WO2015167015A1 - Gyro sensor - Google Patents

Gyro sensor Download PDF

Info

Publication number
WO2015167015A1
WO2015167015A1 PCT/JP2015/063101 JP2015063101W WO2015167015A1 WO 2015167015 A1 WO2015167015 A1 WO 2015167015A1 JP 2015063101 W JP2015063101 W JP 2015063101W WO 2015167015 A1 WO2015167015 A1 WO 2015167015A1
Authority
WO
WIPO (PCT)
Prior art keywords
gyro sensor
flow path
medium
layer
cantilever
Prior art date
Application number
PCT/JP2015/063101
Other languages
French (fr)
Japanese (ja)
Inventor
勲 下山
潔 松本
智之 高畑
哲朗 菅
堅太郎 野田
平謙 阮
貴徳 宇佐美
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2015167015A1 publication Critical patent/WO2015167015A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects

Definitions

  • the present invention relates to a gyro sensor.
  • the vibration type gyro sensor detects the angular velocity by detecting the Coriolis force acting on the vibrator when acceleration or centrifugal force is applied.
  • acceleration and centrifugal force are large, and the effects of linear acceleration, angular acceleration, and centrifugal force cannot be ignored and cause drift.
  • the Coriolis force is proportional to the mass, the sensitivity is reduced when the size is reduced.
  • an optical gyro sensor high intensity light from a pump laser (excitation light source) is incident on a ring-shaped resonator (resonator ring), and stimulated Brillouin scattering is generated as a nonlinear optical effect.
  • An apparatus using the interference effect of laser light is disclosed (for example, Patent Document 1).
  • the laser beam circulates in the ring-shaped resonator, the time required for the rotation changes according to the rotational angular velocity of the optical gyro sensor itself (Sagnac effect).
  • the laser light that has circulated clockwise and counterclockwise has a phase difference corresponding to the rotational angular velocity.
  • the optical gyro sensor detects the phase difference by measuring the intensity of the light combined with the laser light that has circulated clockwise and counterclockwise, and detects the rotational angular velocity from the phase difference. Unlike the vibration type gyro sensor that detects the Coriolis force, the optical gyro sensor has an advantage that the above-described drift due to acceleration or centrifugal force does not occur.
  • an object of the present invention is to provide a gyro sensor that can be miniaturized.
  • a gyro sensor includes a main body having a flow path formed therein, a medium filled in the flow path, and a pressure sensor provided in the flow path and detecting an inertial force of the medium. It is characterized by providing.
  • FIGS. 4A and 4B are diagrams showing step by step the manufacturing method of the detection unit according to the first embodiment, and FIG. 4A is an end view schematically showing the step of forming a piezoresistive layer, and FIG. 4B is a plan view. It is a figure which shows the manufacturing method of the detection part which concerns on 1st Embodiment in steps, FIG.
  • FIG. 5A is an end elevation which shows typically the step which formed the electrode layer
  • FIG. 5B is a top view.
  • FIG. 6A is an end view which shows typically the step which formed the external shape of the cantilever
  • FIG. 6B is a top view.
  • FIG. 7A is an end view which shows typically the step which removed some electrode layers
  • FIG. 7B is a top view. It is a figure which shows the manufacturing method of the detection part which concerns on 1st Embodiment in steps, FIG.
  • FIG. 8A is an end view which shows typically the step which removed a part of Si substrate
  • FIG. 8B is a top view.
  • Figure 9A is an end view showing the step of removing the portion of SiO 2 layer schematically
  • FIG. 9B is a plan view.
  • It is a block diagram which shows the structure of an experimental apparatus. It is a graph which shows the result of having measured the resistance change rate of the gyro sensor which concerns on 1st Embodiment. It is a schematic diagram which shows the whole structure of the gyro sensor which concerns on 2nd Embodiment.
  • FIG. 13A is a perspective view of an upper layer
  • FIG. 13B is a perspective view of a lower layer.
  • FIG. 13A is a perspective view of an upper layer
  • FIG. 13B is a perspective view of a lower layer.
  • FIG. 17A is a perspective view of the base material for upper layers
  • FIG. 17B is a perspective view of the base material for lower layers.
  • a gyro sensor 10 shown in FIG. 1 is provided so as to block an annular main body 14 in which a flow path 12 is formed, a medium (not shown) filled in the flow path 12, and the flow path 12. And a pressure sensor 16 for detecting the inertial force of the medium.
  • the main body 14 is not particularly limited, and can be formed of metal or resin. Moreover, it is preferable that the main body 14 is formed with a material or structure with high heat insulation, for example, it is preferable to form with a vacuum heat insulation structure.
  • the material constituting the main body 14 preferably has a thermal expansion coefficient close to that of the medium.
  • the medium has a large heat capacity in terms of improving the thermal stability.
  • fluid or gel can be used.
  • liquid and gas can be applied.
  • the liquid for example, water, silicon oil, ionic liquid, or the like can be used.
  • the gas for example, carbon dioxide, xenon, or the like can be used.
  • collagen or agarose gel can be used as the gel.
  • the pressure sensor 16 includes a substrate 20 in which an opening 17 is formed, and a detection unit 18 provided in the substrate 20 so as to close the opening 17.
  • the detection unit 18 includes a Si layer 24, an insulating layer 25, an upper Si layer 26, a piezoresistive layer 27, and an electrode layer 28.
  • a cantilever portion 22 is formed by the upper Si layer 26 and the piezoresistive layer 27.
  • an opening 30 connected to the opening 17 of the substrate 20 is formed on one side of the cantilever 22.
  • the detection unit 18 has a gap 23 formed at the outer edge of the cantilever unit 22. The gap 23 penetrates in the thickness direction of the cantilever part 22 and connects one side and the other side of the cantilever part 22.
  • the cantilever portion 22 has a flat plate-like pressure receiving portion 32 and a pair of hinge portions 34 integrally formed on one side surface of the pressure receiving portion 32. 37 is fixed.
  • the pair of hinge portions 34 are electrically connected to the electrodes 33 and 35, respectively.
  • the electrodes 33 and 35 are electrically disconnected.
  • the cantilever portion 22 is formed so as to be elastically deformable around the hinge portion 34 due to a pressure difference generated between one side and the other side of the cantilever portion 22.
  • the gap 23 formed between the outer edge of the cantilever portion 22 and the frame body 37 is formed in a size (width) that makes it difficult for the medium to circulate.
  • the width of the gap 23 is preferably about 100 times or less of the mean free path of the molecules of the medium. This is because if the width of the gap 23 is larger than 100 times the mean free path of the molecules of the medium, the medium leaks in the gap 23 and the sensitivity is lowered.
  • an impurity is doped into the upper Si layer 26 of the SOI substrate 29 having the SOI structure by a thermal diffusion method or the like to form a piezoresistive layer 27 in which a part of the upper Si layer 26 is an N-type or P-type semiconductor (FIG. 4A, FIG. 4B).
  • a photoresist mask is selectively formed on the piezoresistive layer 27, and, for example, gold is deposited by an evaporation method to form an electrode layer.
  • a cross-shaped pattern 36 in which the insulating layer 25 is exposed in a strip shape from each side is formed (FIGS. 5A and 5B).
  • a groove 38 reaching the insulating layer 25 is formed using a focused ion beam (FIB) at the center of the pattern 36 with the cross-shaped pattern 36 as a mark, and the electrode layer 28 and the piezoresistive layer 27.
  • FIB focused ion beam
  • the upper Si layer 26 and the insulating layer 25 are etched into a cantilever shape (FIGS. 6A and 6B).
  • Electrodes 33 and 35 are formed by removing the photoresist mask (FIGS. 7A and 7B).
  • the Si layer 24 immediately below the cantilever portion 22 is removed by plasma etching to form a hole 42 (FIGS. 8A and 8B). Further, the insulating layer 25 immediately below the cantilever portion 22 is removed by etching using HF vapor to form an opening 30 (FIGS. 9A and 9B). Thereby, one side and the other side of the cantilever part 22 are connected through the gap 23, and the detection part 18 can be obtained.
  • the gap 23 is formed in a shape that tapers from the other side of the cantilever portion 22 toward one side by processing using the FIB.
  • the pressure sensor 16 configured as described above is provided so that the detection unit 18 closes the flow path 12, and the gap 23 formed in the detection unit 18 has a size (width) that makes it difficult for the medium to circulate. Is formed. Therefore, when the gyro sensor 10 rotates the main body 14 in the direction of the arrow shown in FIG. 1, the medium filled in the flow path 12 is pushed by the detection unit 18 formed in the flow path 12. As a result, the medium rotates integrally with the main body 14. That is, a force necessary for rotating the medium integrally with the main body 14, that is, an inertial force of the medium acts on the pressure sensor 16.
  • the cantilever portion 22 of the pressure sensor 16 is elastically deformed around the pair of hinge portions 34 by the acting pressure P. Then, the electric resistance value of the cantilever part 22 changes according to the deformation amount.
  • the gyro sensor 10 can measure the pressure P by measuring the resistance change rate of the cantilever part 22, and can thereby measure the angular acceleration ⁇ .
  • the gyro sensor 10 is configured to measure the inertial force of the medium, it is possible to reduce the size and improve the sensitivity. Since the sensitivity of the medium can be further improved by using a medium having a high density, for example, a liquid, the medium can be further reduced in size.
  • the gyro sensor 10 can suppress the influence by a rapid temperature change by using a medium having a large heat capacity, for example, a liquid, and can improve the thermal stability.
  • a pressure sensor 16 having a cantilever portion 22 having a length of 22.5 ⁇ m, a width of 20 ⁇ m, and a thickness of 0.15 ⁇ m was manufactured and evaluated.
  • the hinge 34 has a length of 2.5 ⁇ m and a width of 0.5 ⁇ m.
  • the width of the gap 23 was about 20 nm.
  • This pressure sensor 16 was installed in the main body 14 so as to block the flow path 12 having a radius of 9.5 cm (flow path diameter: 5 mm).
  • the flow path 12 of the main body 14 was filled with silicon oil (density ⁇ : 1000) as a medium.
  • a power source 50 was connected to the detection unit 18 of the pressure sensor 16 via a function generator (not shown).
  • the electrical resistance value of the detection unit 18 was measured with an oscilloscope 54 after removing noise with a lock-in amplifier 52 and converting it into a voltage.
  • the gyro sensor 100 is provided so as to close the main body 103 having a flow path 102 formed therein, a medium (not shown) filled in the flow path 102, and the flow path 102, and the inertial force of the medium. And a pressure sensor 112 for detecting.
  • the main body 103 includes an upper layer 106, a lower layer 108, and an intermediate layer 110 sandwiched between the upper layer 106 and the lower layer 108.
  • the upper layer 106 and the lower layer 108 have flow path forming grooves 121 and 124 formed on the inner surfaces, respectively.
  • the flow path forming grooves 121 and 124 have a shape in which an annular ring is divided into two in the axial direction.
  • One end 121a of the flow path forming groove 121 of the upper layer 106 is formed so as to overlap vertically with one end part 124a of the flow path forming groove 124 of the lower layer 108 and the intermediate layer 110 interposed therebetween.
  • the other end 121 b of the flow path forming groove 121 of the upper layer 106 is formed so as to overlap vertically with the other end 124 b of the flow path forming groove 124 of the lower layer 108 sandwiching the intermediate layer 110.
  • the intermediate layer 110 includes a through portion 128 formed at a position corresponding to the one end portions 121a and 124a, and a pressure sensor 112 formed at a position corresponding to the other end portions 121b and 124b. .
  • the penetration part 128 penetrates in the thickness direction.
  • the detection unit 18 is formed in parallel to the surface direction of the intermediate layer 110.
  • the main body 103 formed by sequentially stacking the upper layer 106, the intermediate layer 110, and the lower layer 108 configured as described above includes a flow path including an upper flow path 102a and a lower flow path 102b.
  • 102 is formed.
  • the upper flow path 102a is formed by a flow path forming groove 121 and an intermediate layer 110 formed in the upper layer 106 as shown in FIG. 13A.
  • the lower flow path 102b is formed by a flow path forming groove 124 and an intermediate layer 110 formed in the lower layer 108 as shown in FIG. 13B.
  • the upper flow path 102a and the lower flow path 102b are connected to each other through the communication portion 104 corresponding to the through portion 128 formed in the intermediate layer 110 at one end portions 121a and 124a, and the other end portions 121b and 124b are connected to the intermediate layer 110.
  • the gyro sensor 100 is obtained by laminating a predetermined base material to produce a laminate including a plurality of gyro sensors and dividing the laminate into individual pieces.
  • the base materials used for manufacturing are the intermediate layer base material, the upper layer base material, and the lower layer base material, and each base material has a plurality of gyrosensors formed in a lump by producing a plurality of flow paths. A plurality of components are provided so as to be obtained. This will be described in detail below.
  • a predetermined plate-like member is prepared, and through portions 128 and pressure sensors 112 are formed in a plurality of defined unit regions 127 to obtain an intermediate layer base material 126.
  • the intermediate layer base material 126 has a circular shape, but is not limited thereto. It can form using the plate-shaped member of arbitrary shapes.
  • the through portion 128 can be formed at a predetermined position of the unit region 127 by etching or the like.
  • the pressure sensor 112 can be formed by the same method as in the first embodiment.
  • the intermediate layer base material 126 thus produced is provided with a plurality of through portions 128 and pressure sensors 112.
  • a plate-like member having the same size and shape is prepared, and as shown in FIG. 17A, a plurality of flow path forming grooves 121 are formed from the back surface side to obtain the upper layer base material 120.
  • the flow path forming groove 121 is formed in a region corresponding to the unit region 127 defined in the intermediate layer base material 126.
  • the flow path forming groove 121 has an annular shape in which one end portion 121a reaches the through portion 128 and the other end portion 121b reaches the pressure sensor 112. To form.
  • the flow path forming groove 121 can be formed by etching or the like.
  • a plate-like member having the same size and shape is prepared, and a plurality of flow path forming grooves 124 are formed from the surface side by the same method as shown in FIG.
  • the flow path forming groove 124 is also formed in an area corresponding to the unit area 127 defined in the intermediate layer base material 126.
  • the flow path forming groove 124 has an annular shape in which one end portion 124a reaches the through portion 128 and the other end portion 124b reaches the pressure sensor 112. Form.
  • a plurality of gyro sensors 132 are formed in the laminate 130 obtained by sandwiching and joining the intermediate layer base material 126 between the upper layer base material 120 and the lower layer base material 123.
  • the Rukoto are individually cut using, for example, a dicing apparatus, and the gyro sensor 100 of the present embodiment is obtained.
  • the gyro sensor 100 of the present embodiment includes the pressure sensor 112 having the same configuration as that of the first embodiment, and can be filled with the same medium. Therefore, when a motion is given to the gyro sensor 100 so that the flow path 102 rotates in the direction of the arrow shown in FIG. 15, the same action as in the case of the first embodiment occurs and the same effect is obtained. .
  • the gyro sensor 100 is configured to measure the inertial force of the medium, it is possible to reduce the size and improve the sensitivity. Further, by appropriately selecting the medium, the size can be further reduced, and the thermal stability can be improved.
  • the flow path 102 includes an upper flow path 102a and a lower flow path 102b, and the upper flow path 102a and the lower flow path 102b are pressure sensors provided sideways.
  • 112 is partitioned.
  • the intermediate layer 110 provided with the pressure sensor 112 constitutes a part of the upper flow path 102a and the lower flow path 102b.
  • a plurality of gyro sensors 100 can be manufactured in a lump by laminating the substrates. By individually cutting the gyro sensors 100 manufactured in a lump, a plurality of gyro sensors 100 can be efficiently manufactured by a simplified method.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • the temperature compensating element 62 has an external shape similar to that of the cantilever portion 22, but the piezoresistive layer 27 is not formed.
  • a second gap 64 is formed between the temperature compensating element 62 and the cantilever portion 22.
  • the second gap 64 is preferably the same width as the gap 23.
  • the temperature compensating element 62 has a base end bifurcated to form a pair of legs 63 and 65.
  • An opening 66 is formed between the leg portions 63 and 65, and the pair of leg portions 63 and 65 are connected to electrodes 67 and 68, respectively.
  • the electrodes 67 and 68 are electrically disconnected from each other and are electrically disconnected from the electrodes 33 and 35 connected to the cantilever portion 22.
  • the temperature compensation element 62 configured as described above outputs a signal corresponding to the temperature of the detection unit 60.
  • the gyro sensors 10 and 100 can perform temperature compensation for the electric resistance value of the cantilever portion 22 by using the signal output from the temperature compensating element 62. Specifically, the gyro sensors 10 and 100 measure the electrical resistance value accompanying the rotation of the main bodies 14 and 103 by the cantilever part 22 and measure the actual temperature by the temperature compensation element 62. A compensation value corresponding to the actual temperature is calculated from the temperature characteristics of the cantilever portion 22 measured in advance. Accordingly, the gyro sensors 10 and 100 can perform temperature compensation on the electrical resistance value by dividing the compensation value from the measured electrical resistance value.
  • the acceleration in the three-axis direction can be measured.
  • the pressure sensor 112 may be formed instead of the through portion 128.
  • the pressure sensor 112 is provided at a position corresponding to the one end part 121 a in the upper layer 106 and the one end part 124 a in the lower layer 108, and a position corresponding to the other end part 121 b in the upper layer 106 and 124 b in the lower layer 108.
  • the gyro sensor 100 can measure the pressure P by measuring the resistance change rate of the cantilever part 22 in the two pressure sensors 112, thereby measuring the angular acceleration ⁇ with high sensitivity, and temperature compensation for the electrical resistance value. Can also be done.

