 251 are alternately arranged.
  • the signal electrode line 252 is loaded with a driving voltage during operation, and the common electrode line 251 and the transparent electrode layer 24 are both connected to a constant voltage source or ground.
  • the area of the signal electrode line 252 opposite to the transparent electrode layer 24 generates an electric field, which drives the liquid crystal molecules to deflect, and appears as a light-shielding area; and the area of the common electrode line 251 opposite to the transparent electrode layer 24 is equal to the voltage of the common electrode line 251 and the transparent electrode layer 24. Therefore, the liquid crystal molecules in this region are not deflected and appear as light-transmitting regions.
  • the light-shielding region and the light-transmitting region in the parallax barrier are alternately arranged, and finally a slit grating for three-dimensional display of the naked eye is presented.
  • the common electrode line 251 and the transparent electrode layer 24 also have the effect of avoiding crosstalk of adjacent signal electrode lines 252 and avoiding other signal interference.
  • the inventors have found that in the parallax barrier having the above structure, the gap between the common electrode line 251 and the signal electrode line 252 is small (usually only about 10 ⁇ m), and it is easy to cause a short circuit due to problems such as poor fabrication or dust particles, which seriously affects Product yield rate.
  • Embodiments of the present invention provide a parallax barrier, a method of manufacturing the same, a display panel, and a display device, which can solve the problem that the electrode of the parallax barrier is easily short-circuited, thereby improving the product yield.
  • a parallax barrier comprising: a first transparent conductive layer, a second transparent conductive layer, and the first transparent conductive layer and the second transparent conductive layer An insulating layer, the first transparent conductive layer forming a plurality of signal electrode lines, the second transparent conductive layer forming a plurality of common electrode lines, the signal electrode lines and the common electrode lines are spaced apart, and The common electrode line is located at a gap of the adjacent signal electrode lines via the insulating layer.
  • the parallax barrier further includes a first transparent substrate and a second transparent substrate of the pair of boxes and a transparent liquid filled between the first transparent substrate and the second transparent substrate, the first transparent substrate being disposed on the first transparent substrate
  • the signal electrode line and the common electrode line are disposed, and the second transparent substrate is provided with a continuous common electrode layer.
  • the parallax barrier further includes a signal lead and a common lead disposed at an edge of the parallax barrier, the signal lead is electrically connected to the signal electrode line, and the common lead is respectively connected to the common electrode line And electrically connected to the common electrode.
  • the signal lead and the common lead are located in the same metal layer; the metal layer is disposed above or below the first transparent conductive layer, or the metal layer is disposed on the second transparent layer Above or below the conductive layer.
  • the signal lead and the signal electrode line are electrically connected by direct contact, and the common lead passes through the insulation.
  • a via hole of the layer is electrically connected to the common electrode line;
  • the signal lead passes through a via hole penetrating the insulating layer and the signal electrode The wire is electrically connected, and the common lead and the common electrode line are electrically connected by direct contact.
  • the embodiment of the invention further provides a display panel comprising a display unit and the above-mentioned parallax barrier disposed on the light exiting side of the display unit.
  • the display unit is a liquid crystal display unit, or an OLED display unit, or a PDP display unit.
  • Embodiments of the present invention also provide a display device including the above-described parallax barrier or the above display panel.
  • an embodiment of the present invention further provides a method for preparing a parallax barrier, including: Forming a first pair of cassette substrates to form a second pair of cassette substrates; and pairing the first pair of cassette substrates and the second pair of cassette substrates and injecting liquid crystal between the first pair of cassette substrates and the second pair of cassette substrates, said forming
  • the step of forming a pair of substrate substrates includes: forming a first transparent conductive film layer over the first substrate, and forming a plurality of spaced-apart common electrode lines by a patterning process; forming an insulating layer over the first transparent conductive film layer; a via hole of the insulating layer; a second transparent conductive film layer is formed over the insulating layer, and a plurality of spaced-apart signal electrode lines are formed by a patterning process, and the common electrode line is located adjacent to the signal electrode line via the insulating layer Clearance.
  • the step of forming the first pair of cassette substrates further includes: forming a metal film layer over the first substrate, and forming a signal lead and a common lead by a patterning process, the signal lead being used to electrically connect to the signal electrode Connected, the common lead is used to electrically connect with the common electrode line and the common electrode.
  • a metal layer is formed and a signal lead and a common lead are formed by a patterning process; the signal lead The common lead and the common electrode line are electrically connected by direct contact through a via hole penetrating the insulating layer.
  • a metal layer is formed and a signal lead and a common lead are formed by a patterning process;
  • the signal lead and the signal electrode line are electrically connected by direct contact, and the common lead is electrically connected to the common electrode line through a via hole penetrating the insulating layer.
  • the number of patterning processes is reduced by using a halftone mask process.
  • the step of forming the second pair of cell substrates includes forming a continuous common electrode layer on the second substrate.
  • the method for preparing the same, the display panel and the display device, the signal electrode line and the common electrode line are respectively fabricated by two layers, that is, the signal electrode line and the common electrode line are respectively insulated from each other.
  • the first transparent conductive layer and the second transparent conductive layer, the common electrode line is located in the gap between adjacent signal electrode lines via the insulating layer, which increases the insulation reliability between the signal electrode line and the common electrode line, and solves the parallax barrier electrode
  • the problem of easy short circuit improves the product yield.
  • FIG. 1 is a schematic diagram showing the principle of implementing a naked eye 3D display by using a parallax barrier
  • FIG. 2 is a schematic cross-sectional structural view of a parallax barrier known to the inventors
  • FIG. 3 is a schematic cross-sectional structural view of a parallax barrier according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic plan view of a parallax barrier according to Embodiment 1 of the present invention, showing a positional relationship between a signal electrode line and a common electrode line;
  • FIG. 5 is a schematic plan view showing an edge lead region of a parallax barrier according to Embodiment 1 of the present invention.
  • FIG. 6 is a flow chart of a method for preparing a parallax barrier according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic plan view showing a structure of a common electrode line formed in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic plan view showing the structure of a signal lead and a common lead formed in Embodiment 2 of the present invention.
  • FIG. 9 is a schematic plan view showing a planar structure of an insulating layer and a via hole formed in Embodiment 2 of the present invention.
  • FIG. 10 is a schematic plan view showing a signal electrode line formed in Embodiment 2 of the present invention.
  • FIG. 11 is a schematic view showing a thickness distribution of a photoresist layer formed by exposure using a halftone mask process according to Embodiment 2 of the present invention.
  • the parallax barrier provided by the embodiment of the invention, the preparation method thereof, the display panel and the display device can fundamentally solve the problem that the parallax barrier electrode is easy to be short-circuited, and the product yield rate is improved.
  • FIG. 3 shows a parallax barrier provided by the embodiment.
