WO2015168844A1 - Rcu和rf端口匹配的电调天线、基站和方法 - Google Patents

Rcu和rf端口匹配的电调天线、基站和方法 Download PDF

Info

Publication number
WO2015168844A1
WO2015168844A1 PCT/CN2014/076795 CN2014076795W WO2015168844A1 WO 2015168844 A1 WO2015168844 A1 WO 2015168844A1 CN 2014076795 W CN2014076795 W CN 2014076795W WO 2015168844 A1 WO2015168844 A1 WO 2015168844A1
Authority
WO
WIPO (PCT)
Prior art keywords
rcu
port
base station
drive
driving
Prior art date
Application number
PCT/CN2014/076795
Other languages
English (en)
French (fr)
Inventor
沈俭
肖伟宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14891468.2A priority Critical patent/EP3131327B1/en
Priority to MX2016014457A priority patent/MX359279B/es
Priority to CN201480078541.4A priority patent/CN106465146B/zh
Priority to JP2016566700A priority patent/JP6471177B2/ja
Priority to KR1020167033910A priority patent/KR101814030B1/ko
Priority to PCT/CN2014/076795 priority patent/WO2015168844A1/zh
Publication of WO2015168844A1 publication Critical patent/WO2015168844A1/zh
Priority to US15/343,737 priority patent/US9763108B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/005Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using remotely controlled antenna positioning or scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a remote control unit (RCU) and a radio frequency (RF) port matching electrical tune antenna, a base station, and a method.
  • RCU remote control unit
  • RF radio frequency
  • the base station manages the ESC antenna through the Antenna Interface Standards Group (AISG) interface.
  • AISG Antenna Interface Standards Group
  • one base station manages the RCUs of multiple ESC antennas in a cascade manner.
  • the base station in Figure 1 is a multi-receiving and multi-transmitting base station.
  • Each group has two RF ports, which are respectively connected to three ESCs.
  • the unit's RCU is managed in a cascading manner.
  • the operation and maintenance center adjusts the downtilt angle of the antenna
  • multiple RCU objects such as RCU1, RCU2, and RCU3 are seen from the base station. If the antenna downtilt angle corresponding to the RF port 3 and the RF port 4 of the base station is to be adjusted, it is first necessary to check the record left during the installation of the base station, the record including the correspondence between the RCU identification number and the antenna, and the correspondence between the base station port and the antenna port. relationship.
  • RET Remote Electrical Tilt
  • the embodiments of the present invention provide an ETA antenna, a base station, and a method for matching an RCU and an RF port, and can accurately and efficiently determine a matching relationship between the RCU and the RF port.
  • an electrical adjustment antenna including at least one electrical adjustment unit, the at least one electrical adjustment unit comprising:
  • a remote control unit RCU the RCU is connected to the transmission device for receiving a drive indication, the drive indication is used to indicate that the RCU is driven, and the RCU is further used to drive the transmission device;
  • the transmission device is connected to the phase shifter, and the transmission device is driven by the RCU, and the transmission device is configured to drive the phase shifter under the driving of the RCU;
  • the phase shifter is configured to adjust an antenna beam direction.
  • a phase mismatcher is built in the phase shifter.
  • the mismatcher is associated with an RF channel, and the mismatcher is used to generate an impedance mismatch of the RF channel.
  • the phase shifter further includes a motion slider, the motion slider is provided with at least one triggering device, the triggering device is moved with the motion slider, and the triggering device is configured to trigger the mismatcher So that the RF channel produces an impedance mismatch.
  • the at least one triggering device is a metal spring piece, and the metal spring piece is disposed at an end of the motion slider, and the motion slider is At the maximum stroke position, the metal spring piece and the mismatcher are turned on.
  • the at least one triggering device is a copper foil, the copper foil is disposed at the end of the moving slider, and the moving slider is at a maximum stroke. In position, the copper foil and the mismatcher are turned on.
  • the driving indication is a first mismatch message or a second mismatch message
  • the driving indication is used to indicate that the RCU performs the first driving
  • the drive indication is used to instruct the RCU to perform the second drive.
  • an electrical adjustment antenna including at least one electrical adjustment unit, where the at least one electrical adjustment unit includes:
  • a remote control unit RCU the RCU being coupled to the transmission for receiving a drive indication for indicating that the RCU is driving, the RCU is further for driving the transmission; the transmission, the transmission and phase shifting Connected to the RCU, the transmission is used to drive the phase shifter under the driving of the RCU, and the transmission is also used to trigger the mismatcher;
  • the phase shifter is configured to adjust an antenna beam direction
  • the mismatcher, the mismatcher RF channel is connected, and the mismatcher is used to cause an impedance mismatch in the RF channel.
  • a base station is provided, the base station being connected to the at least one remote control unit RCU through an AISG cable, the base station being connected to the at least one electrically adjustable antenna by an RF cable through at least one RF port, the base station comprising:
  • a sending module configured to send, by the sending module, the first mismatch indication information, where the first mismatch indication information is used to indicate that the at least one RCU performs the first driving to cause the standing wave abnormality of the at least one RF port;
  • a receiving module configured to receive first driving completion information, where the first driving completion information is sent by the RCU after completing the first driving
  • a scanning module configured to determine, after the receiving module receives the receiving driving completion information, the at least one RF port in which a standing wave abnormality occurs
  • a processing module configured to match the at least one RCU and the at least one port that has a standing wave abnormality
  • the storage module is configured to store a result of the matching performed by the processing module.
  • the processing module is further configured to mark the at least one RF port that exhibits a standing wave abnormality under the first driving and the RCU as a primary set matching relationship.
  • the sending module is further configured to send the second mismatch indication information to the RCU, where the second mismatch indication The information is used to indicate that the at least one RCU performs the second driving, and the standing wave abnormality occurs in the at least one RF port;
  • the receiving module is further configured to receive second driving completion information, where the second driving completion information is sent by the RCU after completing the second driving;
  • the processing module is further configured to mark the at least one RF port where the standing wave abnormality occurs under the second driving and the RCU as a diversity matching relationship.
  • a method for matching an RCU and an RF port is provided, and the base station performs the following matching steps:
  • the base station sends a first mismatch indication information to the RCU, where the first mismatch indication information is used to indicate that the at least one RCU performs a first driving to cause a standing wave abnormality of the RF port;
  • the base station scans the RF port to determine the RF port where the standing wave is abnormal; the base station matches the RF port with the standing wave abnormality and the RCU.
  • the performing the matching comprises: the base station matching the at least port with a standing wave abnormality under the first driving and the RCU marking a primary set matching relationship.
  • the matching step further includes: After the matching is completed, the base station sends a second mismatch indication information to the RCU, where the second mismatch indication information is used to indicate that the at least one RCU performs a second driving to cause a standing wave abnormality of the RF port;
  • the base station scans the RF port to determine the RF port where the standing wave is abnormal; the base station marks the RF port with the standing wave abnormality under the second driving and the RCU as a diversity matching relationship.
  • the base station selects another RCU, and performs the Matching steps.
  • a fifth aspect provides a method for matching an RCU and an RF port, and receiving a first mismatch indication message sent by a base station, according to the first mismatch indication message, the RCU triggers a mismatch device by using the power device;
  • the mismatcher generates an impedance mismatch, causing a standing wave anomaly to the RF port, so that the base station matches the RF port where the standing wave is abnormal with the RCU.
  • the RCU triggering the mismatch by the power unit includes: the RCU driving the phase shifter through the transmission such that a motion slider in the phase shifter triggers the mismatcher.
  • the RCU triggering the mismatch by the power unit includes: the RCU driving the transmission such that the transmission triggers the mismatch.
  • the RCU driving transmission drives the phase shifter, and the driven phase shifter triggers the mismatcher, causing a standing wave abnormality on the RF channel, so that the base station scans the standing wave abnormality.
  • the RF port enables the base station to determine a direct matching relationship between the RCU and the RF port caused by the standing wave exception caused by the RCU driver.
  • the electrically adjustable antenna of the structure can obtain the matching relationship between the RCU and the RF port efficiently and accurately through the base station, and does not affect the performance of the antenna, and triggers the mismatcher through the phase shifter inherent in the antenna, without adding other power devices. Festival Saved costs.
  • FIG. 1 is a schematic diagram of an electrical tune antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an electrical adjustment antenna according to another embodiment of the present invention.
  • FIG. 3 is a schematic view of a mismatcher in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic view of a mismatcher according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an electrical adjustment antenna according to another embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • the base station may be a base station in a Global System of Mobile communication ("GSM”) or a Code Division Multiple Access (“CDMA”) system (Base Transceiver).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Station
  • NodeB referred to as "NB”
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FIG. 1 shows a multi-frequency multi-system base station ESC antenna in the prior art.
  • the base station manages the ESC antenna through the AISG interface, and the base station manages multiple ESC antennas in a cascade manner.
  • the base station is a multi-receiving and multi-transmitting base station.
  • Each group has two RF ports.
  • the total of six RF ports are RF port 1, RF port 2, RF port 3, and RF port. 4.
  • RF port 5 and RF port 6, each group of RF ports are respectively connected to three ESC units, which are respectively an ESC unit 1, an ESC unit 2 and an ESC unit 3, each of which is electrically
  • the tuning unit corresponds to RCU1, RCU2 and RCU3, and RCU1, RCU2 and RCU3 are managed in a cascade manner.
  • Fig. 2 shows a schematic structural view of an electric adjustable antenna 200 according to the present invention.
  • the electric adjustable antenna 200 shown in Fig. 2 can be based on the base station electronically modulated antenna shown in Fig. 1.
  • the ESC antenna 200 includes at least one ESC unit 210.
  • the ESC unit 210 includes an RCU 211, a transmission 212, a phase shifter 213, and a mismatcher 214 disposed in the phase shifter.