Abstract

 Provided is a gyro sensor that can be made more compact in size. The sensor is characterized by being provided with a main unit (14) having a flow channel (12), a medium that fills the flow channel (12) interior, and a pressure sensor (16) situated in the flow channel (12) interior, the pressure sensor (16) detecting the inertial force of the medium.

Description

ジャイロセンサGyro sensor
 本発明は、ジャイロセンサに関する。 The present invention relates to a gyro sensor.
 ジャイロセンサは、振動型ジャイロセンサと、光ジャイロセンサが知られている。振動型ジャイロセンサは、加速度や遠心力が作用したときに振動子に働くコリオリ力を検出して、角速度の検出を行う。ところが、ロボットのように動的に運動する機器においては、加速度や遠心力が大きく、直線加速度や、角加速度、遠心力の効果が無視できず、ドリフトを引き起こす。またコリオリ力は、質量に比例するので、小型化すると感度が低下してしまう。 As the gyro sensor, a vibration type gyro sensor and an optical gyro sensor are known. The vibration type gyro sensor detects the angular velocity by detecting the Coriolis force acting on the vibrator when acceleration or centrifugal force is applied. However, in a device that moves dynamically, such as a robot, acceleration and centrifugal force are large, and the effects of linear acceleration, angular acceleration, and centrifugal force cannot be ignored and cause drift. In addition, since the Coriolis force is proportional to the mass, the sensitivity is reduced when the size is reduced.
 また光ジャイロセンサとしては、リング状の共振器(共振器リング)に、ポンプレーザ(励起光源)から強度の高い光を入射し、非線形光学効果としての誘導ブリルアン散乱を生じさせ、これにより生じたレーザ光の干渉効果を利用するものが開示されている(例えば特許文献1)。この光ジャイロセンサでは、リング状の共振器をレーザ光が周回する際、周回に要する時間が光ジャイロセンサ自身の回転角速度に応じて変化する(サニャック効果)。右回りおよび左回りに周回してきたレーザ光は、回転角速度に応じた位相差が生じる。光ジャイロセンサは、右回りおよび左回りに周回してきたレーザ光を合波した光の強度を測定することにより位相差を検出し、この位相差から回転角速度を検出する。光ジャイロセンサは、コリオリ力を検出する振動型ジャイロセンサとは異なり、上述のような加速度や遠心力によるドリフトが生じないという利点がある。 Moreover, as an optical gyro sensor, high intensity light from a pump laser (excitation light source) is incident on a ring-shaped resonator (resonator ring), and stimulated Brillouin scattering is generated as a nonlinear optical effect. An apparatus using the interference effect of laser light is disclosed (for example, Patent Document 1). In this optical gyro sensor, when the laser beam circulates in the ring-shaped resonator, the time required for the rotation changes according to the rotational angular velocity of the optical gyro sensor itself (Sagnac effect). The laser light that has circulated clockwise and counterclockwise has a phase difference corresponding to the rotational angular velocity. The optical gyro sensor detects the phase difference by measuring the intensity of the light combined with the laser light that has circulated clockwise and counterclockwise, and detects the rotational angular velocity from the phase difference. Unlike the vibration type gyro sensor that detects the Coriolis force, the optical gyro sensor has an advantage that the above-described drift due to acceleration or centrifugal force does not occur.
特開平6-188526号公報JP-A-6-188526
 しかしながら、特許文献1に記載された光ジャイロセンサの場合、感度は、リング状の共振器が取り囲む面積に比例するので、小型化をするのが困難であるという問題があった。 However, in the case of the optical gyro sensor described in Patent Document 1, there is a problem that it is difficult to reduce the size because the sensitivity is proportional to the area surrounded by the ring-shaped resonator.
 そこで本発明は、小型化することができるジャイロセンサを提供することを目的とする。 Therefore, an object of the present invention is to provide a gyro sensor that can be miniaturized.
 本発明に係るジャイロセンサは、内部に流路が形成された本体と、前記流路内に充填された媒体と、前記流路内に設けられ、前記媒体の慣性力を検出する圧力センサとを備えることを特徴とする。 A gyro sensor according to the present invention includes a main body having a flow path formed therein, a medium filled in the flow path, and a pressure sensor provided in the flow path and detecting an inertial force of the medium. It is characterized by providing.
 本発明によれば、媒体の慣性力を測定する構成としたので、小型化を実現することができる。 According to the present invention, since the inertial force of the medium is measured, downsizing can be realized.
第1実施形態に係るジャイロセンサの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the gyro sensor which concerns on 1st Embodiment. 第1実施形態に係るジャイロセンサの構成を模式的に示す部分端面図である。It is a partial end elevation showing typically the composition of the gyro sensor concerning a 1st embodiment. 第1実施形態に係る検知部の構成を示す斜視図である。It is a perspective view which shows the structure of the detection part which concerns on 1st Embodiment. 第1実施形態に係る検知部の製造方法を段階的に示す図であり、図4Aはピエゾ抵抗層を形成した段階を模式的に示す端面図、図4Bは平面図である。FIGS. 4A and 4B are diagrams showing step by step the manufacturing method of the detection unit according to the first embodiment, and FIG. 4A is an end view schematically showing the step of forming a piezoresistive layer, and FIG. 4B is a plan view. 第1実施形態に係る検知部の製造方法を段階的に示す図であり、図5Aは電極層を形成した段階を模式的に示す端面図、図5Bは平面図である。It is a figure which shows the manufacturing method of the detection part which concerns on 1st Embodiment in steps, FIG. 5A is an end elevation which shows typically the step which formed the electrode layer, and FIG. 5B is a top view. 第1実施形態に係る検知部の製造方法を段階的に示す図であり、図6Aはカンチレバーの外形を形成した段階を模式的に示す端面図、図6Bは平面図である。It is a figure which shows the manufacturing method of the detection part which concerns on 1st Embodiment in steps, FIG. 6A is an end view which shows typically the step which formed the external shape of the cantilever, and FIG. 6B is a top view. 第1実施形態に係る検知部の製造方法を段階的に示す図であり、図7Aは一部の電極層を除去した段階を模式的に示す端面図、図7Bは平面図である。It is a figure which shows the manufacturing method of the detection part which concerns on 1st Embodiment in steps, FIG. 7A is an end view which shows typically the step which removed some electrode layers, and FIG. 7B is a top view. 第1実施形態に係る検知部の製造方法を段階的に示す図であり、図8AはSi基板の一部を除去した段階を模式的に示す端面図、図8Bは平面図である。It is a figure which shows the manufacturing method of the detection part which concerns on 1st Embodiment in steps, FIG. 8A is an end view which shows typically the step which removed a part of Si substrate, and FIG. 8B is a top view. 第1実施形態に係る検知部の製造方法を段階的に示す図であり、図9AはSiO層の一部を除去した段階を模式的に示す端面図、図9Bは平面図である。Is a diagram showing a manufacturing method of the detection unit according to the first embodiment in steps, Figure 9A is an end view showing the step of removing the portion of SiO 2 layer schematically, FIG. 9B is a plan view. 実験装置の構成を示すブロック図である。It is a block diagram which shows the structure of an experimental apparatus. 第1実施形態に係るジャイロセンサの抵抗変化率を測定した結果を示すグラフである。It is a graph which shows the result of having measured the resistance change rate of the gyro sensor which concerns on 1st Embodiment. 第2実施形態に係るジャイロセンサの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the gyro sensor which concerns on 2nd Embodiment. 第2実施形態に係るジャイロセンサにおける上層及び下層の構成を示す斜視図であり、図13Aは上層の斜視図、図13Bは下層の斜視図である。It is a perspective view which shows the structure of the upper layer and lower layer in the gyro sensor which concerns on 2nd Embodiment, FIG. 13A is a perspective view of an upper layer, FIG. 13B is a perspective view of a lower layer. 第2実施形態に係るジャイロセンサにおける中間層の構成を示す斜視図である。It is a perspective view which shows the structure of the intermediate | middle layer in the gyro sensor which concerns on 2nd Embodiment. 第2実施形態に係るジャイロセンサにおける流路を示す模式図である。It is a schematic diagram which shows the flow path in the gyro sensor which concerns on 2nd Embodiment. 第2実施形態に係るジャイロセンサの製造に用いられる中間層用基材の斜視図である。It is a perspective view of the base material for intermediate | middle layers used for manufacture of the gyro sensor which concerns on 2nd Embodiment. 第2実施形態に係るジャイロセンサの製造に用いられる基材を説明する図であり、図17Aは上層用基材の斜視図、図17Bは下層用基材の斜視図である。It is a figure explaining the base material used for manufacture of the gyro sensor which concerns on 2nd Embodiment, FIG. 17A is a perspective view of the base material for upper layers, FIG. 17B is a perspective view of the base material for lower layers. 第2実施形態に係るジャイロセンサの製造過程の状態を示す模式図である。It is a schematic diagram which shows the state of the manufacturing process of the gyro sensor which concerns on 2nd Embodiment. 第2実施形態に係るジャイロセンサの切断前の状態を示す模式図である。It is a schematic diagram which shows the state before the cutting | disconnection of the gyro sensor which concerns on 2nd Embodiment. 変形例に係る検知部の構成を示す平面図である。It is a top view which shows the structure of the detection part which concerns on a modification.
