WO2015167263A1 - Ship for reducing propeller cavitation-induced excitation force - Google Patents

Ship for reducing propeller cavitation-induced excitation force Download PDF

Info

Publication number
WO2015167263A1
WO2015167263A1 PCT/KR2015/004354 KR2015004354W WO2015167263A1 WO 2015167263 A1 WO2015167263 A1 WO 2015167263A1 KR 2015004354 W KR2015004354 W KR 2015004354W WO 2015167263 A1 WO2015167263 A1 WO 2015167263A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
work gas
gas
work
working gas
Prior art date
Application number
PCT/KR2015/004354
Other languages
French (fr)
Korean (ko)
Inventor
이정훈
김진학
박형길
이경준
김윤식
박지환
전명호
한재문
허갑
김부기
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140053289A external-priority patent/KR20150126452A/en
Priority claimed from KR1020140055216A external-priority patent/KR101607873B1/en
Priority claimed from KR1020140077115A external-priority patent/KR101607876B1/en
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to JP2016564165A priority Critical patent/JP6275872B2/en
Priority to CN201580024060.XA priority patent/CN106458307B/en
Publication of WO2015167263A1 publication Critical patent/WO2015167263A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/15Propellers having vibration damping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Definitions

  • the present invention relates to a propeller cavitation organic vibration reduction type ship, and more particularly, to a propeller cavitation organic vibration reduction type ship with improved structure for vibration reduction.
  • the propeller wing itself is designed differently in shape or size, the shape of the ship's rear end is improved, or a separate reinforcement is added to block the noise and vibration,
  • We have tried to apply or apply various methods such as attaching a guide device to guide the flow of water from the water, reducing the size of the propeller, etc., but it is effective to reduce the vibration force. It is difficult.
  • vibration problems including noise transmitted to the hull due to increased propulsion force during operation of the propeller, must be solved urgently in the case of ships intended for excursions such as cruise ships or ships that require quiet operation such as warships. It is.
  • the present applicant has applied for a number of techniques to the Korean Patent Office to reduce the vibration force by forming an air layer in the form of a certain amount of air bubbles on the surface of the hull adjacent to the propeller.
  • the technical problem to be achieved by the present invention is to prevent the vibration generated in the hull by increasing the vibration force during the operation of the propeller, in particular, the installation and operation of the associated parts, including the compressor, and energy consumption It is to provide a propeller cavitation organic vibration reduction type vessel that can fundamentally prevent the burden.
  • the propeller is provided with a hull; And a work gas accommodating membrane pad coupled to the hull adjacent to the propeller, wherein a work gas generating a reflected wave for generating an incident wave and a destructive interference phenomenon generated during rotation of the propeller is accommodated on one side.
  • Ships may be provided.
  • the working gas receiving membrane pad may be made of a material whose acoustic impedance is similar to that of water.
  • the material of the working gas receiving membrane pad may be rubber, and the working gas may be air.
  • the working gas receiving membrane pad may be coupled to the hull wall on the upper side of the propeller.
  • the working gas receiving membrane pad may be coupled to a plurality of wall surfaces of the hull adjacent to the propeller.
  • Working gas sizes of the working gas receiving membrane pads coupled to a plurality of wall surfaces of the hull may be provided differently.
  • the N working gas receiving membrane pads may be attached to a wall of the hull adjacent to the propeller.
  • the work gas volume control unit a work gas receiver (receiver) in which the work gas is stored; A working gas main line connecting the working gas receiver and the working gas receiving membrane pad; And a first valve provided on the work gas main line to selectively interrupt the flow of the work gas on the work gas main line.
  • the work gas volume adjusting unit may include a regulator provided on the work gas main line to maintain a constant pressure with respect to the work gas supplied through the work gas receiver; A check valve provided on the work gas mainline between the constant pressure and the first valve to prevent backflow of the work gas; A second valve provided at a work gas branch line branched from the main body of the work gas, the second valve selectively interrupting the flow of the work gas on the work gas branch line; And a pressure gauge provided on the work gas mainline between the first valve and the work gas accommodating membrane pad to measure the pressure of the work gas supplied to the work gas accommodating membrane pad.
  • the work gas volume control unit a propeller rotation speed sensor for detecting the rotation speed of the propeller; And a controller configured to control operations of the work gas receiver, the first valve, and the second valve based on the information from the propeller rotation speed detector.
  • a bottom plug module including a bottom socket coupled to the hull and a bottom plug detachably coupled to the bottom socket may further include a bottom plug module.
  • the membrane pad may be detachably coupled to the bottom plug module.
  • the bottom plug may include: a plug head coupled to a socket through portion of the bottom socket; And a threaded plug shaft connected to the plug head and exposed to the outer wall of the hull through the bottom socket, wherein the working gas receiving membrane pad is inserted into the threaded plug shaft of the bottom plug.
  • the pad body hole may be provided.
  • a fixing nut fastened to the threaded plug shaft at an outer side of the hull to fix the work gas accommodating membrane pad;
  • a sealing gasket having a gasket hole inserted into the screw plug shaft, the sealing gasket being in close contact with the screw plug shaft to seal the pad body hole;
  • a plate hole inserted into the threaded plug shaft, the reinforcing plate disposed between the sealing gasket and the fixing nut to reinforce the work gas accommodating membrane pad.
  • the present invention it is possible to prevent vibration from occurring in the hull due to increased vibration force during the operation of the propeller, and in particular, the burden of energy consumption due to the installation and operation of the compressor and its related components, and the like. You can prevent it.
  • FIG. 1 is a structural diagram of a propeller region of a propeller cavitation organic vibration reducing vessel according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of region A of FIG. 1.
  • 3 is a layout view between the propeller and the working gas receiving membrane pad.
  • FIG. 4 is a schematic rear view of the region A of FIG. 1 and not shown with a propeller.
  • 5 is a diagram measuring the impedance of water, rubber and air.
  • FIG. 6 is a view for explaining the principle of the incident wave and the reflected wave.
  • FIG. 8 is a diagram showing a state where the working gas accommodating membrane pads are installed in the starboard region directly above the propeller, showing a plurality of fluctuation pressure measuring points.
  • FIG. 9 is a graph showing the efficiency of the working gas receiving membrane pad based on the frequency of the propeller.
  • FIG. 10 is a graph summarizing the results of the 150 Hz band for the working gas accommodating membrane pad corresponding to FIG. 8.
  • 11 is a graph showing the relationship between the optimum equivalent air volume according to the reduction target frequency.
  • FIG. 12 is a rear structural diagram of a vibration reduction type ship according to a second embodiment of the present invention, in which working gas receiving membrane pads are installed at various positions.
  • FIG. 13 is a schematic configuration diagram of a work gas volume control unit in a propeller cavitation organic vibration reducing vessel according to a third embodiment of the present invention.
  • FIG. 14 is a control block diagram of the working gas volume adjusting unit of FIG. 13.
  • FIG. 15 is an enlarged view illustrating main parts of a propeller cavitation organic vibration reduction type vessel according to a fourth embodiment of the present invention.
  • FIG. 16 is an enlarged structural diagram of region B of FIG. 15.
  • FIG. 17 is an exploded view of FIG. 16.
  • FIG. 1 is a structural diagram of a propeller region of a propeller cavitation organic vibration reducing vessel according to a first embodiment of the present invention
  • FIG. 2 is an enlarged view of region A of FIG. 1
  • FIG. Arrangement and FIG. 4 is a schematic rear view of the region A of FIG. 1, with the propeller not shown.
  • the propeller cavitation organic vibration reduction type ship can increase the vibration force during operation of the propeller 120 to prevent the vibration generated in the hull, in particular, including the compressor It is to be able to fundamentally prevent the burden of energy consumption, such as the installation and operation of the relevant parts, and includes a hull 110, and the working gas receiving membrane pad 130 coupled to the hull (110).
  • the rear of the hull 110 is provided with a propeller 120 for the propulsion of the hull 110.
  • a rudder 125 may be provided around the propeller 120 to adjust a traveling direction of the ship.
  • the rudder 125 may be a general rudder or a bulb rudder.
  • the ship applied in the present embodiment may include all of the floating marine structures, including merchant ships, warships, fishing vessels, carriers, drillships, cruise ships and special working ships. Therefore, the scope of the present embodiment can not be limited to a specific vessel.
  • the propeller 120 when the propeller 120 is operated, that is, when the propeller 120 is rotated in the water, the fluctuation pressure is generated in the water due to the propeller 120 as a rotating body, the generated fluctuation pressure is the hull 110 By increasing the vibration force of the furnace, it acts as a factor in generating vibration (including noise) in the hull.
  • the vibration transmitted to the hull 110 should be prevented because it can be a big problem in the case of a ship that is intended to cruise or a quiet ship such as a warship, for example, a cruise ship.
  • the vibration force is to be prevented from occurring due to the increase in vibration force in the ship body 110.
  • the working gas receiving membrane pad 130 Is applied.
  • the working gas accommodating membrane pad 130 applied to the ship of the present embodiment has a completely different form from the structures that form an air layer, which is a conventional air bubble form.
  • the working gas receiving membrane pad 130 applied in the present embodiment is only a tube-type structure in which air is trapped, and thus related components including a compressor, which had to be used when applying an air layer, were used. There is no need to install or operate.
  • the working gas receiving membrane pad 130 that plays this role is coupled to the hull 110 adjacent to the propeller 120, as shown in FIG. 1, and is generated when the propeller 120 rotates to face the hull 110.
  • the reflection wave is generated to cancel the incident wave, but the work gas is accommodated on one side.
  • the working gas receiving membrane pad 130 may be coupled to the wall of the hull 110 on the upper side of the propeller 120.
  • the drawing shows that the working gas receiving membrane pad 130 is attached directly above the propeller 120.
  • the work gas accommodating membrane pad 130 is positioned within 0.5 R of the STBD area center standard of the propeller 120. Can be deployed.
  • R means the radius from the center line (CL) of the propeller 120 to the end of the propeller (120).
  • the work gas accommodating membrane pad 130 may be disposed within 0.5 R of the center of the PORT area directly above the propeller 120. Placement of the receiving membrane pad 130 may result in optimal efficiency.
  • the working gas receiving membrane pad 130 is a pad body 131 detachably coupled to the hull 110, the work gas pocket 132 is formed on one side of the pad body 131 is sealed to accommodate the working gas 132 ).
  • the material of the working gas receiving membrane pad 130 may be rubber, and the working gas may be air.
  • the scope of the present embodiment is not limited thereto. That is, if the material of the working gas accommodating membrane pad 130 is a material similar to rubber, it is sufficient, and the working gas may be changed to various gases as long as it is not liquid.
  • the pad body 131 forming the working gas receiving membrane pad 130 is a flat structure made of a rubber material, it is utilized as a portion detachably coupled to the hull 110.
  • the pad body 131 may be coupled to the hull 110 through various structures and methods.
  • the pad body 131 may be attached to the hull 110 in various ways, such as a bolt and nut coupling method, a fitting coupling method, a welding coupling method for internally welding an insert metal plate, and a coupling method using a bottom plug. Can be combined.
  • the coupling method using the bottom plug is described below in the following embodiments.
  • the pad body 131 has a square shape, but the shape of the pad body 131 may be various, including a square shape, a circular shape, and a triangular shape. Therefore, the right scope of the present embodiment is not limited to the shape of the pad body 131.
  • the work gas pocket 132 is formed inside the pad body 131 and has a shape inflated toward one side of the pad body 131.
  • the working gas bag 132 has a circular shape, but the shape of the working gas bag 132 may also be various polygonal shapes such as a triangular shape and a square shape, so the scope of the present invention is limited to the shape of the drawings. Can't be.
  • the working gas bag 132 may be filled with air as the working gas.
  • the work gas filled in the work gas bag 132 is formed to be integrally contained in the manufacture of the work gas accommodating membrane pad 130, and leaks in the work gas bag 132 unless the work gas bag 132 is incised. It doesn't work.
  • FIG. 5 is a diagram measuring the impedance of water, rubber and air
  • Figure 6 is a view for explaining the principle of the incident wave and reflected wave
  • Figure 7 is a view of the working gas receiving membrane pad for explaining [Equation 1]
  • Figure 8 is a diagram showing a working gas accommodating membrane pad in a starboard region directly above the propeller, showing a plurality of pressure measuring points
  • FIG. 9 is a graph showing the efficiency of the working gas accommodating membrane pad based on the propeller frequency.
  • FIG. 10 is a graph summarizing the results of the 150 Hz band for the work gas accommodating membrane pad corresponding to FIG. 8, and
  • FIG. 11 is a graph showing the relationship between the optimum equivalent air volume according to the reduction target frequency.
  • the acoustic impedance (rubber) of rubber which is a material of the working gas accommodating membrane pad 130 of the present embodiment, is different from that of water. While roughly similar, it can be seen that it is infinitely larger than air.
  • the incident wave generated during operation of the propeller 120 passes through the rubber layer, which is a wall surface of the work gas bag 132, and then is filled in the work gas, ie, air, filled in the work gas bag 132.
  • the light is reflected in a phase opposite to the incident wave, that is, it is formed as a reflected wave.
  • This reflected wave causes a destructive interference phenomenon with the incident wave, thereby canceling the incident wave generated during operation of the propeller 120. Due to this phenomenon, the vibration force can be reduced to reduce the occurrence of vibration of the hull 110.
  • spherical pressure waves generated by cavitation that is, incident waves, may propagate omnidirectionally.
  • the incident wave When the incident wave is formed as a reflected wave that is reflected in the opposite phase by hitting the air, the reflected wave meets the incident wave incident toward the working gas accommodating membrane pad 130 to cause an incident wave and a destructive interference phenomenon.
  • f is the propeller's reduced frequency band
  • c a 340 m / s
  • c w 1500 m / s
  • ⁇ a 1.02 kg / m 3
  • ⁇ w 1024 kg / m 3
  • a and b denote inner diameter and outer diameter when the working gas receiving membrane pads 130a to 130c are equivalent spheres as shown in FIG. 10.
  • the horizontal axis (x-axis) represents frequency
  • the vertical axis (y-axis) represents the amount of increase and decrease after the attachment before the work gas accommodating membrane pad 130 is attached. It can be seen that the fluctuation pressure and vibration increase after the installation compared to the installation of the working gas accommodating membrane pad 130, but a significant reduction effect occurs in the vicinity of the design frequency 150 Hz band.
  • FIG. 10 summarizes the results of the 150 Hz band.
  • the fluctuation pressures at positions P2, P3, and P4 located outside the work gas accommodating membrane pad 130 are reduced by about 70% on average.
  • the vibration level is also significantly reduced by more than 70%.
  • FIG. 11 is a graph showing the relationship between the optimum equivalent air volume according to the reduction target frequency.
  • the target frequency is 6 Hz
  • the optimum work bag pocket 132 of the receiving membrane pad 130 is optimal.
  • the volume may be about 1500L (Liter), and as long as it satisfies such a volume condition, the shape of the working gas bag 132 may be circular or rectangular.
  • the vibration force may be prevented from occurring when the propeller 120 is operated to prevent the vibration from occurring in the hull 110, in particular, the compressor and its related parts. It is possible to fundamentally prevent obstacles such as the installation of parts and the burden of energy consumption due to operation.
  • vibration can be effectively prevented from occurring in the hull 110 as described above, therefore, in the case of a ship intended for excursion, such as a cruise ship, or a ship to which a quiet operation such as a warship is to be assumed, it causes the vessel. It is possible to appropriately solve the vibration problem including noise.
  • the propeller 120 the shape or size of the wing itself differently as in the prior art, to improve the shape of the ship's tail, or to add a separate reinforcement for blocking noise and vibration, or bow
  • the noise and vibration problems by reducing various losses such as attaching a guide device to guide the flow of water from the water or reducing the size of the propeller 120, etc.
  • the present technology provides a margin for eliminating vibration constraints in the propeller design by shielding the vibration force, it may be helpful to improve the propulsion efficiency, such as to greatly increase the size of the propeller 120. It is expected.
  • FIG. 12 is a rear structural diagram of a vibration reduction type ship according to a second embodiment of the present invention, in which working gas receiving membrane pads are installed at various positions.
  • the reduced frequency band f is inversely proportional to the air volume (radius, a), and also the working gas accommodating membrane pads 130a to 130c. It can be seen that it is applicable to only one frequency band per one.
  • the vibration component (or excitation component) is transmitted to the hull 110 during the rotation of the propeller 120 to vibrate the hull 110, the size of the vibration component may vary for each frequency.
  • the work gas accommodating membrane pads 130a to 130c are applied by the number N of frequency bands applied thereto. Must be used.
  • N working gas receiving membrane pads may be attached to the wall of the hull 110 adjacent to the propeller 120.
  • FIG. 12 illustrates that three working gas receiving membrane pads 130a to 130c are coupled to a plurality of wall surfaces of the hull 110 adjacent to the propeller 120 to control three frequency bands such as 130 Hz, 140 Hz, and 150 Hz. Indicates a situation.
  • the size of the work gas of the work gas receiving membrane pads 130a to 130c coupled to a plurality of wall surfaces of the hull 110 that is, the sizes of the work gas pockets 132a to 132c may be provided differently.
  • the work gas receiving membrane pads 130a to 130c can significantly reduce the vibration force of the hull 110 by the offset interference principle, whether one or a plurality is installed.
  • the vibration force may be prevented from occurring when the propeller 120 operates to prevent vibration from occurring in the ship body 110. It can fundamentally prevent obstacles such as the installation of compressors and related parts, and the burden of energy consumption due to operation.
  • FIG. 13 is a schematic block diagram of a work gas volume adjusting unit in a propeller cavitation organic vibration reducing vessel according to a third embodiment of the present invention
  • FIG. 14 is a control block diagram of the work gas volume adjusting unit of FIG. 13.
  • the propeller cavitation organic vibration reduction type vessel is connected to the work gas accommodating membrane pad 330, and adjusts the volume of the work gas accommodated in the work gas accommodating membrane pad 330
  • the working gas volume adjusting unit 350 may be further provided.
  • the volume of the working gas on the working gas receiving membrane pad 330 can be adjusted using the working gas volume adjusting unit 350, one working gas containing membrane is attached to the hull 110 (see FIG. 1). Even if the pad 330 is applied, it is possible to variably control the change in the excitation frequency band according to the change in the rotation speed of the propeller 120 (see FIG. That is, even if the rotational speed of the propeller 120 changes during the operation of the ship, it is possible to provide an effect of reducing vibration for all the frequency bands corresponding to the rotational speed of the changed propeller 120. easily represented, even if the rotational speed of the propeller 120 is changed, the vibration of the hull 110 can be reduced.
  • the rear end of the hull 110 is provided with a propeller 120 for the propulsion of the hull 110, in this embodiment the propeller rotation speed sensor 370 is connected to the propeller 120 is the number of revolutions of the propeller 120 ( RPM).
  • the reduced frequency band f of the propeller 120 may be in inverse proportion to the air volume (radius, a). 330) It can be seen that only applicable to one frequency band per one.
  • N is a natural number
  • only one specific frequency band can be controlled through only one working gas receiving membrane pad 330.
  • the work gas accommodating membrane pad 330 may be attached by using the number N of the frequency bands applied as shown in FIG. 12, or the work gas volume adjusting part 350 may be used as in this embodiment.
  • the volume of the working gas on the working gas receiving membrane pad 330 may be adjusted.
  • the working gas volume adjusting unit 350 When the working gas volume adjusting unit 350 is applied as in the present embodiment, even if one working gas accommodating membrane pad 330 is applied, it is possible to variably control the variation of the excitation frequency band according to the rotational speed of the propeller 120. have. Therefore, even if the propeller 120 is rotated at any rotational speed it can reduce the vibration formed in the hull 110.
  • the working gas volume adjusting unit 350 applied to the ship of the present embodiment is connected to the working gas receiving membrane pad 330 and works to variably control the excitation frequency band according to the rotational speed of the propeller 120. It serves to adjust the volume of the working gas accommodated in the working gas bag 332 of the gas receiving membrane pad 330.
  • the work gas volume control unit 350 is a work gas receiver 351, a receiver, a regulator (352), a check valve (353), the first and second valves (354, 355, valve), a pressure gauge (358), And a propeller rotation speed detector 370 and a controller 360.
  • the work gas receiver 351 (receiver) stores the work gas and serves to supply the stored work gas by the control of the controller 360.
  • the work gas receiver 351 may be connected to a compressor (not shown).
  • the work gas receiver 351 and the work gas pocket 332 of the work gas accommodating membrane pad 330 are connected to the work gas main line 356.
  • One side of the work gas main line 356 is connected to the work gas branch line 357 intersecting with the work gas main line 356.
  • the regulator 352 is provided on the work gas main line 356 and serves to maintain a constant pressure with respect to the work gas supplied through the work gas receiver 351.
  • the check valve 353 is provided on the work gas main line 356 between the pressure regulator 352 and the first valve 354 to prevent backflow of the work gas.
  • the first valve 354 is provided on the work gas main line 356 and serves to selectively interrupt the flow of the work gas on the work gas main line 356.
  • the second valve 355 is provided in the work gas branch line 357 branched with respect to the work gas main line 356 and serves to selectively interrupt the flow of the work gas on the work gas branch line 357. .
  • the pressure gauge 358 is provided on the work gas main line 356 between the first valve 354 and the work gas pocket 332 of the work gas accommodating membrane pad 330 to work on the work gas accommodating membrane pad 330. It serves to measure the pressure of the working gas supplied to the gas bag (332).
  • the propeller rotation speed sensor 370 detects the rotation speed (RPM) of the propeller 120.
  • the propeller rotation speed sensor 370 may be wireless or wired.
  • the controller 360 controls the operation of the work gas receiver 351, the first valve 354, and the second valve 355 based on the information of the propeller rotation speed sensor 370.
  • the frequency in which the vibration reduction effect is exhibited is in the range of 160 Hz, 155 Hz, and 145 Hz as the volume of the working gas accommodated in the working gas bag 332 of the working gas accommodating membrane pad 330 is increased. You can see that it is moving. In other words, as the size of the work gas bag 332 of the work gas accommodating membrane pad 330 increases, the frequency at which the reduction performance is exhibited moves to a low frequency band (or a corresponding number of revolutions of the propeller 120). You can see that.
  • the controller 360 is to increase or decrease the volume of the work gas bag 332 of the work gas accommodating membrane pad 330 according to the rotational speed of the propeller 120 (work gas receiver ( 351, the operations of the first valve 354 and the second valve 355 are controlled.
  • the controller 360 performing this role may include a central processing unit 361 (CPU), a memory 362 (MEMORY), and a support circuit 363 (SUPPORT CIRCUIT).
  • CPU central processing unit
  • MEMORY memory
  • SUPPORT CIRCUIT SUPPORT CIRCUIT
  • the central processing unit 361 is industrially used to control the operation of the work gas receiver 351, the first valve 354 and the second valve 355 based on the information of the propeller rotation speed sensor 370 in this embodiment. It may be one of various computer processors that can be applied to.
  • the memory 362 is connected to the central processing unit 361.
  • the memory 362 may be installed locally or remotely as a computer readable recording medium, and may be readily available, such as, for example, random access memory (RAM), ROM, floppy disk, hard disk, or any digital storage form. At least one or more memories.
  • the support circuit 363 (SUPPORT CIRCUIT) is combined with the central processing unit 361 to support typical operation of the processor.
  • Such support circuits 363 may include caches, power supplies, clock circuits, input / output circuits, subsystems, and the like.
  • the controller 360 controls the operation of the work gas receiver 351, the first valve 354, and the second valve 355 based on the information of the propeller rotation speed sensor 370.
  • a series of processes in which the controller 360 controls the operation of the work gas receiver 351, the first valve 354, and the second valve 355 based on the information of the propeller rotation speed sensor 370 is a memory.
  • 362 may be stored.
  • software routines may be stored in memory 362.
  • Software routines may also be stored or executed by other central processing units (not shown).
  • FIG. 15 is an enlarged view illustrating main parts of a propeller cavitation organic vibration reduction type vessel according to a fourth embodiment of the present invention
  • FIG. 16 is an enlarged structural diagram of region B of FIG. 15, and
  • FIG. 17 is an exploded view of FIG. 16.
  • the working gas receiving membrane pad 430 may be coupled to the bottom plug module 450 of the hull 410.
  • the bottom plug module 450 is a structure installed in the hull 410. When the bottom plug module 450 is coupled to the work gas accommodating membrane pad 430, the coupling of the work gas accommodating membrane pad 430 is performed.
  • the advantage is that no separate structure or component is required.
  • the bottom plug module 450 is a component mounted on the wall surface of the hull 410, and serves as a stopper for draining the water introduced into the hull 410.
  • the bottom plug module 450 is not a component to be removed.
  • the bottom plug module 450 includes a bottom socket 460 coupled to the hull 410, and a bottom plug 470 detachably coupled to the bottom socket 460.
  • the hull 410 is provided with a socket coupling part 411 for coupling the bottom socket 460.
  • the first inclined surface 412 and the first horizontal surface 413 are formed on the outer wall of the socket coupling part 411, and the second inclined surface 461 and the second horizontal surface 462 are also formed in the bottom socket 460. do.
  • the bottom socket 460 may be coupled to the socket coupling part 411.
  • the bottom socket 460 may be advantageous in that it is not assembled or screwed into the socket coupling portion 411 is not easily separated.
  • the bottom plug 470 is a structure detachably coupled to the bottom socket 460.
  • the bottom plug 470 is connected to the plug head 471 and the plug head 471 coupled to the socket through part 463 of the bottom socket 460, and the bottom of the hull 410 through the bottom socket 460.
  • a threaded plug shaft 472 is exposed to the outer wall.
  • the plug head 471 and the bottom socket 460 are provided with a plurality of first and second through holes 471a and 160a which communicate with each other so that the bolt is fastened.
  • the working gas receiving membrane pad 430 may be detachably coupled to the threaded plug shaft 472 of the bottom plug 470.
  • the fixing nut 481, the sealing gasket 482, and the reinforcing plate 483 may be used. A structure is required.
  • the fixing nut 481 fixes the pad body 431, the sealing gasket 482, and the reinforcing plate 483 of the work gas accommodating membrane pad 430 to the threaded plug shaft 472. Do it.
  • the fixing nut 481 is fastened to the threaded plug shaft 472 on the outside of the hull 410 so that the pad body 431, the sealing gasket 482, and the reinforcing plate 483 of the membrane pad 430 for the work gas are accommodated. ) Is fixed.
  • Fixing nut 481 is preferably applied to a nut having a loosening prevention function that is not released.
  • the sealing gasket 482 has a gasket hole 451a inserted into the threaded plug shaft 472 and is in close contact with the threaded plug shaft 472 to seal the pad body hole 431a.
  • the sealing gasket 482 may be made of a rubber material that is slightly elastic.
  • the reinforcement plate 483 has a plate hole 483a inserted into the threaded plug shaft 472 and is disposed between the sealing gasket 482 and the fixing nut 481 to reinforce the pad body 431. do.
  • the threaded plug shaft 472 of the bottom plug 470 is previously exposed to the outer wall of the hull 410 in the structure of the bottom plug 470, Even if the bottom is submerged in water, it is difficult to insert the pad body 431, the sealing gasket 482, and the reinforcing plate 483 into the threaded plug shaft 472 and finish with the fixing nut 481. not.
  • the work gas accommodating membrane pad may be removed in the reverse order as described above, and the new work gas accommodating membrane pad may be put back into place. It is not difficult to work.
  • the working gas receiving membrane pad 430 when the working gas receiving membrane pad 430 is installed on the hull 410 by utilizing the bottom plug module 450 already applied to the hull 410 as in this embodiment, the working gas receiving membrane pad ( Installation or maintenance work of the 420 can be easily and conveniently performed.
  • the present invention is applied to ships including all floating marine structures, including merchant ships, warships, fishing vessels, carriers, drillships, cruise ships and special working ships to be used to prevent the occurrence of vibration in the hull Can be.