  • the RCU 211 is connected to the transmission device 212 for receiving a drive indication, the drive indication is used to indicate that the RCU 211 is driven, and the RCU 211 is further configured to drive the transmission device 212;
  • the transmission 212 is connected to the phase shifter 213, and the transmission 212 is driven by the RCU 211, and the transmission 212 is used to drive the phase shifter 213 under the driving of the RCU 211;
  • the phase shifter 213 is configured to adjust an antenna beam direction.
  • the phase shifter 213 has a mismatcher 214.
  • the mismatcher 214 is associated with an RF channel.
  • the mismatcher 214 is configured to generate an impedance of the RF channel. lost pair.
  • the electrical adjustment antenna includes at least one electrical adjustment unit, and each electrical adjustment unit is connected to the base station.
  • the base station connects the RCUs of the plurality of ESC units in a cascade manner through the AISG cable, and The plurality of ESC units are managed.
  • the base station is connected to each of the ESC units via an RF cable through an RF port.
  • the ESC unit RCU211 receives the driving indication from the base station through the AISG cable, and the driving indication may be a first mismatch message or a second mismatch message.
  • the RCU 211 is configured to perform a first driving after receiving the first mismatch message.
  • the RCU 211 drive acts directly on the transmission 212.
  • the transmission 212 is coupled to a phase shifter 213 for driving the phase shifter 213 under the drive of the RCU 211.
  • the phase shifter 213 includes the mismatcher 214, and the mismatcher 214 is associated with an RF channel, which is a radio frequency transmission path of the base station RF port to the antenna element, and the RF cable is one of transmission carriers of the transmission path, and the transmission path is
  • the transmission carrier may also include a PCB or other structural member within the phase shifter 213.
  • the mismatcher 214 is a device that can cause an impedance mismatch between the signal source and the load in the RF circuit.
  • the structure of the mismatcher 214 can vary depending on the type of mismatch.
  • FIG. 3 shows two different mismatcher configurations.
  • the mismatcher 300 shown in FIG. 3 includes a switch 301, a reactance component 302, which may be a resistor, an inductor or a capacitor, and the reactance component is grounded.
  • the mismatcher 300 is connected to the RF channel.
  • the switch When the switch is triggered, the mismatcher 300 causes an RF channel mismatch, and the RF channel mismatch causes a standing wave abnormality at the RF port.
  • the mismatcher 400 shown in FIG. 4 includes a switch 401 disposed on the RF channel. When the switch is triggered, the mismatcher 400 causes an RF channel mismatch, and the RF channel mismatch causes a standing wave abnormality at the RF port.
  • the phase shifter 213 further includes a motion slider 215.
  • the motion slider is provided with at least one triggering device.
  • the triggering device moves with the motion slider, and the triggering device is configured to trigger the mismatcher 214. So that the RF channel produces an impedance mismatch.
  • the position of the mismatcher 214 in the ESC needs to be such that the motion slider is moved to a position such that the triggering device disposed on the motion slider can trigger the mismatcher 214.
  • the RCU driving transmission device drives the phase shifter, and the driven phase shifter triggers the mismatcher, causing a standing wave abnormality on the RF channel, so that the base station scans the occurrence.
  • the RF port of the standing wave abnormality causes the base station to determine a direct matching relationship between the RCU and the RF port caused by the standing wave abnormality caused by the RCU driver.
  • the electrically adjustable antenna of the structure can obtain the matching relationship between the RCU and the RF port efficiently and accurately through the base station, and does not affect the performance of the antenna, and triggers the mismatcher through the phase shifter inherent in the antenna, without adding other power devices. Save costs.
  • the phase shifter includes a motion slider 215 that is slid under driving, and the slider 215 is slid to different positions to adjust the beam direction of the phase shifter.
  • the end of the motion slider is provided with at least one triggering device, and the triggering device moves with the motion slider 215, and the triggering device is configured to trigger the mismatcher 214 to generate an impedance mismatch of the RF channel. , resulting in standing wave anomalies.
  • the trigger triggers the mismatch.
  • the triggering device may be a spring metal piece; when the spring metal piece contacts the mismatcher, the mismatcher 214 is turned on, thereby triggering the mismatcher 214, causing impedance mismatch in the RF channel, causing the RF port to appear. Standing wave is abnormal.
  • the triggering device can be a copper foil that, when in contact with the mismatcher 214, causes the mismatcher switch to open, thereby triggering the mismatcher 214, causing an impedance mismatch in the RF channel, causing a standing wave anomaly in the RF port.
  • the phase direction of the phase shifter is not affected, and the driving device is disposed on the existing motion slider of the phase shifter, which effectively reduces the cost.
  • the triggering device can also be disposed at other positions of the motion slider 215, such as the middle portion, with the motion slider being able to contact the mismatcher and trigger the mismatch.
  • the electrically adjustable antenna 200 may further include a plurality of electrical tuning units identical to the electrical tuning unit 210.
  • FIG. 5 shows an electrical adjustment antenna 500 according to an embodiment of the present invention, including at least one electrical adjustment unit 510, and the at least one electrical adjustment unit 510 includes:
  • the RCU 511 is connected to the transmission device 512 for receiving a drive indication, the drive indication is used to indicate that the RCU 511 is driven, and the RCU 511 is further configured to drive the transmission device 512;
  • the transmission device 512 is connected to the phase shifter 513.
  • the transmission device 512 is driven by the RCU 511.
  • the transmission device 512 is configured to drive the phase shifter 513 under the driving of the RCU 511.
  • the transmission device 512 is also used. Triggering the mismatcher 514;
  • the phase shifter 513 is configured to adjust an antenna beam direction
  • the mismatcher 514, the mismatcher 514 RF channel is connected, and the mismatcher 514 is used to cause an impedance mismatch in the RF channel.
  • the RCU 511 drives the transmission 512 to drive the phase shifter 513, and the driven phase shifter 513 triggers the mismatcher 514, causing a standing wave abnormality on the RF channel, so that the base station scans to the standing wave abnormality.
  • the RF port enables the base station to determine a direct matching relationship between the RCU 511 and the RF port of the RCU 511 driving the standing wave abnormality.
  • the electrically adjustable antenna of the structure can obtain the matching relationship between the RCU 511 and the RF port efficiently and accurately through the base station, and does not affect the performance of the antenna, and triggers the mismatcher 514 through the phase shifter 513 inherent in the antenna, without adding other power. The device saves costs.
  • the two ESCs share a set of RCUs and transmissions
  • the phase shifters in the two ESCs of the shared RCU and the transmission are respectively referred to as a main set phase shifter and Diversity phase shifter.
  • the triggering device is respectively disposed at different ends of the motion sliders of the main set phase shifter and the diversity phase shifter, for example, the triggering device is disposed in the lower part of the motion slider in the main set phase shifter. The end is disposed at the upper end of the motion slider in the diversity phase shifter.
  • the main stage phase shifter and the diversity phase shifter are simultaneously adjusted in the same direction, that is, the motion slider slides in the same direction at the same time.
  • the sliding module slides to the uppermost position at the same time, and when the sliding reaches the maximum stroke, the triggering device at the lower end of the moving slider in the main phase shifter triggers the mismatcher, causing the standing wave abnormality of the RF port.
  • the trigger device on the motion slider in the diversity phase shifter does not trigger the mismatcher; when the RCU performs the second drive, the motion slider slides to the bottom at the same time, and slides to the maximum stroke, the diversity phase shifter
  • the triggering device at the upper end of the inner motion slider triggers the mismatch, causing a standing wave anomaly at the RF port, and the triggering device on the motion slider in the main phase shifter does not trigger the mismatch.
  • the motion sliders in the phase shifters sharing the RCU and the transmission are different.
  • the location is set with a trigger device. Only the RCU needs to drive in two directions, and the port relationship corresponding to two different ESC units can be obtained, and the matching relationship between different RF ports and RCUs can be efficiently obtained.
  • FIG. 6 shows a base station 600 according to an embodiment of the present invention.
  • the base station 600 is connected to at least one RCU through an AISG cable.
  • the base station 600 is connected to at least one electrical adjustment antenna by using an RF cable through at least one RF port.
  • the base station 600 includes :
  • the sending module 610 is configured to send the first mismatch indication information to the RCU, where the first mismatch indication information is used to indicate that the at least one RCU performs the first driving to cause the standing wave abnormality of the at least one RF port. ;
  • a receiving module 620 configured to receive first driving completion information, where the first driving completion information is sent by the RCU after completing the first driving;
  • a scanning module 630 configured to determine, after the receiving module 620 receives the receiving driving completion information, the at least one RF port in which a standing wave abnormality occurs;
  • a processing module 640 configured to match the at least one RCU and the at least one port that is adjacent to the standing wave exception
  • the storage module 650 is configured to store the result of the matching performed by the processing module 640.
  • the base station sends a first mismatch message through the sending module 610, instructing the RCU to drive to its corresponding ESC unit, and discovering a port with a standing wave abnormality by scanning, and obtaining the RCU and the RF port.
  • Matching relationship The base station can obtain the matching relationship between the RCU and the RF port efficiently and accurately through the ESC with mismatch function, which greatly increases the accuracy of the correspondence and improves the efficiency.
  • the processing module 640 is further configured to mark the at least one RF port in which the standing wave abnormality occurs under the first driving and the RCU as a primary set matching relationship.
  • the sending module 610 is further configured to send the second mismatch indication information to the RCU, where the second mismatch indication information is used to indicate that the at least one RCU performs the second driving, and the standing wave abnormality occurs in the at least one RF port;
  • the receiving module 620 is further configured to receive second driving completion information, where the second driving completion information is sent by the RCU after completing the second driving;
  • the processing module 640 is further configured to mark the at least one RF port that exhibits a standing wave abnormality under the second driving and the RCU as a diversity matching relationship.