 以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[第1実施形態]
(全体構成)
 図1に示すジャイロセンサ10は、内部に流路12が形成された環状の本体14と、前記流路12内に充填された媒体(図示しない)と、前記流路12を塞ぐように設けられ、前記媒体の慣性力を検出する圧力センサ16とを備える。
[First Embodiment]
(overall structure)
A gyro sensor 10 shown in FIG. 1 is provided so as to block an annular main body 14 in which a flow path 12 is formed, a medium (not shown) filled in the flow path 12, and the flow path 12. And a pressure sensor 16 for detecting the inertial force of the medium.
 本体14は、特に限定されず、金属や樹脂で形成することができる。また本体14は、断熱性が高い材料又は構造で形成されるのが好ましく、例えば真空断熱構造で形成されるのが好ましい。本体14を構成する材料は、熱膨張係数が媒体に近い方が好ましい。 The main body 14 is not particularly limited, and can be formed of metal or resin. Moreover, it is preferable that the main body 14 is formed with a material or structure with high heat insulation, for example, it is preferable to form with a vacuum heat insulation structure. The material constituting the main body 14 preferably has a thermal expansion coefficient close to that of the medium.
 媒体は、密度が高い方が、感度が高くなるので好ましい。また、媒体は、粘性が高い方が、感度を向上することができる。さらに媒体は、熱容量が大きい方が、熱的安定性を向上できる点で好ましい。媒体は、流体やゲルを用いることができる。流体は、液体及び気体を適用することができる。液体としては、例えば水、シリコンオイル、イオン液体などを用いることができる。気体としては、例えば二酸化炭素、キセノンなどを用いることができる。ゲルは、例えばコラーゲン、アガロースゲルなどを用いることができる。 The higher the density of the medium, the higher the sensitivity, which is preferable. Moreover, the higher the viscosity of the medium, the more the sensitivity can be improved. Furthermore, it is preferable that the medium has a large heat capacity in terms of improving the thermal stability. As the medium, fluid or gel can be used. As the fluid, liquid and gas can be applied. As the liquid, for example, water, silicon oil, ionic liquid, or the like can be used. As the gas, for example, carbon dioxide, xenon, or the like can be used. For example, collagen or agarose gel can be used as the gel.
 圧力センサ16は、図2に示すように、開口17が形成された基板20と、当該開口17を閉塞するように基板20に設けられた検知部18とを備える。検知部18は、Si層24と、絶縁層25と、上部Si層26と、ピエゾ抵抗層27と、電極層28とからなる。上部Si層26とピエゾ抵抗層27とによりカンチレバー部22が形成されている。 As shown in FIG. 2, the pressure sensor 16 includes a substrate 20 in which an opening 17 is formed, and a detection unit 18 provided in the substrate 20 so as to close the opening 17. The detection unit 18 includes a Si layer 24, an insulating layer 25, an upper Si layer 26, a piezoresistive layer 27, and an electrode layer 28. A cantilever portion 22 is formed by the upper Si layer 26 and the piezoresistive layer 27.
 検知部18は、カンチレバー部22の一側に、基板20の開口17に繋がる開口部30が形成されている。また検知部18は、カンチレバー部22の外縁に隙間23が形成されている。当該隙間23は、カンチレバー部22の厚さ方向に貫通しており、カンチレバー部22の一側と他側を繋いでいる。 In the detection unit 18, an opening 30 connected to the opening 17 of the substrate 20 is formed on one side of the cantilever 22. The detection unit 18 has a gap 23 formed at the outer edge of the cantilever unit 22. The gap 23 penetrates in the thickness direction of the cantilever part 22 and connects one side and the other side of the cantilever part 22.
 電極層28は、基板20を通じて、ピエゾ抵抗層27に電流を供給する電源(図示しない)と、ピエゾ抵抗層27の抵抗値の変化を検出する信号変換部(図示しない)に電気的に接続されている。電極層28は、図示しないが絶縁体で被覆されているのが好ましい。なお当該絶縁体は、媒体が絶縁性を有する場合、省略することができる。 The electrode layer 28 is electrically connected through the substrate 20 to a power source (not shown) that supplies a current to the piezoresistive layer 27 and a signal converter (not shown) that detects a change in the resistance value of the piezoresistive layer 27. ing. Although not shown, the electrode layer 28 is preferably covered with an insulator. Note that the insulator can be omitted when the medium has an insulating property.
 カンチレバー部22は、図3に示すように、平板状の受圧部32と当該受圧部32の一側面に一体に形成された一対のヒンジ部34とを有し、当該ヒンジ部34において、枠体37に固定されている。一対のヒンジ部34は、それぞれ電極33、35に電気的に接続されている。電極33、35は、電気的に切断されている。カンチレバー部22は、カンチレバー部22の一側と他側の間に生じる圧力差により、ヒンジ部34を中心に弾性変形し得るように形成されている。 As shown in FIG. 3, the cantilever portion 22 has a flat plate-like pressure receiving portion 32 and a pair of hinge portions 34 integrally formed on one side surface of the pressure receiving portion 32. 37 is fixed. The pair of hinge portions 34 are electrically connected to the electrodes 33 and 35, respectively. The electrodes 33 and 35 are electrically disconnected. The cantilever portion 22 is formed so as to be elastically deformable around the hinge portion 34 due to a pressure difference generated between one side and the other side of the cantilever portion 22.
 カンチレバー部22の外縁と枠体37の間に形成される隙間23は、媒体が流通しにくい大きさ(幅)に形成される。前記隙間23の幅は、媒体の分子の平均自由行程の約100倍以下であることが好ましい。隙間23の幅が媒体の分子の平均自由行程の100倍より大きいと、隙間23において媒体の漏れが生じ感度が低下するからである。 The gap 23 formed between the outer edge of the cantilever portion 22 and the frame body 37 is formed in a size (width) that makes it difficult for the medium to circulate. The width of the gap 23 is preferably about 100 times or less of the mean free path of the molecules of the medium. This is because if the width of the gap 23 is larger than 100 times the mean free path of the molecules of the medium, the medium leaks in the gap 23 and the sensitivity is lowered.
(製造方法)
 次に、圧力センサ16の製造方法について説明する。まずSOI構造を有するSOI基板29の上部Si層26に不純物を、熱拡散法等によりドーピングして上部Si層26の一部をN型もしくはP型半導体としたピエゾ抵抗層27を形成する(図4A,図4B)。
(Production method)
Next, a manufacturing method of the pressure sensor 16 will be described. First, an impurity is doped into the upper Si layer 26 of the SOI substrate 29 having the SOI structure by a thermal diffusion method or the like to form a piezoresistive layer 27 in which a part of the upper Si layer 26 is an N-type or P-type semiconductor (FIG. 4A, FIG. 4B).
 次に、ピエゾ抵抗層27の上に、フォトレジストマスクを選択的に形成し、例えば金を蒸着法により堆積させ電極層28を形成する。フォトレジストマスクを除去することにより、各辺から絶縁層25が帯状に露出した十字状のパターン36を形成する(図5A,図5B)。 Next, a photoresist mask is selectively formed on the piezoresistive layer 27, and, for example, gold is deposited by an evaporation method to form an electrode layer. By removing the photoresist mask, a cross-shaped pattern 36 in which the insulating layer 25 is exposed in a strip shape from each side is formed (FIGS. 5A and 5B).
 次いで、十字状のパターン36を目印として当該パターン36の中心に集束イオンビーム(FIB:Focused Ion Beam)を用いて、絶縁層25まで到達する溝38を形成し、電極層28、ピエゾ抵抗層27、上部Si層26、絶縁層25を、カンチレバー形状にエッチング加工する(図6A,図6B)。 Next, a groove 38 reaching the insulating layer 25 is formed using a focused ion beam (FIB) at the center of the pattern 36 with the cross-shaped pattern 36 as a mark, and the electrode layer 28 and the piezoresistive layer 27. The upper Si layer 26 and the insulating layer 25 are etched into a cantilever shape (FIGS. 6A and 6B).
 次いで、電極層28上にフォトレジストマスクを選択的に形成し、カンチレバー部22に対応する位置の電極層28をエッチング加工する。フォトレジストマスクを除去することにより、電極33、35を形成する(図7A,図7B)。 Next, a photoresist mask is selectively formed on the electrode layer 28, and the electrode layer 28 at a position corresponding to the cantilever portion 22 is etched. Electrodes 33 and 35 are formed by removing the photoresist mask (FIGS. 7A and 7B).
 次いで、カンチレバー部22の直下のSi層24をプラズマエッチングにより除去し、穴42を形成する(図8A,図8B)。さらにカンチレバー部22の直下の絶縁層25を、HF蒸気を用いたエッチングにより除去し、開口部30を形成する(図9A,図9B)。これによりカンチレバー部22の一側と他側が隙間23を通じて繋がれ、検知部18を得ることができる。本実施形態の場合、隙間23は、FIBを用いて加工したことにより、カンチレバー部22の他側から一側に向かって先細となる形状に形成されている。 Next, the Si layer 24 immediately below the cantilever portion 22 is removed by plasma etching to form a hole 42 (FIGS. 8A and 8B). Further, the insulating layer 25 immediately below the cantilever portion 22 is removed by etching using HF vapor to form an opening 30 (FIGS. 9A and 9B). Thereby, one side and the other side of the cantilever part 22 are connected through the gap 23, and the detection part 18 can be obtained. In the case of the present embodiment, the gap 23 is formed in a shape that tapers from the other side of the cantilever portion 22 toward one side by processing using the FIB.