  • the parallax barrier comprises a two-layer pair of transparent substrates 31, 32, and a transparent liquid 33 filled between the two transparent substrates 31, 32.
  • a second transparent conductive layer 36 forming the common electrode line 360, an insulating layer 37, and a first transparent conductive layer 35 forming the signal electrode line 350 are disposed on the transparent substrate 32, and a common electrode of the entire layer is disposed on the transparent substrate 31. 34.
  • FIG. 4 shows the planar positional relationship of the signal electrode line 350, the insulating layer 37, and the common electrode line 360.
  • the common electrode line 360 is located in the gap of the adjacent signal electrode line 350 via the insulating layer 37.
  • the line width of the signal electrode line 350 and the line width of the common electrode line 360, the gap a between the adjacent signal electrode lines 350, and the distance b between the common electrode line 360 and the signal electrode line 350 in the direction parallel to the substrate conform to the grating design requirements. .
  • the transparent liquid 33 is liquid crystal and is applied by spin coating.
  • a first alignment layer is further provided on a surface of the substrate 32 adjacent to the liquid crystal, and a surface of the substrate 31 opposite to the substrate 32 is provided.
  • the orientation direction of the first alignment layer and the orientation direction of the second alignment layer are perpendicular to each other (or the direction is the same), and the first and second orientation layers are not shown in the figure, and those skilled in the art may The situation is designed, and the embodiment will not be described in detail herein.
  • the above first and second alignment layers can be omitted.
  • the driving voltage is applied to the signal electrode line 350, and a constant voltage or ground signal is applied to the common electrode line 360 and the common electrode 34.
  • the voltage applied to the signal electrode line 350 and the common electrode 34 is different, and the voltage difference between the two is equal to A threshold voltage greater than the rotation of the liquid crystal.
  • the region corresponding to the signal electrode line 350 generates an electric field to drive the liquid crystal molecules to deflect, and the region corresponding to the common electrode line 251, since the voltages of the common electrode line 251 and the transparent electrode layer 24 are equal, the liquid crystal molecules in the region are not deflected. As a result, corresponding light and dark stripes can be produced for 3D display.
  • the parallax barrier of this embodiment realizes switching between 2D/3D displays.
  • the parallax barrier further includes a signal lead 381 and a common lead 382 disposed at the edge.
  • the signal lead 381 is electrically connected to the signal electrode line 350 for loading a driving voltage to the signal electrode line 350 during 3D display;
  • the common lead 382 is electrically connected to the common electrode line 360 and the common electrode 34, respectively, for common use in 3D display.
  • the electrode line 360 and the common electrode 34 are loaded with a common voltage.
  • the illustrated metal layer forming the signal lead 381 and the common lead 382 is disposed above the first transparent conductive layer 35, the signal lead 381 is electrically connected to the signal electrode line 350 by direct contact, and the common lead 382 is passed through the insulating layer.
  • the via 370 of 37 is electrically connected to the common electrode line 360.
  • the metal layer may be disposed under the first transparent conductive layer 35.
  • the signal lead 381 and the signal electrode line 350 are electrically connected by direct contact
  • the common lead 382 is electrically connected to the common electrode line 360 through the via 370 penetrating the insulating layer 37.
  • the metal layer is disposed above or below the second transparent conductive layer 36.
  • the signal lead 381 is electrically connected to the signal electrode line 350 through the via 370 penetrating the insulating layer 37
  • the common lead 382 and the common electrode line 360 are electrically connected by direct contact.
  • the via 370 penetrating the insulating layer 37 is slightly farther from the edge of the substrate, and the substrate is more robust and less susceptible to damage.
  • the parallax barrier provided by the embodiment of the present invention includes a plurality of spaced-apart signal electrode lines 350 and a common electrode line 360.
  • the first transparent conductive layer 35 forms the signal electrode line 350
  • the second transparent conductive layer 36 forms the common electrode line 360
  • the insulating layer 37 is disposed between the first transparent conductive layer 35 and the second transparent conductive layer 36
  • the common electrode line 360 The gap between the adjacent signal electrode lines 350 is located across the insulating layer 37.
  • the signal electrode line 350 and the common electrode line 360 are respectively formed by two layers, that is, the signal electrode line 350 and the common electrode line 360 are respectively located on the first transparent conductive layer 35 and the second transparent conductive layer which are insulated from each other, and the common electrode line 360 is located in the gap between the adjacent signal electrode lines 350 via the insulating layer 37, which increases the insulation reliability between the signal electrode lines 350 and the common electrode lines 360, solves the problem that the parallax barrier electrodes are easily short-circuited, and improves the product yield rate. .
  • the parallax barrier provided by the embodiment of the invention can realize the switching between the 2D/3D display, and increases the insulation reliability between the signal electrode line and the common electrode line, and solves the problem that the parallax barrier electrode is easily short-circuited and improves.
  • the product yield rate is easily short-circuited and improves.
  • the embodiment of the present invention does not limit the grating principle and the specific implementation manner of the parallax barrier, and may be any implementation well known to those skilled in the art, and the patterning can be realized as long as the power is turned on/off state.
  • the corresponding area of the transparent signal electrode line may be converted between the light transmitting state and the light absorbing state.
  • the specific implementation of the parallax barrier of the embodiment of the present invention includes, besides, the liquid crystal spin coating method described above, and is limited to the following methods: electrowetting, electrochromic, or electrochemical deposition. Those skilled in the art can design according to specific implementation principles.
  • the transparent liquid includes, for example, colored oil droplets and a clear solution.
  • the colored oil droplets are, for example, black oil droplets
  • the clear solution is, for example, colorless water
  • a layer of medium is provided on the patterned and transparent signal electrode lines, which forms an electrowetting effect on the medium.
  • the medium is, for example, a surface hydrophobic insulating layer.
  • the common electrode line When no voltage is applied to the signal electrode line, the common electrode line, and the common voltage, since the sum of the interfacial tension between the oil droplet and the water and the interfacial tension between the oil droplet and the surface hydrophobic insulating layer is smaller than the interfacial tension between the water and the surface hydrophobic insulating layer, according to the stability According to the principle of minimum energy of the system, the oil droplets will be automatically laid flat to the surface of the hydrophobic insulating layer, so that the transparent liquid corresponding to the signal electrode line in the power-off state becomes non-transparent, forming the patterned electrode shape in the de-energized state. The same pattern of light absorption states.
  • the common electrode line is also in a light transmitting state because it is not covered by a surface hydrophobic insulating layer.
  • the signal electrode line and the common electrode line apply the same driving voltage, and the original equilibrium state is broken, and as a result, the oil droplet bulges, making the oil droplet and the surface hydrophobic.
  • the contact surface of the insulating layer is reduced, so that the transparent liquid in the entire region can transmit light, forming a light-transmissive state pattern having the same shape as the patterned electrode in the energized state.