  • the base station sends a first mismatch message through the sending module 610, instructing the RCU to drive to its corresponding ESC unit, and discovering a port with a standing wave abnormality by scanning, and obtaining the RCU and the RF port.
  • Matching relationship The base station can obtain the matching relationship between the RCU and the RF port efficiently and accurately through the ESC with mismatch function, which greatly increases the accuracy of the correspondence and improves the efficiency.
  • FIG. 7 shows a base station according to an embodiment of the present invention.
  • the base station is connected to at least one RCU through an AISG cable, and the base station is connected to the at least one electrical adjustment antenna by using an RF cable through at least one RF port, and the base station includes:
  • the transmitter 710 is configured to send the first mismatch indication information to the RCU, where the first mismatch indication information is used to indicate that the at least one RCU performs the first driving to cause the standing wave abnormality of the at least one RF port. ;
  • a transmitter 720 configured to receive first driving completion information, where the first driving completion information is sent by the RCU after completing the first driving;
  • the processor 730 is configured to determine, after the transmitter 720 receives the received driving completion information, the at least one RF port that has a standing wave abnormality;
  • the processor 730 is further configured to match the at least one RCU and the at least one port in which the standing wave abnormality occurs; the memory 740 is configured to store a result of the matching performed by the processor 730.
  • the base station sends a first mismatch message through the transmitter 710, instructing the RCU to drive to its corresponding ESC unit, and then discovering a port with a standing wave abnormality by scanning, and obtaining the RCU and the RF port.
  • Matching relationship The base station can obtain the matching relationship between the RCU and the RF port efficiently and accurately through the ESC unit with mismatch function, which greatly increases the accuracy of the correspondence and improves the efficiency.
  • the processor 730 is further configured to mark the at least one RF port that exhibits a standing wave abnormality under the first driving and the RCU as a primary set matching relationship.
  • the transmitter 710 is further configured to send the second mismatch indication information to the RCU, where the second mismatch indication information is used to indicate that the at least one RCU performs the second driving, and the standing wave abnormality occurs in the at least one RF port;
  • the transmitter 720 is further configured to receive second driving completion information, where the second driving completion information is sent by the RCU after completing the second driving;
  • the processor 730 is further configured to mark the at least one RF port where the standing wave abnormality occurs under the second driving and the RCU as a diversity matching relationship.
  • the base station sends a first mismatch message through the transmitter 710, instructing the RCU to drive to its corresponding ESC unit, and then discovering a port with a standing wave abnormality by scanning, and obtaining the RCU and the RF port.
  • Matching relationship The base station can efficiently and accurately obtain the matching relationship between the RCU and the RF port through the ESC unit with mismatch function, which greatly increases the accuracy of the correspondence and improves the efficiency.
  • Embodiments of the present invention also disclose a method of matching an RCU and an RF port.
  • the method can be based on the electrically tuned antenna, device or base station disclosed in the embodiment shown in Figures 1-7.
  • the base station sends a first mismatch message to the RCU through the AISG interface, where the first mismatch indication information is used to indicate that the at least one RCU performs the first driving to cause the standing wave abnormality of the RF port, and the RCU receives the first mismatch message.
  • the first driving may move the motion slider in the phase shifter to a certain position, where the certain position may be the maximum of the motion slider
  • the RCU sends a first driving completion information to the base station; the end of the motion slider is provided with a triggering device, and when the motion slider moves to the maximum stroke, the motion slider is set
  • the trigger device at the end triggers a mismatch device that generates an impedance mismatch, causing a standing wave anomaly to the RF port, so that the base station matches the RF port with a standing wave abnormality with the RCU;
  • the first driving is driving the RCU through the transmission device
  • the trigger device is disposed on the transmission device.
  • the transmission device triggers the mismatch device
  • the mismatch device generates An impedance mismatch causes a standing wave abnormality in the RF port, so that the base station matches the RF port where the standing wave abnormality occurs with the RCU;
  • the base station After receiving the first driving completion information, the base station scans the RF port to determine the RF port where the standing wave is abnormal, and the base station can scan all the RF ports, and the base station can start the standing wave detecting function thereof.
  • the low power scan detects the reflected signal at the same time. If the base station detects the standing wave abnormality of the corresponding RF port, it can determine that the RF port with the standing wave abnormality matches the RCU that performs the first driving. On the contrary, it indicates that the RF port of the base station does not have a corresponding relationship with the RCU.
  • the base station may send a reset message to the RCU, indicating that the RCU moves to the initial location;
  • the base station may send a first mismatch message to other RCUs, and perform matching steps on the RF ports corresponding to other RCUs.
  • the base station matches the at least port with the standing wave abnormality and the RCU flag as the primary set matching relationship under the first driving; after the matching is completed, the base station sends the second lost And the second mismatch indication information is used to indicate that the at least one RCU performs the second driving to cause the standing wave abnormality of the RF port;
  • the RCU After receiving the second mismatch message, the RCU performs a second drive, which is a drive different from the first drive direction.
  • the RCU performs a second driving to cause a standing wave abnormality in the RF port, and the RCU can perform the first driving step, except that the triggering device is located at different positions of the motion slider.
  • the sliding module slides to the uppermost position at the same time, and when sliding to the maximum stroke, the trigger device at the lower end of the motion slider in the main phase shifter triggers the mismatcher, causing the standing wave of the RF port.
  • the trigger on the motion slider in the diversity phase shifter does not trigger the mismatch; when the RCU performs the second drive, the motion slider slides to the bottom at the same time, and slides to the maximum stroke, the diversity phase shift
  • the triggering device at the upper end of the motion slider in the device triggers the mismatch, causing a standing wave anomaly at the RF port, and the trigger device on the motion slider in the main phase shifter does not trigger the mismatch.
  • the base station After the RCU completes the second driving, sending a second driving completion message to the base station, after receiving the second driving completion message, the base station scans the RF port to determine that a standing wave abnormality occurs.
  • the RF port the base station can scan and detect all the RF ports, and the base station can start the standing wave detection function thereof, and use the low power scan to detect the reflected signal at the same time. If the base station detects the standing wave abnormality of the corresponding RF port, the base station can The RF port that determines that the standing wave is abnormal is matched with the RCU that performs the second drive. On the contrary, it indicates that the RF port of the base station has no corresponding relationship with the RCU.
  • the base station marks the RF port with the standing wave abnormality under the second driving and the RCU as a diversity matching relationship.
  • the base station may reset the message to the RCU, indicating that the RCU moves to the initial location;
  • the base station may send a first mismatch message to other RCUs, and perform matching steps on the RF ports corresponding to other RCUs.
  • the transmission and phase shifter and the motion slider inside the phase shifter can be referred to as a power unit, and the power unit can be other devices that can trigger a mismatch.
  • the RCU driving transmission drives the phase shifter, and the driven phase shifter triggers the mismatcher, causing a standing wave abnormality on the RF channel, so that the base station scans the RF port where the standing wave abnormality occurs.
  • the base station is caused to determine a direct matching relationship between the RCU and the RF port of the standing wave abnormality caused by the RCU driver.
  • the electrically adjustable antenna of the structure can obtain the matching relationship between the RCU and the RF port efficiently and accurately through the base station, and does not affect the performance of the antenna, and triggers the mismatcher through the phase shifter inherent in the antenna, without adding other power devices. Save costs.
  • the electrical adjustment antenna of the built-in mismatch device disclosed in the embodiment of the present invention can also be used for detecting the path loss of the base station output to the antenna and the delay detection for the base station output to the antenna through the cooperation of the base station.
  • the base station can detect the output power of the self and the reflected power of the antenna. After the mismatcher is triggered, the RF signal is totally reflected. The transmitted signal output by the base station is all reflected back to the output port of the base station, and the power of the reflected signal reflected back to the output port of the base station is equal to the base station. By subtracting twice the path loss from the output power, it is possible to accurately calculate the path loss as the result of subtracting the power of the reflected signal from the base station and dividing it by 2.
  • a frequency domain reflectometer can be used (Frequency Domain) Reflectometry, FDR) technology inputs the swept frequency signal into the antenna feed port and performs fast Fourier transform on the reflected signal to obtain the time domain reflection signal.
  • FDR Frequency Domain Reflectometry
  • the relationship between the reflected distance and the reflected voltage can calculate the transmission delay between the RF output of the base station and the short-circuit or open-circuit point.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions for obtaining one.
  • a computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a medium that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed apparatus and method may be implemented in other manners without departing from the scope of the present application.
  • the device embodiments described above are merely illustrative.
  • the division of the device or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the displayed components may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units.
  • Some or all of the devices may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the described devices and methods, and the schematic diagrams of the various embodiments may be combined or integrated with other systems, devices, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transmitters (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Radio Transmission System (AREA)