(動作及び効果)
 上記のように構成された圧力センサ16は、検知部18が流路12を塞ぐように設けられており、かつ検知部18に形成された隙間23は、媒体が流通しにくい大きさ(幅)に形成されている。したがってジャイロセンサ10は、図1に示す矢印方向に本体14を回転させると、流路12に充填された媒体が、流路12に形成された検知部18によって押される。これによって媒体は、本体14と一体的に回転する。すなわち圧力センサ16には、媒体を本体14と一体的に回転させるために必要な力、すなわち媒体の慣性力が作用する。このとき圧力センサ16に生じる圧力をP、本体14の半径をr、媒体の密度をρとすると、ジャイロセンサ10に生じた角加速度αは、下記式(1)によって表される。
α=P/(2πr・ρ・r)・・・(1)
(Operation and effect)
The pressure sensor 16 configured as described above is provided so that the detection unit 18 closes the flow path 12, and the gap 23 formed in the detection unit 18 has a size (width) that makes it difficult for the medium to circulate. Is formed. Therefore, when the gyro sensor 10 rotates the main body 14 in the direction of the arrow shown in FIG. 1, the medium filled in the flow path 12 is pushed by the detection unit 18 formed in the flow path 12. As a result, the medium rotates integrally with the main body 14. That is, a force necessary for rotating the medium integrally with the main body 14, that is, an inertial force of the medium acts on the pressure sensor 16. At this time, if the pressure generated in the pressure sensor 16 is P, the radius of the main body 14 is r, and the density of the medium is ρ, the angular acceleration α generated in the gyro sensor 10 is expressed by the following equation (1).
α = P / (2πr · ρ · r) (1)
 圧力センサ16のカンチレバー部22は、作用する圧力Pによって一対のヒンジ部34を中心として弾性変形する。そうするとカンチレバー部22は、変形量に応じて電気抵抗値が変化する。ジャイロセンサ10は、カンチレバー部22の抵抗変化率を測定することにより、圧力Pを計測し、これにより角加速度αを測定することができる。 The cantilever portion 22 of the pressure sensor 16 is elastically deformed around the pair of hinge portions 34 by the acting pressure P. Then, the electric resistance value of the cantilever part 22 changes according to the deformation amount. The gyro sensor 10 can measure the pressure P by measuring the resistance change rate of the cantilever part 22, and can thereby measure the angular acceleration α.
 ジャイロセンサ10は、媒体の慣性力を測定する構成としたので、小型化及び感度の向上を実現することができる。媒体は、密度の高い媒体、例えば液体を用いることにより、より感度を向上することができるので、より小型化することができる。 Since the gyro sensor 10 is configured to measure the inertial force of the medium, it is possible to reduce the size and improve the sensitivity. Since the sensitivity of the medium can be further improved by using a medium having a high density, for example, a liquid, the medium can be further reduced in size.
 またジャイロセンサ10は、熱容量の大きい媒体、例えば液体を用いることにより、急激な温度変化による影響を抑制でき、熱的安定性を向上することができる。 Moreover, the gyro sensor 10 can suppress the influence by a rapid temperature change by using a medium having a large heat capacity, for example, a liquid, and can improve the thermal stability.
 実際に、長さ22.5μm、幅20μm、厚さ0.15μmのカンチレバー部22を有する圧力センサ16を製造し、評価を行った。ヒンジ部34は、長さ2.5μm、幅0.5μmとした。隙間23の幅は、約20nmとした。この圧力センサ16を、半径9.5cm(流路径5mm)の流路12を塞ぐように本体14に設置した。本体14の流路12には、媒体としてシリコンオイル(密度ρ:1000)を充填した。 Actually, a pressure sensor 16 having a cantilever portion 22 having a length of 22.5 μm, a width of 20 μm, and a thickness of 0.15 μm was manufactured and evaluated. The hinge 34 has a length of 2.5 μm and a width of 0.5 μm. The width of the gap 23 was about 20 nm. This pressure sensor 16 was installed in the main body 14 so as to block the flow path 12 having a radius of 9.5 cm (flow path diameter: 5 mm). The flow path 12 of the main body 14 was filled with silicon oil (density ρ: 1000) as a medium.
 圧力センサ16の検知部18に対し、図10に示すように、ファンクションジェネレータ(図示しない)を介して電源50を接続した。また検知部18の電気抵抗値は、ロックインアンプ52でノイズを除去すると共に電圧に変換してオシロスコープ54で測定した。 As shown in FIG. 10, a power source 50 was connected to the detection unit 18 of the pressure sensor 16 via a function generator (not shown). The electrical resistance value of the detection unit 18 was measured with an oscilloscope 54 after removing noise with a lock-in amplifier 52 and converting it into a voltage.
 本体14の中心を軸として±5°程度の回転を本体14に与えたときの電気抵抗値を測定し、抵抗変化率を求めた。その結果を図11に示す。本図は、縦軸が抵抗変化率、横軸が時間、実線が本実施形態に係るジャイロセンサ10の抵抗変化率を示す。本図の点線は、中心から9.5cm離れた位置に設置した従来のジャイロセンサ(シリコンセンシングシステムズ社製、製品名:CRH01-100)に対し、中心を軸として±5°程度の回転を与えたときの抵抗変化率を示す。本図から本実施形態に係るジャイロセンサ10は、与えられた回転に対し、従来のジャイロセンサ10と同等の出力が得られることが確認できた。 The electrical resistance value was measured when a rotation of about ± 5 ° about the center of the main body 14 was given to the main body 14 to determine the resistance change rate. The result is shown in FIG. In this figure, the vertical axis represents the resistance change rate, the horizontal axis represents time, and the solid line represents the resistance change rate of the gyro sensor 10 according to the present embodiment. The dotted line in this figure gives a rotation of about ± 5 ° around the center of the conventional gyro sensor (product name: CRH01-100, manufactured by Silicon Sensing Systems) located 9.5 cm away from the center. The rate of change in resistance is shown. From this figure, it was confirmed that the gyro sensor 10 according to the present embodiment can obtain an output equivalent to that of the conventional gyro sensor 10 for a given rotation.
[第2実施形態]
(全体構成)
 図12に示すジャイロセンサ100は、内部に流路102が形成された本体103が板状である点が、上記第1実施形態と異なる。以下、本実施形態に係るジャイロセンサ100の構成について詳細に説明する。なお、上記第1実施形態と同様の構成については説明を省略する。
[Second Embodiment]
(overall structure)
The gyro sensor 100 shown in FIG. 12 is different from the first embodiment in that the main body 103 in which the flow path 102 is formed is plate-shaped. Hereinafter, the configuration of the gyro sensor 100 according to the present embodiment will be described in detail. The description of the same configuration as that of the first embodiment is omitted.
 ジャイロセンサ100は、内部に流路102が形成された本体103と、前記流路102内に充填された媒体(図示しない)と、前記流路102を塞ぐように設けられ、前記媒体の慣性力を検出する圧力センサ112とを備える。 The gyro sensor 100 is provided so as to close the main body 103 having a flow path 102 formed therein, a medium (not shown) filled in the flow path 102, and the flow path 102, and the inertial force of the medium. And a pressure sensor 112 for detecting.
 本体103は、上層106と、下層108と、上層106と下層108とに挟まれた中間層110とを備える。上層106及び下層108は、図13A、図13Bに示すように、内面に流路形成溝121、124がそれぞれ形成されている。流路形成溝121、124は、円環を軸方向に二分割にした形状を有している。上層106の流路形成溝121の一端部121aは、下層108の流路形成溝124の一端部124aと中間層110を挟んで上下に重なるように形成されている。同様に上層106の流路形成溝121の他端部121bは、下層108の流路形成溝124の他端部124bと中間層110を挟んで上下に重なるように形成されている。 The main body 103 includes an upper layer 106, a lower layer 108, and an intermediate layer 110 sandwiched between the upper layer 106 and the lower layer 108. As shown in FIGS. 13A and 13B, the upper layer 106 and the lower layer 108 have flow path forming grooves 121 and 124 formed on the inner surfaces, respectively. The flow path forming grooves 121 and 124 have a shape in which an annular ring is divided into two in the axial direction. One end 121a of the flow path forming groove 121 of the upper layer 106 is formed so as to overlap vertically with one end part 124a of the flow path forming groove 124 of the lower layer 108 and the intermediate layer 110 interposed therebetween. Similarly, the other end 121 b of the flow path forming groove 121 of the upper layer 106 is formed so as to overlap vertically with the other end 124 b of the flow path forming groove 124 of the lower layer 108 sandwiching the intermediate layer 110.
 中間層110は、図14に示すように、一端部121a、124aに対応する位置に形成された貫通部128と、他端部121b、124bに対応する位置に形成された圧力センサ112とを有する。貫通部128は、厚さ方向に貫通している。圧力センサ112は、中間層110の面方向に平行に検知部18が形成されている。 As shown in FIG. 14, the intermediate layer 110 includes a through portion 128 formed at a position corresponding to the one end portions 121a and 124a, and a pressure sensor 112 formed at a position corresponding to the other end portions 121b and 124b. . The penetration part 128 penetrates in the thickness direction. In the pressure sensor 112, the detection unit 18 is formed in parallel to the surface direction of the intermediate layer 110.
