JPS6069565A - Fluid inertia sensor - Google Patents

Fluid inertia sensor

Info

Publication number
JPS6069565A
JPS6069565A JP58177757A JP17775783A JPS6069565A JP S6069565 A JPS6069565 A JP S6069565A JP 58177757 A JP58177757 A JP 58177757A JP 17775783 A JP17775783 A JP 17775783A JP S6069565 A JPS6069565 A JP S6069565A
Authority
JP
Japan
Prior art keywords
fluid
spherical
spherical body
output
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58177757A
Other languages
Japanese (ja)
Inventor
Akira Nagasawa
長沢 亮
Koji Yashiro
浩二 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP58177757A priority Critical patent/JPS6069565A/en
Publication of JPS6069565A publication Critical patent/JPS6069565A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/26Devices characterised by the use of fluids

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To simplify structure and reduce manufacture cost by arranging a spherical body which is pivoted rotatably and has large inertial efficiency in a spherical hollow body and flowing fluid. CONSTITUTION:When slightly pressurized fluid is supplied into a fluid input pipe 5, this fluid flows along the circumferential surface of the spherical body 4 as shown by an arrow and is then discharged from a fluid output pipe 6. In this case, the fluid flowing through the upper and lower parts in the spherical body 4 is stationary fluid, so the spherical body 4 holds a fixed state continuously. For example, when an automobile of a system mounting a fluid inertia sensor 1 is turned as shown by an arrow A, the fluid input and output pipes 5 and 6 and spherical hollow body 2 rotate, but the spherical body 4 having the large inertial efficiency holds the fixed state. Then, the fluid becomes unbalanced in flow rate between the upper and lower parts in the spherical body 4 to generate a pressure difference. The pressure difference is detected by pressure sensors 7 and 8 and supplied to a comparator 9. This comparator 9 generates an analog output with the level corresponding to the revolving angular speed.

Description

【発明の詳細な説明】 技術分野 本発明は慣性センサーに関し、特に流体を用いた流木慣
性センサーに関するもθである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an inertial sensor, and more particularly to a driftwood inertial sensor using a fluid.

背景技術 近年、電子技術の急速な発達に伴なって、各植物体の移
動方向、移動層および移動速屁の検出が容易に行なえる
様になって来ている。例えば自動車に於いては、その移
動方向および移動速度を検出することによって現在位置
を表示するシステムが開発されている。この場合、自動
車の移動方向および移動速度を検出するセンサーとして
は、慣性センサーが用いらiしている。
BACKGROUND ART In recent years, with the rapid development of electronic technology, it has become easier to detect the moving direction, moving layer, and moving speed of each plant. For example, in the case of automobiles, systems have been developed that display the current position of automobiles by detecting their moving direction and moving speed. In this case, an inertial sensor is used as a sensor for detecting the moving direction and moving speed of the automobile.

そして、この慣性センサーとしてlよ四本及び流体等の
ジャイロを利用したものが王となっている。
The most popular inertial sensors are those that use a gyro such as a gyro or a fluid.

しかしなかな、上述した従来の慣性センサーは、高精度
の加工と複雑な1itll IalIf必要とするため
に、高価でかつ取シ扱いが困難なものとなってしまう問
題金有している。
However, the above-mentioned conventional inertial sensor requires high-precision machining and complicated IAlIf, and therefore has the problem of being expensive and difficult to handle.

発明の開発 従って、本発明による目的は、構造およびその取シ扱い
が闇単でかつ安価な慣性センサーを提供することである
DEVELOPMENT OF THE INVENTION It is therefore an object according to the invention to provide an inertial sensor that is simple and inexpensive in construction and in its handling.

この様な目的を達成するために本発明lri、流体通路
の一部に設けられた球状中空体と、この球状中空体の内
部に於いて回転自在に軸支された球状体と、 +iiJ
記球状中球状中空体で前記球状体を支持する軸方向に直
父しかつ流体の入出力方向に対して直交する2点にそれ
ぞtし圧力センサーを設け、この圧力センサーの出力差
によp角速度を検出し、出力差を時間で積分することに
よって回転角をめるものである。
In order to achieve such an object, the present invention includes: a spherical hollow body provided in a part of a fluid passage; a spherical body rotatably supported inside the spherical hollow body; +iiJ
Pressure sensors are provided at two points directly in the axial direction supporting the spherical body in the spherical hollow body and orthogonal to the input/output direction of the fluid, and the output difference of the pressure sensors is used to detect pressure sensors. The rotation angle is determined by detecting the p angular velocity and integrating the output difference over time.