Abstract

提供了一种内置失配器的电调天线以及一种远端控制单元与射频端口的匹配方法,能够准确高效的确定RCU与RF端口的匹配关系。该电调天线包括,RCU,用于接收驱动指示,还用于驱动该传动装置;传动装置,该传动装置和移相器相连,该传动装置受该RCU驱动,该传动装置用于在该RCU 的驱动下驱动该移相器;该移相器,该移相器用于调整天线波束方向,该移相器中内置失配器,该失配器和射频RF通道关联,该失配器用于使该RF 通道产生阻抗失配。

Description

RCU和 RF端口匹配的电调天线、 基站和方法 技术领域
本发明实施例涉及通信领域, 尤其涉及远端控制单元( Remote Control Unit, RCU )和射频( Radio Frequency, RF )端口匹配的电调天线、 基站和 方法。 背景技术
在对使用了电调天线的无线网络的优化中, 通常会调整部分扇区的天线 的下倾角, 以改善扇区覆盖, 提升网络性能。 基站对电调天线的管理是通过 天线接口标准组织( Antenna Interface Standards Group, AISG )接口进行的, 往往一个基站以级联方式管理多个电调天线的 RCU。 如图 1所示, 图 1 中 的基站是一个多收多发的基站, 有三组不同频段和制式的 RF单元, 每组单 元有两个 RF端口,分别连接在 3个电调单元上, 电调单元的 RCU采用级联 方式统一管理。 在这种场景下, 在操作维护中心调整天线的下倾角时, 就会 从基站看到的多个 RCU对象, 如 RCU1 , RCU2, RCU3。 如果要调整基站 RF端口 3、 RF端口 4所对应的天线下倾角, 首先需要查阅基站工程安装期 间留下的记录, 该记录包括 RCU识别号与天线的对应关系, 以及基站端口 与天线端口的对应关系。
这些对应关系信息是工程施工人员在安装基站和天线时记录下来的, 因 为是人工记录, 所以出错概率很高。 记录中如果错误的将 RF端口 3 , RF端 口 4连接的天线写为电调单元 2, 那么将导致维护人员错误的调整 RCU2, 导致 RF端口 5、 RF端口 6对应的覆盖区域变化, 而实际需要调整的 RF端 口 3、 RF端口 4覆盖区没有任何改变。 这样的错误一旦发生, 需要路测或者 用户投诉才能发现。 如果纪录中 RCU与天线的安装关系错误, 也会造成相 同的结果。
在传统的电调天线中, 由于电调天线的电调系统与天线之间没有通信接 口, 电调系统无法向基站通知当前调整的天线是否是用户想要调整的天线, 为了解决这个缺陷所导致的问题, 就提出了抄录远程电调(Remote Electrical Tilt, RET )序列号方案, 通过施工人员抄录 RET序列号, 并记录 RET序 列号与 RF端口、 频段、 天线位置及阵列位置等信息的关系, 然后根据记录 的信息在维护中心配置好扇区对象与 RET对象之间的关系。但人工抄录 RET 序列号的方案虽然能够建立起扇区对象与 RET对象之间的关系, 但也存在 很多问题, 如易抄错序列号, 录入时也容易出错, 数据表易丟失, 数据汇总 和序列号信息维护工作繁瑣。
发明内容
本发明实施例提供了 RCU和 RF端口匹配的电调天线、基站和方法, 能 够准确高效的确定 RCU与 RF端口的匹配关系。
第一方面, 提供了一种电调天线, 包括至少一个电调单元, 该至少 一个电调单元包括:
远端控制单元 RCU, 该 RCU和传动装置相连, 用于接收驱动指示, 该 驱动指示用于指示该 RCU进行驱动, 该 RCU还用于驱动该传动装置;
该传动装置, 该传动装置和移相器相连, 该传动装置受该 RCU驱动, 该传动装置用于在该 RCU的驱动下驱动该移相器;
该移相器, 该移相器用于调整天线波束方向, 该移相器中内置失配器, 该失配器和 RF通道关联, 该失配器用于使该 RF通道产生阻抗失配。
在第一种可能的实现方式中, 该移相器还包括运动滑块, 该运动滑块设 置有至少一个触发装置, 该触发装置随该运动滑块运动, 该触发装置用于触 发该失配器,以使该 RF通道产生阻抗失配。
在第二种可能的实现方式中, 结合第一方面的第一种可能的实现方式, 该至少一个触发装置为金属弹簧片, 该金属弹簧片设置于该运动滑块末端, 该运动滑块在最大行程位置时, 该金属弹簧片和该失配器接通。 在第三种可能的实现方式中, 结合第一方面的第一种可能的实现方式, 该至少一个触发装置为铜箔, 该铜箔设置于该运动滑块末端, 该运动滑块在 最大行程位置时, 该铜箔和该失配器接通。
在第四种可能的实现方式中, 结合第一方面或第一方面的三种可能的实 现方式的任一种, 该驱动指示为第一失配消息或第二失配消息;
当该驱动指示为第一失配消息时,该驱动指示用于指示该 RCU进行 第一驱动;
当该驱动指示为第二失配消息时, 该驱动指示用于指示该 RCU进行第 二驱动。
第二方面, 提供了一种电调天线, 包括至少一个电调单元, 该至少一个 电调单元包括:
远端控制单元 RCU, 该 RCU和传动装置相连, 用于接收驱动指示, 该 驱动指示用于指示该 RCU进行驱动, 该 RCU还用于驱动该传动装置; 该传动装置, 该传动装置和移相器相连, 该传动装置受该 RCU驱动, 该传动装置用于在该 RCU的驱动下驱动该移相器, 该传动装置还用于触发 失配器;
该移相器, 该移相器用于调整天线波束方向;
该失配器, 该失配器 RF通道连接, 该失配器用于在使该 RF通道产生 阻抗失配。
第三方面, 提供了一种基站, 该基站通过 AISG电缆和至少一个远端控 制单元 RCU相连, 该基站通过至少一个 RF端口用 RF电缆和至少一个电调 天线相连, 该基站包括:
发送模块, 该发送模块用于向 RCU发送第一失配指示信息, 该第一失 配指示信息用于指示指示该至少一个 RCU进行第一驱动以使该至少一个 RF 端口出现驻波异常;
接收模块, 该接收模块用于接收第一驱动完成信息, 该第一驱动完成信 息由该 RCU在完成该第一驱动后发送; 扫描模块, 该扫描模块用于在该接收模块收到该接收驱动完成信息后, 确定出现驻波异常的该至少一个 RF端口;
处理模块, 该处理模块用于对该至少一个 RCU和该出现驻波异常的该 至少一个端口进行匹配;
存储模块, 该存储模块用于存储该处理模块完成的该匹配的结果。 在第一种可能的实现方式中, 该处理模块还用于将在该第一驱动下出现 驻波异常的该至少一个 RF端口和该 RCU标记为主集匹配关系。
在第二种可能的实现方式中, 结合第三方面或第三方面的第一种可能的 实现方式, 该发送模块还用于发送第二失配指示信息给该 RCU, 该第二失 配指示信息用于指示该至少一个 RCU进行第二驱动以该至少一个 RF端口出 现驻波异常;
接收模块还用于接收第二驱动完成信息,该第二驱动完成信息由该 RCU 在完成该第二驱动后发送;
该处理模块还用于将在该第二驱动下出现驻波异常的该至少一个 RF端 口和该 RCU标记为分集匹配关系。
第四方面,提供了一种匹配 RCU和 RF端口的方法,基站进行以下匹配 步骤:
该基站发送第一失配指示信息给该 RCU, 该第一失配指示信息用于指 示该至少一个 RCU进行第一驱动以使该 RF端口出现驻波异常;
该基站接收第一驱动完成信息, 该第一驱动完成信息由该 RCU在完成 该第一驱动后发送;
该基站对该 RF端口进行扫描, 确定出现驻波异常的该 RF端口; 该基站将该出现驻波异常的该 RF端口和该 RCU进行匹配。
在第一种可能的实现方式中, 该进行匹配包括, 该基站将在该第一驱动 下出现驻波异常的该至少端口和该 RCU标记为主集匹配关系。
在第二种可能的实现方式中, 结合第四方面的第一种可能的实现方式, 该匹配步骤还包括: 该进行匹配完成后, 该基站发送第二失配指示信息给该 RCU, 该第二 失配指示信息用于指示该至少一个 RCU进行第二驱动以使该 RF端口出现驻 波异常;
该基站接收第二驱动完成信息, 该第二驱动完成信息由该 RCU在完成 该第二驱动后发送;
该基站对该 RF端口进行扫描, 确定出现驻波异常的该 RF端口; 该基站将在该第二驱动下出现驻波异常的该 RF端口和该 RCU标记为分 集匹配关系。
在第三种可能的实现方式中, 结合第四方面或第四方面的第一种或第二 种可能的实现方式, 该基站在完成该匹配后, 该基站选定另一个 RCU, 再 次进行该匹配步骤。
第五方面,提供了一种匹配 RCU和 RF端口的方法,接收基站发送的第 一失配指示信息, 根据该第一失配指示消息, RCU 通过动力装置触发失配 器;
该失配器产生阻抗失配, 使该 RF端口出现驻波异常, 以便该基站将出 现驻波异常的该 RF端口和该 RCU进行匹配。
在第一种可能的实现方式中, 该 RCU通过动力装置触发失配器包括: 该 RCU通过传动装置驱动移相器, 使得该移相器中的运动滑块触发该 失配器。
在第二种可能的实现方式中, 该 RCU通过动力装置触发失配器包括: 该 RCU驱动传动装置, 使得该传动装置触发该失配器。
根据本发明实施例的方法和设备, RCU驱动传动装置对移相器进行驱 动, 受到驱动的移相器触发失配器, 造成 RF通道上产生驻波异常, 以便基 站扫描到该出现驻波异常的 RF端口, 使得基站确定该 RCU和该 RCU驱动 所造成驻波异常的 RF端口直接的对应匹配关系。 该结构的电调天线可通过 基站, 高效准确的获得 RCU和 RF端口的匹配关系,且不会对天线的性能造 成影响, 通过天线内固有的移相器触发失配器, 无需增加其它动力装置, 节 省了成本。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的电调天线的示意图;
图 2是根据本发明另一实施例的电调天线的示意图;
图 3是根据本发明实施例的失配器的示意图;
图 4是根据本发明另一实施例的失配器的示意图;
图 5是根据本发明另一实施例的电调天线的示意性框图;
图 6是根据本发明实施例的基站的示意性框图;