 上記のように構成された上層106、中間層110、及び下層108を順に積層してなる本体103には、図15に示すように、上側流路102aと下側流路102bとを含む流路102が形成される。上側流路102aは、図13Aに示すような上層106に形成された流路形成溝121と中間層110とにより形成される。下側流路102bは、図13Bに示すような下層108に形成された流路形成溝124と中間層110とにより形成される。上側流路102aと下側流路102bは、一端部121a、124aが中間層110に形成された貫通部128に相当する連通部104を介して接続され、他端部121b、124bが中間層110に形成された圧力センサ112を介して接続されている。 As shown in FIG. 15, the main body 103 formed by sequentially stacking the upper layer 106, the intermediate layer 110, and the lower layer 108 configured as described above includes a flow path including an upper flow path 102a and a lower flow path 102b. 102 is formed. The upper flow path 102a is formed by a flow path forming groove 121 and an intermediate layer 110 formed in the upper layer 106 as shown in FIG. 13A. The lower flow path 102b is formed by a flow path forming groove 124 and an intermediate layer 110 formed in the lower layer 108 as shown in FIG. 13B. The upper flow path 102a and the lower flow path 102b are connected to each other through the communication portion 104 corresponding to the through portion 128 formed in the intermediate layer 110 at one end portions 121a and 124a, and the other end portions 121b and 124b are connected to the intermediate layer 110. Are connected via a pressure sensor 112 formed on the surface.
 第1実施形態と同様、流路102内には、図示しない媒体が充填されている。圧力センサ112は、媒体の慣性力を検出する。流路102内に充填される媒体としては、第1実施形態の場合と同様の流体やゲルを用いることができる。 As in the first embodiment, the flow path 102 is filled with a medium (not shown). The pressure sensor 112 detects the inertial force of the medium. As the medium filled in the flow path 102, the same fluid or gel as in the first embodiment can be used.
(製造方法)
 次に、本実施形態に係るジャイロセンサ100の製造方法について説明する。ジャイロセンサ100は、所定の基材を積層して複数のジャイロセンサを備えた積層体を作製し、個々に分割して得られる。製造に用いられる基材は、中間層用基材、上層用基材、および下層用基材であり、それぞれの基材には、複数の流路を作製して複数のジャイロセンサが一括して得られるように、構成要素が複数設けられている。以下に詳細に説明する。
(Production method)
Next, a method for manufacturing the gyro sensor 100 according to the present embodiment will be described. The gyro sensor 100 is obtained by laminating a predetermined base material to produce a laminate including a plurality of gyro sensors and dividing the laminate into individual pieces. The base materials used for manufacturing are the intermediate layer base material, the upper layer base material, and the lower layer base material, and each base material has a plurality of gyrosensors formed in a lump by producing a plurality of flow paths. A plurality of components are provided so as to be obtained. This will be described in detail below.
 まず、図16に示すように、所定の板状部材を用意し、画定された複数の単位領域127内に貫通部128および圧力センサ112を形成して、中間層用基材126を得る。図示する例においては、中間層用基材126の形状は円形であるが、これに限定されない。任意の形状の板状部材を用いて形成することができる。 First, as shown in FIG. 16, a predetermined plate-like member is prepared, and through portions 128 and pressure sensors 112 are formed in a plurality of defined unit regions 127 to obtain an intermediate layer base material 126. In the illustrated example, the intermediate layer base material 126 has a circular shape, but is not limited thereto. It can form using the plate-shaped member of arbitrary shapes.
 貫通部128は、エッチング等によって単位領域127の所定の位置に形成することができる。圧力センサ112は、第1実施形態の場合と同様の手法により形成することができる。 The through portion 128 can be formed at a predetermined position of the unit region 127 by etching or the like. The pressure sensor 112 can be formed by the same method as in the first embodiment.
 こうして作製される中間層用基材126には、貫通部128と圧力センサ112とが複数設けられている。 The intermediate layer base material 126 thus produced is provided with a plurality of through portions 128 and pressure sensors 112.
 一方、大きさおよび形状が同等の板状部材を用意し、図17Aに示すように、流路形成溝121を裏面側から複数形成して上層用基材120を得る。流路形成溝121が形成されるのは、中間層用基材126において画定された単位領域127に相当する領域内である。流路形成溝121は、上層用基材120を中間層用基材126に積層した際に、一端部121aが貫通部128に達し、他端部121bが圧力センサ112に達する円環状となるように形成する。流路形成溝121は、エッチング等により形成することができる。 On the other hand, a plate-like member having the same size and shape is prepared, and as shown in FIG. 17A, a plurality of flow path forming grooves 121 are formed from the back surface side to obtain the upper layer base material 120. The flow path forming groove 121 is formed in a region corresponding to the unit region 127 defined in the intermediate layer base material 126. When the upper layer base material 120 is laminated on the intermediate layer base material 126, the flow path forming groove 121 has an annular shape in which one end portion 121a reaches the through portion 128 and the other end portion 121b reaches the pressure sensor 112. To form. The flow path forming groove 121 can be formed by etching or the like.
 さらに、大きさおよび形状が同等の板状部材を用意し、図17Bに示すように流路形成溝124を同様の手法により表面側から複数形成して、下層用基材123を得る。流路形成溝124が形成されるのもまた、中間層用基材126において画定された単位領域127に相当する領域内である。流路形成溝124は、上層用基材120と下層用基材123とを積層した際に一端部124aが貫通部128に達し、他端部124bが圧力センサ112に達する円環状となるように形成する。 Furthermore, a plate-like member having the same size and shape is prepared, and a plurality of flow path forming grooves 124 are formed from the surface side by the same method as shown in FIG. The flow path forming groove 124 is also formed in an area corresponding to the unit area 127 defined in the intermediate layer base material 126. When the upper layer base material 120 and the lower layer base material 123 are laminated, the flow path forming groove 124 has an annular shape in which one end portion 124a reaches the through portion 128 and the other end portion 124b reaches the pressure sensor 112. Form.
 次いで、図18に示すように、中間層用基材126の下に下層用基材123を配置し、中間層用基材126の上には上層用基材120を配置して、基材同士を接合する。上層用基材120は、流路形成溝121の一端部121aが、中間層用基材126に設けられた貫通部128と、他端部121bが圧力センサ112と重なるように、中間層用基材126に接合する。同様に、下層用基材123は、流路形成溝124の一端部124aが、中間層用基材126に設けられた貫通部128と、他端部124bが圧力センサ112と重なるように、中間用基材126に接合する。 Next, as shown in FIG. 18, the lower layer base material 123 is disposed under the intermediate layer base material 126, and the upper layer base material 120 is disposed over the intermediate layer base material 126. Join. The upper layer base material 120 has an intermediate layer base so that one end portion 121a of the flow path forming groove 121 overlaps the through portion 128 provided in the intermediate layer base material 126 and the other end portion 121b overlaps the pressure sensor 112. Bonded to the material 126. Similarly, the lower layer base material 123 has an intermediate portion such that one end portion 124 a of the flow path forming groove 124 overlaps the through portion 128 provided in the intermediate layer base material 126 and the other end portion 124 b overlaps the pressure sensor 112. Bonded to the substrate 126 for use.
 上層用基材120に設けられた流路形成溝121と、中間層用基材126の表面の間に上側流路102aが形成される。下層用基材123に設けられた流路形成溝124と、中間層用基材126の裏面の間に下側流路102bが形成される。上側流路102aと下側流路102bは一端部121a、124aが連通部104で接続され、他端部121b、124bが圧力センサ112を介して接続されることにより、流路102が形成される。当該流路102に対し、媒体を充填する。 The upper flow path 102 a is formed between the flow path forming groove 121 provided in the upper layer base material 120 and the surface of the intermediate layer base material 126. A lower flow path 102 b is formed between the flow path forming groove 124 provided in the lower layer base 123 and the back surface of the intermediate layer base 126. The upper flow path 102a and the lower flow path 102b have one end portions 121a and 124a connected by the communication portion 104 and the other end portions 121b and 124b connected via the pressure sensor 112, whereby the flow channel 102 is formed. . The channel 102 is filled with a medium.
 こうして、上層用基材120と下層用基材123とで中間層用基材126を挟み、接合して得られた積層体130には、図19に示すように複数のジャイロセンサ132が形成されることとなる。これらを、例えばダイシング装置を用いて個々に切断して、本実施形態のジャイロセンサ100が得られる。 As shown in FIG. 19, a plurality of gyro sensors 132 are formed in the laminate 130 obtained by sandwiching and joining the intermediate layer base material 126 between the upper layer base material 120 and the lower layer base material 123. The Rukoto. These are individually cut using, for example, a dicing apparatus, and the gyro sensor 100 of the present embodiment is obtained.
