JPH07228299A - Solar battery paddle drive control device for three-axis stable satellite - Google Patents

Solar battery paddle drive control device for three-axis stable satellite

Info

Publication number
JPH07228299A
JPH07228299A JP6018531A JP1853194A JPH07228299A JP H07228299 A JPH07228299 A JP H07228299A JP 6018531 A JP6018531 A JP 6018531A JP 1853194 A JP1853194 A JP 1853194A JP H07228299 A JPH07228299 A JP H07228299A
Authority
JP
Japan
Prior art keywords
angular velocity
paddle
signal
sun
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6018531A
Other languages
Japanese (ja)
Inventor
Toru Okanuma
徹 岡沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6018531A priority Critical patent/JPH07228299A/en
Publication of JPH07228299A publication Critical patent/JPH07228299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent the occurrence of the solar steering error of a paddle owing to light, deflected by a globe, of solar light right after transfer from sun shadow to sunshine and right before transfer to sun shadow from sunshine through control of drive of the solar battery paddle of a three-axis stable satellite. CONSTITUTION:A timing processing part 7 is provided to make a signal, by means of which a signal for the paddle drive rotation angular velocity error of a rotation angle generating part 5 is used or not used by a drive pulse generating electronic circuit 10, according to specific delay times t1 and t2 based on an output signal from a solar presence generating part 4. A signal from a solar sensor for tracing is not used in a position on an orbit influenced by light, deflected by a globe, of solar light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は三軸安定衛星の太陽電
池パドル駆動制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell paddle drive control device for a triaxial stable satellite.

【0002】[0002]

【従来の技術】図3は従来の三軸安定衛星の太陽電池パ
ドル駆動制御装置を示す機能ブロック図であり、図にお
いて1は太陽電池パドル上に設置された太陽角に比例し
た電圧信号を出力する追尾用太陽セルA、2は追尾用太
陽セルA1と異なる角度で太陽電池パドル上に設置され
た太陽角に比例した電圧信号を出力する追尾用太陽セル
B、3は追尾用太陽セルA1、追尾用太陽セルB2から
なる追尾用太陽センサ、4は追尾用太陽セルA1及び追
尾用太陽セルB2が太陽角を測定していることを示す信
号を発生する太陽プレゼンス発生部、5は追尾用太陽セ
ルA1及び追尾用太陽セルB2から計算される太陽角に
基づき太陽電池パドル回転角速度誤差信号を発生する回
転角速度発生部、6は太陽電池パドルが日陰にある時軌
道角速度で回転するための信号を発生する軌道角速度発
生部、8は回転角速度発生部5の出力信号と軌道角速度
発生部6の出力信号を加算する加算器、9は太陽プレゼ
ンス発生部4、回転角速度発生部5、軌道角速度発生部
6及び加算器8を含むパドル駆動制御回路、10はパド
ル駆動制御回路9から出力される駆動信号に基づきパド
ル駆動機構のモータを駆動するパルスを発生する駆動パ
ルス発生電子回路、11は太陽電池パドルを駆動するパ
ドル駆動回路である。
2. Description of the Related Art FIG. 3 is a functional block diagram showing a conventional solar cell paddle drive controller for a triaxial stable satellite. In the figure, reference numeral 1 is a voltage signal proportional to the sun angle set on the solar cell paddle. Tracking solar cells A, 2 are tracking solar cells B 1, which output a voltage signal proportional to the sun angle set on the solar array paddle at an angle different from that of the tracking solar cells A 1, and 3 are tracking solar cells A 1, A tracking sun sensor composed of a tracking solar cell B2, 4 is a solar presence generator that generates a signal indicating that the tracking solar cell A1 and the tracking solar cell B2 are measuring the sun angle, and 5 is a tracking sun. A rotational angular velocity generator that generates a solar cell paddle rotational angular velocity error signal based on the sun angle calculated from the cell A1 and the tracking solar cell B2, and 6 rotates at an orbital angular velocity when the solar cell paddle is in the shade. An orbital angular velocity generating unit for generating a signal for generating a signal, an adder 8 for adding an output signal of the rotational angular velocity generating unit 5 and an output signal of the orbital angular velocity generating unit 6, and 9 for a sun presence generating unit 4, a rotational angular velocity generating unit 5, A paddle drive control circuit including an orbital angular velocity generator 6 and an adder 8 is a drive pulse generation electronic circuit for generating a pulse for driving a motor of a paddle drive mechanism based on a drive signal output from the paddle drive control circuit 9, 11 Is a paddle drive circuit for driving the solar cell paddle.

