JPH0277400A - Solar battery paddle driving control method for three axis stabilizing satellite - Google Patents
Solar battery paddle driving control method for three axis stabilizing satelliteInfo
- Publication number
- JPH0277400A JPH0277400A JP63230273A JP23027388A JPH0277400A JP H0277400 A JPH0277400 A JP H0277400A JP 63230273 A JP63230273 A JP 63230273A JP 23027388 A JP23027388 A JP 23027388A JP H0277400 A JPH0277400 A JP H0277400A
- Authority
- JP
- Japan
- Prior art keywords
- paddle
- solar
- signal
- sun sensor
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 5
- 230000000087 stabilizing effect Effects 0.000 title 1
- 238000010586 diagram Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 241001503987 Clematis vitalba Species 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Navigation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分母〕
この発明は三軸安定衛星の太陽電池パドル駆動制御方式
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Denominator] The present invention relates to a solar battery paddle drive control system for a three-axis stable satellite.
第2図は従来の三軸安定衛星の太陽電池パドル駆動制御
方式を示す機能ブロック図であり2図において、(1)
は太陽電池パドル上に設置された太陽角を測定する追尾
用太陽センサ1 、 (2)は太陽電池パドル上に設置
された太陽角を測定する追尾用太陽センサ2 、 T3
1は追尾用太陽センサ1(1)及び追尾用太陽センサ2
(2)が太陽角を測定している事を示す信号を発生する
太陽プレゼンス発生部、(4)は迫尾用太陽センサ1(
1)及び追尾用太陽センサ2(2)から計算される太陽
角に基づき太陽電池パドル回転角速度誤差信号を発生す
る回転角速度発生部、(日は太陽電池パドルが日陰(と
ある時、軌道角速度で回転するための信号を発生する軌
道角速度発生部。Figure 2 is a functional block diagram showing the solar paddle drive control system for a conventional three-axis stable satellite. In Figure 2, (1)
(2) is a tracking sun sensor 1 installed on the solar array paddle that measures the solar angle; (2) is a tracking solar sensor 2 installed on the solar array paddle that measures the solar angle; T3
1 is a tracking sun sensor 1 (1) and a tracking sun sensor 2
(2) is a solar presence generating part that generates a signal indicating that the solar angle is being measured; (4) is a sun sensor for persecution 1 (
1) and a rotation angular velocity generator that generates a solar array rotation angular velocity error signal based on the solar angle calculated from the tracking sun sensor 2 (2). Orbital angular velocity generator that generates signals for rotation.
(8)は太陽プレゼンス発生部(3)1回転角速度発生
部(4)、軌道角速度発生部(5)を含むパドル駆動制
御回路、(9)はパドル駆動制御回路(8)から出力さ
れる駆動信号に基づきパドル駆動機構のモータを駆動す
るパルスを発生するwA駆動パルス発生電子回路 (1
0)は太陽電池パドルを駆動するパドル駆動機構である
。(8) is a paddle drive control circuit that includes a solar presence generation unit (3), a one-rotation angular velocity generation unit (4), and an orbital angular velocity generation unit (5); (9) is a drive output from the paddle drive control circuit (8); wA drive pulse generation electronic circuit that generates pulses to drive the motor of the paddle drive mechanism based on signals (1
0) is a paddle drive mechanism that drives the solar battery paddle.
次に追尾用太陽センサを使用した太陽電池パドル駆動制
御方式を説明する。追尾用太陽センサの出力は第2図に
示しであるように太陽方向角度とパドル回転角度の差を
変数として山伏の形となり追尾用太陽センサ1と2で出
力の位相が異なる。Next, a solar battery paddle drive control method using a tracking solar sensor will be explained. As shown in FIG. 2, the output of the tracking sun sensor takes the difference between the sun direction angle and the paddle rotation angle as a variable, and takes the shape of a mountain climber, and the output phases of the tracking sun sensors 1 and 2 are different.