この様に構成された流体慣性センサーに於いては、構造
が簡単でありながら、角速度と回転角の検出が容易に灯
なえるとともに、安価に製造することが出来る優れた効
果を有する。
The fluid inertial sensor configured in this manner has excellent effects in that it has a simple structure, can easily detect angular velocity and rotation angle, and can be manufactured at low cost.

発明を実施するための最良な形態 第1図は本発明による流体慣性センサーの一実施例を示
す要部断面図である。同図に於いて12ま流体慣性セン
サーであって、流体連絡の一部に設けられた球状中空体
2と、この球状中室体2の内部に配賀されてIIIIJ
]3Vこよ逆回転自在に軸支さtした球状体4とによっ
て構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of essential parts of an embodiment of a fluid inertial sensor according to the present invention. In the figure, numeral 12 is a fluid inertial sensor, which includes a spherical hollow body 2 provided in a part of the fluid communication, and a spherical hollow body 2 disposed inside this spherical hollow body 2.
] 3V and a spherical body 4 which is pivotally supported so that it can freely rotate in reverse.

そして1球状中空体20両側部分は、流体入力管5と流
体出力管6にそれぞれ接続されて流体が流されている。
Both side portions of the single spherical hollow body 20 are connected to a fluid input pipe 5 and a fluid output pipe 6, respectively, to allow fluid to flow therethrough.

更に、球状中空体2の内面で回転体4を支持する軸3に
直父し、かつ流体入出力管同に対して直交する2点には
、ぞtLぞれ圧力センサー7,8が設けらiして出力端
子が外部に導出されている。9μ圧力センサー7.8の
出力信号差をめるコンノミレータ、lOμコンパレータ
9の出力1g号全ディジタル信号に変換シテマイクロコ
ンピュータ11に供給するアナログ・ディジタル変換回
路、121′iマイクロコンピユータ11の出力ボート
均から発生されるラッチ制御信号によりボートP3から
発生される。演算出力をラッチするラッチ回路、13′
riマイクロコンピユータ11の出力ボートP2から発
生されるラッチ制御信号にLムして出カポ−) Psか
ら発生される演算出力をラッチするラッチ回路である。
Furthermore, pressure sensors 7 and 8 are provided at two points on the inner surface of the spherical hollow body 2 that are directly adjacent to the shaft 3 that supports the rotating body 4 and that are perpendicular to the fluid input and output pipes. The output terminal is led out to the outside. 9μ Pressure sensor 7. Connomitor which calculates the output signal difference of 8, converts the output 1g of lOμ comparator 9 into an all-digital signal, and supplies analog/digital conversion circuit to the microcomputer 11. The latch control signal generated from the port P3 is generated by the latch control signal generated from the port P3. A latch circuit that latches the calculation output, 13'
This is a latch circuit that latches the calculation output generated from the output capo Ps in response to the latch control signal generated from the output port P2 of the ri microcomputer 11.

この様に構成された流体慣性センサーに於いて、流体入
力管5に多少加圧した流l/Ii:を供給すると、この
流体μ矢印でボ′J−悼に球状体4の周面に沿って流れ
た後に流木出力管6から排出される。そして、この場合
に′ri1球状体球状上4と下部を流れる流体は慣性能
率の大きな球状体4の周りヶ対称に流れて定常流体を作
ることから1球状体4は固定状態を続ける。また、固定
状態をとるようにオフセットできるものとする。
In the fluid inertial sensor configured in this way, when a somewhat pressurized flow l/Ii: is supplied to the fluid input pipe 5, this fluid μ arrow moves along the circumferential surface of the spherical body 4 along the spherical body 4. After the driftwood flows, it is discharged from the driftwood output pipe 6. In this case, the fluid flowing through the upper and lower parts of the 'ri1 spherical body flows symmetrically around the spherical body 4 having a large inertia coefficient, creating a steady fluid, so that the 1 spherical body 4 continues to be in a fixed state. It is also assumed that it can be offset so that it takes a fixed state.

そして、この場合には1球状体4の上下部に於ける流体
の流れが対称となることから、圧力センサー7.8の出
力が跨しくなってコンパレータ9の出力が零となる。
In this case, since the flow of fluid in the upper and lower parts of one spherical body 4 is symmetrical, the output of the pressure sensor 7.8 becomes straddle, and the output of the comparator 9 becomes zero.