【0003】次に追尾用太陽センサを使用した太陽電池
パドル駆動制御方式を説明する。追尾用太陽センサの出
力は図3に示してあるように太陽方向角度とパドル回転
角度の差を変数として山状の形となり追尾用太陽セルA
1と追尾用太陽セルB2で出力の位相が異なる。各々の
出力をv1、v2とし、v1+v2を太陽プレゼンス発生部
4に入力し、v2−v1を回転角速度発生部5に入力す
る。太陽プレゼンス発生部4では、v1+v2がある一定
値以上の時プレゼンス信号を0から1に設定する。回転
角速度発生部5では、図3にあるようにv2−v1にほぼ
比例するかたちでパドル回転角速度誤差Δωを出力す
る。駆動パルス発生電子回路10に渡されるパドル回転
角速度は軌道角速度発生部6の軌道角速度ω0とΔωの
和ω0+Δωとなる。なお、太陽プレゼンス信号が0即
ち日陰の時はΔωに零が代入される。駆動パルス発生電
子回路10では入力回転角速度に反比例したパルス間隔
でパドル駆動機構11のステップモータを駆動する電流
パルスを生成する。パドル駆動機構11は上記電流パル
スが入力されるごとに一定角度増分で太陽電池パドルを
回転する。したがって、パドル回転角度θpは回転角速
度信号ω0+Δωを時間で積分した量となる。図3に示
す信号の流れで太陽電池パドル駆動制御のフィードバッ
クループを構成すると全体の閉ループ伝達関数は一次遅
れフィルタの形となり、制御系は回転角速度発生部5の
2−v1入力に対するΔω出力の比例係数の大きさにか
かわらず安定となる。
Next, a solar cell paddle drive control system using a tracking sun sensor will be described. As shown in FIG. 3, the output of the tracking sun sensor has a mountain shape with the difference between the sun direction angle and the paddle rotation angle as a variable, and the tracking solar cell A
1 and the tracking solar cell B2 have different output phases. The respective outputs are v 1 and v 2, and v 1 + v 2 is input to the sun presence generator 4, and v 2 −v 1 is input to the rotational angular velocity generator 5. The sun presence generator 4 sets the presence signal from 0 to 1 when v 1 + v 2 is a certain value or more. The rotational angular velocity generator 5 outputs the paddle rotational angular velocity error Δω in a manner substantially proportional to v 2 −v 1 as shown in FIG. The paddle rotation angular velocity passed to the drive pulse generating electronic circuit 10 is the sum ω 0 + Δω of the orbital angular velocities ω 0 and Δω of the orbital angular velocity generator 6. It should be noted that when the sun presence signal is 0, that is, in the shade, zero is substituted for Δω. The drive pulse generation electronic circuit 10 generates current pulses for driving the step motor of the paddle drive mechanism 11 at pulse intervals inversely proportional to the input rotation angular velocity. The paddle drive mechanism 11 rotates the solar cell paddle at a constant angle increment each time the current pulse is input. Therefore, the paddle rotation angle θ p is an amount obtained by integrating the rotation angular velocity signal ω 0 + Δω with time. When the feedback loop of the solar cell paddle drive control is configured with the signal flow shown in FIG. 3, the entire closed-loop transfer function becomes the form of a first-order lag filter, and the control system outputs Δω for the v 2 -v 1 input of the rotational angular velocity generator 5. It is stable regardless of the size of the proportional coefficient of.