  • the transparent liquid includes a transparent electrolyte solution, and an electrochromic compound dissolved in the electrolyte solution.
  • an organic electrochromic compound e.g., 4,4'-bipyridinium salt
  • a voltage can be applied to the electrodes.
  • the above organic electrochromic compound can be switched between colored and colorless, thereby realizing the conversion between the light transmitting state and the light absorbing state of the corresponding region of the signal electrode line.
  • the transparent liquid includes a transparent electrolyte.
  • the transparent electrolyte in the embodiment of the invention comprises at least two parts: a reversible reactant and an electrolyte Solution.
  • the transparent electrolyte may also include additives such as redox agents, stabilizers, surfactants, antifreeze solutions, and the like.
  • the reversible reactant can be an organic or inorganic salt.
  • Organic substances such as polyaniline, polythiophene, polypyrrole and derivatives thereof, and inorganic salts may be complexes of Ag salts, silver halides, and the like.
  • the electrolyte solution may be diethyl ether, acetonitrile, boron trifluoride diethyl ether, dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, dimethyl sulfoxide, or the like, and combinations thereof.
  • the metal particles formed by the reversible reactant in the transparent electrolyte are deposited on the signal electrode line to form a non-transparent light absorption state pattern.
  • the conversion between the light transmitting state and the light absorbing state is achieved by any of the above three methods.
  • a state of the transparent baffle is that the whole area is in a transparent state, and the corresponding light transmittance needs to be higher than 80%, preferably such that the light is transparent.
  • the pass rate is higher than 92%.
  • the light transmittance of the corresponding region of the pattern is generally less than 20%. In order to ensure the 3D display effect, the light transmittance of the corresponding region of the pattern is preferably less than 8%.
  • the powering or power-off time of the patterned electrode in the light absorption state can be controlled to improve the transmittance. The longer the time in the light absorption state, the lower the light transmittance can be, and the light transmittance of other regions can be kept close to the light transmittance in the light transmitting state except for the corresponding region of the signal electrode line pattern.
  • the parallax barrier provided by the embodiment of the invention does not limit the specific principle of the grating formation.
  • the embodiment of the invention further provides a display panel comprising a display unit and the parallax barrier described in the above embodiments.
  • the parallax barrier may be disposed on a light exiting side of the display unit. Alternatively, the parallax barrier is located between the display unit and the backlight.
  • the display unit may be, for example, a liquid crystal display unit, or an OLED (Organic Electroluminescence Display) display unit, or a PDP (Plasma Display Panel) display unit.
  • the display panel can realize switching of 2D/3D display and has a high yield rate at the time of manufacture.
  • the embodiment of the invention further provides a display device comprising the parallax barrier described in the above embodiments, or comprising the above display panel.
  • the display device can realize switching of 2D/3D display, And the yield is high when manufactured.
  • the display device may be any product or component having a display function, such as a liquid crystal display device, an OLED display device, a plasma display device, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the embodiment of the invention further provides a method for preparing the parallax barrier described above.
  • the method includes a process of forming a first pair of cassette substrates, a process of forming a second pair of cassette substrates, and a step of pouring the liquid crystal into the cassette.
  • the process of forming the second pair of cassette substrates the entire layer of the common electrode 34 is formed on the substrate 31.
  • the process of forming the first pair of box substrates specifically includes the following steps:
  • a first transparent conductive film layer such as ITO is first deposited on a first substrate (for example, bare glass), and a desired pattern of the first transparent conductive layer is formed by exposure, development, and etching processes, that is, multiple The common electrode lines 360 are arranged at intervals as shown in FIG.
  • a metal film layer over the first substrate, and form a signal lead 381 and a common lead 382 by a patterning process.
  • the signal lead 381 is used for electrically connecting with the subsequently formed signal electrode line 350
  • the common lead 382 is used for the common electrode line. 360 and the public electrode are electrically connected.
  • a metal film layer is first deposited, and then a desired metal layer pattern is formed by an exposure, development, and etching process, that is, the signal lead 381 and the common lead 382 shown in FIG. 8 are included, wherein the signal lead 381 of the outer ring is used to The subsequent formation of the signal electrode line 350 is electrically connected through the via, and the common lead 382 of the inner ring and the common electrode line 360 are electrically connected by overlapping.
  • An insulating layer 37 and a via 370 penetrating the insulating layer 37 are formed over the first transparent conductive film layer.
  • an insulating film layer (such as a SiNx film) is first deposited, and then a via 370 is formed on the signal lead 381 of the outer ring by an exposure, development, and etching process to be connected to the subsequently formed signal electrode line 350, as shown in FIG. Shown.
  • a second transparent conductive film layer such as ITO is first deposited on the substrate, and exposed
  • the light, development, and etching processes form a pattern mainly including a plurality of spaced-apart signal electrode lines 350, and the signal electrode lines 350 extend to a position penetrating through the vias 370 of the insulating layer 37, through the vias 370, the signal electrode lines 350 and the lower layer
  • the signal lead 381 of the outer ring is electrically connected as shown in FIG.
  • the cross-sectional structure of the finally formed first pair of cassette substrates in the A-A' direction is as shown in the array substrate in FIG.
  • the signal electrode line and the common electrode line are respectively fabricated by two layers, so that the common electrode line is located in the gap between adjacent signal electrode lines via the insulating layer, and the signal electrode line is added.
  • the insulation reliability with the common electrode line fundamentally solves the problem that the parallax barrier electrode is easily short-circuited, and improves the product yield rate.
  • the step 102 is performed to form a metal layer and formed by a patterning process.
  • the signal lead 381 and the common lead 382, at this time, similarly, the signal lead 381 is electrically connected to the signal electrode line 350 through the via 370 penetrating the insulating layer 37, and the common lead 382 and the common electrode line 360 are directly contacted (ie, overlapped). Electrical connection.
  • the step 102 is performed to form a metal layer and the signal lead 381 and the common are formed by a patterning process.
  • the lead 382 at this time, the signal lead 381 and the signal electrode line 350 are electrically connected by direct contact, and the common lead 382 is electrically connected to the common electrode line 360 through the via 370 penetrating the insulating layer 37.
  • the insulating layer vias in step 103 of the above method and the common electrode lines in step 104 can be completed by one patterning using a halftone mask process.
  • a film forming process of the insulating layer is first performed, that is, a layer of insulating material is deposited, and then the photoresist is coated and exposed by a halftone mask process (second patterning process) to form a layer as shown in FIG. The photoresist layer is shown.
  • the photoresist in the region B where the via holes are subsequently formed is completely peeled off; the photoresist of the first thickness is retained in the region A where the signal electrode lines are subsequently formed; and the light of the second thickness is retained except for the regions A and B
  • the glue is engraved and the second thickness is greater than the first thickness.