Abstract

Disclosed is a ship for reducing propeller cavitation-induced excitation force. A ship for reducing propeller cavitation-induced excitation force according to one embodiment of the present invention comprises: a hull provided with a propeller; and a working gas receiving membrane pad which receives working gas at one side thereof and which is coupled to the hull, adjacent to the propeller, the working gas generating a reflective wave for causing destructive interference with an incident wave generated during the rotation of the propeller.

Description

프로펠러 캐비테이션 유기 기진력 저감형 선박Propeller Cavitation Organic Vibration Reduction Type Vessel
본 발명은, 프로펠러 캐비테이션 유기 기진력 저감형 선박에 관한 것으로서, 보다 상세하게는, 기진력 저감을 위한 구조가 개선된 프로펠러 캐비테이션 유기 기진력 저감형 선박에 관한 것이다.The present invention relates to a propeller cavitation organic vibration reduction type ship, and more particularly, to a propeller cavitation organic vibration reduction type ship with improved structure for vibration reduction.
선박의 후미에 마련되는 프로펠러가 수중에서 회전되면 물이 프로펠러의 날개 표면으로 흐르면서 프로펠러 날개 표면의 앞면과 뒷면에 수압 차이를 발생시키고, 그 수압 차이에 의해 추진력이 발생된다. 이와 같이 발생되는 추진력에 의해 선박이 해상에서 운항될 수 있다.When the propeller provided in the rear of the ship rotates in water, water flows to the wing surface of the propeller, generating a hydraulic pressure difference on the front and rear surfaces of the propeller wing surface, and the driving force is generated by the pressure difference. The driving force generated in this way can operate the ship at sea.
한편, 선박의 운항을 위해 프로펠러가 동작되면, 즉 프로펠러가 수중에서 회전되면 회전체로서의 프로펠러로 인해 수중에 변동압력이 발생되며, 이렇게 발생된 변동압력은 선체로의 기진력을 증가시켜 선체에 진동(소음 포함)을 발생시키는 요인으로 작용한다.On the other hand, when a propeller is operated for the operation of a ship, that is, when the propeller is rotated in water, a fluctuation pressure is generated in the water due to the propeller as a rotating body, and the fluctuation pressure generated in this way increases the vibration force on the hull by increasing the vibration force to the hull. It acts as a factor in generating (including noise).
특히, 프로펠러에 의하여 수중에 공동현상(cavitation)이 발생되는 경우에는 기진력이 더더욱 증가되기 때문에 선체의 진동이 심하게 발생된다.In particular, when cavitation is generated in the water by the propeller, vibration of the hull is severely generated because the vibration force is further increased.
이는 수중에서 압력이 낮은 곳이 생기면 물에 포함되어 있는 기체가 물에서 빠져나와 압력이 낮은 곳에 모이게 됨으로써 수중에 기포가 발생되고, 이렇게 발생된 기포가 압력이 높은 부분에 이르면 급격히 부서짐으로써 수중에 강한 변동압력을 발생시키기 때문이다.This means that when the pressure in the water is low, the gas contained in the water escapes from the water and collects at the low pressure, thereby generating bubbles in the water. This is because the fluctuation pressure is generated.
이와 같은 변동압력에 의한 기진력 증가 문제를 해결하기 위하여, 프로펠러 날개 자체의 모양이나 크기를 다르게 설계하거나, 선박 후미의 모양을 개선하거나, 소음과 진동을 차단시키기 위한 별도의 보강재를 덧대거나, 선수에서 흘러들어오는 물의 유동(flow)을 가이드하기 위한 가이드장치를 부착하거나, 프로펠러의 사이즈를 줄이거나 하는 등의 여러 방법을 적용하거나 적용을 시도해 보고 있으나 기진력을 저감시키는 데에 실질적으로 큰 효과를 얻기 어렵다.In order to solve the problem of increasing the vibration force caused by the fluctuation pressure, the propeller wing itself is designed differently in shape or size, the shape of the ship's rear end is improved, or a separate reinforcement is added to block the noise and vibration, We have tried to apply or apply various methods such as attaching a guide device to guide the flow of water from the water, reducing the size of the propeller, etc., but it is effective to reduce the vibration force. It is difficult.
이처럼 프로펠러의 동작 시 기진력이 증가되어 선체로 전달되는 소음을 포함한 진동 문제는 예컨대, 크루즈선처럼 유람을 목적으로 하는 선박이나 군함처럼 조용한 운항이 전제되어야 하는 선박인 경우에 있어 시급하게 해결해야 하는 사항이다.As such, vibration problems, including noise transmitted to the hull due to increased propulsion force during operation of the propeller, must be solved urgently in the case of ships intended for excursions such as cruise ships or ships that require quiet operation such as warships. It is.
이에, 본 출원인은 프로펠러에 이웃된 선체의 표면에 일정량의 공기방울 형태인 에어 레이어(air layer)를 형성시켜 기진력을 저감시킬 수 있도록 한 많은 기술을 대한민국특허청에 출원한 바 있다.Accordingly, the present applicant has applied for a number of techniques to the Korean Patent Office to reduce the vibration force by forming an air layer in the form of a certain amount of air bubbles on the surface of the hull adjacent to the propeller.
그런데, 지난번 출원된 기술을 비롯하여 에어 레이어를 사용하려 하는 종래기술들의 대부분은 에어 레이어의 형성을 위해 압축기를 이용하여 지속적으로 공기를 분사해야 하기 때문에 압축기를 비롯한 그 관련 부품의 설치, 그리고 운용에 따른 에너지 소모 등의 부담이 따르는 문제점이 제기되어 왔으므로 이를 해결하기 위한 연구개발이 시급한 실정이다.However, most of the prior arts that use the air layer, including the last filed technology, have to continuously inject air using a compressor to form the air layer, and thus, the installation and operation of the compressor and its related parts Problems such as the burden of energy consumption have been raised, so the research and development to solve this situation is urgent.
본 발명이 이루고자 하는 기술적 과제는, 프로펠러의 동작 시 기진력이 증가되어 선체에 진동이 발생되는 것을 저지할 수 있음은 물론 특히, 압축기를 비롯한 그 관련 부품의 설치, 그리고 운용에 따른 에너지 소모 등의 부담을 근원적으로 방지할 수 있는 프로펠러 캐비테이션 유기 기진력 저감형 선박을 제공하는 것이다.The technical problem to be achieved by the present invention is to prevent the vibration generated in the hull by increasing the vibration force during the operation of the propeller, in particular, the installation and operation of the associated parts, including the compressor, and energy consumption It is to provide a propeller cavitation organic vibration reduction type vessel that can fundamentally prevent the burden.
본 발명의 일 측면에 따르면, 프로펠러가 마련되는 선체; 및 상기 프로펠러에 인접된 상기 선체에 결합되며, 상기 프로펠러의 회전 시 발생되는 입사파와 상쇄간섭(Destructive Interference) 현상을 일으키기 위한 반사파를 발생시키는 작업기체가 일측에 수용되는 작업기체 수용 멤브레인 패드를 포함하는 선박이 제공될 수 있다.According to an aspect of the invention, the propeller is provided with a hull; And a work gas accommodating membrane pad coupled to the hull adjacent to the propeller, wherein a work gas generating a reflected wave for generating an incident wave and a destructive interference phenomenon generated during rotation of the propeller is accommodated on one side. Ships may be provided.
상기 작업기체 수용 멤브레인 패드의 재질은 음향 임피던스(Acoustic impedance)가 해수(water)와 유사한 재질일 수 있다.The working gas receiving membrane pad may be made of a material whose acoustic impedance is similar to that of water.
상기 작업기체 수용 멤브레인 패드의 재질은 고무(rubber)일 수 있으며, 상기 작업기체는 공기(air)일 수 있다.The material of the working gas receiving membrane pad may be rubber, and the working gas may be air.
상기 작업기체 수용 멤브레인 패드는, 상기 선체에 착탈 가능하게 결합되는 패드 바디; 및 상기 패드 바디의 일측에 형성되어 상기 작업기체가 밀폐되어 수용되는 작업기체 주머니를 포함할 수 있다.The working gas receiving membrane pad, the pad body detachably coupled to the hull; And a working gas pocket formed on one side of the pad body to receive the working gas in a sealed manner.
상기 작업기체 수용 멤브레인 패드는 상기 프로펠러의 상부 측의 상기 선체 벽면에 결합될 수 있다.The working gas receiving membrane pad may be coupled to the hull wall on the upper side of the propeller.
상기 작업기체 수용 멤브레인 패드는 상기 프로펠러에 이웃된 상기 선체의 벽면 다수 곳에 결합될 수 있다.The working gas receiving membrane pad may be coupled to a plurality of wall surfaces of the hull adjacent to the propeller.
상기 선체의 벽면 다수 곳에 결합되는 상기 작업기체 수용 멤브레인 패드들의 작업기체 사이즈는 서로 다르게 마련될 수 있다.Working gas sizes of the working gas receiving membrane pads coupled to a plurality of wall surfaces of the hull may be provided differently.
상기 프로펠러가 N개(N은 자연수) 주파수 대역의 진동성분을 발생시키되 이를 제어해야 하는 경우, 상기 N개의 상기 작업기체 수용 멤브레인 패드가 상기 프로펠러에 이웃된 상기 선체의 벽면에 부착되어 사용될 수 있다.When the propeller generates vibration components of N frequency bands (N is a natural number) and needs to be controlled, the N working gas receiving membrane pads may be attached to a wall of the hull adjacent to the propeller.
상기 작업기체 수용 멤브레인 패드와 연결되며, 상기 프로펠러의 회전수(RPM) 변화에 따른 가진 주파수 대역 변화에 대해 가변제어할 수 있도록 상기 작업기체 수용 멤브레인 패드 내에 수용되는 상기 작업기체의 부피를 조절하는 작업기체 부피 조절부를 더 포함할 수 있다.A volume of the work gas accommodated in the work gas accommodating membrane pad connected to the work gas accommodating membrane pad so as to variably control an excitation frequency band change due to a change in the rotational speed (RPM) of the propeller; It may further include a gas volume control unit.
상기 작업기체 부피 조절부는, 상기 작업기체가 저장되는 작업기체 리시버(receiver); 상기 작업기체 리시버와 상기 작업기체 수용 멤브레인 패드를 연결하는 작업기체 메인라인; 및 상기 작업기체 메인라인 상에 마련되며, 상기 작업기체 메인라인 상에서의 상기 작업기체의 흐름을 선택적으로 단속하는 제1 밸브(valve)를 포함할 수 있다.The work gas volume control unit, a work gas receiver (receiver) in which the work gas is stored; A working gas main line connecting the working gas receiver and the working gas receiving membrane pad; And a first valve provided on the work gas main line to selectively interrupt the flow of the work gas on the work gas main line.
상기 작업기체 부피 조절부는, 상기 작업기체 메인라인 상에 마련되며, 상기 작업기체 리시버를 통해 공급되는 작업기체에 대하여 정압을 유지시키는 정압기(regulator); 상기 정압기와 상기 제1 밸브 사이의 상기 작업기체 메인라인 상에 마련되어 상기 작업기체의 역류를 방지하는 체크 밸브; 상기 작업기체 메인라인에 대하여 분기되는 작업기체 분기라인에 마련되며, 상기 작업기체 분기라인 상에서의 상기 작업기체의 흐름을 선택적으로 단속하는 제2 밸브; 및 상기 제1 밸브와 상기 작업기체 수용 멤브레인 패드 사이의 상기 작업기체 메인라인 상에 마련되어 상기 작업기체 수용 멤브레인 패드로 공급되는 작업기체의 압력을 측정하는 압력 게이지를 더 포함할 수 있다.The work gas volume adjusting unit may include a regulator provided on the work gas main line to maintain a constant pressure with respect to the work gas supplied through the work gas receiver; A check valve provided on the work gas mainline between the constant pressure and the first valve to prevent backflow of the work gas; A second valve provided at a work gas branch line branched from the main body of the work gas, the second valve selectively interrupting the flow of the work gas on the work gas branch line; And a pressure gauge provided on the work gas mainline between the first valve and the work gas accommodating membrane pad to measure the pressure of the work gas supplied to the work gas accommodating membrane pad.
상기 작업기체 부피 조절부는, 상기 프로펠러의 회전수를 감지하는 프로펠러 회전수 감지기; 및 상기 프로펠러 회전수 감지기로부터의 정보에 기초하여 상기 작업기체 리시버, 상기 제1 밸브 및 상기 제2 밸브의 동작을 컨트롤하는 컨트롤러를 더 포함할 수 있다.The work gas volume control unit, a propeller rotation speed sensor for detecting the rotation speed of the propeller; And a controller configured to control operations of the work gas receiver, the first valve, and the second valve based on the information from the propeller rotation speed detector.
상기 선체에 결합되는 바텀 소켓(bottom socket)과, 상기 바텀 소켓에 착탈 가능하게 결합되는 바텀 플러그(bottom plug)를 포함하는 바텀 플러그 모듈(bottom plug module)을 더 포함할 수 있으며, 상기 작업기체 수용 멤브레인 패드는 상기 바텀 플러그 모듈에 착탈 가능하게 결합될 수 있다.A bottom plug module including a bottom socket coupled to the hull and a bottom plug detachably coupled to the bottom socket may further include a bottom plug module. The membrane pad may be detachably coupled to the bottom plug module.
상기 바텀 플러그는, 상기 바텀 소켓의 소켓 관통부에 결합되는 플러그 헤드; 및 상기 플러그 헤드에 연결되며, 상기 바텀 소켓을 통해 상기 선체의 외벽으로 노출되는 나사식 플러그 샤프트를 포함할 수 있으며, 상기 작업기체 수용 멤브레인 패드는 상기 바텀 플러그의 나사식 플러그 샤프트에 삽입되는 다수의 패드 바디 홀을 구비할 수 있다.The bottom plug may include: a plug head coupled to a socket through portion of the bottom socket; And a threaded plug shaft connected to the plug head and exposed to the outer wall of the hull through the bottom socket, wherein the working gas receiving membrane pad is inserted into the threaded plug shaft of the bottom plug. The pad body hole may be provided.
상기 선체의 바깥쪽에서 상기 나사식 플러그 샤프트에 체결되어 상기 작업기체 수용 멤브레인 패드를 고정시키는 고정너트; 상기 나사식 플러그 샤프트로 삽입되는 개스킷 홀을 구비하며, 상기 나사식 플러그 샤프트에 밀착되어 상기 패드 바디 홀을 밀봉하는 밀봉 개스킷; 및 상기 나사식 플러그 샤프트로 삽입되는 플레이트 홀을 구비하며, 상기 밀봉 개스킷과 상기 고정너트 사이에 배치되어 상기 작업기체 수용 멤브레인 패드를 보강하는 보강 플레이트를 더 포함할 수 있다.A fixing nut fastened to the threaded plug shaft at an outer side of the hull to fix the work gas accommodating membrane pad; A sealing gasket having a gasket hole inserted into the screw plug shaft, the sealing gasket being in close contact with the screw plug shaft to seal the pad body hole; And a plate hole inserted into the threaded plug shaft, the reinforcing plate disposed between the sealing gasket and the fixing nut to reinforce the work gas accommodating membrane pad.
본 발명에 따르면, 프로펠러의 동작 시 기진력이 증가되어 선체에 진동이 발생되는 것을 저지할 수 있음은 물론 특히, 압축기를 비롯한 그 관련 부품의 설치, 그리고 운용에 따른 에너지 소모 등의 부담을 근원적으로 방지할 수 있다.According to the present invention, it is possible to prevent vibration from occurring in the hull due to increased vibration force during the operation of the propeller, and in particular, the burden of energy consumption due to the installation and operation of the compressor and its related components, and the like. You can prevent it.
도 1은 본 발명의 제1 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박의 프로펠러 영역의 구조도이다.1 is a structural diagram of a propeller region of a propeller cavitation organic vibration reducing vessel according to a first embodiment of the present invention.