(作用及び効果)
 上記のように本実施形態のジャイロセンサ100は、第1実施形態の場合と同様の構成の圧力センサ112を備え、同様の媒体を充填することができる。したがって、流路102が図15に示す矢印方向に回転するように、ジャイロセンサ100に動きが与えられた際には、第1実施形態の場合と同様の作用が生じて同様の効果が得られる。
(Function and effect)
As described above, the gyro sensor 100 of the present embodiment includes the pressure sensor 112 having the same configuration as that of the first embodiment, and can be filled with the same medium. Therefore, when a motion is given to the gyro sensor 100 so that the flow path 102 rotates in the direction of the arrow shown in FIG. 15, the same action as in the case of the first embodiment occurs and the same effect is obtained. .
 すなわち、第1実施形態の場合と同様、ジャイロセンサ100は、媒体の慣性力を測定する構成としたので、小型化及び感度の向上を実現することができる。また、媒体を適切に選択することによって、より小型化することができ、熱的安定性を向上することも可能である。 That is, as in the case of the first embodiment, since the gyro sensor 100 is configured to measure the inertial force of the medium, it is possible to reduce the size and improve the sensitivity. Further, by appropriately selecting the medium, the size can be further reduced, and the thermal stability can be improved.
 しかも、本実施形態のジャイロセンサ100においては、流路102は上側流路102aと下側流路102bとを含み、上側流路102aと下側流路102bとは、横向きに設けられた圧力センサ112によって仕切られている。圧力センサ112が設けられた中間層110は、上側流路102aおよび下側流路102bの一部を構成している。このような構造としたことによって、ジャイロセンサ100を製造する際には、所定の基材を積層して、流路102の形成と圧力センサ112の配置とを同時に行うことができる。 Moreover, in the gyro sensor 100 of the present embodiment, the flow path 102 includes an upper flow path 102a and a lower flow path 102b, and the upper flow path 102a and the lower flow path 102b are pressure sensors provided sideways. 112 is partitioned. The intermediate layer 110 provided with the pressure sensor 112 constitutes a part of the upper flow path 102a and the lower flow path 102b. With such a structure, when the gyro sensor 100 is manufactured, a predetermined base material can be laminated, and the formation of the flow path 102 and the placement of the pressure sensor 112 can be performed simultaneously.
 積層される基材には、複数の流路が作製できるように構成要素が複数設けられているので、基材を積層して複数のジャイロセンサ100を一括して製造することができる。一括して製造されたジャイロセンサ100を個々に切断することにより、簡略化された方法で複数のジャイロセンサ100を効率よく製造することが可能となった。 Since the substrate to be laminated is provided with a plurality of components so that a plurality of flow paths can be produced, a plurality of gyro sensors 100 can be manufactured in a lump by laminating the substrates. By individually cutting the gyro sensors 100 manufactured in a lump, a plurality of gyro sensors 100 can be efficiently manufactured by a simplified method.
(変形例)
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
(Modification)
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
 例えば、図3に対応する構成について同様の符号を付した図20に示すように、検知部60は、温度補償用素子62を備えることとしてもよい。検知部60は、カンチレバー部22を有し、当該カンチレバー部22の一対のヒンジ部34の間に温度補償用素子62が形成されている。温度補償用素子62は、前記カンチレバー部22が有する温度に対する抵抗変化特性と同様の特性を有する。本変形例の場合、温度補償用素子62は、温度変化に伴い、電気抵抗が変化する非変形型カンチレバー部、例えば温度センサであってもよい。本変形例の場合、温度補償用素子62は、カンチレバー部22と相似形の外形形状を有するが、ピエゾ抵抗層27が形成されていない。温度補償用素子62は、カンチレバー部22との間に第2隙間64が形成されている。第2隙間64は、上記隙間23と同じ幅であるのが好ましい。さらに温度補償用素子62は、基端側が二股に分岐し一対の脚部63、65が形成されている。脚部63、65間には開口66が形成されており、一対の脚部63、65はそれぞれ電極67、68に接続されている。電極67、68は、互いに電気的に切断されていると共に、カンチレバー部22に接続された電極33、35と、電気的に切断されている。 For example, as shown in FIG. 20 in which the same reference numerals are assigned to the configuration corresponding to FIG. 3, the detection unit 60 may include a temperature compensation element 62. The detection unit 60 includes a cantilever portion 22, and a temperature compensation element 62 is formed between the pair of hinge portions 34 of the cantilever portion 22. The temperature compensating element 62 has the same characteristic as the resistance change characteristic with respect to the temperature of the cantilever part 22. In the case of this modified example, the temperature compensating element 62 may be a non-deformable cantilever part, for example, a temperature sensor, whose electric resistance changes with temperature change. In the case of this modification, the temperature compensating element 62 has an external shape similar to that of the cantilever portion 22, but the piezoresistive layer 27 is not formed. A second gap 64 is formed between the temperature compensating element 62 and the cantilever portion 22. The second gap 64 is preferably the same width as the gap 23. Further, the temperature compensating element 62 has a base end bifurcated to form a pair of legs 63 and 65. An opening 66 is formed between the leg portions 63 and 65, and the pair of leg portions 63 and 65 are connected to electrodes 67 and 68, respectively. The electrodes 67 and 68 are electrically disconnected from each other and are electrically disconnected from the electrodes 33 and 35 connected to the cantilever portion 22.
 上記のように構成された温度補償用素子62は、検知部60の温度に応じた信号を出力する。ジャイロセンサ10,100は、上記温度補償用素子62が出力する信号を用いることにより、カンチレバー部22の電気抵抗値に対する温度補償を行うことができる。具体的には、ジャイロセンサ10,100は、カンチレバー部22で本体14,103の回転に伴う電気抵抗値を測定すると共に、温度補償用素子62で実際の温度を測定する。予め測定しておいたカンチレバー部22の温度特性から実際の温度に対応する補償値を算出する。これによりジャイロセンサ10,100は、測定した電気抵抗値から補償値を除算することにより、電気抵抗値に対して温度補償をすることができる。 The temperature compensation element 62 configured as described above outputs a signal corresponding to the temperature of the detection unit 60. The gyro sensors 10 and 100 can perform temperature compensation for the electric resistance value of the cantilever portion 22 by using the signal output from the temperature compensating element 62. Specifically, the gyro sensors 10 and 100 measure the electrical resistance value accompanying the rotation of the main bodies 14 and 103 by the cantilever part 22 and measure the actual temperature by the temperature compensation element 62. A compensation value corresponding to the actual temperature is calculated from the temperature characteristics of the cantilever portion 22 measured in advance. Accordingly, the gyro sensors 10 and 100 can perform temperature compensation on the electrical resistance value by dividing the compensation value from the measured electrical resistance value.
 また3個のジャイロセンサ10,100を、本体14,103が互いに直交する3方向に配置することで、3軸方向の加速度を測定することができる。 Further, by arranging the three gyro sensors 10, 100 in three directions in which the main bodies 14, 103 are orthogonal to each other, the acceleration in the three-axis direction can be measured.
 さらに、図14に示す中間層110において、貫通部128に代わって圧力センサ112を形成してもよい。その場合、上層106における一端部121a、下層108における一端部124aに対応する位置、および上層106における他端部121b、下層108における124bに対応する位置に、それぞれ圧力センサ112を有することになる。ジャイロセンサ100は、2つの圧力センサ112におけるカンチレバー部22の抵抗変化率を測定することにより、圧力Pを計測し、これにより角加速度αを感度よく測定することができ、電気抵抗値に対する温度補償を行うこともできる。 Furthermore, in the intermediate layer 110 shown in FIG. 14, the pressure sensor 112 may be formed instead of the through portion 128. In that case, the pressure sensor 112 is provided at a position corresponding to the one end part 121 a in the upper layer 106 and the one end part 124 a in the lower layer 108, and a position corresponding to the other end part 121 b in the upper layer 106 and 124 b in the lower layer 108. The gyro sensor 100 can measure the pressure P by measuring the resistance change rate of the cantilever part 22 in the two pressure sensors 112, thereby measuring the angular acceleration α with high sensitivity, and temperature compensation for the electrical resistance value. Can also be done.
10,100    ジャイロセンサ
12,102    流路
14,103    本体
16,112    圧力センサ
22    カンチレバー部
23    隙間
37    枠体
104  連通部
106  上層
108  下層
110  中間層
62    温度補償用素子
DESCRIPTION OF SYMBOLS 10,100 Gyro sensor 12,102 Flow path 14,103 Main body 16,112 Pressure sensor 22 Cantilever part 23 Gap 37 Frame 104 Communication part 106 Upper layer 108 Lower layer 110 Middle layer 62 Temperature compensation element