  • the via is then etched dry and then ashed to remove the first thickness of photoresist in region A, and the second thickness of photoresist is thinned.
  • step 104 the film forming process of step 104 is performed to form a second transparent conductive film layer, and finally a photoresist stripping process is performed to remove the photoresist of the second thickness, except for the area A (corresponding to the pattern of the signal electrode lines) and the area B ( The second transparent conductive film layer other than the pattern of the via holes is peeled off with the photoresist to form a signal electrode line covering the via region.
  • a photoresist stripping process is performed to remove the photoresist of the second thickness, except for the area A (corresponding to the pattern of the signal electrode lines) and the area B ( The second transparent conductive film layer other than the pattern of the via holes is peeled off with the photoresist to form a signal electrode line covering the via region.
  • the first and second words are used to classify similar items.
  • the first and second words do not limit the invention in terms of quantity, but are an example of a preferred mode. It is to be understood that those skilled in the art, in light of the disclosure of the present invention, will be apparent to the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种视差挡板,包括第一透明导电层(35),第二透明导电层(36)以及第一透明导电层(35)和第二透明导电层(36)之间的绝缘层(37)。第一透明导电层(35)形成多个信号电极线(350),第二透明导电层(36)形成多个公共电极线(360)。信号电极线(350)和公共电极线(360)间隔排列,且公共电极线(360)隔着绝缘层(37)位于相邻信号电极线(350)的间隙。这种视差挡板不易短路,良品率高。还公开了一种视差挡板制备方法,一种显示面板和显示装置。

Description

视差挡板及其制备方法、显示面板和显示装置 技术领域
本发明涉及一种视差挡板及其制备方法、显示面板和显示装置。
背景技术
在3D(三维)显示技术中,如图1所示,在显示面板11的显示画面的一面设置视差挡板12。视差挡板设置有狭缝光栅。来自显示面板11上的像素的图像的光线通过视差挡板12上的狭缝传播到观察点。从图1中可以看到,观察点处的左眼13和右眼14所能够观察到显示面板的像素是不同的,从而使得观察者的左眼13和右眼14能够在观察点处观察到两幅不同的图像,形成了3D显示。目前视差挡板一般采用固定图案制作或者采用LCD制作。但对于固定图案的视差挡板,在显示面板上设置视差挡板后,显示面板只能进行3D显示,无法再转换到2D(二维)显示。因此目前一般采用LCD制作视差挡板。
如图2所示,一种发明人已知的采用LCD制作的视差挡板包括:两层对盒的透明基板21和22、以及填充在所述两层透明基板21和22之间的液晶23。为了能够形成裸眼三维显示用的狭缝光栅,在上述两层透明基板21和22上分别设置透明导电层24和25,上层的透明导电层24连续分布覆盖整个面板,下层的透明导电层25设置为交替排列的信号电极线252和公共电极线251。工作时信号电极线252加载驱动电压,公共电极线251及透明电极层24均连接至一恒定电压源或接地。信号电极线252与透明电极层24相对的区域产生电场,驱使液晶分子偏转,表现为遮光区域;而公共电极线251透明电极层24相对的区域,因公共电极线251与透明电极层24电压相等,因此该区域液晶分子不偏转,表现为透光区域。视差挡板中的遮光区域和透光区域交替排列,最终呈现裸眼三维显示用的狭缝光栅。公共电极线251和透明电极层24还具有避免相邻信号电极线252相互串扰以及避免其他信号干扰的作用。
发明人发现在具有上述结构的视差挡板中,公共电极线251与信号电极线252之间的间隙很小(通常只有约10μm),很容易因制作不良或灰尘颗粒等问题出现短路,严重影响产品良品率。
发明内容
本发明的实施例提供一种视差挡板及其制备方法、显示面板和显示装置,能够解决视差挡板的电极容易短路的问题,从而提高产品良品率。
根据本发明的实施例,提供了一种视差挡板,所述视差挡板包括:第一透明导电层,第二透明导电层以及所述第一透明导电层和所述第二透明导电层之间的绝缘层,所述第一透明导电层形成多个信号电极线,所述第二透明导电层形成多个公共电极线,所述信号电极线和所述公共电极线间隔排列,且所述公共电极线隔着所述绝缘层位于相邻信号电极线的间隙。
在一个示例中,视差挡板还包括对盒的第一透明基板和第二透明基板以及填充在第一透明基板和第二透明基板之间的透明液体,所述第一透明基板上设置有所述信号电极线和所述公共电极线,所述第二透明基板上设置有连续的公共电极层。
在一个示例中,视差挡板还包括信号引线和公共引线,设置于所述视差挡板的边缘,所述信号引线与所述信号电极线电连接,所述公共引线分别与所述公共电极线和所述公共电极电连接。
在一个示例中,所述信号引线和所述公共引线位于同一金属层;所述金属层设置在所述第一透明导电层的上方或下方,或者,所述金属层设置在所述第二透明导电层的上方或下方。
在一个示例中,所述金属层设置在所述第一透明导电层的上方或下方时,所述信号引线与所述信号电极线通过直接接触实现电连接,所述公共引线通过贯穿所述绝缘层的过孔与所述公共电极线电连接;所述金属层设置在所述第二透明导电层的上方或下方时,所述信号引线通过贯穿所述绝缘层的过孔与所述信号电极线电连接,所述公共引线与所述公共电极线通过直接接触实现电连接。
本发明实施例还提供一种显示面板,其包括显示单元及设置于所述显示单元的出光侧的上述的视差挡板。
显示单元为液晶显示单元、或OLED显示单元、或PDP显示单元。
本发明实施例还提供一种显示装置,其包括上述的视差挡板,或者上述的显示面板。
另一方面,本发明实施例还提供一种视差挡板的制备方法,其包括:形 成第一对盒基板,形成第二对盒基板;和对盒第一对盒基板和第二对盒基板并在第一对盒基板和第二对盒基板之间灌注液晶,所述形成第一对盒基板的步骤包括:在第一基板上方形成第一透明导电膜层,并通过构图工艺形成多个间隔排列的公共电极线;在第一透明导电膜层上方形成绝缘层及贯穿所述绝缘层的过孔;在绝缘层上方形成第二透明导电膜层,并通过构图工艺形成多个间隔排列的信号电极线,并且所述公共电极线隔着所述绝缘层位于相邻信号电极线的间隙。