各々の出力をU、、 U、とし、U□+u2を太陽プレ
ゼンス発生部(3)に入力し、U、−U□を回転角速度
発生部(4)に入力する。太陽プレゼンス発生部(3)
ではp Ul十02がある一定値以上の時プレゼンス信
号を0から1にする。回転角速度発生部(4)では、第
2図にあるようにυ2 ”lにほぼ比例するかたちで
パドル回転角速度誤差Δωを出力する。駆動パルス発生
電子器* (91に渡されるパドル回転角速度は軌道角
速度発生部(5)の軌道角速度ω。とΔωの和ω。十Δ
ωとなる。なお、太陽プレゼンス信号が0即ち日陰の時
はΔωに零が代入される。駆動パルス発生電子回路(9
)では入力回転角速度に反比例したパルス間隔でパドル
駆wJJ1a構叫のステップモーフを駆動する電流パル
スを生成する。パドル駆!l1I1機構(1ωは上記電
流パルスが入力されるごとに一定角度増分でパドルを駆
動する。従って、パドル回転角度θ、ば回転角速度信号
ω。十Δωを時間で積分した景となる。Let the respective outputs be U, , U, U□+u2 is input to the solar presence generating section (3), and U, -U□ is input to the rotational angular velocity generating section (4). Solar presence generation part (3)
Then, the presence signal is changed from 0 to 1 when pU102 is above a certain value. The rotational angular velocity generator (4) outputs the paddle rotational angular velocity error Δω in a form that is approximately proportional to υ2"l as shown in Fig. 2. The paddle rotational angular velocity passed to the drive pulse generator * (91 The sum ω of the orbital angular velocity ω of the angular velocity generator (5) and Δω.
becomes ω. Note that when the solar presence signal is 0, that is, in the shade, zero is assigned to Δω. Drive pulse generation electronic circuit (9
) generates current pulses that drive the step morph of the paddle drive wJJ1a at pulse intervals that are inversely proportional to the input rotational angular velocity. Paddle drive! The l1I1 mechanism (1ω drives the paddle by a constant angle increment each time the current pulse is input. Therefore, the paddle rotation angle θ is the rotational angular velocity signal ω. This is the result of integrating Δω over time.
第2図に示す信号の流れでフィードバックループを構成
すると全体の閉ループ伝達関数は一次遅れフィルタの形
とな9制御系は回転角速度発生部(4)のU、−U、入
力に対するΔωの出力の比例係数の大きさにかかわらず
安定となる。When a feedback loop is constructed with the signal flow shown in Fig. 2, the entire closed loop transfer function is in the form of a first-order lag filter. It is stable regardless of the magnitude of the proportionality coefficient.
従来の太陽電池パドル駆動制御方法では日照中追尾用太
陽センサの光学視野にミッションm器。In the conventional solar array paddle drive control method, the optical field of view of the solar sensor for tracking during sunlight is limited to the mission meter.
アンテナ等を含む衛星本体があられれない様に視腎、太
陽センサ取付位置を決めている。これは。The mounting positions of the optic kidney and solar sensor are determined so that the satellite itself, including the antenna, etc., will not be damaged. this is.
日照中衛原本体が視野にあられれると本体での太陽反射
光が太陽センサに入射する事になり、太陽センサ出力の
中に太陽による出力以外の衛星本体からの太陽反射光に
よる出力が加わる事になる。When the main body of Nishiro Chueihara comes into view, the reflected light from the sun from the main body will enter the solar sensor, and the output from the reflected light from the satellite itself will be added to the solar sensor output, in addition to the output from the sun. Become.
これは太陽センサ出力に誤差が含まれる事でこのため太
陽電池パドルの太陽指向に誤差が生じることになる。This is because the solar sensor output includes an error, which causes an error in the solar orientation of the solar array paddle.
衛星が大型化するにつれてアンテナ等の突起物が増え太
陽センサの視野に入らない様に視野を限定しようとする
と本来の太陽方向に対する視野余裕がとれない事も生じ
てくる。As satellites become larger, the number of protrusions such as antennas increases, and if you try to limit the field of view so that they do not enter the field of view of the solar sensor, you may not be able to secure a field of view in the original direction of the sun.
この発明は上記のような不都合を解消するためになされ
るもので、太陽センサ視野に衛星本体の太陽反射光が入
射しても太陽電池パドルの太陽指向に誤差が生じないこ
とを目的とする。This invention has been made to solve the above-mentioned problems, and it is an object of the present invention to prevent errors from occurring in the sun pointing of the solar battery paddle even if the sun reflected from the satellite body enters the field of view of the sun sensor.