Claims (8)

  1. 内部に流路が形成された本体と、
    前記流路内に充填された媒体と、
    前記流路内に設けられ、前記媒体の慣性力を検出する圧力センサと
    を備えることを特徴とするジャイロセンサ。
    A main body having a flow path formed therein;
    A medium filled in the flow path;
    A gyro sensor comprising a pressure sensor provided in the flow path and detecting an inertial force of the medium.
  2. 前記圧力センサが、前記流路を仕切るように形成されたカンチレバー部を有することを特徴とする請求項1記載のジャイロセンサ。 The gyro sensor according to claim 1, wherein the pressure sensor has a cantilever portion formed so as to partition the flow path.
  3. 前記カンチレバー部の周囲に設けられ前記カンチレバー部の基端を保持する枠体と、前記カンチレバー部の間に形成された隙間が、前記媒体の平均自由工程の100倍以下であることを特徴とする請求項1又は2記載のジャイロセンサ。 A gap formed between the cantilever part and a frame provided around the cantilever part and holding the base end of the cantilever part, and a gap formed between the cantilever parts is 100 times or less of the mean free path of the medium. The gyro sensor according to claim 1 or 2.
  4. 前記媒体が液体であることを特徴とする請求項1~3のいずれか1項記載のジャイロセンサ。 The gyro sensor according to any one of claims 1 to 3, wherein the medium is a liquid.
  5. 前記カンチレバー部の温度特性を補償するための温度補償用素子が設けられたことを特徴とする請求項1~4のいずれか1項記載のジャイロセンサ。 The gyro sensor according to any one of claims 1 to 4, further comprising a temperature compensating element for compensating for temperature characteristics of the cantilever portion.
  6. 前記温度補償用素子は、前記カンチレバー部が有する温度に対する抵抗変化特性と同様の特性を有する非変形型カンチレバー部であることを特徴とする請求項5記載のジャイロセンサ。 6. The gyro sensor according to claim 5, wherein the temperature compensating element is a non-deformable cantilever part having a characteristic similar to a resistance change characteristic with respect to temperature of the cantilever part.
  7. 前記本体は、管状に形成されていることを特徴とする請求項1~6のいずれか1項記載のジャイロセンサ。 The gyro sensor according to any one of claims 1 to 6, wherein the main body is formed in a tubular shape.
  8. 前記本体は、上層と、下層と、上層と下層とに挟まれた中間層とを備え、板状に形成されていることを特徴とする請求項1~6のいずれか1項記載のジャイロセンサ。 The gyro sensor according to any one of claims 1 to 6, wherein the main body includes an upper layer, a lower layer, and an intermediate layer sandwiched between the upper layer and the lower layer, and is formed in a plate shape. .
PCT/JP2015/063101 2014-05-02 2015-05-01 Gyro sensor WO2015167015A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-095026 2014-05-02
JP2014095026 2014-05-02
JP2014-266582 2014-12-26
JP2014266582A JP6548067B2 (en) 2014-05-02 2014-12-26 Gyro sensor