도 2는 도 1의 A 영역의 확대도이다.FIG. 2 is an enlarged view of region A of FIG. 1.
도 3은 프로펠러와 작업기체 수용 멤브레인 패드 간의 배치도이다.3 is a layout view between the propeller and the working gas receiving membrane pad.
도 4는 도 1의 A 영역에 대한 개략적인 배면 구조도로서 프로펠러를 미도시한 상태의 도면이다.FIG. 4 is a schematic rear view of the region A of FIG. 1 and not shown with a propeller.
도 5는 물, 고무 및 공기의 임피던스를 측정한 도표이다.5 is a diagram measuring the impedance of water, rubber and air.
도 6은 입사파와 반사파의 원리를 설명하기 위한 도면이다.6 is a view for explaining the principle of the incident wave and the reflected wave.
도 7은 [수학식 1]을 설명하기 위한 작업기체 수용 멤브레인 패드의 도면이다.7 is a view of a working gas accommodating membrane pad for explaining [Equation 1].
도 8은 작업기체 수용 멤브레인 패드를 프로펠러 직상방 우현 영역에 설치한 상태의 도면으로서, 다수의 변동압력 측정지점을 나타내는 도면이다.FIG. 8 is a diagram showing a state where the working gas accommodating membrane pads are installed in the starboard region directly above the propeller, showing a plurality of fluctuation pressure measuring points.
도 9는 프로펠러의 주파수를 기준으로 한 작업기체 수용 멤브레인 패드의 효율을 그래프로 나타낸 도면이다.9 is a graph showing the efficiency of the working gas receiving membrane pad based on the frequency of the propeller.
도 10은 도 8에 대응되는 작업기체 수용 멤브레인 패드에 대한 150Hz 대역의 결과를 요약하여 도시한 그래프이다.FIG. 10 is a graph summarizing the results of the 150 Hz band for the working gas accommodating membrane pad corresponding to FIG. 8.
도 11은 저감대상주파수에 따른 최적 등가공기부피 간의 관계를 나타낸 그래프이다.11 is a graph showing the relationship between the optimum equivalent air volume according to the reduction target frequency.
도 12는 본 발명의 제2 실시예에 따른 기진력 저감형 선박의 배면 구조도로서 작업기체 수용 멤브레인 패드를 여러 위치에 설치한 상태의 도면이다.12 is a rear structural diagram of a vibration reduction type ship according to a second embodiment of the present invention, in which working gas receiving membrane pads are installed at various positions.
도 13은 본 발명의 제3 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박에서 작업기체 부피 조절부의 개략적인 구성도이다.FIG. 13 is a schematic configuration diagram of a work gas volume control unit in a propeller cavitation organic vibration reducing vessel according to a third embodiment of the present invention.
도 14는 도 13의 작업기체 부피 조절부의 제어블록도이다.FIG. 14 is a control block diagram of the working gas volume adjusting unit of FIG. 13.
도 15는 본 발명의 제4 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박의 요부 확대도이다.15 is an enlarged view illustrating main parts of a propeller cavitation organic vibration reduction type vessel according to a fourth embodiment of the present invention.
도 16은 도 15의 B 영역의 확대 구조도이다.FIG. 16 is an enlarged structural diagram of region B of FIG. 15.
도 17은 도 16의 분해도이다.17 is an exploded view of FIG. 16.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings which illustrate preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.Hereinafter, the present invention will be described in detail by explaining preferred embodiments of the present invention with reference to the accompanying drawings. Like reference numerals in the drawings denote like elements.
도 1은 본 발명의 제1 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박의 프로펠러 영역의 구조도, 도 2는 도 1의 A 영역의 확대도, 도 3은 프로펠러와 작업기체 수용 멤브레인 패드 간의 배치도, 그리고 도 4는 도 1의 A 영역에 대한 개략적인 배면 구조도로서 프로펠러를 미도시한 상태의 도면이다.1 is a structural diagram of a propeller region of a propeller cavitation organic vibration reducing vessel according to a first embodiment of the present invention, FIG. 2 is an enlarged view of region A of FIG. 1, and FIG. Arrangement and FIG. 4 is a schematic rear view of the region A of FIG. 1, with the propeller not shown.
이들 도면을 참조하면, 본 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박은 프로펠러(120)의 동작 시 기진력이 증가되어 선체에 진동이 발생되는 것을 저지할 수 있음은 물론 특히, 압축기를 비롯한 그 관련 부품의 설치, 그리고 운용에 따른 에너지 소모 등의 부담을 근원적으로 방지할 수 있도록 한 것으로서, 선체(110)와, 선체(110)에 결합되는 작업기체 수용 멤브레인 패드(130)를 포함한다.Referring to these drawings, the propeller cavitation organic vibration reduction type ship according to the present embodiment can increase the vibration force during operation of the propeller 120 to prevent the vibration generated in the hull, in particular, including the compressor It is to be able to fundamentally prevent the burden of energy consumption, such as the installation and operation of the relevant parts, and includes a hull 110, and the working gas receiving membrane pad 130 coupled to the hull (110).
선체(110)의 후미에는 선체(110)의 추진을 위한 프로펠러(120)가 마련된다. 그리고 프로펠러(120)의 주변에는 선박의 진행 방향을 조정하는 러더(125, rudder)가 마련될 수 있다. 러더(125)는 일반 러더일 수도 있고, 아니면 벌브 러더(bulb rudder)일 수도 있다.The rear of the hull 110 is provided with a propeller 120 for the propulsion of the hull 110. In addition, a rudder 125 may be provided around the propeller 120 to adjust a traveling direction of the ship. The rudder 125 may be a general rudder or a bulb rudder.
참고로, 본 실시예에서 적용되는 선박은 상선, 군함, 어선, 운반선, 드릴쉽, 크루즈선 및 특수 작업선 등을 비롯하여 부유식 해상 구조물 등을 모두 포함할 수 있다. 따라서 특정 선박에 본 실시예의 권리범위가 제한될 수 없다.For reference, the ship applied in the present embodiment may include all of the floating marine structures, including merchant ships, warships, fishing vessels, carriers, drillships, cruise ships and special working ships. Therefore, the scope of the present embodiment can not be limited to a specific vessel.
한편, 앞서도 기술한 것처럼 프로펠러(120)가 동작되면 즉 프로펠러(120)가 수중에서 회전되면 회전체로서의 프로펠러(120)로 인해 수중에 변동압력이 발생되며, 이렇게 발생된 변동압력은 선체(110)로의 기진력을 증가시켜 선체에 진동(소음 포함)을 발생시키는 요인으로 작용한다.On the other hand, as described above, when the propeller 120 is operated, that is, when the propeller 120 is rotated in the water, the fluctuation pressure is generated in the water due to the propeller 120 as a rotating body, the generated fluctuation pressure is the hull 110 By increasing the vibration force of the furnace, it acts as a factor in generating vibration (including noise) in the hull.
이처럼 선체(110)에 전달되는 진동은 예컨대, 크루즈선처럼 유람을 목적으로 하는 선박이나 군함처럼 조용한 운항이 전제되어야 하는 선박인 경우에는 큰 문제가 될 수 있기 때문에 이러한 현상을 예방시켜야 한다.As such, the vibration transmitted to the hull 110 should be prevented because it can be a big problem in the case of a ship that is intended to cruise or a quiet ship such as a warship, for example, a cruise ship.
다시 말해, 프로펠러(120)의 동작 시 수중에 발생된 변동압력으로 인해 기진력이 증가되어 선체(110)에 진동이 발생되는 것을 저지시켜야 하는데, 이를 위해 본 실시예에서는 작업기체 수용 멤브레인 패드(130)를 적용하고 있다.In other words, due to the fluctuation pressure generated in the water during operation of the propeller 120, the vibration force is to be prevented from occurring due to the increase in vibration force in the ship body 110. In this embodiment, the working gas receiving membrane pad 130 ) Is applied.
자세히 후술하겠지만 본 실시예의 선박에 적용되는 작업기체 수용 멤브레인 패드(130)는 기존의 공기방울 형태인 에어 레이어(air layer)를 형성시키던 구조들과는 전혀 다른 형태를 갖는다.As will be described later in detail, the working gas accommodating membrane pad 130 applied to the ship of the present embodiment has a completely different form from the structures that form an air layer, which is a conventional air bubble form.
즉 본 실시예에서 적용되는 작업기체 수용 멤브레인 패드(130)는 공기(air)를 가둬둔 형태의 튜브(tube) 타입의 구조물에 불과하기 때문에 에어 레이어 적용 시 사용되어야만 했던 압축기를 비롯한 그 관련 부품을 설치하거나 운용할 필요가 없다.That is, the working gas receiving membrane pad 130 applied in the present embodiment is only a tube-type structure in which air is trapped, and thus related components including a compressor, which had to be used when applying an air layer, were used. There is no need to install or operate.
따라서 압축기를 비롯한 그 관련 부품의 설치, 그리고 운용에 따른 에너지 소모 등의 부담을 근원적으로 방지할 수 있다.Therefore, it is possible to fundamentally prevent the burden of installing the compressor and its related parts, and energy consumption.
이러한 역할을 담당하는 작업기체 수용 멤브레인 패드(130)는 도 1에 도시된 것처럼 프로펠러(120)에 인접된 선체(110)에 결합되며, 프로펠러(120)의 회전 시 발생되어 선체(110)로 향하는 입사파를 상쇄시키기 위해 반사파를 발생시키되 일측에 작업기체가 수용되는 형태를 갖는다.The working gas receiving membrane pad 130 that plays this role is coupled to the hull 110 adjacent to the propeller 120, as shown in FIG. 1, and is generated when the propeller 120 rotates to face the hull 110. The reflection wave is generated to cancel the incident wave, but the work gas is accommodated on one side.
특히, 작업기체 수용 멤브레인 패드(130)는 프로펠러(120)의 상부 측의 선체(110) 벽면에 결합될 수 있다.In particular, the working gas receiving membrane pad 130 may be coupled to the wall of the hull 110 on the upper side of the propeller 120.
실시예로서, 도면에는 작업기체 수용 멤브레인 패드(130)가 프로펠러(120)의 직상방에 부착된 것을 도시하였다.As an example, the drawing shows that the working gas receiving membrane pad 130 is attached directly above the propeller 120.
부연설명하면 정면에서 후면을 바라볼 때 도 3처럼 프로펠러(120)의 회전방향이 반시계방향인 경우, 프로펠러(120)의 직상방 STBD 영역 센터기준 0.5R 내에 작업기체 수용 멤브레인 패드(130)가 배치될 수 있다. 여기서, R은 프로펠러(120)의 센터라인(CL)에서 프로펠러(120) 끝까지의 반지름을 의미한다.In detail, when the rotation direction of the propeller 120 is counterclockwise as shown in FIG. 3 when the front side is viewed from the front side, the work gas accommodating membrane pad 130 is positioned within 0.5 R of the STBD area center standard of the propeller 120. Can be deployed. Here, R means the radius from the center line (CL) of the propeller 120 to the end of the propeller (120).
마찬가지로, 프로펠러(120)의 회전방향이 반시계방향인 경우, 프로펠러(120)의 직상방 PORT 영역 센터기준 0.5R 내에 작업기체 수용 멤브레인 패드(130)가 배치될 수 있는데, 이와 같은 위치에 작업기체 수용 멤브레인 패드(130)가 배치됨으로써 최적의 효율을 발생시킬 수 있다.Similarly, when the rotational direction of the propeller 120 is counterclockwise, the work gas accommodating membrane pad 130 may be disposed within 0.5 R of the center of the PORT area directly above the propeller 120. Placement of the receiving membrane pad 130 may result in optimal efficiency.
한편, 작업기체 수용 멤브레인 패드(130)는 선체(110)에 착탈 가능하게 결합되는 패드 바디(131)와, 패드 바디(131)의 일측에 형성되어 작업기체가 밀폐되어 수용되는 작업기체 주머니(132)를 포함한다.On the other hand, the working gas receiving membrane pad 130 is a pad body 131 detachably coupled to the hull 110, the work gas pocket 132 is formed on one side of the pad body 131 is sealed to accommodate the working gas 132 ).
본 실시예에서 작업기체 수용 멤브레인 패드(130)의 재질은 고무(rubber)일 수 있으며, 작업기체는 공기(air)일 수 있다.In the present embodiment, the material of the working gas receiving membrane pad 130 may be rubber, and the working gas may be air.
하지만, 본 실시예의 권리범위가 이에 제한되지 않는다. 즉 작업기체 수용 멤브레인 패드(130)의 재질이 고무와 유사한 재질이면 그것으로 충분하며, 작업기체 역시, 액체만 아니라면 다양한 기체로 변경 적용할 수 있다.However, the scope of the present embodiment is not limited thereto. That is, if the material of the working gas accommodating membrane pad 130 is a material similar to rubber, it is sufficient, and the working gas may be changed to various gases as long as it is not liquid.
한편, 작업기체 수용 멤브레인 패드(130)를 형성하는 패드 바디(131)는 고무 재질로 된 평평한 구조물로서, 선체(110)에 착탈 가능하게 결합되는 부분으로 활용된다.On the other hand, the pad body 131 forming the working gas receiving membrane pad 130 is a flat structure made of a rubber material, it is utilized as a portion detachably coupled to the hull 110.
패드 바디(131)는 여러 다양한 구조와 방식을 통해 선체(110)에 결합될 수 있다. 예컨대, 패드 바디(131)는 볼트와 너트의 결합 방식, 끼움 결합 방식, 인서트 금속 플레이트를 내재시켜 용접하는 용접 결합 방식, 바텀 플러그(bottom plug)를 이용한 결합 방식 등 다양한 방식으로 선체(110)에 결합될 수 있다. 이중에서 바텀 플러그를 이용한 결합 방식에 대해서는 아래의 실시예에서 설명하도록 한다.The pad body 131 may be coupled to the hull 110 through various structures and methods. For example, the pad body 131 may be attached to the hull 110 in various ways, such as a bolt and nut coupling method, a fitting coupling method, a welding coupling method for internally welding an insert metal plate, and a coupling method using a bottom plug. Can be combined. The coupling method using the bottom plug is described below in the following embodiments.
본 실시예의 도면에는 패드 바디(131)가 사각 형상으로 되어 있으나 패드 바디(131)의 형상은 사각 형상을 비롯하여 원 형상, 삼각형 형상 등 다양할 수 있다. 따라서 패드 바디(131)의 형상에 본 실시예의 권리범위가 제한될 수 없다.In the drawing of the present embodiment, the pad body 131 has a square shape, but the shape of the pad body 131 may be various, including a square shape, a circular shape, and a triangular shape. Therefore, the right scope of the present embodiment is not limited to the shape of the pad body 131.
작업기체 주머니(132)는 패드 바디(131)의 내부에 형성되며, 패드 바디(131)의 일측으로 부풀어 오른 형상을 갖는다.The work gas pocket 132 is formed inside the pad body 131 and has a shape inflated toward one side of the pad body 131.
본 실시예에서 작업기체 주머니(132)는 원형의 형상을 갖지만 작업기체 주머니(132)의 형상 역시, 삼각 형상, 사각 형상 등 다양한 다각 형상이 될 수 있으므로 도면의 형상에 본 실시예의 권리범위가 제한될 수 없다.In the present embodiment, the working gas bag 132 has a circular shape, but the shape of the working gas bag 132 may also be various polygonal shapes such as a triangular shape and a square shape, so the scope of the present invention is limited to the shape of the drawings. Can't be.