在一个示例中,形成第一对盒基板的步骤还包括:在第一基板上方形成金属膜层,并通过构图工艺形成信号引线和公共引线,所述信号引线用于与所述信号电极线电连接,所述公共引线用于与所述公共电极线及公共电极电连接。
在一个示例中,在所述形成第一透明导电膜层并通过构图工艺形成间隔排列的公共电极线的步骤之前或之后,形成金属层并通过构图工艺形成信号引线和公共引线;所述信号引线通过贯穿所述绝缘层的过孔与所述信号电极线电连接,所述公共引线与所述公共电极线通过直接接触实现电连接。
在一个示例中,在所述形成第二透明导电膜层并通过构图工艺形成多个间隔排列的信号电极线的步骤之前或之后,形成金属层并通过构图工艺形成信号引线和公共引线;所述信号引线与所述信号电极线通过直接接触实现电连接,所述公共引线通过贯穿所述绝缘层的过孔与所述公共电极线电连接。
在一个示例中,所述形成第一对盒基板的步骤中,通过使用半色调掩膜工艺减少构图工艺的次数。
在一个示例中,形成第二对盒基板的步骤包括在第二基板上形成连续的公共电极层。
根据本发明实施例提供的视差挡板及其制备方法、显示面板和显示装置,信号电极线和公共电极线采用分两层分别制作的方法,即信号电极线和公共电极线分别位于相互绝缘的第一透明导电层和第二透明导电层,公共电极线隔着绝缘层位于相邻信号电极线的间隙,增加了信号电极线与公共电极线之间的绝缘可靠性,解决了视差挡板电极容易短路的问题,提高了产品良品率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为应用视差挡板实现裸眼3D显示的原理示意图;
图2为发明人已知的视差挡板的剖面结构示意图;
图3为本发明实施例一提供的视差挡板的剖面结构示意图;
图4为本发明实施例一提供的视差挡板的平面示意图,示出了信号电极线和公共电极线的位置关系;
图5为本发明实施例一提供的视差挡板的边缘引线区的平面示意图;
图6为本发明实施例二提供的视差挡板的制备方法流程图;
图7为本发明实施例二中形成的公共电极线的平面结构示意图;
图8为本发明实施例二中形成的信号引线和公共引线的平面结构示意图;
图9为本发明实施例二中形成的绝缘层及其过孔的平面结构示意图;
图10为本发明实施例二中形成的信号电极线的平面结构示意图;
图11为本发明实施例二中采用半色调掩膜工艺曝光形成的光刻胶层厚度分布示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示 相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本发明实施例提供的视差挡板及其制备方法、显示面板和显示装置,能够从根本上解决了视差挡板电极容易短路的问题,提高了产品良品率。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例一
图3示出了本实施例提供的一种视差挡板。该视差挡板包括两层对盒的透明基板31、32,填充在两层透明基板31、32之间的透明液体33。在透明基板32上依次设置有形成公共电极线360的第二透明导电层36、绝缘层37和形成信号电极线350的第一透明导电层35,在透明基板31上设置有整层的公共电极34。图4示出了信号电极线350、绝缘层37和公共电极线360的平面位置关系。公共电极线360隔着绝缘层37位于相邻信号电极线350的间隙。信号电极线350的线宽和公共电极线360的线宽,相邻信号电极线350之间的间隙a,以及公共电极线360与信号电极线350在平行于基板方向的距离b符合光栅设计要求。
以液晶光栅为例,透明液体33为液晶且通过旋涂的方法施加,在基板32与液晶靠近的一侧表面上还设置有第一取向层,基板31与基板32相对的表面上设置有第二取向层,所述第一取向层取向方向与所述第二取向层取向方向相互垂直(或方向一致),第一、第二取向层图中并未示出,本领域技术人员可以根据实际情况进行设计,本实施例在此不再详述。另外需要说明的是,如果采用蓝相液晶,上述的第一、第二取向层即可省去。
工作时,在信号电极线350上加载驱动电压,在公共电极线360及公共电极34上加载一恒定电压或接地信号,信号电极线350和公共电极34加载的电压不同,且二者电压差等于大于液晶旋转的阈值电压。信号电极线350对应的区域产生电场驱使液晶分子偏转,而公共电极线251对应的区域,因公共电极线251与透明电极层24电压相等,因此该区域液晶分子不偏转。结果即可产生相应的明暗相间的条纹,从而进行3D显示。而当信号电极线350、公共电极线360及公共电极34不加载信号时,液晶分子全部不发生旋 转,从而进行2D显示,综上,本实施例视差挡板实现了2D/3D显示之间的切换。
进一步地,如图5所示,该视差挡板还包括在的边缘设置的信号引线381和公共引线382。信号引线381与信号电极线350电连接,用以在3D显示时向信号电极线350加载驱动电压;公共引线382分别与公共电极线360及公共电极34电连接,用以在3D显示时向公共电极线360及公共电极34加载公共电压。图5中,形成信号引线381和公共引线382的所示金属层设置在第一透明导电层35的上方,信号引线381与信号电极线350通过直接接触实现电连接,公共引线382通过贯穿绝缘层37的过孔370与公共电极线360电连接。
此外,还可将该金属层设置在第一透明导电层35的下方。这时,类似地,信号引线381与信号电极线350通过直接接触实现电连接,公共引线382通过贯穿绝缘层37的过孔370与公共电极线360电连接。或者,将该金属层设置在第二透明导电层36的上方或下方。这时,信号引线381通过贯穿绝缘层37的过孔370与信号电极线350电连接,公共引线382与公共电极线360通过直接接触实现电连接。与图5所示方式相比,贯穿绝缘层37的过孔370距离基板边缘稍远,基板牢固性更好,不易损坏。
如图3和图4所示,本发明实施例提供的视差挡板包括设置有多个间隔排列的信号电极线350和公共电极线360。第一透明导电层35形成信号电极线350,第二透明导电层36形成公共电极线360,第一透明导电层35和第二透明导电层36之间设置有绝缘层37,并且公共电极线360隔着绝缘层37位于相邻信号电极线350的间隙。
信号电极线350和公共电极线360采用分两层分别制作的方法,即信号电极线350和公共电极线360分别位于相互绝缘的第一透明导电层35和第二透明导电层上,公共电极线360隔着绝缘层37位于相邻信号电极线350的间隙,增加了信号电极线350与公共电极线360之间的绝缘可靠性,解决了视差挡板电极容易短路的问题,提高了产品良品率。
本发明实施例提供的视差挡板,能够实现2D/3D显示之间的切换,而且增加了信号电极线与公共电极线之间的绝缘可靠性,解决了视差挡板电极容易短路的问题,提高了产品良品率。
本发明实施例对视差挡板的光栅原理及具体实现方式不做限定,可以是本领域技术人员所熟知的任意实现方式,只要是在通电/不通电状态转换时,能实现所述图案化且透明的信号电极线相对应区域在透光状态和吸光状态之间的转换即可。本发明实施例的视差挡板的具体实现方式除了于上述的液晶旋涂法之外,还包括并限于下列的方法:电润湿法、电致变色法、或者电化学沉积法等方式。本领域技术人员可以根据具体的实现原理进行设计。
第一、电润湿法
采用该方法时,透明液体例如包括有色油滴和透明溶液。有色油滴例如为黑色油滴,透明溶液例如为无色的水,并且在图案化且透明的信号电极线上设有一层介质,所述透明液体在该介质上形成电润湿效应。该介质例如为表面疏水性绝缘层。
在信号电极线、公共电极线以及公共电压上没有施加电压时,由于油滴和水界面张力与油滴和表面疏水性绝缘层界面张力之和小于水和表面疏水性绝缘层界面张力,根据稳定系统最低能量原理,油滴将自动平铺到表面疏水性绝缘层,使得断电状态下信号电极线相对应区域的所述透明液体变成非透明状态,形成与断电状态下图案化电极形状相同的吸光状态图案。公共电极线因其没有表面疏水性绝缘层覆盖,还呈现透光状态。