この発明に係る太陽電池パドル駆動制御方法は。 A solar battery paddle drive control method according to the present invention is as follows.
太陽電池パドル駆動機構に組み込まれパドル回転角度を
検出する角度検出器と、太陽電池パドル回転角度から追
尾用太陽センサの使用可否信号を出力する太陽センサ使
用停止判断部を備え、角度検出器の信号に基づき太陽セ
ンサ使用の可否信号を算出し、この信号に従いパドル駆
動制御回路の中で追尾用太陽センサに基づく回転角速度
偏差分の信号を使うか否かするようにしたものである。It is equipped with an angle detector that is built into the solar array paddle drive mechanism and detects the paddle rotation angle, and a solar sensor usage/discontinuation determination unit that outputs a signal for use of the tracking sun sensor based on the solar array paddle rotation angle. Based on this, a signal indicating whether or not the sun sensor can be used is calculated, and in accordance with this signal, the paddle drive control circuit determines whether or not to use a signal corresponding to the rotational angular velocity deviation based on the tracking sun sensor.
この発明における太陽電池パドル駆WIJ機構に組み込
まれパドル回転角度を検出する角度検出器は。An angle detector that is incorporated in the solar battery paddle drive WIJ mechanism and detects the paddle rotation angle in the present invention is as follows.
衛星本体と太陽電池パドルとの間の相対角度としてのパ
ドル回転角度を検出する。衛星本体の太陽反射光の追尾
用太陽センサへの入射角はパドル回転角度により一意に
定まる。従って、パドル回転角度をモニターすることで
W1星本体の太陽反射光が追尾用太陽センサに影響を与
えるか否か判断できる。Detect the paddle rotation angle as the relative angle between the satellite body and the solar array paddle. The angle of incidence of the solar reflected light from the satellite body onto the tracking solar sensor is uniquely determined by the paddle rotation angle. Therefore, by monitoring the paddle rotation angle, it can be determined whether the solar reflected light from the W1 star body affects the tracking sun sensor.
パドル駆動制御回路の中に太陽センサ使用停止判断部を
設け、1M星本体の太陽反射光が太陽センサに影響を与
えるパドル回転角度τをτ量からで141までとした時
、パドル回転角度τがτ1からτl+1の領域にあると
き使用停止信号を出力し。A sun sensor usage stop judgment unit is provided in the paddle drive control circuit, and when the paddle rotation angle τ at which the solar reflected light from the 1M star body affects the sun sensor is set to 141 from the τ amount, the paddle rotation angle τ is It outputs a stop signal when it is in the range from τ1 to τl+1.
τ1からτ141の領域外にある時使用可能信号を出す
。使用停止信号が出ている時は、太陽電池パドルを軌道
速度で回転するようパドル駆動制御回路を動作させる。When it is outside the range from τ1 to τ141, a usable signal is output. When the stop signal is issued, the paddle drive control circuit is operated to rotate the solar array paddle at orbital speed.
以下、この発明の一実施例を図に基づいて説明する。第
1図はこの発明による三軸安定衛星の太陽電池゛パドル
駆動制御方式を示す機能ブロック図であり1図中、(1
)〜(5)及び(9)〜α〔は従来の三軸安定衛星の太
陽電池パドル駆動制御方式と全く同一のものである。(
6)は太陽電池パドル駆!l1lJ機構a〔に組み込ま
れパドル回転角度を検出する角度検出器である。(7)
は太陽電池パドル回転角度から追尾用太陽センサ(11
,+21の使用可否信号を出力する太陽センサ使用停止
判断部である。(8)は太陽プレゼンス発生部(3)2
回転角速度発生部(4)、軌道角速度発生部(5)、太
陽センサ使用停止判断部(7)を含むパドル駆動制御回
路である。Hereinafter, one embodiment of the present invention will be described based on the drawings. Figure 1 is a functional block diagram showing the solar battery paddle drive control system for a three-axis stable satellite according to the present invention.
) to (5) and (9) to [alpha] are exactly the same as the solar battery paddle drive control system of the conventional three-axis stable satellite. (
6) Solar battery paddle drive! This is an angle detector that is incorporated into the l1lJ mechanism a and detects the paddle rotation angle. (7)
is the tracking solar sensor (11) from the rotation angle of the solar battery paddle.