图 7是根据本发明另一实施例的基站的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。 在本发明实施例中,基站可以是全球移动通讯 ( Global System of Mobile communication,简称为 "GSM" )或码分多址 ( Code Division Multiple Access, 简称为 "CDMA" )系统中的基站(Base Transceiver Station, 简称为 "BTS" ), 也可以是宽带码分多址(Wideband Code Division Multiple Access, 简称为 "WCDMA" ) 系统中的基站(NodeB, 简称为 "NB" ), 还可以是长期演进 ( Long Term Evolution, 简称为 "LTE" ) 系统中的演进型基站 ( Evolutional Node B, 简称为 "ENB或 eNodeB" ), 本发明并不限定。
图 1示出了现有技术中的一种多频多制式基站电调天线。基站对电调天 线的管理是通过 AISG接口进行的, 基站以级联方式管理多个电调天线的
RCU。
该基站是一个多收多发的基站, 有三组不同频段和制式的 RF单元, 每 组单元有两个 RF端口, 共 6个 RF端口分别为 RF端口 1、 RF端口 2、 RF 端口 3、 RF端口 4、 RF端口 5和 RF端口 6, 每组 RF端口分别连接在 3个 电调单元上, 该 3个电调单元分别为电调单元 1、 电调单元 2和电调单元 3 , 每个电调单元对应 RCU1、 RCU2和 RCU3 , RCU1、 RCU2和 RCU3采用级 联方式统一管理。
在操作维护中心调整天线的下倾角时, 就会从基站维护端角度看到的多 个 RCU对象, RCU1 , RCU2, RCU3。
图 2示出了才艮据本发明一种电调天线 200的示意性结构图, 图 2所示的 电调天线 200可基于图 1所示的基站电调天线。 如图 2所示, 电调天线 200 包括至少一个电调单元 210, 电调单元 210包括 RCU211 , 传动装置 212, 移 相器 213 , 置于移相器内的失配器 214。
RCU211 , 该 RCU211和传动装置 212相连, 用于接收驱动指示, 该驱 动指示用于指示该 RCU211 进行驱动, 该 RCU211 还用于驱动该传动装置 212;
该传动装置 212, 该传动装置 212和移相器 213相连, 该传动装置 212 受该 RCU211驱动,该传动装置 212用于在该 RCU211的驱动下驱动该移相 器 213;
该移相器 213 , 该移相器 213用于调整天线波束方向, 该移相器 213中 内置失配器 214, 该失配器 214和 RF通道关联, 该失配器 214用于使该 RF 通道产生阻抗失配。
如图 2所示, 电调天线包括至少一个电调单元, 每个电调单元和基站连 接。 基站通过 AISG电缆, 以级联方式连接多个电调单元的 RCU211 , 并对 该多个电调单元进行管理。 基站通过 RF端口用 RF电缆和每个电调单元连 接。
电调单元 RCU211通过 AISG电缆, 接收来自基站的驱动指示, 该驱动 指示可以是第一失配消息, 也可以是第二失配消息。 该 RCU211用于在收到 该第一失配消息后,进行第一驱动。 RCU211驱动直接作用于该传动装置 212。 该传动装置 212和移相器 213相连接,在 RCU211的驱动下,该传动装置 212 用于驱动该移相器 213。
该移相器 213内置该失配器 214, 该失配器 214和 RF通道关联, 该 RF 通道为基站 RF端口到天线阵子的射频传输路径, RF电缆为该传输路径的传 输载体之一, 该传输路径的传输载体还可包括移相器 213 内 PCB或其它结 构件。
该失配器 214 为能够造成射频电路中信号源和负载之间阻抗失配的装 置, 该失配器 214的结构可根据不同的失配形式而不同。
图 3、 图 4所示为两种不同的失配器结构。 图 3所示的失配器 300, 包 括一个开关 301 , —个电抗部件 302 , 该电抗部件可以是电阻、 电感或电容, 该电抗部件接地。 该失配器 300和 RF通道连接, 当开关被触发后, 失配器 300造成 RF通道失配 , RF通道的失配使得 RF端口出现驻波异常。
图 4所示的失配器 400, 包括一个开关 401 , 该开关设置于 RF通道上, 当该开关被触发, 失配器 400造成 RF通道失配, RF通道的失配使得 RF端 口出现驻波异常。
如图 2所示, 该移相器 213内还包括运动滑块 215 , 该运动滑块设置有 至少一个触发装置, 该触发装置随该运动滑块运动, 该触发装置用于触发该 失配器 214, 以使该 RF通道产生阻抗失配。
该失配器 214在该电调单元中的位置, 需要满足在运动滑块运动到一定 位置, 使得设置在运动滑块上的触发装置能够触发该失配器 214。
在本发明实施例中, RCU驱动传动装置对移相器进行驱动,受到驱动的 移相器触发失配器, 造成 RF通道上产生驻波异常, 以便基站扫描到该出现 驻波异常的 RF端口, 使得基站确定该 RCU和该 RCU驱动所造成驻波异常 的 RF端口直接的对应匹配关系。 该结构的电调天线可通过基站, 高效准确 的获得 RCU和 RF端口的匹配关系,且不会对天线的性能造成影响,通过天 线内固有的移相器触发失配器, 无需增加其它动力装置, 节省了成本。
该移相器内包含有运动滑块 215 , 该运动滑块 215在驱动下进行滑动, 通过该运动滑块 215滑动到不同位置, 可实现移相器对波束方向的调整。 在 本实施例中, 该运动滑块的末端设置有至少一个触发装置, 该触发装置随该 运动滑块 215运动, 该触发装置用于触发该失配器 214,以使该 RF通道产生 阻抗失配, 从而产生驻波异常。 该运动滑块 215滑动到最大行程处时, 该触 发装置触发失配器。
进一步的, 该触发装置可以是弹簧金属片; 当该弹簧金属片和失配器接 触时, 使得失配器 214开关接通, 从而触发了失配器 214, 造成 RF通道发 生阻抗失配, 使得 RF端口出现驻波异常。
该触发装置可以是铜箔, 当该铜箔和失配器 214接触时, 使得失配器开 关接通, 从而触发了失配器 214, 造成造成 RF通道发生阻抗失配, 使得 RF 端口出现驻波异常。
通过在运动滑块 215的末端设置该触发装置, 不会对移相器调节波束方 向造成影响,驱动装置设置在移相器现有的运动滑块上,有效的降低了成本。
该触发装置还可设置在该运动滑块 215的其它位置, 如中部, 在运动滑 块的带动下与该失配器能够接触并触发该失配器即可。
参照图 1可以理解, 该电调天线 200还可包括多个和电调单元 210相同 的电调单元。
图 5示出了本发明实施例的一种电调天线 500, 包括至少一个电调单元 510, 该至少一个电调单元 510包括:
RCU511 , 该 RCU511和传动装置 512相连, 用于接收驱动指示, 该驱 动指示用于指示该 RCU511 进行驱动, 该 RCU511 还用于驱动该传动装置 512; 该传动装置 512, 该传动装置 512和移相器 513相连, 该传动装置 512 受该 RCU511驱动,该传动装置 512用于在该 RCU511的驱动下驱动该移相 器 513 , 该传动装置 512还用于触发失配器 514;
该移相器 513 , 该移相器 513用于调整天线波束方向;
该失配器 514, 该失配器 514RF通道连接, 该失配器 514用于在使该 RF通道产生阻抗失配。
在本发明实施例中, RCU511驱动传动装置 512对移相器 513进行驱动, 受到驱动的移相器 513触发失配器 514, 造成 RF通道上产生驻波异常, 以 便基站扫描到该出现驻波异常的 RF 端口, 使得基站确定该 RCU511 和该 RCU511驱动所造成驻波异常的 RF端口直接的对应匹配关系。 该结构的电 调天线可通过基站, 高效准确的获得 RCU511和 RF端口的匹配关系, 且不 会对天线的性能造成影响, 通过天线内固有的移相器 513触发失配器 514, 无需增加其它动力装置, 节省了成本。
进一步的, 在双极化天线中, 两个电调单元共用一套 RCU和传动装置, 将该共用 RCU和传动装置的两个电调单元内的移相器分别称为主集移相器 和分集移相器。 在双极化天线的场景下, 触发装置分别在主集移相器和分集 移相器的运动滑块不同的末端设置, 例如, 触发装置设置于主集移相器内的 运动滑块的下部末端,设置于分集移相器内的运动滑块的上部末端。在 RCU 进行驱动时, 主集移相器和分集移相器同时向相同方向调整, 即该运动滑块 同时向相同方向滑动。 在 RCU进行第一驱动时, 该滑动模块同时向最上方 滑动, 滑动到最大行程处时, 主集移相器内的运动滑块下部末端的触发装置 触发失配器, 造成 RF端口出现驻波异常, 而分集移相器内的运动滑块上的 触发装置并不触发失配器; 在 RCU进行第二驱动时, 该运动滑块同时向最 下方滑动, 滑动到最大行程处时, 分集移相器内的运动滑块上部末端的触发 装置触发失配器, 造成 RF端口出现驻波异常, 而主集移相器内的运动滑块 上的触发装置并不触发失配器。
在双极化天线中, 共用 RCU和传动装置的移相器中运动滑块因在不同 的位置设置有触发装置, 仅需要 RCU进行两个方向不同的驱动, 便可获得 两个不同的电调单元对应的端口关系,高效的获得不同 RF端口和 RCU的匹 配关系。
图 6示出了本发明实施例的一种基站 600, 该基站 600通过 AISG电缆 和至少一个 RCU相连,该基站 600通过至少一个 RF端口用 RF电缆和至少 一个电调天线相连, 该基站 600包括:
发送模块 610,该发送模块 610用于向 RCU发送第一失配指示信息,该 第一失配指示信息用于指示指示该至少一个 RCU进行第一驱动以使该至少 一个 RF端口出现驻波异常;
接收模块 620, 该接收模块 620用于接收第一驱动完成信息, 该第一驱 动完成信息由该 RCU在完成该第一驱动后发送;
扫描模块 630, 该扫描模块 630用于在该接收模块 620收到该接收驱动 完成信息后, 确定出现驻波异常的该至少一个 RF端口;
处理模块 640,该处理模块 640用于对该至少一个 RCU和该出现驻波异 常的该至少一个端口进行匹配;
存储模块 650, 该存储模块 650用于存储该处理模块 640完成的该匹配 的结果。