当在信号电极线、公共电极线以及公共电压上施加电压时,信号电极线和公共电极线施加相同驱动电压,原来的平衡状态将被打破,结果油滴鼓起,使得油滴与表面疏水性绝缘层接触面减少,使得整个区域中的透明液体均能够透过光线,形成与通电状态下图案化电极形状相同的透光状态图案。
第二、电致变色法
采用该方法时,透明液体包括透明的电解质溶液、以及溶解在所述电解质溶液中的电致变色化合物。本发明实施例可以将一种有机电致变色化合物(如:4,4′-联吡啶鎓盐)溶解于电解质溶液中。在电极上可以施加电压。根据电子转移(还原或氧化)机理,上述有机电致变色化合物可以在有色和无色之间转换,从而实现信号电极线相对应区域在透光状态和吸光状态之间的转换。
第三、电化学沉积法
采用该方法时,透明液体包括透明电解质。
本发明实施例中的透明电解质至少包含两部分:可逆反应物以及电解质 溶液。该透明电解质也可以包括一些添加剂,如氧化还原剂、稳定剂、表面活性剂、防冻液等。例如,可逆反应物可以为有机物或无机盐。有机物如聚苯胺、聚噻吩、聚吡咯及其衍生物等,无机盐可以为Ag盐的络合物、卤化银等。电解质溶液可以为乙醚、乙腈、三氟化硼乙醚、二甲基甲酰胺、N甲基吡咯烷酮、四氢呋喃、二甲基亚枫等及其组合物。在通电状态的图案化电极作用下,所述透明电解质中的可逆反应物形成的金属微粒沉积于信号电极线上,形成非透明的吸光状态图案。
采用上述三种方法中的任何一种实现透光状态和吸光状态之间的转换。本发明实施例中,当上述信号电极线处于透光状态时,该透明挡板的一种状态为整体区域为透明状态,对应的光透过率需要高于80%,最好是使得光透过率高于92%。本实施例中可以控制透光状态下的图案化电极加电或断电时间实现透过率的提高。一般可以处于透光状态的时间越长,光透过率也可以得到提高。当上述图案中的图案处于吸光状态时,该图案对应区域的光透过率一般低于20%。为了保证3D显示效果,该图案对应区域的光透过率最好低于8%,本实施例中可以控制吸光状态下的图案化电极加电或断电时间,实现透过率的提高。处于吸光状态的时间越长,光透过率也可以越低,除了信号电极线图案对应区域外,其他区域的光透过率可以保持与透光状态下光透过率相接近。本发明实施例提供的视差挡板,对光栅形成的具体原理方式不做限定。
本发明实施例还提供一种显示面板,其包括显示单元和上述实施例所述的视差挡板。
该视差挡板可设置在显示单元的出光侧。或者,该视差挡板位于显示单元和背光源之间。所述显示单元例如可以为液晶显示单元,或者OLED(Organic Electroluminescence Display,有机发光显示)显示单元、或者PDP(Plasma Display Panel,等离子显示板)显示单元。该显示面板能实现2D/3D显示的切换,并且制造时良品率高。
本发明实施例还提供一种显示装置,其包括上述实施例所述的视差挡板,或者,包括上述的显示面板。所述显示装置能实现2D/3D显示的切换, 并且制造时良品率高。所述显示装置可以为:液晶显示装置、OLED显示装置、等离子显示装置、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
实施例二
另一方面,本发明实施例还提供上述视差挡板的制备方法。该方法包括:形成第一对盒基板的工序;形成第二对盒基板的工序;和对盒并灌注液晶的工序。参照图3所示,在形成第二对盒基板的工序中,在基板31上形成整层覆盖的公共电极34。如图6所示,形成第一对盒基板的工序具体包括以下的步骤:
101、在第一基板上形成第一透明导电膜层,并通过构图工艺形成多个间隔排列的公共电极线360。
本步骤中首先在第一基板(例如白玻璃,bare glass)上沉积例如ITO的第一透明导电膜层,通过曝光、显影、刻蚀工艺形成需要的第一透明导电层的图形,即多个间隔排列的公共电极线360,如图7所示。
102、在第一基板上方形成金属膜层,并通过构图工艺形成信号引线381和公共引线382,信号引线381用于与后续形成的信号电极线350电连接,公共引线382用于与公共电极线360及公共电极电连接。
本步骤中首先沉积金属膜层,然后通过曝光、显影、刻蚀工艺形成需要的金属层图形,即包括图8所示的信号引线381和公共引线382,其中外圈的信号引线381用以与后继形成信号电极线350的通过过孔电连接,内圈的公共引线382与公共电极线360通过交叠实现电连接。
103、在第一透明导电膜层上方形成绝缘层37及贯穿绝缘层37的过孔370。
本步骤中首先沉积绝缘膜层(如SiNx膜),然后通过曝光、显影、刻蚀工艺,在外圈的信号引线381上形成过孔370,以便与后继形成的信号电极线350相连,如图9所示。
104、在绝缘层上方形成第二透明导电膜层,并通过构图工艺形成多个间隔排列的信号电极线350,并且公共电极线360信号电极线隔着绝缘层37位于相邻信号电极线350的间隙。
本步骤中首先在上述基板上沉积例如ITO的第二透明导电膜层,通过曝 光、显影、刻蚀工艺形成主要包括多个间隔排列的信号电极线350的图形,且信号电极线350延伸至贯穿绝缘层37的过孔370的位置,通过过孔370信号电极线350与下层外圈的信号引线381实现电连接,如图10所示。最终形成的第一对盒基板沿A-A’方向的剖面结构如图3中的阵列基板所示。
本发明实施例提供的视差挡板制备方法,信号电极线和公共电极线采用分两层分别制作的方法,使公共电极线隔着绝缘层位于相邻信号电极线的间隙,增加了信号电极线与公共电极线之间的绝缘可靠性,从根本上解决了视差挡板电极容易短路的问题,提高了产品良品率。
此处需要说明的是,上述制备方法中,还可在步骤101形成第一透明导电膜层并通过构图工艺形成间隔排列的公共电极线360工序之前,进行步骤102形成金属层并通过构图工艺形成信号引线381和公共引线382,这时,类似地信号引线381通过贯穿绝缘层37的过孔370与信号电极线350电连接,公共引线382与公共电极线360通过直接接触(即交叠)实现电连接。
此外,还可在步骤104形成第二透明导电膜层并通过构图工艺形成多个间隔排列的信号电极线350的工序之前或之后,进行步骤102形成金属层并通过构图工艺形成信号引线381和公共引线382;此时,信号引线381与信号电极线350通过直接接触实现电连接,公共引线382通过贯穿绝缘层37的过孔370与公共电极线360电连接。
此外,上述形成第一对盒基板的工序中,还可优选采用半色调掩膜工艺来减少构图工艺的次数。例如,上述方法中步骤103中的绝缘层过孔和步骤104中的公共电极线,可以采用半色调掩膜工艺通过一次构图完成。例如,在步骤103中先进行绝缘层的成膜工序,即沉积一层绝缘材料层,然后涂覆光刻胶并采用采用半色调掩膜工艺(第二次构图工艺)曝光,形成如图11所示的光刻胶层。在后续形成过孔的区域B中的光刻胶完全剥离;后续形成信号电极线的区域A中保留第一厚度的光刻胶;除区域A和区域B之外的其余保留第二厚度的光刻胶,且第二厚度大于第一厚度。然后采用干法刻蚀出过孔,再进行灰化,去除区域A中的第一厚度的光刻胶,第二厚度的光刻胶被减薄。然后进行步骤104的成膜工序即形成第二透明导电膜层,最后再进行光刻胶剥离工艺,去除第二厚度的光刻胶,除区域A(对应信号电极线的图形)和区域B(对应过孔的图形)之外的第二透明导电膜层均随光刻胶剥离,形成覆盖过孔区域的信号电极线。本领域技术人员可以根据具体情况 进行设计,不限于上面所述的方法。
为了便于清楚说明,在本发明中采用了第一、第二等字样对相似项进行类别区分,该第一、第二字样并不在数量上对本发明进行限制,只是对一种优选的方式的举例说明,本领域技术人员根据本发明公开的内容,想到的显而易见的相似变形或相关扩展均属于本发明的保护范围内。