앞서 기술한 것처럼 작업기체 주머니(132) 내에는 작업기체로서 공기(air)가 충전될 수 있다.As described above, the working gas bag 132 may be filled with air as the working gas.
작업기체 주머니(132) 내에 충전되는 작업기체는 작업기체 수용 멤브레인 패드(130)의 제조 시 일체로 들어 있게 형성된 것으로서, 작업기체 주머니(132)가 절개되지 않는 한 작업기체 주머니(132) 내에서 누설되지 않는다.The work gas filled in the work gas bag 132 is formed to be integrally contained in the manufacture of the work gas accommodating membrane pad 130, and leaks in the work gas bag 132 unless the work gas bag 132 is incised. It doesn't work.
이하, 작업기체가 밀폐되어 수용되는 작업기체 수용 멤브레인 패드(130)로 인해 기진력이 저감되는 원리에 대해 도 5 내지 도 11을 참조하여 자세히 설명하도록 한다.Hereinafter, the principle that the vibration force is reduced due to the work gas accommodating membrane pad 130 in which the work gas is sealed will be described in detail with reference to FIGS. 5 to 11.
도 5는 물, 고무 및 공기의 임피던스를 측정한 도표, 도 6은 입사파와 반사파의 원리를 설명하기 위한 도면, 도 7은 [수학식 1]을 설명하기 위한 작업기체 수용 멤브레인 패드의 도면, 도 8은 작업기체 수용 멤브레인 패드를 프로펠러 직상방 우현 영역에 설치한 상태의 도면으로서, 다수의 변동압력 측정지점을 나타내는 도면, 도 9는 프로펠러의 주파수를 기준으로 한 작업기체 수용 멤브레인 패드의 효율을 그래프로 나타낸 도면, 도 10은 도 8에 대응되는 작업기체 수용 멤브레인 패드에 대한 150Hz 대역의 결과를 요약하여 도시한 그래프, 그리고 도 11은 저감대상주파수에 따른 최적 등가공기부피 간의 관계를 나타낸 그래프이다.5 is a diagram measuring the impedance of water, rubber and air, Figure 6 is a view for explaining the principle of the incident wave and reflected wave, Figure 7 is a view of the working gas receiving membrane pad for explaining [Equation 1], Figure 8 is a diagram showing a working gas accommodating membrane pad in a starboard region directly above the propeller, showing a plurality of pressure measuring points, and FIG. 9 is a graph showing the efficiency of the working gas accommodating membrane pad based on the propeller frequency. FIG. 10 is a graph summarizing the results of the 150 Hz band for the work gas accommodating membrane pad corresponding to FIG. 8, and FIG. 11 is a graph showing the relationship between the optimum equivalent air volume according to the reduction target frequency.
이들 도면을 참조하되 먼저, 도 5를 참조하면 본 실시예의 작업기체 수용 멤브레인 패드(130)의 재질인 고무(rubber)의 음향 임피던스(Acoustic impedance, 음향학적인 저항을 의미함)가 해수(water)와는 대략적으로 유사한데 반해, 공기(air)보다는 무한히 큰 것을 알 수 있다.Referring to these drawings, first, referring to FIG. 5, the acoustic impedance (rubber) of rubber, which is a material of the working gas accommodating membrane pad 130 of the present embodiment, is different from that of water. While roughly similar, it can be seen that it is infinitely larger than air.
통상적으로 특정 매질 내에서 음파가 진행하면서 임피던스가 다른 매질을 만나게 되면 투과 현상과 반사 현상이 발생하는데, 해수와 고무의 임피던스가 유사하므로 해수와 고무의 경계면에서는 반사 없이 투과 현상만이 발생된다.In general, when a sound wave progresses in a specific medium and encounters a medium having different impedances, a transmission phenomenon and a reflection phenomenon occur. Since the impedance of seawater and rubber is similar, only a transmission phenomenon occurs without reflection at the interface between seawater and rubber.
예컨대, 도 6에 도시된 것처럼 프로펠러(120)의 동작 시 발생하는 입사파는 그대로 작업기체 주머니(132)의 벽면인 고무층을 통과한 후, 작업기체 주머니(132) 내에 충전된 작업기체, 즉 공기에 의해 입사파 대비 반대 위상으로 반사되어 즉 반사파로 형성되어 나오게 된다. 이 반사파가 입사파와 상쇄간섭(Destructive Interference) 현상을 일으키게 됨으로써 프로펠러(120)의 동작 시 발생하는 입사파가 상쇄된다. 이와 같은 현상에 의해 기진력이 저감되어 선체(110) 진동 발생을 감소시킬 수 있다.For example, as shown in FIG. 6, the incident wave generated during operation of the propeller 120 passes through the rubber layer, which is a wall surface of the work gas bag 132, and then is filled in the work gas, ie, air, filled in the work gas bag 132. As a result, the light is reflected in a phase opposite to the incident wave, that is, it is formed as a reflected wave. This reflected wave causes a destructive interference phenomenon with the incident wave, thereby canceling the incident wave generated during operation of the propeller 120. Due to this phenomenon, the vibration force can be reduced to reduce the occurrence of vibration of the hull 110.
이에 대해 다시 부연 설명한다. 프로펠러(120) 동작 시 캐비테이션에 의해 발생되는 구면 압력파, 즉 입사파는 전방위로 전파될 수 있다.This will be explained again. When the propeller 120 operates, spherical pressure waves generated by cavitation, that is, incident waves, may propagate omnidirectionally.
이때, 본 실시예처럼 프로펠러(120) 주변의 선체(110) 표면에 공기가 충전된 작업기체 수용 멤브레인 패드(130)를 설치할 경우, 작업기체 수용 멤브레인 패드(130)의 작업기체 주머니(132)로 입사하는 입사파는 그대로 작업기체 주머니(132)의 벽면인 고무층을 통과하지만 작업기체 주머니(132) 내에 충전된 작업기체, 즉 공기에 의해 입사파 대비 반대 위상으로 반사되어 즉 반사파로 형성되어 나온다.At this time, when installing the working gas receiving membrane pad 130 filled with air on the surface of the hull 110 around the propeller 120 as in this embodiment, to the working gas pocket 132 of the working gas receiving membrane pad 130 The incident incident wave passes through the rubber layer, which is the wall surface of the work gas bag 132, but is reflected by the work gas filled in the work gas bag 132, ie, air, in a phase opposite to the incident wave, that is, formed as a reflected wave.
이처럼 입사파가 공기에 부딪혀 반대 위상으로 반사되어 나오는 반사파로 형성되면 이 반사파가 작업기체 수용 멤브레인 패드(130) 쪽으로 입사되는 입사파와 만나서 입사파와 상쇄간섭(Destructive Interference) 현상을 일으키게 된다.When the incident wave is formed as a reflected wave that is reflected in the opposite phase by hitting the air, the reflected wave meets the incident wave incident toward the working gas accommodating membrane pad 130 to cause an incident wave and a destructive interference phenomenon.
결국, 이러한 작용으로 인해 작업기체 수용 멤브레인 패드(130)의 외측에서 선체(110)로 전달되는 변동압력이 감소하게 되며, 이처럼 변동압력이 감소하게 되면 기진력이 저감되는 형태가 되기 때문에 자연스럽게 선체(110)에서 발생하는 진동이 줄어들게 되는 것이다.As a result, the fluctuation pressure transmitted to the hull 110 from the outside of the working gas accommodating membrane pad 130 due to this action is reduced, and when the fluctuation pressure is reduced, the vibration force is reduced to form the hull naturally ( The vibration generated in 110 will be reduced.
한편, 이와 같은 저감 성능은 아래의 [수학식1]처럼 프로펠러의 특정 주파수 대역에만 제한된다.On the other hand, such a reduction performance is limited to a specific frequency band of the propeller as shown in Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2015004354-appb-I000001
Figure PCTKR2015004354-appb-I000001
여기서, f는 프로펠러의 저감 주파수 대역, ca(=340m/s)와 cw(=1500m/s)는 각각 공기 및 해수음속 ρa(=1.02 kg/m3),ρw(=1024kg/m3)는 공기 및 해수의 밀도를 의미하며, a와 b는 도 10처럼 작업기체 수용 멤브레인 패드(130a~130c)를 등가화된 구로 간주할 때 내경, 외경을 의미한다.Where f is the propeller's reduced frequency band, c a (= 340 m / s) and c w (= 1500 m / s), respectively, for air and sea sound speeds ρ a (= 1.02 kg / m 3 ), ρ w (= 1024 kg / m 3 ) denotes the density of air and seawater, and a and b denote inner diameter and outer diameter when the working gas receiving membrane pads 130a to 130c are equivalent spheres as shown in FIG. 10.
이와 같은 사항들의 검증을 위하여 모형시험을 수행하였다. 즉 도 8에 도시된 바와 같이, STBD 영역 쪽의 선체(110)의 벽면에 150Hz 주파수 대역에서 저감효과가 있는 작업기체 수용 멤브레인 패드(130) 1개를 설계(또는 부착)하였으며, 이후, P1, P2, P3, P4 위치에서 변동압력을 계측하였고, 뿐만 아니라 선체(110)의 선미부의 위쪽을 지지하는 강판인 트랜섬(transom) 영역에서 진동을 계측하였다.Model tests were performed to verify these issues. That is, as shown in Figure 8, on the wall surface of the hull 110 toward the STBD region, one working gas receiving membrane pad 130 having a reduction effect in the 150Hz frequency band was designed (or attached), and then, P1, The fluctuation pressures were measured at the positions P2, P3, and P4, as well as the vibrations were measured in the transom region, which is a steel plate supporting the upper part of the stern portion of the hull 110.
도 9에 나타낸 계측결과를 보면 수평축(x축)은 주파수를 의미하며, 수직축(y축)은 작업기체 수용 멤브레인 패드(130) 부착 전 대비 부착 후의 증감량을 나타내고 있는데, 공진 영역인 135Hz 근방에서는 작업기체 수용 멤브레인 패드(130) 설치 전 대비 설치 후 변동압력 및 진동이 증가하지만 설계주파수인 150Hz 대역 근방에서 현저한 감소효과가 나타나는 것을 확인할 수 있다.In the measurement result shown in FIG. 9, the horizontal axis (x-axis) represents frequency, and the vertical axis (y-axis) represents the amount of increase and decrease after the attachment before the work gas accommodating membrane pad 130 is attached. It can be seen that the fluctuation pressure and vibration increase after the installation compared to the installation of the working gas accommodating membrane pad 130, but a significant reduction effect occurs in the vicinity of the design frequency 150 Hz band.
도 10은 150Hz 대역의 결과를 요약하여 도시하고 있는데, 도 10을 참조하면 작업기체 수용 멤브레인 패드(130)의 외측에 위치된 P2, P3, P4 위치에서의 변동압력이 평균 70% 가량 감소되며, 결과적으로 진동수준 역시, 70% 이상 현저히 감소되었음을 확인할 수 있다.FIG. 10 summarizes the results of the 150 Hz band. Referring to FIG. 10, the fluctuation pressures at positions P2, P3, and P4 located outside the work gas accommodating membrane pad 130 are reduced by about 70% on average. As a result, it can be seen that the vibration level is also significantly reduced by more than 70%.
도 11은 저감대상주파수에 따른 최적 등가공기부피 간의 관계를 나타낸 그래프로서 이를 참조하면 예컨대, 목표 주파수(Target frequency)가 6Hz일 경우 수용 멤브레인 패드(130)의 작업기체 주머니(132)에 대한 최적의 부피는 1500L(Liter) 정도일 수 있는데, 이와 같은 부피 조건을 만족하는 한 작업기체 주머니(132)의 형상이 원형이든 직사각형이든 관계는 없다.11 is a graph showing the relationship between the optimum equivalent air volume according to the reduction target frequency. Referring to this, for example, when the target frequency is 6 Hz, the optimum work bag pocket 132 of the receiving membrane pad 130 is optimal. The volume may be about 1500L (Liter), and as long as it satisfies such a volume condition, the shape of the working gas bag 132 may be circular or rectangular.
이상 설명한 바와 같은 구조와 작용을 갖는 본 실시예에 따르면, 프로펠러(120)의 동작 시 기진력이 증가되어 선체(110)에 진동이 발생되는 것을 저지할 수 있음은 물론 특히, 압축기를 비롯한 그 관련 부품의 설치, 그리고 운용에 따른 에너지 소모 등의 부담 등의 장애요인을 근원적으로 방지할 수 있게 된다.According to the present embodiment having the structure and action as described above, the vibration force may be prevented from occurring when the propeller 120 is operated to prevent the vibration from occurring in the hull 110, in particular, the compressor and its related parts. It is possible to fundamentally prevent obstacles such as the installation of parts and the burden of energy consumption due to operation.
이처럼 선체(110)에 진동이 발생되는 것을 효율적으로 저지할 수 있기 때문에, 이에 따라 예컨대, 크루즈선처럼 유람을 목적으로 하는 선박이나 군함처럼 조용한 운항이 전제되어야 하는 선박인 경우에 있어, 선박에 야기되는 소음 포함 진동 문제를 적절하게 해결할 수 있다.Since vibration can be effectively prevented from occurring in the hull 110 as described above, therefore, in the case of a ship intended for excursion, such as a cruise ship, or a ship to which a quiet operation such as a warship is to be assumed, it causes the vessel. It is possible to appropriately solve the vibration problem including noise.
특히, 본 실시예와 같은 구조는, 종래처럼 프로펠러(120) 날개 자체의 모양이나 크기를 다르게 설계하거나, 선박 후미의 모양을 개선하거나, 소음과 진동을 차단시키기 위한 별도의 보강재를 덧대거나, 선수로부터 유입되는 물의 유동(flow)을 가이드하기 위한 가이드장치를 부착하거나, 프로펠러(120)의 사이즈를 줄이거나 하는 등의 여러 가지 제반적인 로스(loss)를 줄여 소음과 진동 문제를 개선한 방법과는 기술적으로 차별화 된다. 또한, 본 기술은 기진력을 차폐함으로서 프로펠러 설계에 있어서 진동의 구속조건을 제거할 수 있는 여유를 제공하기 때문에, 오히려 프로펠러(120)의 사이즈를 크게 증가시킬 수 있는 등 추진효율 향상에 도움이 될 것이라 기대된다.In particular, the same structure as the present embodiment, the propeller 120, the shape or size of the wing itself differently as in the prior art, to improve the shape of the ship's tail, or to add a separate reinforcement for blocking noise and vibration, or bow In addition to the improvement of the noise and vibration problems by reducing various losses such as attaching a guide device to guide the flow of water from the water or reducing the size of the propeller 120, etc. Technically differentiate In addition, since the present technology provides a margin for eliminating vibration constraints in the propeller design by shielding the vibration force, it may be helpful to improve the propulsion efficiency, such as to greatly increase the size of the propeller 120. It is expected.
도 12는 본 발명의 제2 실시예에 따른 기진력 저감형 선박의 배면 구조도로서 작업기체 수용 멤브레인 패드를 여러 위치에 설치한 상태의 도면이다.12 is a rear structural diagram of a vibration reduction type ship according to a second embodiment of the present invention, in which working gas receiving membrane pads are installed at various positions.
이 도면을 참조하되 전술한 [수학식 1]과 도 7을 함께 참조하면, 저감 주파수 대역 f는 공기부피(반지름, a)와 반비례하는 것을 알 수 있으며, 또한 작업기체 수용 멤브레인 패드(130a~130c)들 1개당 1개의 주파수 대역에만 적용 가능함을 알 수 있다.Referring to this figure, but with reference to [Equation 1] and Figure 7 described above, it can be seen that the reduced frequency band f is inversely proportional to the air volume (radius, a), and also the working gas accommodating membrane pads 130a to 130c. It can be seen that it is applicable to only one frequency band per one.