【0004】[0004]

【発明が解決しようとする課題】従来の太陽電池パドル
駆動制御装置では、衛星が日陰の時太陽電池パドルを軌
道角速度の一定回転速度で駆動し、衛星が日照の時追尾
用太陽センサの出力する太陽角を零にするよう閉ループ
制御で太陽電池パドルを駆動する。しかるに、衛星が日
陰から日照にうつる直後及び日照から日陰にうつる直前
で地球に反射した太陽光即ちアルベドと本来の太陽光と
が合成された光が追尾用太陽センサに入射する。この合
成光は本来の太陽方向と異なるため日照中の閉ループ制
御で太陽電池パドルは合成光の方向を指向するよう制御
される。このため、太陽電池パドルの指向方向に誤差が
生じることになる。
In the conventional solar cell paddle drive control device, when the satellite is in the shade, the solar cell paddle is driven at a constant rotational speed of the orbital angular velocity, and when the satellite is in the sunshine, the tracking sun sensor outputs. The solar array paddle is driven by closed loop control so that the sun angle is zero. However, immediately after the satellite shifts from the shade to the sunshine and immediately before the shift from the sunshine to the shade, sunlight reflected on the earth, that is, light in which albedo and original sunlight are combined, enters the tracking sun sensor. Since this synthetic light is different from the original direction of the sun, the solar cell paddle is controlled so as to point in the direction of the synthetic light by closed loop control during sunshine. Therefore, an error occurs in the pointing direction of the solar cell paddle.

【0005】この発明は上記のような課題を解決するた
めになされたものであり、衛星が日陰から日照にうつっ
た直後及び日照から日陰にうつる直前でも太陽電池パド
ルの太陽方向指向に誤差が生じないことを目的とする。
The present invention has been made to solve the above problems, and an error occurs in the solar direction of the solar array paddle immediately after the satellite moves from the shade to the sunshine and immediately before the satellite moves from the sunshine to the shade. The purpose is not to.

【0006】[0006]

【課題を解決するための手段】この発明に係る太陽電池
パドル駆動制御方式は、太陽プレゼンス発生部の出力信
号に基づき所定の遅延時間に従い回転角速度発生部の出
力信号の使用可否信号を出力するタイミング処理部を備
え、この出力信号に従いパドル駆動制御回路の中で追尾
用太陽センサに基づく回転角速度誤差信号を使うか否か
決めるようにしたものである。
According to the solar cell paddle drive control method of the present invention, the timing of outputting the availability signal of the output signal of the rotational angular velocity generator according to a predetermined delay time based on the output signal of the solar presence generator. A processing unit is provided, and whether or not to use the rotational angular velocity error signal based on the tracking sun sensor in the paddle drive control circuit is determined according to the output signal.

【0007】[0007]

【作用】この発明におけるタイミング処理部は太陽プレ
ゼンス発生部の太陽プレゼンス信号が0から1に変った
時点即ち衛星が日陰から日照にうつった時点を起点とし
て所定の遅延時間t1,t2(t1≦t2)により、t1
間経過後から回転角速度発生部の出力信号を使用するよ
うにする。さらに、t2時間経過後から回転角速度発生
部の出力信号を使用しないようにする。即ち、t1から
2時刻までの間のみ追尾用太陽センサを用いた追尾制
御を行うようにする。このt1時刻からt2時刻の間では
アルベドの影響がないようにt1、t2を設定する。
The timing processing unit in the present invention has predetermined delay times t 1 , t 2 (t) starting from the time when the sun presence signal of the sun presence generating unit changes from 0 to 1, that is, the time when the satellite moves from shade to sunshine. by 1 ≦ t 2), so as to use the output signal of the rotational angular velocity generating unit from 1 hour after t. Furthermore, the output signal of the rotational angular velocity generator is not used after t 2 time has elapsed. That is, the tracking control using the tracking sun sensor is performed only from time t 1 to time t 2 . Between the time t 1 and the time t 2 , t 1 and t 2 are set so that there is no influence of the albedo.