以上实施方式仅用于说明本公开,而并非对本公开的限制,有关技术领域的普通技术人员,在不脱离本公开的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本公开的范畴,本公开的专利保护范围应由权利要求限定。
本申请要求于2014年5月4日递交的中国专利申请第201410184496.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种视差挡板,包括:
    第一透明导电层,第二透明导电层以及所述第一透明导电层和所述第二透明导电层之间的绝缘层,
    所述第一透明导电层形成多个信号电极线,所述第二透明导电层形成多个公共电极线,所述信号电极线和所述公共电极线间隔排列,且所述公共电极线隔着所述绝缘层位于相邻信号电极线的间隙。
  2. 根据权利要求1所述的视差挡板,还包括对盒的第一透明基板和第二透明基板以及填充在第一透明基板和第二透明基板之间的透明液体,所述第一透明基板上设置有所述信号电极线和所述公共电极线,所述第二透明基板上设置有连续的公共电极层。
  3. 根据权利要求2所述的视差挡板,还包括信号引线和公共引线,设置于所述视差挡板的边缘,所述信号引线与所述信号电极线电连接,所述公共引线分别与所述公共电极线和所述公共电极电连接。
  4. 根据权利要求3所述的视差挡板,其中
    所述信号引线和所述公共引线位于同一金属层;
    所述金属层设置在所述第一透明导电层的上方或下方;或者,所述金属层设置在所述第二透明导电层的上方或下方。
  5. 根据权利要求4所述的视差挡板,其中,
    所述金属层设置在所述第一透明导电层的上方或下方时,所述信号引线与所述信号电极线通过直接接触实现电连接,所述公共引线通过贯穿所述绝缘层的过孔与所述公共电极线电连接;
    所述金属层设置在所述第二透明导电层的上方或下方时,所述信号引线通过贯穿所述绝缘层的过孔与所述信号电极线电连接,所述公共引线与所述公共电极线通过直接接触实现电连接。
  6. 一种显示面板,包括显示单元以及设置于所述显示单元的出光侧的权利要求1-5任一项所述的视差挡板。
  7. 根据权利要求6所述的显示面板,其中述显示单元为液晶显示单元、或OLED显示单元、或PDP显示单元。
  8. 一种显示装置,包括权利要求1-5任一项所述的视差挡板,或者, 权利要求6或7所述的显示面板。
  9. 一种视差挡板的制备方法,包括:形成第一对盒基板,形成第二对盒基板;和对盒第一对盒基板和第二对盒基板并在第一对盒基板和第二对盒基板之间灌注液晶,所述形成第一对盒基板的步骤包括:
    在第一基板上方形成第一透明导电膜层,并通过构图工艺形成多个间隔排列的公共电极线;
    在第一透明导电膜层上方形成绝缘层及贯穿所述绝缘层的过孔;
    在绝缘层上方形成第二透明导电膜层,并通过构图工艺形成多个间隔排列的信号电极线,并且所述公共电极线隔着所述绝缘层位于相邻信号电极线的间隙。
  10. 根据权利要求9所述的制备方法,其特征在于,所述形成第一对盒基板的步骤还包括:
    在第一基板上方形成金属层,并通过构图工艺形成信号引线和公共引线,所述信号引线用于与所述信号电极线电连接,所述公共引线用于与所述公共电极线及公共电极电连接。
  11. 根据权利要求10所述的制备方法,其特征在于,在所述形成第一透明导电膜层并通过构图工艺形成间隔排列的公共电极线的步骤之前或之后,形成金属层并通过构图工艺形成信号引线和公共引线;
    所述信号引线通过贯穿所述绝缘层的过孔与所述信号电极线电连接,所述公共引线与所述公共电极线通过直接接触实现电连接。
  12. 根据权利要求10所述的制备方法,其特征在于,在所述形成第二透明导电膜层并通过构图工艺形成多个间隔排列的信号电极线的步骤之前或之后,形成金属层并通过构图工艺形成信号引线和公共引线;
    所述信号引线与所述信号电极线通过直接接触实现电连接,所述公共引线通过贯穿所述绝缘层的过孔与所述公共电极线电连接。
  13. 根据权利要求9-12任一项所述的制备方法,其特征在于,在所述形成第一对盒基板的步骤中,通过使用半色调掩膜工艺减少构图工艺的次数。
  14. 根据权利要求9-13任一项所述的制备方法,其特征在于,形成第二对盒基板的步骤包括在第二基板上形成连续的公共电极层。
PCT/CN2014/087141 2014-05-04 2014-09-23 视差挡板及其制备方法、显示面板和显示装置 WO2015169030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,763 US10146059B2 (en) 2014-05-04 2014-09-23 Parallax barrier and fabricating method thereof, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410184496.2 2014-05-04
CN201410184496.2A CN103984107A (zh) 2014-05-04 2014-05-04 视差挡板及其制备方法、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2015169030A1 true WO2015169030A1 (zh) 2015-11-12

Family

ID=51276142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087141 WO2015169030A1 (zh) 2014-05-04 2014-09-23 视差挡板及其制备方法、显示面板和显示装置

Country Status (3)

Country Link
US (1) US10146059B2 (zh)
CN (1) CN103984107A (zh)
WO (1) WO2015169030A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984107A (zh) * 2014-05-04 2014-08-13 京东方科技集团股份有限公司 视差挡板及其制备方法、显示面板和显示装置
CN104298019B (zh) * 2014-09-30 2017-10-03 京东方科技集团股份有限公司 一种3d面板及其制备方法、3d显示装置
CN104765158B (zh) * 2015-05-06 2017-08-29 合肥京东方光电科技有限公司 视差挡板及显示装置
JP6983547B2 (ja) * 2017-06-22 2021-12-17 三菱電機株式会社 画像表示装置
CN109459863A (zh) 2017-09-06 2019-03-12 京东方科技集团股份有限公司 一种显示面板组件及其显示方法
CN107942527A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶光栅及其控制方法、显示装置
US11799179B2 (en) * 2018-08-10 2023-10-24 Beijing Boe Optoelectronics Technology Co., Ltd. Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
CN109901336A (zh) * 2019-04-02 2019-06-18 深圳市华星光电技术有限公司 阵列基板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002267A1 (en) * 2007-06-27 2009-01-01 Hui Nam Electronic display
TW201122645A (en) * 2009-12-30 2011-07-01 Unique Instr Co Ltd Full-screen 3D image display device.