하지만, 실제 선박을 운행하다 보면 제어해야 하는 주파수 대역이 2개 이상일 경우가 많다. 즉 선박을 운항함에 있어 프로펠러(120)의 회전속도(rpm)에 따른 주파수 대역이 1개가 아니라 N개(N은 자연수) 이상의 주파수 대역의 진동성분을 제어해야 할 경우가 있다. 여기서, 진동성분(혹은 가진성분)은 프로펠러(120)의 회전 시 선체(110)에 전달되어 선체(110)를 진동시키는데, 주파수마다 진동성분의 크기는 다를 수 있다.However, when operating an actual ship, there are many cases where there are two or more frequency bands to be controlled. That is, when operating a ship, it is sometimes necessary to control the vibration component of the frequency band of N or more (N is a natural number) rather than one frequency band according to the rotation speed (rpm) of the propeller 120. Here, the vibration component (or excitation component) is transmitted to the hull 110 during the rotation of the propeller 120 to vibrate the hull 110, the size of the vibration component may vary for each frequency.
이 경우, 작업기체 수용 멤브레인 패드(130a~130c) 1개만을 통해서는 N개의 서로 다른 주파수 대역을 제어할 수 없으므로, 적용되는 주파수 대역의 개수(N)만큼 작업기체 수용 멤브레인 패드(130a~130c)를 부착시켜 사용해야 한다.In this case, since only one work gas accommodating membrane pad 130a to 130c cannot control N different frequency bands, the work gas accommodating membrane pads 130a to 130c are applied by the number N of frequency bands applied thereto. Must be used.
다시 말해, N개의 주파수 대역을 제어해야 할 경우, N개의 작업기체 수용 멤브레인 패드(미도시)를 프로펠러(120)에 이웃된 선체(110)의 벽면에 부착해서 사용해야 할 것이다.In other words, when N frequency bands are to be controlled, N working gas receiving membrane pads (not shown) may be attached to the wall of the hull 110 adjacent to the propeller 120.
예컨대, 도 12는 130Hz, 140Hz, 150Hz처럼 3개의 주파수 대역 제어를 위해 총 3개의 작업기체 수용 멤브레인 패드(130a~130c)가 프로펠러(120)에 이웃된 선체(110)의 벽면 다수 곳에 결합되어 있는 상황을 나타낸다.For example, FIG. 12 illustrates that three working gas receiving membrane pads 130a to 130c are coupled to a plurality of wall surfaces of the hull 110 adjacent to the propeller 120 to control three frequency bands such as 130 Hz, 140 Hz, and 150 Hz. Indicates a situation.
이때, 선체(110)의 벽면 다수 곳에 결합되는 작업기체 수용 멤브레인 패드(130a~130c)들의 작업기체 사이즈, 다시 말해, 작업기체 주머니(132a~132c)의 사이즈는 서로 다르게 마련될 수 있다.At this time, the size of the work gas of the work gas receiving membrane pads 130a to 130c coupled to a plurality of wall surfaces of the hull 110, that is, the sizes of the work gas pockets 132a to 132c may be provided differently.
결과적으로, 작업기체 수용 멤브레인 패드(130a~130c)는 한 개가 설치되든 다수 개가 설치되든 간에 상쇄간섭 원리에 의해 선체(110)의 기진력을 현저히 저감시킬 수 있다.As a result, the work gas receiving membrane pads 130a to 130c can significantly reduce the vibration force of the hull 110 by the offset interference principle, whether one or a plurality is installed.
즉 본 실시예처럼 다수의 작업기체 수용 멤브레인 패드(130a~130c)가 적용되더라도 프로펠러(120)의 동작 시 기진력이 증가되어 선체(110)에 진동이 발생되는 것을 저지할 수 있음은 물론 특히, 압축기를 비롯한 그 관련 부품의 설치, 그리고 운용에 따른 에너지 소모 등의 부담 등의 장애요인을 근원적으로 방지할 수 있다.That is, even if a plurality of working gas accommodating membrane pads 130a to 130c are applied as in this embodiment, the vibration force may be prevented from occurring when the propeller 120 operates to prevent vibration from occurring in the ship body 110. It can fundamentally prevent obstacles such as the installation of compressors and related parts, and the burden of energy consumption due to operation.
도 13은 본 발명의 제3 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박에서 작업기체 부피 조절부의 개략적인 구성도이고, 도 14는 도 13의 작업기체 부피 조절부의 제어블록도이다.FIG. 13 is a schematic block diagram of a work gas volume adjusting unit in a propeller cavitation organic vibration reducing vessel according to a third embodiment of the present invention, and FIG. 14 is a control block diagram of the work gas volume adjusting unit of FIG. 13.
이들 도면을 참조하면, 본 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박에는 작업기체 수용 멤브레인 패드(330)와 연결되며, 작업기체 수용 멤브레인 패드(330) 내에 수용되는 작업기체의 부피를 조절하는 작업기체 부피 조절부(350)가 더 갖춰질 수 있다.Referring to these drawings, the propeller cavitation organic vibration reduction type vessel according to the present embodiment is connected to the work gas accommodating membrane pad 330, and adjusts the volume of the work gas accommodated in the work gas accommodating membrane pad 330 The working gas volume adjusting unit 350 may be further provided.
본 실시예의 경우, 작업기체 부피 조절부(350)를 이용하여 작업기체 수용 멤브레인 패드(330) 상의 작업기체의 부피를 조절할 수 있기 때문에, 선체(110, 도 1 참조)에 1개의 작업기체 수용 멤브레인 패드(330)가 적용되더라도 프로펠러(120, 도 1 참조)의 회전수 변화에 따른 가진 주파수 대역 변화에 대해 가변제어할 수 있다. 즉 선박의 운항 시 프로펠러(120)의 회전수가 변화되더라도 변화된 프로펠러(120)의 회전수에 대응되는 주파수 대역 모두에 대하여 진동 저감의 효과를 제공할 수 있다. 쉽게 표현하여 프로펠러(120)의 회전수가 변화되더라도 선체(110)의 진동을 저감시킬 수 있다.In the present embodiment, since the volume of the working gas on the working gas receiving membrane pad 330 can be adjusted using the working gas volume adjusting unit 350, one working gas containing membrane is attached to the hull 110 (see FIG. 1). Even if the pad 330 is applied, it is possible to variably control the change in the excitation frequency band according to the change in the rotation speed of the propeller 120 (see FIG. That is, even if the rotational speed of the propeller 120 changes during the operation of the ship, it is possible to provide an effect of reducing vibration for all the frequency bands corresponding to the rotational speed of the changed propeller 120. Easily represented, even if the rotational speed of the propeller 120 is changed, the vibration of the hull 110 can be reduced.
선체(110)의 후미에는 선체(110)의 추진을 위한 프로펠러(120)가 마련되는데, 본 실시예에서 프로펠러(120)에는 프로펠러 회전수 감지기(370)가 연결되어 프로펠러(120)의 회전수(RPM)를 감지한다.The rear end of the hull 110 is provided with a propeller 120 for the propulsion of the hull 110, in this embodiment the propeller rotation speed sensor 370 is connected to the propeller 120 is the number of revolutions of the propeller 120 ( RPM).
한편, 앞서 기술한 [수학식 1]과 도 7을 다시 참조하면, 프로펠러(120)의 저감 주파수 대역 f는 공기부피(반지름, a)와 반비례하는 것을 알 수 있으며, 또한 작업기체 수용 멤브레인 패드(330) 1개당 1개의 주파수 대역에만 적용 가능함을 알 수 있다.Meanwhile, referring back to Equation 1 and FIG. 7, the reduced frequency band f of the propeller 120 may be in inverse proportion to the air volume (radius, a). 330) It can be seen that only applicable to one frequency band per one.
하지만, 실제 선박을 운행하다 보면 컨트롤해야 하는 주파수 대역이 2개 이상일 경우가 많다.However, when operating an actual ship, there are many cases where there are two or more frequency bands to be controlled.
선박을 운항함에 있어 프로펠러(120)의 회전수(RPM)는 계속적으로 변화될 수밖에 없기 때문에 주파수 대역이 1개가 아니라 N개(N은 자연수)의 주파수 대역을 컨트롤해야 할 필요성이 높다.Since the number of revolutions (RPM) of the propeller 120 is constantly changing in operating a ship, it is highly necessary to control N frequency bands (N is a natural number) instead of one frequency band.
이 경우, 작업기체 수용 멤브레인 패드(330) 1개만을 통해서는 1개의 특정 주파수 대역만을 컨트롤할 수밖에 없다.In this case, only one specific frequency band can be controlled through only one working gas receiving membrane pad 330.
때문에, N개의 주파수 대역을 컨트롤하려면 전술한 도 12처럼 적용되는 주파수 대역의 개수(N)만큼 작업기체 수용 멤브레인 패드(330)를 부착시켜 사용하거나 본 실시예처럼 작업기체 부피 조절부(350)를 이용하여 작업기체 수용 멤브레인 패드(330) 상의 작업기체의 부피를 조절하면 된다.Therefore, in order to control the N frequency bands, the work gas accommodating membrane pad 330 may be attached by using the number N of the frequency bands applied as shown in FIG. 12, or the work gas volume adjusting part 350 may be used as in this embodiment. The volume of the working gas on the working gas receiving membrane pad 330 may be adjusted.
본 실시예처럼 작업기체 부피 조절부(350)를 적용할 경우, 1개의 작업기체 수용 멤브레인 패드(330)가 적용되더라도 프로펠러(120)의 회전수 변화에 따른 가진 주파수 대역 변화에 대해 가변제어할 수 있다. 따라서 프로펠러(120)가 어떠한 회전수로 회전되더라도 선체(110)에 형성되는 진동을 저감시킬 수 있다.When the working gas volume adjusting unit 350 is applied as in the present embodiment, even if one working gas accommodating membrane pad 330 is applied, it is possible to variably control the variation of the excitation frequency band according to the rotational speed of the propeller 120. have. Therefore, even if the propeller 120 is rotated at any rotational speed it can reduce the vibration formed in the hull 110.
본 실시예의 선박에 적용되는 작업기체 부피 조절부(350)는 작업기체 수용 멤브레인 패드(330)와 연결되며, 프로펠러(120)의 회전수 변화에 따른 가진 주파수 대역 변화에 대해 가변제어할 수 있도록 작업기체 수용 멤브레인 패드(330)의 작업기체 주머니(332) 내에 수용되는 작업기체의 부피를 조절하는 역할을 한다.The working gas volume adjusting unit 350 applied to the ship of the present embodiment is connected to the working gas receiving membrane pad 330 and works to variably control the excitation frequency band according to the rotational speed of the propeller 120. It serves to adjust the volume of the working gas accommodated in the working gas bag 332 of the gas receiving membrane pad 330.
이러한 작업기체 부피 조절부(350)는 작업기체 리시버(351, receiver), 정압기(352, regulator), 체크 밸브(353), 제1 및 제2 밸브(354,355, valve), 압력 게이지(358), 프로펠러 회전수 감지기(370), 그리고 컨트롤러(360)를 포함한다.The work gas volume control unit 350 is a work gas receiver 351, a receiver, a regulator (352), a check valve (353), the first and second valves (354, 355, valve), a pressure gauge (358), And a propeller rotation speed detector 370 and a controller 360.
작업기체 리시버(351, receiver)는 작업기체가 저장되고, 컨트롤러(360)의 컨트롤에 의해 저장된 작업기체를 공급하는 역할을 한다. 작업기체 리시버(351)는 도시하지 않은 컴프레서와 연결될 수 있다.The work gas receiver 351 (receiver) stores the work gas and serves to supply the stored work gas by the control of the controller 360. The work gas receiver 351 may be connected to a compressor (not shown).
이러한 작업기체 리시버(351)와 작업기체 수용 멤브레인 패드(330)의 작업기체 주머니(332)는 작업기체 메인라인(356)에 연결된다.The work gas receiver 351 and the work gas pocket 332 of the work gas accommodating membrane pad 330 are connected to the work gas main line 356.
작업기체 메인라인(356)의 일측에는 작업기체 메인라인(356)에 교차되는 작업기체 분기라인(357)이 연결된다.One side of the work gas main line 356 is connected to the work gas branch line 357 intersecting with the work gas main line 356.
정압기(352, regulator)는 작업기체 메인라인(356) 상에 마련되며, 작업기체 리시버(351)를 통해 공급되는 작업기체에 대하여 정압을 유지시키는 역할을 한다.The regulator 352 is provided on the work gas main line 356 and serves to maintain a constant pressure with respect to the work gas supplied through the work gas receiver 351.
체크 밸브(353)는 정압기(352)와 제1 밸브(354) 사이의 작업기체 메인라인(356) 상에 마련되어 작업기체의 역류를 방지하는 역할을 한다.The check valve 353 is provided on the work gas main line 356 between the pressure regulator 352 and the first valve 354 to prevent backflow of the work gas.
제1 밸브(354)는 작업기체 메인라인(356) 상에 마련되며, 작업기체 메인라인(356) 상에서의 작업기체의 흐름을 선택적으로 단속하는 역할을 한다.The first valve 354 is provided on the work gas main line 356 and serves to selectively interrupt the flow of the work gas on the work gas main line 356.
제2 밸브(355)는 작업기체 메인라인(356)에 대하여 분기되는 작업기체 분기라인(357)에 마련되며, 작업기체 분기라인(357) 상에서의 작업기체의 흐름을 선택적으로 단속하는 역할을 한다.The second valve 355 is provided in the work gas branch line 357 branched with respect to the work gas main line 356 and serves to selectively interrupt the flow of the work gas on the work gas branch line 357. .
압력 게이지(358)는 제1 밸브(354)와 작업기체 수용 멤브레인 패드(330)의 작업기체 주머니(332) 사이의 작업기체 메인라인(356) 상에 마련되어 작업기체 수용 멤브레인 패드(330)의 작업기체 주머니(332)로 공급되는 작업기체의 압력을 측정하는 역할을 한다.The pressure gauge 358 is provided on the work gas main line 356 between the first valve 354 and the work gas pocket 332 of the work gas accommodating membrane pad 330 to work on the work gas accommodating membrane pad 330. It serves to measure the pressure of the working gas supplied to the gas bag (332).
프로펠러 회전수 감지기(370)는 프로펠러(120)의 회전수(RPM)를 감지하는 역할을 한다. 프로펠러 회전수 감지기(370)는 무선 또는 유선일 수 있다.The propeller rotation speed sensor 370 detects the rotation speed (RPM) of the propeller 120. The propeller rotation speed sensor 370 may be wireless or wired.
그리고 컨트롤러(360)는 프로펠러 회전수 감지기(370)의 정보에 기초하여 작업기체 리시버(351), 제1 밸브(354) 및 제2 밸브(355)의 동작을 컨트롤한다.The controller 360 controls the operation of the work gas receiver 351, the first valve 354, and the second valve 355 based on the information of the propeller rotation speed sensor 370.
전술한 도 9의 그래프를 참조하면, 진동 저감의 효과가 나타나는 주파수가 작업기체 수용 멤브레인 패드(330)의 작업기체 주머니(332) 내에 수용되는 작업기체의 부피 증가에 따라 160Hz, 155Hz, 145Hz 대역으로 이동하고 있는 것을 알 수 있다. 다시 말해, 작업기체 수용 멤브레인 패드(330)의 작업기체 주머니(332)의 사이즈(size)가 클수록 저감 성능이 나타나는 주파수가 저 주파수 대역(또는 그에 대응되는 프로펠러(120)의 회전수)으로 이동하는 것을 볼 수 있다.Referring to the graph of FIG. 9 described above, the frequency in which the vibration reduction effect is exhibited is in the range of 160 Hz, 155 Hz, and 145 Hz as the volume of the working gas accommodated in the working gas bag 332 of the working gas accommodating membrane pad 330 is increased. You can see that it is moving. In other words, as the size of the work gas bag 332 of the work gas accommodating membrane pad 330 increases, the frequency at which the reduction performance is exhibited moves to a low frequency band (or a corresponding number of revolutions of the propeller 120). You can see that.