次に、この流体慣性センサー1が装着されている糸の例
えば自動本が矢印人で示す方向Vこ回動すると、流体入
出力管5.6および球状中空体2は回動するが、軸3に
よって回動自在に支持された慣性能率の大きな球状体4
は固定状態を続けることになる。これは糸を固定して球
状体4をAに対して逆方向に回転することに咎しくなる
。この結果1球状体4の上部に於いては。
Next, when the thread to which this fluid inertial sensor 1 is attached, for example, an automatic thread, rotates in the direction V indicated by the arrow, the fluid input/output pipe 5.6 and the spherical hollow body 2 rotate, but the shaft 3 A spherical body 4 with a large inertia factor rotatably supported by
will remain fixed. This makes it inconvenient to fix the thread and rotate the spherical body 4 in the opposite direction to A. As a result, in the upper part of the spherical body 4.

流体の流れと球状体4の表面との間Vこ互い罠逆向きの
相対運動が作用し、下部に於いては互いに同方向の相対
連動が作用することになる。従って1球状体4の上下部
に於ける流体の流速がアンバランスとなって圧力差が生
ずる。そして。
Relative movements in opposite directions act between the fluid flow and the surface of the spherical body 4, and relative movements in the same direction act at the bottom. Therefore, the flow velocity of the fluid between the upper and lower parts of the spherical body 4 becomes unbalanced, resulting in a pressure difference. and.

この圧力差は圧力センサー7.8に於藝て検出すtt 
テコンノξレータり iC供給されることから、このコ
ンノミレータ9からは回転自速Liに応じたレベルのア
ナログ出力が発生さt’Lることになる。
This pressure difference is detected by pressure sensor 7.8.
Since the converter ξlator iC is supplied, the converter 9 generates an analog output t'L at a level corresponding to the rotational speed Li.

この様にして発生さ7したコンノ々v −夕9 (7)
141 力信号は、アナログ嗜ディジタル変14610
に於してディジタル1直に変(夷された後にマイクロコ
ンピュータ11Vc供給される。マイクロコンピュータ
11は入力信号が供給さrLると、この入力信号に応じ
た角速度信号を出力ボートPlから発生されるラッチ制
御信号に同ル」して出力ボートP3から発生してラッチ
回路12にラッチする。
The events that occurred in this way - evening 9 (7)
141 Force signal is an analog/digital variable 14610
After being changed directly to digital 1, Vc is supplied to the microcomputer 11. When the microcomputer 11 receives an input signal rL, it generates an angular velocity signal corresponding to this input signal from the output port Pl. The signal is generated from the output port P3 in accordance with the latch control signal and latched into the latch circuit 12.

匠って、このラッチ回路12かりは角速度1言号Bが出
力さルることになる。また、このマイクロコンピュータ
11 ?j:人力信号r時間で積分することによって回
転角を演算しており、その出力信号をボー) Pgかし
発生さtしるラッチ制御IlイH号に同期して出力ボー
トP3から発生されることによってラッチ回路13にラ
ッチされる。健つて、このラッチ回路13からは回転角
信号Cが元生されることになる。
Actually, this latch circuit 12 outputs one angular velocity word B. Also, this microcomputer 11? j: The rotation angle is calculated by integrating the human input signal r over time, and the output signal is baud) Pg is generated from the output boat P3 in synchronization with the latch control Il IH. As a result, the signal is latched by the latch circuit 13. As a result, the latch circuit 13 will generate the rotation angle signal C.

なお、上記実施例に於いては、マイクロコンピュータを
用いて演算処理を行なうことにより角速度信号と回転角
信号をのだ場合について説明したが、角速度信号のみを
必要とする場合には、コンノ々レータ9のみを用いれば
良いことになる。
In the above embodiment, a case has been described in which the angular velocity signal and rotation angle signal are generated by performing arithmetic processing using a microcomputer. However, if only the angular velocity signal is required, a controller may be used. It is sufficient to use only 9.