CN102662283A (zh) * 2012-05-25 2012-09-12 天马微电子股份有限公司 液晶狭缝光栅、立体显示装置及其校正方法
CN103076679A (zh) * 2011-10-25 2013-05-01 瀚宇彩晶股份有限公司 三维显示的显示装置、视差屏障结构以及驱动方法
CN103984107A (zh) * 2014-05-04 2014-08-13 京东方科技集团股份有限公司 视差挡板及其制备方法、显示面板和显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501472A (en) * 1981-12-07 1985-02-26 Rockwell International Corporation Tunable electrochromic filter
JP4176569B2 (ja) * 2003-07-22 2008-11-05 株式会社東芝 立体表示装置及び画像表示方法
KR101087568B1 (ko) * 2004-12-30 2011-11-28 엘지디스플레이 주식회사 입체영상표시장치용 패러랙스 베리어 액정패널 및 그제조방법
KR100922800B1 (ko) * 2005-05-27 2009-10-21 엘지디스플레이 주식회사 하프톤 마스크와 그 제조방법 및 이를 이용한 표시장치의 제조방법
CN102566060B (zh) * 2010-12-31 2015-06-10 京东方科技集团股份有限公司 视差挡板、显示面板及视差挡板的制备方法
JP5632764B2 (ja) * 2011-02-02 2014-11-26 セイコーインスツル株式会社 立体画像表示装置
JP5520899B2 (ja) * 2011-08-23 2014-06-11 株式会社ジャパンディスプレイ 液晶表示装置
CN103424941B (zh) * 2013-08-06 2016-07-20 京东方科技集团股份有限公司 液晶光栅及其制造方法、驱动方法和光学相控阵装置
KR20150051755A (ko) * 2013-11-05 2015-05-13 삼성디스플레이 주식회사 액정 렌즈 패널 및 그 제조 방법
CN103676362A (zh) * 2013-12-18 2014-03-26 京东方科技集团股份有限公司 液晶光栅基板、液晶光栅及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002267A1 (en) * 2007-06-27 2009-01-01 Hui Nam Electronic display
TW201122645A (en) * 2009-12-30 2011-07-01 Unique Instr Co Ltd Full-screen 3D image display device.
CN103076679A (zh) * 2011-10-25 2013-05-01 瀚宇彩晶股份有限公司 三维显示的显示装置、视差屏障结构以及驱动方法
CN102662283A (zh) * 2012-05-25 2012-09-12 天马微电子股份有限公司 液晶狭缝光栅、立体显示装置及其校正方法
CN103984107A (zh) * 2014-05-04 2014-08-13 京东方科技集团股份有限公司 视差挡板及其制备方法、显示面板和显示装置

Also Published As

Publication number Publication date
CN103984107A (zh) 2014-08-13
US10146059B2 (en) 2018-12-04
US20160139421A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
WO2015169030A1 (zh) 视差挡板及其制备方法、显示面板和显示装置
WO2020192054A1 (zh) 透明阵列基板、透明显示面板、显示面板及显示终端
KR101273815B1 (ko) 시차 장벽, 디스플레이 패널 및 시차 장벽의 제조방법
CN101609832B (zh) 显示装置及其制造方法、以及半导体器件及其制造方法
US9825113B2 (en) Double-sided display substrate and manufacturing method thereof and display device
CN102162947B (zh) 显示装置及电子设备
EP3242157B1 (en) Colour film substrate, preparation method therefor and display device
KR102132445B1 (ko) 액정 디스플레이 패널 및 이의 제조 방법
JP6521534B2 (ja) 薄膜トランジスタとその作製方法、アレイ基板及び表示装置
CN105629591A (zh) 一种阵列基板、其制备方法及液晶显示面板
KR20130134448A (ko) 액정표시장치용 어레이 기판 및 이의 제조 방법
US20170102585A1 (en) Liquid crystal display and manufacturing method thereof
WO2015089978A1 (zh) 狭缝光栅及其制备方法、显示装置
JP5806383B2 (ja) 液晶表示装置
JP5627774B2 (ja) 液晶表示装置およびその製造方法
CN212848408U (zh) 显示面板和显示设备
KR20120022253A (ko) 전기영동 표시소자 및 그 제조방법
US11271051B2 (en) Light source panel and display device
JP2010048918A5 (zh)
CN114068622A (zh) 显示面板、显示设备和制造显示面板的方法
KR102042530B1 (ko) 박막 트랜지스터 어레이 기판 및 이의 제조 방법
KR101999598B1 (ko) 투명 유기전계 발광소자 및 이의 제조 방법
JP6943361B2 (ja) Coa型液晶パネルの製造方法及びcoa型液晶パネル
CN213071139U (zh) 显示面板和显示设备
CN102819133B (zh) 半透半反式液晶显示器阵列基板、制造方法及液晶显示屏

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436763

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.04.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14891423

Country of ref document: EP

Kind code of ref document: A1