따라서 본 실시예의 경우, 컨트롤러(360)가 프로펠러(120)의 회전수에 따라 그에 대응되게 작업기체 수용 멤브레인 패드(330)의 작업기체 주머니(332)의 부피를 증가 또는 감소시키도록 작업기체 리시버(351), 제1 밸브(354) 및 제2 밸브(355)의 동작을 컨트롤하고 있는 것이다.Therefore, in this embodiment, the controller 360 is to increase or decrease the volume of the work gas bag 332 of the work gas accommodating membrane pad 330 according to the rotational speed of the propeller 120 (work gas receiver ( 351, the operations of the first valve 354 and the second valve 355 are controlled.
이러한 역할을 수행하는 컨트롤러(360)는 중앙처리장치(361, CPU), 메모리(362, MEMORY), 서포트 회로(363, SUPPORT CIRCUIT)를 포함할 수 있다.The controller 360 performing this role may include a central processing unit 361 (CPU), a memory 362 (MEMORY), and a support circuit 363 (SUPPORT CIRCUIT).
중앙처리장치(361)는 본 실시예에서 프로펠러 회전수 감지기(370)의 정보에 기초하여 작업기체 리시버(351), 제1 밸브(354) 및 제2 밸브(355)의 동작을 컨트롤하기 위해서 산업적으로 적용될 수 있는 다양한 컴퓨터 프로세서들 중 하나일 수 있다.The central processing unit 361 is industrially used to control the operation of the work gas receiver 351, the first valve 354 and the second valve 355 based on the information of the propeller rotation speed sensor 370 in this embodiment. It may be one of various computer processors that can be applied to.
메모리(362, MEMORY)는 중앙처리장치(361)와 연결된다. 메모리(362)는 컴퓨터로 읽을 수 있는 기록매체로서 로컬 또는 원격지에 설치될 수 있으며, 예를 들면 랜덤 액세스 메모리(RAM), ROM, 플로피 디스크, 하드 디스크 또는 임의의 디지털 저장 형태와 같이 쉽게 이용가능한 적어도 하나 이상의 메모리이다.The memory 362 is connected to the central processing unit 361. The memory 362 may be installed locally or remotely as a computer readable recording medium, and may be readily available, such as, for example, random access memory (RAM), ROM, floppy disk, hard disk, or any digital storage form. At least one or more memories.
서포트 회로(363, SUPPORT CIRCUIT)는 중앙처리장치(361)와 결합되어 프로세서의 전형적인 동작을 지원한다. 이러한 서포트 회로(363)는 캐시, 파워 서플라이, 클록 회로, 입/출력 회로, 서브시스템 등을 포함할 수 있다.The support circuit 363 (SUPPORT CIRCUIT) is combined with the central processing unit 361 to support typical operation of the processor. Such support circuits 363 may include caches, power supplies, clock circuits, input / output circuits, subsystems, and the like.
본 실시예에서 컨트롤러(360)는 프로펠러 회전수 감지기(370)의 정보에 기초하여 작업기체 리시버(351), 제1 밸브(354) 및 제2 밸브(355)의 동작을 컨트롤한다. 이때, 컨트롤러(360)가 프로펠러 회전수 감지기(370)의 정보에 기초하여 작업기체 리시버(351), 제1 밸브(354) 및 제2 밸브(355)의 동작을 컨트롤하는 일련의 프로세스 등은 메모리(362)에 저장될 수 있다. 전형적으로는 소프트웨어 루틴이 메모리(362)에 저장될 수 있다. 소프트웨어 루틴은 또한 다른 중앙처리장치(미도시)에 의해서 저장되거나 실행될 수 있다.In this embodiment, the controller 360 controls the operation of the work gas receiver 351, the first valve 354, and the second valve 355 based on the information of the propeller rotation speed sensor 370. At this time, a series of processes in which the controller 360 controls the operation of the work gas receiver 351, the first valve 354, and the second valve 355 based on the information of the propeller rotation speed sensor 370 is a memory. 362 may be stored. Typically software routines may be stored in memory 362. Software routines may also be stored or executed by other central processing units (not shown).
본 발명에 따른 프로세스는 소프트웨어 루틴에 의해 실행되는 것으로 설명하였지만, 본 발명의 프로세스들 중 적어도 일부는 하드웨어에 의해 수행되는 것도 가능하다. 이처럼, 본 발명의 프로세스들은 컴퓨터 시스템 상에서 수행되는 소프트웨어로 구현되거나 또는 집적 회로와 같은 하드웨어로 구현되거나 또는 소프트웨어와 하드웨어의 조합에 의해서 구현될 수 있다.Although the process according to the invention has been described as being executed by software routines, at least some of the processes of the invention may be performed by hardware. As such, the processes of the present invention may be implemented in software running on a computer system, in hardware such as integrated circuits, or by a combination of software and hardware.
이상 설명한 바와 같이, 본 실시예처럼 작업기체 부피 조절부(350)를 이용하여 작업기체 수용 멤브레인 패드(330) 상의 작업기체의 부피를 조절할 경우, 설사, 1개의 작업기체 수용 멤브레인 패드(330)가 적용되더라도 프로펠러(120)의 회전수(RPM) 변화에 따른 가진 주파수 대역 변화에 대해 가변제어할 수 있다.As described above, when adjusting the volume of the working gas on the working gas receiving membrane pad 330 by using the working gas volume adjusting unit 350, even if one working gas receiving membrane pad 330 is Even if it is applied, it is possible to variably control the change in the excitation frequency band according to the rotational speed (RPM) of the propeller 120.
도 15는 본 발명의 제4 실시예에 따른 프로펠러 캐비테이션 유기 기진력 저감형 선박의 요부 확대도이고, 도 16은 도 15의 B 영역의 확대 구조도이며, 도 17은 도 16의 분해도이다.15 is an enlarged view illustrating main parts of a propeller cavitation organic vibration reduction type vessel according to a fourth embodiment of the present invention, FIG. 16 is an enlarged structural diagram of region B of FIG. 15, and FIG. 17 is an exploded view of FIG. 16.
이들 도면을 참조하면, 본 실시예의 경우, 작업기체 수용 멤브레인 패드(430)는 선체(410)의 바텀 플러그 모듈(450)에 결합될 수 있다.Referring to these drawings, in the present embodiment, the working gas receiving membrane pad 430 may be coupled to the bottom plug module 450 of the hull 410.
바텀 플러그 모듈(450)은 선체(410)에 설치되어 있는 구조물인데, 이처럼 바텀 플러그 모듈(450)에 작업기체 수용 멤브레인 패드(430)를 결합시키게 되면 작업기체 수용 멤브레인 패드(430)의 결합을 위한 별도의 구조물이나 부품이 필요치 않다는 이점이 있다.The bottom plug module 450 is a structure installed in the hull 410. When the bottom plug module 450 is coupled to the work gas accommodating membrane pad 430, the coupling of the work gas accommodating membrane pad 430 is performed. The advantage is that no separate structure or component is required.
바텀 플러그 모듈(450)에 대한 작업기체 수용 멤브레인 패드(430)의 결합구조를 설명하기 전에 바텀 플러그 모듈(450)에 대해 먼저 살펴본다.Before describing the coupling structure of the working gas receiving membrane pad 430 to the bottom plug module 450, the bottom plug module 450 will be described.
바텀 플러그 모듈(450)은 선체(410)의 벽면 곳곳에 장착되는 부품으로서, 선체(410) 내로 유입된 물을 배수시키는 마개의 역할을 수행한다. 바텀 플러그 모듈(450)은 제거되는 부품이 아니다.The bottom plug module 450 is a component mounted on the wall surface of the hull 410, and serves as a stopper for draining the water introduced into the hull 410. The bottom plug module 450 is not a component to be removed.
이러한 바텀 플러그 모듈(450)은 선체(410)에 결합되는 바텀 소켓(460, bottom socket)과, 바텀 소켓(460)에 착탈 가능하게 결합되는 바텀 플러그(470, bottom plug)를 포함한다.The bottom plug module 450 includes a bottom socket 460 coupled to the hull 410, and a bottom plug 470 detachably coupled to the bottom socket 460.
바텀 소켓(460)이 해당 위치에 결합되기 위해 선체(410)에는 바텀 소켓(460)의 결합을 위한 소켓 결합부(411)가 형성된다.In order to couple the bottom socket 460 to the corresponding position, the hull 410 is provided with a socket coupling part 411 for coupling the bottom socket 460.
소켓 결합부(411)의 외벽에는 제1 경사면(412)과 제1 수평면(413)이 형성되며, 이에 대응되게 바텀 소켓(460)에도 제2 경사면(461)과 제2 수평면(462)이 형성된다.The first inclined surface 412 and the first horizontal surface 413 are formed on the outer wall of the socket coupling part 411, and the second inclined surface 461 and the second horizontal surface 462 are also formed in the bottom socket 460. do.
이와 같은 구조에 의해 바텀 소켓(460)은 소켓 결합부(411)에 결합될 수 있다. 이때, 바텀 소켓(460)이 소켓 결합부(411)에 나사 방식으로 조립되거나 아니면 압입되는 것이 쉽게 분리되지 않도록 하는 면에서 유리할 수 있다.By this structure, the bottom socket 460 may be coupled to the socket coupling part 411. At this time, the bottom socket 460 may be advantageous in that it is not assembled or screwed into the socket coupling portion 411 is not easily separated.
바텀 플러그(470)는 바텀 소켓(460)에 착탈 가능하게 결합되는 구조물이다. 이러한 바텀 플러그(470)는 바텀 소켓(460)의 소켓 관통부(463)에 결합되는 플러그 헤드(471)와, 플러그 헤드(471)에 연결되며, 바텀 소켓(460)을 통해 선체(410)의 외벽으로 노출되는 나사식 플러그 샤프트(472)를 포함한다.The bottom plug 470 is a structure detachably coupled to the bottom socket 460. The bottom plug 470 is connected to the plug head 471 and the plug head 471 coupled to the socket through part 463 of the bottom socket 460, and the bottom of the hull 410 through the bottom socket 460. A threaded plug shaft 472 is exposed to the outer wall.
플러그 헤드(471)와 바텀 소켓(460)에는 볼트(Bolt)가 체결되도록 상호간 연통되는 다수의 제1 및 제2 통공(471a,160a)이 형성된다.The plug head 471 and the bottom socket 460 are provided with a plurality of first and second through holes 471a and 160a which communicate with each other so that the bolt is fastened.
한편, 이와 같은 구조에서 작업기체 수용 멤브레인 패드(430)는 바텀 플러그(470)의 나사식 플러그 샤프트(472)에 착탈 가능하게 결합될 수 있다.On the other hand, in such a structure, the working gas receiving membrane pad 430 may be detachably coupled to the threaded plug shaft 472 of the bottom plug 470.
작업기체 수용 멤브레인 패드(430)의 패드 바디(431)가 나사식 플러그 샤프트(472)에 착탈 가능하게 결합되기 위해, 고정너트(481), 밀봉 개스킷(482), 그리고 보강 플레이트(483) 등의 구조물이 요구된다.In order to detachably couple the pad body 431 of the work gas accommodating membrane pad 430 to the threaded plug shaft 472, the fixing nut 481, the sealing gasket 482, and the reinforcing plate 483 may be used. A structure is required.
고정너트(481)는 나사식 플러그 샤프트(472)에 작업기체 수용 멤브레인 패드(430)의 패드 바디(431), 밀봉 개스킷(482), 그리고 보강 플레이트(483)가 차례로 끼워진 상태에서 이들을 고정시키는 역할을 한다.The fixing nut 481 fixes the pad body 431, the sealing gasket 482, and the reinforcing plate 483 of the work gas accommodating membrane pad 430 to the threaded plug shaft 472. Do it.
즉 고정너트(481)는 선체(410)의 바깥쪽에서 나사식 플러그 샤프트(472)에 체결되어 작업기체 수용 멤브레인 패드(430)의 패드 바디(431), 밀봉 개스킷(482), 그리고 보강 플레이트(483)를 고정시키는 역할을 한다.That is, the fixing nut 481 is fastened to the threaded plug shaft 472 on the outside of the hull 410 so that the pad body 431, the sealing gasket 482, and the reinforcing plate 483 of the membrane pad 430 for the work gas are accommodated. ) Is fixed.
고정너트(481)는 임으로 풀리지 않는 풀림방지기능을 갖는 너트로 적용되는 것이 바람직하다.Fixing nut 481 is preferably applied to a nut having a loosening prevention function that is not released.
밀봉 개스킷(482)은 나사식 플러그 샤프트(472)로 삽입되는 개스킷 홀(451a)을 구비하며, 나사식 플러그 샤프트(472)에 밀착되어 패드 바디 홀(431a)을 밀봉하는 역할을 한다.The sealing gasket 482 has a gasket hole 451a inserted into the threaded plug shaft 472 and is in close contact with the threaded plug shaft 472 to seal the pad body hole 431a.
밀봉 개스킷(482)은 약간 탄성이 있는 고무 재질로 제작될 수 있다.The sealing gasket 482 may be made of a rubber material that is slightly elastic.
보강 플레이트(483)는 나사식 플러그 샤프트(472)로 삽입되는 플레이트 홀(483a)을 구비하며, 밀봉 개스킷(482)과 고정너트(481) 사이에 배치되어 패드 바디(431)를 보강하는 역할을 한다.The reinforcement plate 483 has a plate hole 483a inserted into the threaded plug shaft 472 and is disposed between the sealing gasket 482 and the fixing nut 481 to reinforce the pad body 431. do.
이상 설명한 것처럼 본 실시예의 경우, 바텀 플러그(470)의 구조상 바텀 플러그(470)의 나사식 플러그 샤프트(472)가 선체(410)의 외벽으로 미리 노출되어 있는 상태이기 때문에 설사, 선체(410)의 바닥이 물에 잠긴 상태일지라도 나사식 플러그 샤프트(472)에 패드 바디(431), 밀봉 개스킷(482), 그리고 보강 플레이트(483)를 차례로 끼우고 고정너트(481)로 마감하면 되기 때문에 작업이 어렵지 않다.As described above, in the present embodiment, since the threaded plug shaft 472 of the bottom plug 470 is previously exposed to the outer wall of the hull 410 in the structure of the bottom plug 470, Even if the bottom is submerged in water, it is difficult to insert the pad body 431, the sealing gasket 482, and the reinforcing plate 483 into the threaded plug shaft 472 and finish with the fixing nut 481. not.
만약, 작업기체 주머니(432)가 찢어져서 작업기체 수용 멤브레인 패드(430)를 교체해야 하는 경우, 전술한 역순으로 작업하여 찢어진 작업기체 수용 멤브레인 패드를 빼내고 다시 새로운 작업기체 수용 멤브레인 패드를 제자리에 끼워 넣으면 되기 때문에 작업이 어렵지는 않다.If the work gas bag 432 is torn and the work gas accommodating membrane pad 430 needs to be replaced, the work gas accommodating membrane pad may be removed in the reverse order as described above, and the new work gas accommodating membrane pad may be put back into place. It is not difficult to work.
이상 설명한 바와 같이, 본 실시예처럼 선체(410)에 이미 적용되어 있는 바텀 플러그 모듈(450)을 활용하여 작업기체 수용 멤브레인 패드(430)를 선체(410)에 설치할 경우, 작업기체 수용 멤브레인 패드(420)의 설치 또는 유지보수 작업을 용이하고 편리하게 수행할 수 있다.As described above, when the working gas receiving membrane pad 430 is installed on the hull 410 by utilizing the bottom plug module 450 already applied to the hull 410 as in this embodiment, the working gas receiving membrane pad ( Installation or maintenance work of the 420 can be easily and conveniently performed.
이와 같이 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.As described above, the present invention is not limited to the described embodiments, and various modifications and changes can be made without departing from the spirit and scope of the present invention, which will be apparent to those skilled in the art. Therefore, such modifications or variations will have to be belong to the claims of the present invention.
본 발명은 상선, 군함, 어선, 운반선, 드릴쉽, 크루즈선 및 특수 작업선 등을 비롯하여 부유식 해상 구조물 등을 모두 포함하는 선박에 적용되어 선체에 진동이 발생되는 것을 저지할 수 있도록 하는데 이용될 수 있다.The present invention is applied to ships including all floating marine structures, including merchant ships, warships, fishing vessels, carriers, drillships, cruise ships and special working ships to be used to prevent the occurrence of vibration in the hull Can be.