以上説明した株に1本発明による液体慣性センサーは1
球状中空体の内部に回転自在に軸支された慣性効塞の大
きな球状体を配置して流体を流すことにより1球状中空
体の回動に伴なって生ずる流体流速の乱れを圧力差とし
てf炙出するものでめるためVC1構造が簡略化されて
安価なものとなる。
In addition to the above-described liquid inertial sensor according to the present invention, there is one
By arranging a spherical body with a large inertia effect that is rotatably supported inside a spherical hollow body and allowing fluid to flow, the disturbance in the fluid flow velocity that occurs due to the rotation of the spherical hollow body is expressed as a pressure difference f. Since the VC1 structure is made by broiling, the structure of the VC1 can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図μ本発明による流体慣性センサーの一実施例を示
す要部構成図である。 l・・・流体慣性センサー、2・・・球状中空体、3・
・・軸、4・・・球状体、5・・・流体人力管、6・・
・流体出力IF、 7 、8・・・圧力センサー、9・
・・コンノ々レータ、10・・・アナログ・ディジタル
変i11!!器、 11・・・マイクロコンピュータ、
12.13・・・ラッチ回路。
FIG. 1 is a diagram illustrating a main part of an embodiment of a fluid inertial sensor according to the present invention. l... Fluid inertial sensor, 2... Spherical hollow body, 3...
... Axis, 4... Spherical body, 5... Fluid man-powered tube, 6...
・Fluid output IF, 7, 8...Pressure sensor, 9・
...Kononoreta, 10...analog/digital change i11! ! equipment, 11...microcomputer,
12.13...Latch circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)流体通路の一部に設けられた球状中空体と、この
球状中空体の内部に於いて回転自在に軸支された慣性効
率の高い球状体と、前記球状中空体の内面で前記球状体
を支持する軸方向に直々、しかつ流体の人出力方回に対
して直交する2点にそれぞれ設けられた圧力センサーと
全備えh FjfJ記圧力上圧力センサー差から角速度
信号および回転角信号を得ることを特徴とする流体慣性
センサー。
(1) A spherical hollow body provided in a part of the fluid passage, a spherical body with high inertial efficiency rotatably supported inside the spherical hollow body, and a spherical body provided on the inner surface of the spherical hollow body. An angular velocity signal and a rotation angle signal are obtained from the pressure sensors and the pressure sensors installed directly in the axial direction that supports the body and at two points orthogonal to the human output direction of the fluid. A fluid inertial sensor characterized by obtaining.
JP58177757A 1983-09-26 1983-09-26 Fluid inertia sensor Pending JPS6069565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58177757A JPS6069565A (en) 1983-09-26 1983-09-26 Fluid inertia sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58177757A JPS6069565A (en) 1983-09-26 1983-09-26 Fluid inertia sensor

Publications (1)

Publication Number Publication Date
JPS6069565A true JPS6069565A (en) 1985-04-20

Family

ID=16036591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58177757A Pending JPS6069565A (en) 1983-09-26 1983-09-26 Fluid inertia sensor

Country Status (1)

Country Link
JP (1) JPS6069565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167015A1 (en) * 2014-05-02 2015-11-05 国立大学法人東京大学 Gyro sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113679A (en) * 1975-03-06 1976-10-06 Bendix Corp Integrating angular acceleration meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113679A (en) * 1975-03-06 1976-10-06 Bendix Corp Integrating angular acceleration meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167015A1 (en) * 2014-05-02 2015-11-05 国立大学法人東京大学 Gyro sensor
JP2015227863A (en) * 2014-05-02 2015-12-17 国立大学法人 東京大学 Gyro sensor

Similar Documents

Publication Publication Date Title
US4458426A (en) Gyroscopic apparatus
JPS6069565A (en) Fluid inertia sensor
US3350936A (en) Mass flow meter
US4107988A (en) Navigation aid for sailing vessels
JP2770076B2 (en) Late bias device
RU2020417C1 (en) Inertial navigation system
JP2006010507A (en) Gyrocompass for vessel
JP3738399B2 (en) Direction detection method and gyrocompass
JPS60143780A (en) Rotary angular velocity operation circuit
JPH08145743A (en) Turbine flowmeter
JP2916618B2 (en) Ring laser anemometer
JPH04318426A (en) Flowmeter
JPS5922514Y2 (en) Fluid density measuring device
NL8203007A (en) DEVICE FOR MONITORING THE DIRECTION OF A BOREHOLE.
JPS63285412A (en) Gyroscopic apparatus
RU2210780C1 (en) Three-member angular velocity meter
JPH02100111A (en) Triaxial attitude controller
CN109459004A (en) A kind of measuring system and method for expansible gyroscope measurement range
JPS62206413A (en) Gyro-bias error calibration system of strap-down type inertia reference apparatus
JPS5996097A (en) Steering apparatus for vessel
JPS62127624A (en) Detecting method for angle of rotation
Collins et al. Draining from rapidly spinning tubes
JPH0277400A (en) Solar battery paddle driving control method for three axis stabilizing satellite
JPH04109118A (en) Attitude determining method for three-axis-stabilized satellite
JPS5950256A (en) Detecting device for shift lever position of automobile