在本实施例中, 该基站通过该发送模块 610发送第一失配消息, 指示 RCU向其对应的电调单元进行驱动后, 通过扫描发现出现驻波异常的端口, 便可获得 RCU和 RF端口的匹配关系。该基站可通过具有失配功能的电调单 元, 高效准确的获得 RCU和 RF端口的匹配关系, 大大增加了对应关系的准 确性, 并提高了效率。
该处理模块 640还用于将在该第一驱动下出现驻波异常的该至少一个 RF端口和该 RCU标记为主集匹配关系。
该发送模块 610还用于发送第二失配指示信息给该 RCU,该第二失配指 示信息用于指示该至少一个 RCU进行第二驱动以该至少一个 RF端口出现驻 波异常; 接收模块 620还用于接收第二驱动完成信息, 该第二驱动完成信息由该 RCU在完成该第二驱动后发送;
该处理模块 640还用于将在该第二驱动下出现驻波异常的该至少一个 RF端口和该 RCU标记为分集匹配关系。
在本实施例中, 该基站通过该发送模块 610发送第一失配消息, 指示 RCU向其对应的电调单元进行驱动后, 通过扫描发现出现驻波异常的端口, 便可获得 RCU和 RF端口的匹配关系。该基站可通过具有失配功能的电调单 元, 高效准确的获得 RCU和 RF端口的匹配关系, 大大增加了对应关系的准 确性, 并提高了效率。
图 7示出了本发明实施例的一种基站, 该基站通过 AISG电缆和至少一 个 RCU相连,该基站通过至少一个 RF端口用 RF电缆和至少一个电调天线 相连, 该基站包括:
发送器 710,该发送器 710用于向 RCU发送第一失配指示信息,该第一 失配指示信息用于指示指示该至少一个 RCU进行第一驱动以使该至少一个 RF端口出现驻波异常;
发送器 720, 该发送器 720用于接收第一驱动完成信息, 该第一驱动完 成信息由该 RCU在完成该第一驱动后发送;
处理器 730, 该处理器 730用于在该发送器 720收到该接收驱动完成信 息后, 确定出现驻波异常的该至少一个 RF端口;
该处理器 730还用于对该至少一个 RCU和该出现驻波异常的该至少一 个端口进行匹配; 存储器 740, 该存储器 740用于存储该处理器 730完成的 该匹配的结果。
在本实施例中,该基站通过该发送器 710发送第一失配消息,指示 RCU 向其对应的电调单元进行驱动后, 通过扫描发现出现驻波异常的端口, 便可 获得 RCU和 RF端口的匹配关系。 该基站可通过具有失配功能的电调单元, 高效准确的获得 RCU和 RF端口的匹配关系,大大增加了对应关系的准确性, 并提高了效率。 该处理器 730还用于将在该第一驱动下出现驻波异常的该至少一个 RF 端口和该 RCU标记为主集匹配关系。
该发送器 710还用于发送第二失配指示信息给该 RCU,该第二失配指示 信息用于指示该至少一个 RCU进行第二驱动以该至少一个 RF端口出现驻波 异常;
发送器 720还用于接收第二驱动完成信息, 该第二驱动完成信息由该 RCU在完成该第二驱动后发送;
该处理器 730还用于将在该第二驱动下出现驻波异常的该至少一个 RF 端口和该 RCU标记为分集匹配关系。
在本实施例中,该基站通过该发送器 710发送第一失配消息,指示 RCU 向其对应的电调单元进行驱动后, 通过扫描发现出现驻波异常的端口, 便可 获得 RCU和 RF端口的匹配关系。 该基站可通过具有失配功能的电调单元, 高效准确的获得 RCU和 RF端口的匹配关系,大大增加了对应关系的准确性, 并提高了效率。
本发明实施例还揭示了一种匹配 RCU和 RF端口的方法。该方法可基于 图 1-7所示的实施例所揭示的电调天线、 装置或基站。
基站通过 AISG接口发送第一失配消息给 RCU,该第一失配指示信息用 于指示该至少一个 RCU进行第一驱动以使该 RF端口出现驻波异常, RCU 接收到该第一失配消息后, 针对与该 RCU相连的移相器进行第一驱动; 可选的, 该第一驱动可使得该移相器内的运动滑块移动到一定位置, 该 一定位置可以是运动滑块的最大行程处, RCU 在完成第一驱动后, 向基站 发送第一驱动完成信息; 该运动滑块的末端设置有一个触发装置, 当该运动 滑块运动到最大行程处时, 设置于该运动滑块末端的触发装置触发失配器, 该失配器产生阻抗失配, 使该 RF端口出现驻波异常, 以便该基站将出现驻 波异常的该 RF端口和该 RCU进行匹配;
可选的, 该第一驱动为 RCU通过传动装置对移相器进行的驱动, 可在 该传动装置上设置触发装置, 当该传动装置运动触发失配器, 该失配器产生 阻抗失配,使该 RF端口出现驻波异常, 以便该基站将出现驻波异常的该 RF 端口和该 RCU进行匹配;
基站接收第一驱动完成信息后, 该基站对 RF端口进行扫描, 确定出现 驻波异常的该 RF端口, 基站可对所有的 RF端口进行扫描检测, 基站可启 动其具有的驻波检测功能, 使用低功率扫描, 同时检测反射信号, 如果基站 检测到对应 RF端口驻波异常, 则可以判定出现驻波异常的该 RF端口与进 行第一驱动的 RCU对应匹配。 反之, 则说明基站的 RF端口与该 RCU没有 对应关系。
基站可向 RCU发送复位消息, 指示 RCU移动到初始位置;
基站可向其它 RCU发送第一失配消息 , 对其它 RCU对应的 RF端口进 行匹配步骤。
进一步的, 在双极化天线的场景下, 基站将在该第一驱动下出现驻波异 常的该至少端口和该 RCU标记为主集匹配关系; 该进行匹配完成后, 该基 站发送第二失配指示信息给该 RCU, 该第二失配指示信息用于指示该至少 一个 RCU进行第二驱动以使该 RF端口出现驻波异常;
RCU在收到第二失配消息后,进行第二驱动,该第二驱动为与该第一驱 动方向不同的驱动。该 RCU进行第二驱动以使该 RF端口出现驻波异常的过 程, 可参照 RCU进行第一驱动的步骤, 区别在于该触发装置位于运动滑块 的不同位置。 例如, 在 RCU进行第一驱动时, 滑动模块同时向最上方滑动, 滑动到最大行程处时, 主集移相器内的运动滑块下部末端的触发装置触发失 配器, 造成 RF端口出现驻波异常, 而分集移相器内的运动滑块上的触发装 置并不触发失配器; 在 RCU进行第二驱动时, 该运动滑块同时向最下方滑 动, 滑动到最大行程处时, 分集移相器内的运动滑块上部末端的触发装置触 发失配器, 造成 RF端口出现驻波异常, 而主集移相器内的运动滑块上的触 发装置并不触发失配器。
当 RCU完成第二驱动后, 向基站发送第二驱动完成消息, 该基站在接 收到第二驱动完成消息后, 该基站对 RF端口进行扫描, 确定出现驻波异常 的该 RF端口, 基站可对所有的 RF端口进行扫描检测, 基站可启动其具有 的驻波检测功能,使用低功率扫描,同时检测反射信号,如果基站检测到对应 RF端口驻波异常,则可以判定出现驻波异常的该 RF端口与进行第二驱动的 RCU对应匹配。 反之, 则说明基站的 RF端口与该 RCU没有对应关系。
基站将在该第二驱动下出现驻波异常的该 RF端口和该 RCU标记为分集 匹配关系。
基站可向 RCU复位消息, 指示 RCU移动到初始位置;
基站可向其它 RCU发送第一失配消息 , 对其它 RCU对应的 RF端口进 行匹配步骤。
该传动装置和移相器以及移相器内部的运动滑块可称为动力装置, 动力 装置也可以是其它可触发失配器的装置。
在本发明实施例中, RCU驱动传动装置对移相器进行驱动,受到驱动的 移相器触发失配器, 造成 RF通道上产生驻波异常, 以便基站扫描到该出现 驻波异常的 RF端口, 使得基站确定该 RCU和该 RCU驱动所造成驻波异常 的 RF端口直接的对应匹配关系。 该结构的电调天线可通过基站, 高效准确 的获得 RCU和 RF端口的匹配关系,且不会对天线的性能造成影响,通过天 线内固有的移相器触发失配器, 无需增加其它动力装置, 节省了成本。
本发明实施例中所揭示的内置失配器的电调天线, 通过基站的配合, 还 可用于实现基站输出端到天线的路径损耗的检测, 以及用于基站输出端到天 线的时延检测。
基站可以检测到自身输出功率和天线反射功率的大小,在失配器被触发 后形成 RF信号全反射, 基站输出的发射信号全部反射回基站输出端口, 反 射回基站输出端口的反射信号的功率等于基站输出功率减去两倍的路径损 耗, 则可以准确的得出路径损耗为基站输出功率减去反射信号的功率后的结 果再除以 2。
对具备鉴相频域反射计 (Phase Detect Frequency Domain Reflectometry, PDFDR)功能的基站, 则可以使用频域反射计 (Frequency Domain Reflectometry, FDR )技术将扫频信号输入到天馈口,并对反射信号进行快速 傅里叶变换, 得到时域反射信号, 在已知天馈线缆的传播速度及损耗的情况 下, 可得到反射距离及反射电压的关系曲线, 也就能够计算出基站 RF输出 端到短路或开路点之间的传输时延。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
值得说明的是, 实施例的顺序只是为了描述的方便而使用, 而不作为实 施例之间优劣比对的依据。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 设备、 器和单元的具体工作过程, 可以参考前述方法实施例中的 对应过程, 在此不再赘述。
通过以上的实施例的描述, 所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案 本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中 , 包括若干指令用以便得一台计算 机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实 施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、移动硬盘、 只读存储器 (ROM )、 随机存取存储器 (RAM )、 磁碟或者光盘等各种可以 存储程序代码的介质。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的设备和方法, 在没有超过本申请的范围内, 可以通过其他的方式实现。 例如, 以上所描述 的装置实施例仅仅是示意性的, 例如, 所述器或单元的划分, 仅仅为一种逻 辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以 结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 其中所 显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也 可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 器来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的 情况下, 即可以理解并实施。