, +21 is a sun sensor usage stop determination unit that outputs a usage permission signal. (8) is the solar presence generating part (3) 2
This is a paddle drive control circuit including a rotational angular velocity generating section (4), an orbital angular velocity generating section (5), and a sun sensor usage stoppage determining section (7).
追尾用太陽センサ1(1)と追尾用太陽センサ2(2)
の各々の出力U、、 U、の差U、−U、は太陽方向角
度とパドル回転角度θ、の差Δθに比例し、太陽方向が
パドル回転角度より進んでいる時、U、−U、>Oとな
り、パドル回転角速度は軌道角速度より大きくなり、1
Δθ1を小さくする。逆に、パドル回転角度が太陽方向
より進んでいる時はU、−U、<Oとなり、パドル回転
角速度が軌道角速度より小さくなり、1Δθ1を小さく
する。衛星が日陰にいる時は、太陽プレゼンス信号が零
となり、パドルは軌道角速度で一定回転する。Tracking sun sensor 1 (1) and tracking sun sensor 2 (2)
The difference U, -U, between the respective outputs U, , U, is proportional to the difference Δθ between the sun direction angle and the paddle rotation angle θ, and when the sun direction is ahead of the paddle rotation angle, U, -U, >O, the paddle rotational angular velocity becomes greater than the orbital angular velocity, and 1
Decrease Δθ1. Conversely, when the paddle rotation angle is ahead of the sun direction, U, -U, <O, and the paddle rotation angular velocity becomes smaller than the orbital angular velocity, making 1Δθ1 smaller. When the satellite is in the shade, the solar presence signal is zero and the paddle rotates at a constant orbital angular velocity.
衛星本体の太陽反射光が追尾太陽センサ1(1)及び追
尾用太陽センサ2(2)に影響を与えるパドル回転角度
τの値域を11度から1141度までとする。The value range of the paddle rotation angle τ at which the solar reflected light from the satellite body affects the tracking sun sensor 1 (1) and the tracking sun sensor 2 (2) is from 11 degrees to 1141 degrees.
複数領域になることもある。第1図では2例としてパド
ル回転角度τが0°と180°の 2ケ所を中心として
衛星に付属した大型アンテナの反射光が太陽センサに影
響を与えるとして、そのパドル回転角領域を〔0,τ1
〕、〔τ2.τ、〕、〔τ、、360°〕の2領域とし
ている。ここでで、<180’<τ3.τはθ、の36
00剰余表現とする。There may be multiple areas. In Figure 1, as two examples, assuming that reflected light from a large antenna attached to a satellite affects the solar sensor around two locations where the paddle rotation angle τ is 0° and 180°, the paddle rotation angle range is set to [0, τ1
], [τ2. There are two regions: τ,] and [τ,, 360°]. Here, <180'<τ3. τ is θ, 36
00 remainder representation.
IM星が日照状態で、角度検出器(6)の出力τが上記
領域〔0,τ1〕、〔τ2.τ3〕、〔τ、、360°
〕以外の時、太陽センサ使用停止判断部(7)は0を出
力し2回転角速度発生部(4)で計算したΔωと軌道角
速度発生部(5)のω。とが加算され、ω。十Δωのパ
ドル回転レートが駆動パルス発生電子回路(9)に送り
込まれる。Δωは1Δθ1を小さくするよう計算される
ため、パドルセル面が太陽方向を向くよう制御される。When the IM star is in the sunshine state, the output τ of the angle detector (6) is in the above range [0, τ1], [τ2. τ3], [τ,, 360°
], the sun sensor usage stoppage determining unit (7) outputs 0, and Δω calculated by the two-rotation angular velocity generating unit (4) and ω of the orbital angular velocity generating unit (5). are added and ω. A paddle rotation rate of 10Δω is fed into the drive pulse generation electronics (9). Since Δω is calculated to reduce 1Δθ1, the paddle cell surface is controlled to face the sun.
次に、τが〔0,τ1〕、〔τ2.τ3〕、〔τ、、3
606)のいずれかに含まれるとき、太陽センサ使用停
止判断部(7)は1を出力し、Δωを無視し、駆動パル
ス発生電子回1 (9]には軌道角速度発生部(5)の
ω。Next, τ is [0, τ1], [τ2. τ3], [τ,,3
606), the sun sensor use stop judgment unit (7) outputs 1, ignores Δω, and the drive pulse generation electronic circuit 1 (9) is determined by the orbital angular velocity generation unit (5) ω. .