Claims (15)

  1. 프로펠러가 마련되는 선체; 및A hull provided with a propeller; And
    상기 프로펠러에 인접된 상기 선체에 결합되며, 상기 프로펠러의 회전 시 발생되는 입사파와 상쇄간섭(Destructive Interference) 현상을 일으키기 위한 반사파를 발생시키는 작업기체가 일측에 수용되는 작업기체 수용 멤브레인 패드를 포함하는 선박.A vessel including a work gas accommodating membrane pad coupled to the hull adjacent to the propeller, the work gas generating a reflected gas for generating an incident wave and a destructive interference phenomenon generated during rotation of the propeller is accommodated on one side. .
  2. 제1항에 있어서,The method of claim 1,
    상기 작업기체 수용 멤브레인 패드의 재질은 음향 임피던스(Acoustic impedance)가 해수(water)와 유사한 재질인 선박.The material of the working gas receiving membrane pad is a vessel in which the acoustic impedance (Acoustic impedance) is similar to seawater (water).
  3. 제1항에 있어서,The method of claim 1,
    상기 작업기체 수용 멤브레인 패드의 재질은 고무(rubber)이며,The work gas receiving membrane pad is made of rubber (rubber),
    상기 작업기체는 공기(air)인 선박.The working gas is a ship (air).
  4. 제1항에 있어서,The method of claim 1,
    상기 작업기체 수용 멤브레인 패드는,The working gas receiving membrane pad,
    상기 선체에 착탈 가능하게 결합되는 패드 바디; 및A pad body detachably coupled to the hull; And
    상기 패드 바디의 일측에 형성되어 상기 작업기체가 밀폐되어 수용되는 작업기체 주머니를 포함하는 선박.And a work gas pocket formed on one side of the pad body to accommodate the work gas in a sealed manner.
  5. 제1항에 있어서,The method of claim 1,
    상기 작업기체 수용 멤브레인 패드는 상기 프로펠러의 상부 측의 상기 선체 벽면에 결합되는 선박.And the working gas receiving membrane pad is coupled to the hull wall on the upper side of the propeller.
  6. 제1항에 있어서,The method of claim 1,
    상기 작업기체 수용 멤브레인 패드는 상기 프로펠러에 이웃된 상기 선체의 벽면 다수 곳에 결합되는 선박.The work gas receiving membrane pad is coupled to a plurality of wall surface of the hull adjacent to the propeller.
  7. 제6항에 있어서,The method of claim 6,
    상기 선체의 벽면 다수 곳에 결합되는 상기 작업기체 수용 멤브레인 패드들의 작업기체 사이즈는 서로 다르게 마련되는 선박.And a working gas size of the working gas receiving membrane pads coupled to a plurality of wall surfaces of the hull.
  8. 제6항에 있어서,The method of claim 6,
    상기 프로펠러가 N개(N은 자연수) 주파수 대역의 진동성분을 발생시키되 이를 제어해야 하는 경우, 상기 N개의 상기 작업기체 수용 멤브레인 패드가 상기 프로펠러에 이웃된 상기 선체의 벽면에 부착되어 사용되는 선박.When the propeller generates a vibration component of the N frequency band (N is a natural number) to control this, the N working gas receiving membrane pad is attached to the wall surface of the hull adjacent to the propeller.
  9. 제1항에 있어서,The method of claim 1,
    상기 작업기체 수용 멤브레인 패드와 연결되며, 상기 프로펠러의 회전수(RPM) 변화에 따른 가진 주파수 대역 변화에 대해 가변제어할 수 있도록 상기 작업기체 수용 멤브레인 패드 내에 수용되는 상기 작업기체의 부피를 조절하는 작업기체 부피 조절부를 더 포함하는 프로펠러 캐비테이션 유기 기진력 저감형 선박.A volume of the work gas accommodated in the work gas accommodating membrane pad connected to the work gas accommodating membrane pad so as to variably control an excitation frequency band change due to a change in the rotational speed (RPM) of the propeller; Propeller cavitation organic vibration reduction type vessel further comprising a gas volume control unit.
  10. 제9항에 있어서,The method of claim 9,
    상기 작업기체 부피 조절부는,The working gas volume control unit,
    상기 작업기체가 저장되는 작업기체 리시버(receiver);A work gas receiver in which the work gas is stored;
    상기 작업기체 리시버와 상기 작업기체 수용 멤브레인 패드를 연결하는 작업기체 메인라인; 및A working gas main line connecting the working gas receiver and the working gas receiving membrane pad; And
    상기 작업기체 메인라인 상에 마련되며, 상기 작업기체 메인라인 상에서의 상기 작업기체의 흐름을 선택적으로 단속하는 제1 밸브(valve)를 포함하는 프로펠러 캐비테이션 유기 기진력 저감형 선박.A propeller cavitation organic vibration reduction vessel provided on the work gas mainline, the valve comprising a first valve for selectively controlling the flow of the work gas on the work gas mainline.
  11. 제10항에 있어서,The method of claim 10,
    상기 작업기체 부피 조절부는,The working gas volume control unit,
    상기 작업기체 메인라인 상에 마련되며, 상기 작업기체 리시버를 통해 공급되는 작업기체에 대하여 정압을 유지시키는 정압기(regulator);A regulator provided on the main body of the working gas and maintaining a constant pressure with respect to the working gas supplied through the working gas receiver;
    상기 정압기와 상기 제1 밸브 사이의 상기 작업기체 메인라인 상에 마련되어 상기 작업기체의 역류를 방지하는 체크 밸브;A check valve provided on the work gas mainline between the constant pressure and the first valve to prevent backflow of the work gas;
    상기 작업기체 메인라인에 대하여 분기되는 작업기체 분기라인에 마련되며, 상기 작업기체 분기라인 상에서의 상기 작업기체의 흐름을 선택적으로 단속하는 제2 밸브; 및A second valve provided at a work gas branch line branched from the main body of the work gas, the second valve selectively interrupting the flow of the work gas on the work gas branch line; And
    상기 제1 밸브와 상기 작업기체 수용 멤브레인 패드 사이의 상기 작업기체 메인라인 상에 마련되어 상기 작업기체 수용 멤브레인 패드로 공급되는 작업기체의 압력을 측정하는 압력 게이지를 더 포함하는 프로펠러 캐비테이션 유기 기진력 저감형 선박.A propeller cavitation organic vibration suppression type further includes a pressure gauge provided on the work gas mainline between the first valve and the work gas accommodating membrane pad to measure the pressure of the work gas supplied to the work gas accommodating membrane pad. Ship.
  12. 제1항에 있어서,The method of claim 1,
    상기 작업기체 부피 조절부는,The working gas volume control unit,
    상기 프로펠러의 회전수를 감지하는 프로펠러 회전수 감지기; 및A propeller rotation speed sensor for sensing the rotation speed of the propeller; And
    상기 프로펠러 회전수 감지기로부터의 정보에 기초하여 상기 작업기체 리시버, 상기 제1 밸브 및 상기 제2 밸브의 동작을 컨트롤하는 컨트롤러를 더 포함하는 프로펠러 캐비테이션 유기 기진력 저감형 선박.And a controller for controlling the operation of the work gas receiver, the first valve and the second valve based on information from the propeller rotation speed detector.
  13. 제1항에 있어서,The method of claim 1,
    상기 선체에 결합되는 바텀 소켓(bottom socket)과, 상기 바텀 소켓에 착탈 가능하게 결합되는 바텀 플러그(bottom plug)를 포함하는 바텀 플러그 모듈(bottom plug module)을 더 포함하며,And a bottom plug module including a bottom socket coupled to the hull, and a bottom plug detachably coupled to the bottom socket.
    상기 작업기체 수용 멤브레인 패드는 상기 바텀 플러그 모듈에 착탈 가능하게 결합되는 것을 특징으로 하는 프로펠러 캐비테이션 유기 기진력 저감형 선박.The work gas accommodating membrane pad is propeller cavitation organic vibration reduction vessel, characterized in that detachable coupling to the bottom plug module.
  14. 제13항에 있어서,The method of claim 13,
    상기 바텀 플러그는,The bottom plug,
    상기 바텀 소켓의 소켓 관통부에 결합되는 플러그 헤드; 및A plug head coupled to the socket through portion of the bottom socket; And
    상기 플러그 헤드에 연결되며, 상기 바텀 소켓을 통해 상기 선체의 외벽으로 노출되는 나사식 플러그 샤프트를 포함하며,A screw plug shaft connected to the plug head and exposed to the outer wall of the hull through the bottom socket;
    상기 작업기체 수용 멤브레인 패드는 상기 바텀 플러그의 나사식 플러그 샤프트에 삽입되는 다수의 패드 바디 홀을 구비하는 것을 특징으로 하는 프로펠러 캐비테이션 유기 기진력 저감형 선박.And the work gas accommodating membrane pad has a plurality of pad body holes inserted into the threaded plug shaft of the bottom plug.
  15. 제14항에 있어서,The method of claim 14,
    상기 선체의 바깥쪽에서 상기 나사식 플러그 샤프트에 체결되어 상기 작업기체 수용 멤브레인 패드를 고정시키는 고정너트;A fixing nut fastened to the threaded plug shaft at an outer side of the hull to fix the work gas accommodating membrane pad;
    상기 나사식 플러그 샤프트로 삽입되는 개스킷 홀을 구비하며, 상기 나사식 플러그 샤프트에 밀착되어 상기 패드 바디 홀을 밀봉하는 밀봉 개스킷; 및A sealing gasket having a gasket hole inserted into the screw plug shaft, the sealing gasket being in close contact with the screw plug shaft to seal the pad body hole; And
    상기 나사식 플러그 샤프트로 삽입되는 플레이트 홀을 구비하며, 상기 밀봉 개스킷과 상기 고정너트 사이에 배치되어 상기 작업기체 수용 멤브레인 패드를 보강하는 보강 플레이트를 더 포함하는 프로펠러 캐비테이션 유기 기진력 저감형 선박.And a reinforcing plate arranged between the sealing gasket and the fixing nut and reinforcing the work gas accommodating membrane pad, the plate hole being inserted into the threaded plug shaft.
PCT/KR2015/004354 2014-05-02 2015-04-29 Ship for reducing propeller cavitation-induced excitation force WO2015167263A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016564165A JP6275872B2 (en) 2014-05-02 2015-04-29 Propeller cavitation induced vibration reduction type ship
CN201580024060.XA CN106458307B (en) 2014-05-02 2015-04-29 For reducing the ship of exciting force caused by propeller cavitation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020140053289A KR20150126452A (en) 2014-05-02 2014-05-02 A ship for reducing vibromotive force
KR10-2014-0053289 2014-05-02
KR10-2014-0055216 2014-05-09
KR1020140055216A KR101607873B1 (en) 2014-05-09 2014-05-09 A ship for reducing vibromotive force
KR10-2014-0077115 2014-06-24
KR1020140077115A KR101607876B1 (en) 2014-06-24 2014-06-24 A ship for reducing vibromotive force