另外, 所描述设备和方法以及不同实施例的示意图, 在不超出本申请的 范围内, 可以与其它系统, 器, 技术或方法结合或集成。 另一点, 所显示或 讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或 单元的间接耦合或通信连接, 可以是电子、 机械或其它的形式。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种电调天线, 其特征在于, 包括至少一个电调单元, 所述至少 一个电调单元包括:
远端控制单元 RCU, 所述 RCU和传动装置相连, 用于接收驱动指示, 所述驱动指示用于指示所述 RCU进行驱动,所述 RCU还用于驱动所述传动 装置;
所述传动装置,所述传动装置和移相器相连,所述传动装置受所述 RCU 驱动, 所述传动装置用于在所述 RCU的驱动下驱动所述移相器;
所述移相器, 所述移相器用于调整天线波束方向, 所述移相器中内置失 配器, 所述失配器和射频 RF通道关联, 所述失配器用于使所述 RF通道产 生阻抗失配。
2、 根据权利要求 1所述的电调天线, 其特征在于,
所述移相器还包括运动滑块, 所述运动滑块设置有至少一个触发装置, 所述触发装置随所述运动滑块运动, 所述触发装置用于触发所述失配器, 以 使所述 RF通道产生阻抗失配。
3、 根据权利要求 2所述的电调天线, 其特征在于,
所述至少一个触发装置为金属弹簧片, 所述金属弹簧片设置于所述运动 滑块末端, 所述运动滑块在最大行程位置时, 所述金属弹簧片和所述失配器 接通。
4、 根据权利要求 2所述的电调天线, 其特征在于,
所述至少一个触发装置为铜箔, 所述铜箔设置于所述运动滑块末端, 所 述运动滑块在最大行程位置时, 所述铜箔和所述失配器接通。
5、 根据权利要求 1至 4任一所述的电调天线, 其特征在于,
所述驱动指示为第一失配消息或第二失配消息;
当所述驱动指示为第一失配消息时, 所述驱动指示用于指示所述 RCU 进行第一驱动;
当所述驱动指示为第二失配消息时, 所述驱动指示用于指示所述 RCU 进行第二驱动。
6、 一种电调天线, 其特征在于, 包括至少一个电调单元, 所述至少一 个电调单元包括:
远端控制单元 RCU, 所述 RCU和传动装置相连, 用于接收驱动指示, 所述驱动指示用于指示所述 RCU进行驱动,所述 RCU还用于驱动所述传动 装置;
所述传动装置,所述传动装置和移相器相连,所述传动装置受所述 RCU 驱动, 所述传动装置用于在所述 RCU的驱动下驱动所述移相器, 所述传动 装置还用于触发失配器;
所述移相器, 所述移相器用于调整天线波束方向;
所述失配器, 所述失配器射频 RF通道连接, 所述失配器用于在使所述 RF通道产生阻抗失配。
7、 一种基站, 所述基站通过天线接口标准组织 AISG 电缆和至少一个 远端控制单元 RCU相连, 所述基站通过至少一个射频 RF端口用 RF电缆和 至少一个电调天线相连, 其特征在于, 所述基站包括:
发送模块, 所述发送模块用于向 RCU发送第一失配指示信息, 所述第 一失配指示信息用于指示指示所述至少一个 RCU进行第一驱动以使所述至 少一个 RF端口出现驻波异常;
接收模块, 所述接收模块用于接收第一驱动完成信息, 所述第一驱动完 成信息由所述 RCU在完成所述第一驱动后发送;
扫描模块, 所述扫描模块用于在所述接收模块收到所述接收驱动完成信 息后, 确定出现驻波异常的所述至少一个 RF端口;
处理模块, 所述处理模块用于对所述至少一个 RCU和所述出现驻波异 常的所述至少一个端口进行匹配;
存储模块, 所述存储模块用于存储所述处理模块完成的所述匹配的结 果。
8、 根据权利要求 7所述的基站, 其特征在于, 所述处理模块还用于将在所述第一驱动下出现驻波异常的所述至少一 个 RF端口和所述 RCU标记为主集匹配关系。
9、 根据权利要求 7或 8所述的基站, 其特征在于,
所述发送模块还用于发送第二失配指示信息给所述 RCU,所述第二失配 指示信息用于指示所述至少一个 RCU进行第二驱动以所述至少一个 RF端口 出现驻波异常;
接收模块还用于接收第二驱动完成信息, 所述第二驱动完成信息由所述 RCU在完成所述第二驱动后发送;
所述处理模块还用于将在所述第二驱动下出现驻波异常的所述至少一 个 RF端口和所述 RCU标记为分集匹配关系。
10、 一种匹配远端控制单元 RCU和射频 RF端口的方法, 其特征在于 , 基站进行以下匹配步骤:
所述基站发送第一失配指示信息给所述 RCU,所述第一失配指示信息用 于指示所述至少一个 RCU进行第一驱动以使所述 RF端口出现驻波异常; 所述基站接收第一驱动完成信息, 所述第一驱动完成信息由所述 RCU 在完成所述第一驱动后发送;
所述基站对所述 RF端口进行扫描, 确定出现驻波异常的所述 RF端口; 所述基站将所述出现驻波异常的所述 RF端口和所述 RCU进行匹配。
11、 根据权利要求 10所述的方法, 其特征在于,
所述进行匹配包括, 所述基站将在所述第一驱动下出现驻波异常的所述 至少端口和所述 RCU标记为主集匹配关系。
12、 根据权利要求 11所述的方法, 其特征在于, 所述匹配步骤还包括: 所述进行匹配完成后,所述基站发送第二失配指示信息给所述 RCU,所 述第二失配指示信息用于指示所述至少一个 RCU进行第二驱动以使所述 RF 端口出现驻波异常;
所述基站接收第二驱动完成信息, 所述第二驱动完成信息由所述 RCU 在完成所述第二驱动后发送; 所述基站对所述 RF端口进行扫描, 确定出现驻波异常的所述 RF端口; 所述基站将在所述第二驱动下出现驻波异常的所述 RF端口和所述 RCU 标记为分集匹配关系。
13、 根据权利要求 11至 13任一项所述的方法, 其特征在于,
所述基站在完成所述匹配后,所述基站选定另一个 RCU,再次进行所述 匹配步骤。
14、 一种匹配远端控制单元 RCU和射频 RF端口的方法, 其特征在于, 接收基站发送的第一失配指示信息,根据所述第一失配指示消息, RCU 通过动力装置触发失配器;
所述失配器产生阻抗失配, 使所述 RF端口出现驻波异常, 以便所述基 站将出现驻波异常的所述 RF端口和所述 RCU进行匹配。
15、 根据权利要求 14所述的方法, 其特征在于, 所述 RCU通过动力装 置触发失配器包括:
所述 RCU通过传动装置驱动移相器, 使得所述移相器中的运动滑块触 发所述失配器。
16、 根据权利要求 14所述的方法, 其特征在于, 所述 RCU通过动力装 置触发失配器包括:
所述 RCU驱动传动装置, 使得所述传动装置触发所述失配器。
PCT/CN2014/076795 2014-05-05 2014-05-05 Rcu和rf端口匹配的电调天线、基站和方法 WO2015168844A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14891468.2A EP3131327B1 (en) 2014-05-05 2014-05-05 Rcu and rf port matching electric tilt antenna, base station and method
MX2016014457A MX359279B (es) 2014-05-05 2014-05-05 Antena de inclinacion electrica remota, estacion base, y metodo para emparejamiento de una rcu con puerto rf.
CN201480078541.4A CN106465146B (zh) 2014-05-05 2014-05-05 Rcu和rf端口匹配的电调天线、基站和方法
JP2016566700A JP6471177B2 (ja) 2014-05-05 2014-05-05 遠隔電気チルトアンテナ、基地局、およびrcuとrfポートとを整合させる方法
KR1020167033910A KR101814030B1 (ko) 2014-05-05 2014-05-05 원격 전기 틸트 안테나, 기지국 및 rcu와 rf 포트의 매칭 방법
PCT/CN2014/076795 WO2015168844A1 (zh) 2014-05-05 2014-05-05 Rcu和rf端口匹配的电调天线、基站和方法
US15/343,737 US9763108B2 (en) 2014-05-05 2016-11-04 Remote electrical tilt antenna, base station, and method for matching RCU with RF port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076795 WO2015168844A1 (zh) 2014-05-05 2014-05-05 Rcu和rf端口匹配的电调天线、基站和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/343,737 Continuation US9763108B2 (en) 2014-05-05 2016-11-04 Remote electrical tilt antenna, base station, and method for matching RCU with RF port