を送り込む。衛星は軌道角速度で慣性空間で回転してい
るため、パドル面と太陽との相対的角度Δθは一定とな
り変化しない。また、衛星が日陰にあるときも、パドル
は軌道角速度のω。のレートで回転する事になり、パド
ル面と太陽との相対的角度Δθは一定で変化しない。send in. Since the satellite rotates in inertial space at an orbital angular velocity, the relative angle Δθ between the paddle surface and the sun remains constant and does not change. Also, when the satellite is in the shade, the paddle has an orbital angular velocity of ω. The relative angle Δθ between the paddle surface and the sun remains constant and does not change.
以上の様にパドル駆動制御を行うことにより。By performing paddle drive control as described above.
衛星本体の太陽反射光が追尾用太陽センサに影響を与え
ていても、それによる制@誤差を発生する乙となく、パ
ドルセル面が太陽を指向できる。Even if the solar reflected light from the satellite itself affects the tracking solar sensor, the paddle cell surface can point toward the sun without causing any control errors.
以上のように、この発明によれば角度検出器(6)と太
陽センサ使用停止判断部°(7)での追尾用太陽センサ
データ使用可否ロジックにより、#星本体の太陽反射光
が追尾用太陽センサに影響を与えるとき、太陽センサデ
ータを使うことなくパドル駆動制御が出来るもので、追
尾用太陽センサの視野制約を軽減できるという効果があ
る。As described above, according to the present invention, the logic of whether or not the tracking sun sensor data can be used in the angle detector (6) and the sun sensor usage stop judgment unit (7) allows the solar reflected light from the star body to be reflected from the tracking sun. When influencing the sensor, paddle drive control can be performed without using solar sensor data, which has the effect of reducing field of view constraints on the tracking sun sensor.
第1図はこの発明の一実施例を示す機能ブロック図、第
2図は従来のパドル駆動制御方式の機能ブロック図であ
る。
図において、(1)は追尾用太陽センサ1 、 +21
は迫尾用太陽センサ2 、 [31は太陽プレゼンス発
生部。
(4)は回転角速度発生部、(5)は軌道角速度発生部
。
(6)は角度検出器、(7月よ太陽センサ使用停止判断
部。
(8)はパドル駆動制御回路、(9)は駆動パルス発生
電子回路、 (1(11はパドル駆a81構である。
なお、各図中同一符号は同一、又は相当部分を示す。FIG. 1 is a functional block diagram showing an embodiment of the present invention, and FIG. 2 is a functional block diagram of a conventional paddle drive control system. In the figure, (1) is the tracking sun sensor 1, +21
[31 is the solar presence generating part.] (4) is a rotational angular velocity generating section, and (5) is an orbital angular velocity generating section. (6) is the angle detector, (July sun sensor use stop judgment unit. (8) is the paddle drive control circuit, (9) is the drive pulse generation electronic circuit, (1 (11 is the paddle drive A81 structure. Note that the same reference numerals in each figure indicate the same or equivalent parts.