Publications (1)

Publication Number Publication Date
WO2015167015A1 true WO2015167015A1 (en) 2015-11-05

Family

ID=54358736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063101 WO2015167015A1 (en) 2014-05-02 2015-05-01 Gyro sensor

Country Status (2)

Country Link
JP (1) JP6548067B2 (en)
WO (1) WO2015167015A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152752B2 (en) * 2018-09-14 2022-10-13 国立大学法人 東京大学 angular acceleration sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069565A (en) * 1983-09-26 1985-04-20 Nec Home Electronics Ltd Fluid inertia sensor
JPS62282270A (en) * 1986-01-07 1987-12-08 ソ−ン イ−エムアイ ピ−エルシ− Flow sensor
JP2007093528A (en) * 2005-09-30 2007-04-12 Sunx Ltd Pressure sensor
JP2009047591A (en) * 2007-08-21 2009-03-05 Canon Inc Angular velocity sensor and its manufacturing method
JP2011209130A (en) * 2010-03-30 2011-10-20 Kikuchiseisakusho Co Ltd Flowrate sensor and flowrate detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759562B2 (en) * 2012-09-04 2017-09-12 University Of Cyprus Hybrid MEMS microfluidic gyroscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069565A (en) * 1983-09-26 1985-04-20 Nec Home Electronics Ltd Fluid inertia sensor
JPS62282270A (en) * 1986-01-07 1987-12-08 ソ−ン イ−エムアイ ピ−エルシ− Flow sensor
JP2007093528A (en) * 2005-09-30 2007-04-12 Sunx Ltd Pressure sensor
JP2009047591A (en) * 2007-08-21 2009-03-05 Canon Inc Angular velocity sensor and its manufacturing method
JP2011209130A (en) * 2010-03-30 2011-10-20 Kikuchiseisakusho Co Ltd Flowrate sensor and flowrate detection device

Also Published As

Publication number Publication date
JP6548067B2 (en) 2019-07-24
JP2015227863A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
US11226251B2 (en) Method of making a dual-cavity pressure sensor die
JP5687202B2 (en) Pressure sensor and pressure sensor manufacturing method
JP5783297B2 (en) Mechanical quantity sensor
TW201524891A (en) Pressure sensor
JP2011218462A (en) Mems device
JP5874609B2 (en) Semiconductor device and manufacturing method thereof
TW201408582A (en) Hybrid intergrated component and method for the manufacture thereof
Chen et al. Robust method of fabricating epitaxially encapsulated MEMS devices with large gaps
WO2015167015A1 (en) Gyro sensor
JP6123613B2 (en) Physical quantity sensor and manufacturing method thereof
JPH06123628A (en) Semiconductor dynamic sensor and production thereof
JPH10206458A (en) External force-measuring apparatus and its manufacture
WO2016038984A1 (en) Physical quantity sensor
JP5939168B2 (en) Semiconductor device
JP2012189537A (en) Gas sensor
JP2010216853A (en) Vibration type angular velocity sensor
WO2014208043A1 (en) Physical quantity sensor
JP6237440B2 (en) Physical quantity sensor and manufacturing method thereof
JP3725059B2 (en) Semiconductor dynamic quantity sensor
JP2007199077A (en) Oscillation-type angular velocity sensor
JPH07225243A (en) Acceleration sensor and its production, method for detecting acceleration by the acceleration sensor and acceleration sensor array
JP2008170271A (en) External force detection sensor
JP4063272B2 (en) Semiconductor dynamic quantity sensor
JP6142736B2 (en) Semiconductor pressure sensor
JP3725078B2 (en) Manufacturing method of semiconductor dynamic quantity sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785785

Country of ref document: EP

Kind code of ref document: A1