Publications (1)

Publication Number Publication Date
WO2015168844A1 true WO2015168844A1 (zh) 2015-11-12

Family

ID=54391941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076795 WO2015168844A1 (zh) 2014-05-05 2014-05-05 Rcu和rf端口匹配的电调天线、基站和方法

Country Status (7)

Country Link
US (1) US9763108B2 (zh)
EP (1) EP3131327B1 (zh)
JP (1) JP6471177B2 (zh)
KR (1) KR101814030B1 (zh)
CN (1) CN106465146B (zh)
MX (1) MX359279B (zh)
WO (1) WO2015168844A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496207B1 (en) * 2014-03-10 2020-10-21 Huawei Technologies Co., Ltd. Remote electrical tilt unit, base station, and method for managing remote electrical tilt antenna
KR102461035B1 (ko) * 2016-02-20 2022-11-01 삼성전자주식회사 안테나를 포함하는 전자 장치
US10854967B2 (en) * 2017-03-30 2020-12-01 Commscope Technologies Llc Base station antennas that are configurable for either independent or common down tilt control and related methods
WO2021080759A1 (en) * 2019-10-22 2021-04-29 Commscope Technologies Llc Cable management system for base station antennas
CN117199820A (zh) * 2022-05-30 2023-12-08 康普技术有限责任公司 提供用于基站天线的移相器的同步相移的ret组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1943729A1 (en) * 2005-11-03 2008-07-16 Nokia Corporation Method and arrangement for performing analog signal processing and measuring between a signal source and a load
CN102833770A (zh) * 2012-08-14 2012-12-19 华为技术有限公司 电调天线设备及其关联小区的方法、天线组件及基站
CN102905279A (zh) * 2012-09-28 2013-01-30 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置
CN103096467A (zh) * 2013-01-25 2013-05-08 华为技术有限公司 基站天馈口与天线端口连接关系的定位方法和装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183044A (en) * 1977-05-30 1980-01-08 Rca Corporation Remote control TV subcarrier phase shifter system
CN1184837C (zh) * 1994-11-04 2005-01-12 安德鲁公司 天线控制系统
US6608603B2 (en) * 2001-08-24 2003-08-19 Broadcom Corporation Active impedance matching in communications systems
KR100475124B1 (ko) * 2003-01-15 2005-03-10 삼성전자주식회사 위상 및 이득 부정합 보상 기능을 가지는 직접 변환방식의 무선신호 수신 장치
JP3913696B2 (ja) * 2003-03-19 2007-05-09 三洋電機株式会社 基地局装置
KR100495431B1 (ko) * 2003-07-18 2005-06-14 삼성전자주식회사 업 컨버터의 교정장치 및 방법
US7999737B2 (en) * 2005-05-31 2011-08-16 Powerwave Technologies, Inc. Beam adjusting device
US7561066B2 (en) * 2005-11-10 2009-07-14 General Electric Company Railroad wayside signal system
JP4249773B2 (ja) * 2006-10-12 2009-04-08 レノボ・シンガポール・プライベート・リミテッド Mimo無線通信システムを設定する方法、およびコンピュータ
CN201038314Y (zh) * 2007-01-15 2008-03-19 京信通信技术(广州)有限公司 通信天线下倾角度的可分离式控制装置
KR101017670B1 (ko) * 2007-10-05 2011-02-25 주식회사 에이스테크놀로지 초크 부재를 가지는 안테나
KR100960003B1 (ko) * 2007-11-30 2010-05-28 주식회사 에이스테크놀로지 안테나에 있어서 경사각 조정 장치
US20090149123A1 (en) * 2007-12-11 2009-06-11 Randy Blagg Register for air conditioning
CN101626581B (zh) * 2008-07-08 2011-11-09 中国移动通信集团公司 电调天线接口中的设备扫描方法、装置及系统
JP4826624B2 (ja) * 2008-12-02 2011-11-30 住友電気工業株式会社 移相器及びアンテナ装置
CN201323660Y (zh) * 2008-12-09 2009-10-07 广东通宇通讯设备有限公司 一种电调天线的射频拉远设备及集成该射频拉远设备的电调天线
US8217848B2 (en) * 2009-02-11 2012-07-10 Amphenol Corporation Remote electrical tilt antenna with motor and clutch assembly
US8027703B2 (en) * 2009-02-11 2011-09-27 Amphenol Corporation Multi-beam antenna with multi-device control unit
FR2959015B1 (fr) * 2010-04-15 2012-06-22 Horiba Jobin Yvon Sas Procede et dispositif de mesure de spectrometrie de decharge luminescente en mode pulse
CH704177A2 (de) 2010-09-06 2012-05-31 Myles Capstick Gruppenantennenstruktur zur Erzeugung spezifischer elektromagnetischer Feldverteilungen mit integrierten Sonden zur impliziten Korrektur von gegenseitiger Verkopplung und Fehlanpassung.
EP2816664B1 (en) * 2012-03-05 2017-03-01 Huawei Technologies Co., Ltd. Antenna system
MY172538A (en) * 2012-10-15 2019-11-30 Telekom Malaysia Berhad An apparatus for adjusting the tilt angle of an antenna
KR102029102B1 (ko) * 2012-11-19 2019-11-11 삼성전자주식회사 빔포밍 시스템에서 빔 방향 선택 방법 및 장치
US11032726B2 (en) * 2013-06-12 2021-06-08 Andrew Wireless Systems Gmbh Optimization system for distributed antenna system
JP6232991B2 (ja) * 2013-12-10 2017-11-22 富士通株式会社 無線アクセスシステム,及び無線制御装置
US9705684B2 (en) * 2013-12-16 2017-07-11 At&T Mobility Ii Llc Systems, methods, and computer readable storage device for delivering power to tower equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1943729A1 (en) * 2005-11-03 2008-07-16 Nokia Corporation Method and arrangement for performing analog signal processing and measuring between a signal source and a load
CN102833770A (zh) * 2012-08-14 2012-12-19 华为技术有限公司 电调天线设备及其关联小区的方法、天线组件及基站
CN102905279A (zh) * 2012-09-28 2013-01-30 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置
CN103096467A (zh) * 2013-01-25 2013-05-08 华为技术有限公司 基站天馈口与天线端口连接关系的定位方法和装置

Also Published As

Publication number Publication date
KR20160149276A (ko) 2016-12-27
JP6471177B2 (ja) 2019-02-13
CN106465146A (zh) 2017-02-22
CN106465146B (zh) 2020-11-03
EP3131327A4 (en) 2017-05-17
US9763108B2 (en) 2017-09-12
EP3131327B1 (en) 2018-07-11
MX2016014457A (es) 2017-04-06
KR101814030B1 (ko) 2018-01-30
MX359279B (es) 2018-09-21
US20170078892A1 (en) 2017-03-16
EP3131327A1 (en) 2017-02-15
JP2017515411A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
US10098125B2 (en) Method and apparatus for aligning antenna beams in high-low frequency co-site network
US9763108B2 (en) Remote electrical tilt antenna, base station, and method for matching RCU with RF port
US11943034B2 (en) Beam management and participation in a beam management procedure
US9350081B2 (en) Switchable multi-radiator high band antenna apparatus
US10993122B2 (en) Beam management procedure in a communications network
US11265067B2 (en) Beam training of a radio transceiver device
US10944490B2 (en) Antenna calibration for multiple input multiple output
US11765628B2 (en) Apparatus and method for improving handover performance in wireless communication system
CN106464389A (zh) 一种天线测试装置、系统、方法以及相关设备
CN112398517A (zh) 天线切换系统及方法、存储介质
US10972930B2 (en) Method and device for wireless communication
WO2021032300A1 (en) Apparatus, method and computer program for determining beamforming direction
WO2022135002A1 (zh) 一种馈电网络、基站天线及基站设备
US11218239B2 (en) Operating method of terminal in wireless communication system and terminal for performing the method
US11356862B2 (en) Measuring method and measuring device
US20190393943A1 (en) Signal transmission diversity
WO2024132086A1 (en) Monostatic beam calibration for communication via a reflective intelligent surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566700

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/014457

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014891468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891468

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016025839

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167033910

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016025839

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161104