Claims (1)
定する追尾用太陽センサ1及び追尾用太陽センサ2と、
太陽電池パドル駆動機構に組み込まれパドル回転角度を
検出する角度検出器と、追尾用太陽センサ1及び追尾用
太陽センサ2が太陽角を測定している事を示す信号を発
生する太陽プレゼンス発生部、追尾用太陽センサ1及び
追尾用太陽センサ2から計算される太陽角に基づき太陽
電池パドル回転角速度誤差信号を発生する回転角速度発
生部、太陽電池パドルが日陰にある時、軌道角速度で回
転するための信号を発生する軌道角速度発生部、太陽電
池パドル回転角度から追尾用太陽センサの使用可否信号
を出力する太陽センサ使用停止判断部を含むパドル駆動
制御回路と、パドル駆動制御回路から出力される駆動信
号に基づきパドル駆動機構のモータを駆動するパルスを
発生する駆動パルス発生電子回路と太陽電池パドルを駆
動するパドル駆動機構とから構成され、上記追尾用太陽
センサ1又は2の光学視野内に衛星本体があられれる時
、太陽センサ使用停止判断部の動作により追尾用太陽セ
ンサ信号の使用を停止することを特徴とする三軸安定衛
星の太陽電池パドル駆動制御方法。A tracking sun sensor 1 and a tracking sun sensor 2 that are installed on a solar array paddle of a three-axis stable satellite and measure the solar angle;
an angle detector that is incorporated into the solar battery paddle drive mechanism and detects the paddle rotation angle; and a solar presence generator that generates a signal indicating that the tracking sun sensor 1 and the tracking sun sensor 2 are measuring the solar angle; A rotation angular velocity generation unit that generates a solar battery paddle rotation angular velocity error signal based on the solar angle calculated from the tracking sun sensor 1 and the tracking sun sensor 2; A paddle drive control circuit that includes an orbital angular velocity generation section that generates a signal, a solar sensor usage discontinuation judgment section that outputs a usability signal for the tracking sun sensor based on the rotation angle of the solar battery paddle, and a drive signal that is output from the paddle drive control circuit. It is composed of a drive pulse generation electronic circuit that generates pulses to drive the motor of the paddle drive mechanism based on the above, and a paddle drive mechanism that drives the solar array paddle. A solar battery paddle drive control method for a three-axis stable satellite, characterized in that when a hailstorm occurs, the use of a tracking sun sensor signal is stopped by the operation of a sun sensor use stop judgment unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63230273A JPH0277400A (en) | 1988-09-14 | 1988-09-14 | Solar battery paddle driving control method for three axis stabilizing satellite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63230273A JPH0277400A (en) | 1988-09-14 | 1988-09-14 | Solar battery paddle driving control method for three axis stabilizing satellite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0277400A true JPH0277400A (en) | 1990-03-16 |
Family
ID=16905216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63230273A Pending JPH0277400A (en) | 1988-09-14 | 1988-09-14 | Solar battery paddle driving control method for three axis stabilizing satellite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0277400A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05238498A (en) * | 1991-11-27 | 1993-09-17 | Hughes Aircraft Co | Method and device for controlling solar wings of satellite while using sun sensor |
-
1988
- 1988-09-14 JP JP63230273A patent/JPH0277400A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05238498A (en) * | 1991-11-27 | 1993-09-17 | Hughes Aircraft Co | Method and device for controlling solar wings of satellite while using sun sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0090718B1 (en) | Gyroscopic apparatus and method for determining north | |
US4746085A (en) | Method for determining the earth's magnetic field and a satellite's attitude for attitude control | |
EP0460935B1 (en) | Attitude control system for momentum-biased spacecraft | |
US5257759A (en) | Method and apparatus for controlling a solar wing of a satellite using a sun sensor | |
CN110641741B (en) | Double-freedom-degree solar panel control method and control system thereof | |
JPH0420124B2 (en) | ||
US6158694A (en) | Spacecraft inertial attitude and rate sensor control system | |
US4442723A (en) | North seeking and course keeping gyro device | |
JPH07228299A (en) | Solar battery paddle drive control device for three-axis stable satellite | |
US10301043B2 (en) | Conical scanning process for spacecraft sun pointing | |
JP2625337B2 (en) | Method and apparatus for compensating for solar torque transients on satellites during a solar eclipse | |
JPH0277400A (en) | Solar battery paddle driving control method for three axis stabilizing satellite | |
JPH0473526B2 (en) | ||
JP3852592B2 (en) | Gyro apparatus and method of using gyro apparatus for excavation | |
CN110712769B (en) | Gyro-free sun orientation control method based on CMG | |
US6561462B1 (en) | Spacecraft power/sun aquistion algorithm using slit sun sensors | |
JP2000121364A (en) | Azimuth indicator | |
JPH0329697Y2 (en) | ||
JP2798938B2 (en) | 3-axis attitude control device | |
JPS62124409A (en) | True north detecting device | |
JPS60257372A (en) | Sun position sensor | |
JPH07257496A (en) | Attitude control device | |
JPH04142088A (en) | Rate biasing device | |
JPH01127907A (en) | Azimuth measuring method by optical azimuth measuring instrument and device used for said azimuth measuring method | |
JPH06174488A (en) | Spin measuring circuit |