Publications (1)

Publication Number Publication Date
WO2015167263A1 true WO2015167263A1 (en) 2015-11-05

Family

ID=54358904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004354 WO2015167263A1 (en) 2014-05-02 2015-04-29 Ship for reducing propeller cavitation-induced excitation force

Country Status (3)

Country Link
JP (1) JP6275872B2 (en)
CN (1) CN106458307B (en)
WO (1) WO2015167263A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108838A1 (en) * 2015-12-22 2017-06-29 Rolls-Royce Marine As Hull having a compliant surface
WO2018156165A1 (en) * 2017-02-27 2018-08-30 General Electric Company Downstream surface features to attenuate propeller wake acoustic interactions
US10829206B2 (en) 2016-02-10 2020-11-10 General Electric Company Wing leading edge features to attenuate propeller wake-wing acoustic interactions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109229278B (en) * 2018-09-27 2021-03-05 广船国际有限公司 Ship vibration reduction structure and ship
JP7250659B2 (en) 2019-10-30 2023-04-03 株式会社丸山製作所 boom sprayer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032195U (en) * 1983-08-12 1985-03-05 石川島播磨重工業株式会社 pressure absorption device
JPS62194993A (en) * 1986-02-21 1987-08-27 Riichi Ogura Stern vibration preventing device
JPH08188192A (en) * 1995-01-10 1996-07-23 Mitsubishi Heavy Ind Ltd Propeller fluctuating pressure absorbing device for marine vessel
KR20110093570A (en) * 2010-02-11 2011-08-18 삼성중공업 주식회사 Ship with air bubble generator
KR20140000604U (en) * 2012-07-16 2014-01-28 현대중공업 주식회사 Bottom plug
KR20140045104A (en) * 2012-10-08 2014-04-16 삼성중공업 주식회사 A ship for reducing vibromotive force

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736551Y2 (en) * 1976-02-10 1982-08-12
JP2003205895A (en) * 2002-01-10 2003-07-22 Mitsubishi Heavy Ind Ltd Ship provided with damping device
KR20100008497A (en) * 2008-07-16 2010-01-26 삼성중공업 주식회사 Method and apparatus for controlling ship vibration induced by pressure fluctuation of propeller
JP5606128B2 (en) * 2010-04-01 2014-10-15 三菱重工業株式会社 Ship bubble recovery device
CN101992846B (en) * 2010-11-11 2013-06-19 南京恒兴达机电设备制造有限公司 Resistance and noise reducing device of side thruster
CN103842246A (en) * 2011-10-07 2014-06-04 三星重工业株式会社 Excitation force reducing type ship

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032195U (en) * 1983-08-12 1985-03-05 石川島播磨重工業株式会社 pressure absorption device
JPS62194993A (en) * 1986-02-21 1987-08-27 Riichi Ogura Stern vibration preventing device
JPH08188192A (en) * 1995-01-10 1996-07-23 Mitsubishi Heavy Ind Ltd Propeller fluctuating pressure absorbing device for marine vessel
KR20110093570A (en) * 2010-02-11 2011-08-18 삼성중공업 주식회사 Ship with air bubble generator
KR20140000604U (en) * 2012-07-16 2014-01-28 현대중공업 주식회사 Bottom plug
KR20140045104A (en) * 2012-10-08 2014-04-16 삼성중공업 주식회사 A ship for reducing vibromotive force

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108838A1 (en) * 2015-12-22 2017-06-29 Rolls-Royce Marine As Hull having a compliant surface
US10829206B2 (en) 2016-02-10 2020-11-10 General Electric Company Wing leading edge features to attenuate propeller wake-wing acoustic interactions
WO2018156165A1 (en) * 2017-02-27 2018-08-30 General Electric Company Downstream surface features to attenuate propeller wake acoustic interactions

Also Published As

Publication number Publication date
CN106458307B (en) 2019-01-04
JP2017513768A (en) 2017-06-01
CN106458307A (en) 2017-02-22
JP6275872B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
WO2015167263A1 (en) Ship for reducing propeller cavitation-induced excitation force
WO2013051915A1 (en) Excitation force reducing type ship
JPH1071993A (en) Vibration control device for marine vessel
ATE262443T1 (en) VERTICAL TRIM SYSTEM FOR MARINE OUTBOARD DRIVES
WO2019045177A1 (en) Hydrosphere monitoring system and hydrosphere monitoring device
JPH05319386A (en) Marine propeller
KR101616418B1 (en) A ship for reducing vibromotive force
CN105836091A (en) Shock-absorbing and rainproof device for exhaust pipe
WO2012138185A2 (en) Sonar device attached to hull and vessel having same
WO2017135588A2 (en) Inertial stabilizer for maritime transportation means and method for controlling same
KR101616992B1 (en) A ship for reducing vibromotive force
KR20040099488A (en) A fixing apparatus for ADCP
JP3337253B2 (en) Ship propulsion device
KR101616409B1 (en) A ship for reducing vibromotive force
WO2017048055A1 (en) Offshore construction comprising flow attenuation structure
JP4105825B2 (en) Outboard motor excessive thrust detection device
KR101607876B1 (en) A ship for reducing vibromotive force
KR101607873B1 (en) A ship for reducing vibromotive force
KR101616419B1 (en) A ship for reducing vibromotive force
KR102610005B1 (en) A method for controlling rotation velocity of ship propeller to reduce cavitation
KR101616420B1 (en) A ship for reducing vibromotive force
KR101616411B1 (en) A ship for reducing vibromotive force
CN212508748U (en) Automatic liquid feeding system of transducer water tank
KR101616410B1 (en) A ship for reducing vibromotive force
KR101616415B1 (en) A ship for reducing vibromotive force

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786358

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016564165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/02/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15786358

Country of ref document: EP

Kind code of ref document: A1