【0008】[0008]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図に基づいて説
明する。図1はこの発明による三軸安定衛星の太陽電池
パドル駆動制御装置を示す機能ブロックであり、図中、
1〜6,8,10,11は図3に示される従来の三軸安
定衛星の太陽電池パドル駆動制御装置と全く同一のもの
である。7は太陽プレゼンス発生部4の出力信号に基づ
き所定の遅延時間に従い回転角速度発生部の出力信号の
使用可否信号を出力するタイミング処理部である。12
は地上からのコマンド信号をデコードしてタイミング処
理部7の遅延時間を設定するコマンド処理部である。9
は太陽プレゼンス発生部4、回転角速度発生部5、軌道
角速度発生部6、タイミング処理部7及び加算器8を含
むパドル駆動制御回路である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a functional block diagram showing a solar array paddle drive controller for a triaxial stable satellite according to the present invention.
1 to 6, 8, 10, and 11 are exactly the same as the solar cell paddle drive control device of the conventional triaxial stable satellite shown in FIG. Reference numeral 7 denotes a timing processing unit that outputs a usability signal of the output signal of the rotational angular velocity generation unit according to a predetermined delay time based on the output signal of the sun presence generation unit 4. 12
Is a command processing unit that decodes a command signal from the ground and sets the delay time of the timing processing unit 7. 9
Is a paddle drive control circuit including a sun presence generator 4, a rotational angular velocity generator 5, an orbital angular velocity generator 6, a timing processor 7, and an adder 8.

【0009】図2は衛星が軌道上にある時の太陽光と衛
星の関係を表わす図であり、図中、13は衛星軌道、1
4は地球、15は日陰、16は太陽光、17は太陽光1
6と太陽光の地球からの反射光(アルベド)との合成
光、18は太陽光16と太陽光の地球からの反射光(ア
ルベド)との合成光である。なお、17は日陰から日照
にうつる直後の合成光であり、18は日照から日陰にう
つる直前の合成光である。19は日陰から日照にうつる
軌道上の位置、20は合成光17を追尾用太陽センサが
測定する軌道上の位置、21は合成光17の影響が殆ど
なくなる軌道上の位置、22は合成光18の影響が殆ど
なくなる軌道上の位置、23は合成光18を追尾用太陽
センサが測定する軌道上の位置、24は日照から日陰に
うつる軌道上の位置である。
FIG. 2 is a diagram showing the relationship between the sunlight and the satellite when the satellite is in orbit. In the figure, 13 is the satellite orbit and 1
4 is the earth, 15 is the shade, 16 is the sun, 17 is the sun 1
Reference numeral 6 is a combined light of sunlight and reflected light (albedo) from the earth, and reference numeral 18 is a combined light of sunlight 16 and reflected light (albedo) of the sun from the earth. In addition, 17 is a synthetic light immediately after moving from the shade to the sunshine, and 18 is a synthetic light immediately before moving from the sunshine to the shade. 19 is a position on the orbit that moves from the shade to sunshine, 20 is a position on the orbit where the tracking sun sensor measures the combined light 17, 21 is a position on the orbit where the influence of the combined light 17 is almost zero, and 22 is a combined light 18 Is a position on the orbit where the influence of the above is almost eliminated, 23 is a position on the orbit measured by the tracking sun sensor, and 24 is a position on the orbit where the sun moves from the sunshine to the shade.

【0010】追尾用太陽セルA1と追尾用太陽セルB2
の各々の出力v1,v2の差v2−v1は太陽方向角度とパ
ドル回転角度Qの差Δθに比例し、太陽方向がパドル
回転角度より進んでいる時はv2−v1>0となり、パド
ル回転角速度は軌道角速度より大きくなり、|Δθ|を
小さくする。逆に、パドル回転角度が太陽方向より進ん
でいる時はv2−v1<0となり、パドル回転角速度が軌
道角速度より小さくなり、|Δθ|を小さくする。衛星
が日陰に入る時は、太陽プレゼンス信号が零となりパド
ル回転角速度がで一定回転する。
Tracking solar cell A1 and tracking solar cell B2
Difference v 2 −v 1 between the outputs v 1 and v 2 of each is proportional to the difference Δθ between the sun direction angle and the paddle rotation angle Q p , and when the sun direction is ahead of the paddle rotation angle, v 2 −v 1 > 0, the paddle rotation angular velocity becomes larger than the orbital angular velocity, and | Δθ | is reduced. Conversely, when the paddle rotation angle is ahead of the sun, v 2 −v 1 <0, the paddle rotation angular velocity becomes smaller than the orbital angular velocity, and | Δθ | becomes small. When the satellite enters the shade, the sun presence signal becomes zero and the angular velocity of the paddle rotates at a constant speed.

【0011】図2からわかるように、衛星が19から2
1の間又は22から24の間にいる時追尾用太陽センサ
が測定する光線は合成光17及び18であり、それらは
本来の太陽光16と方向が異なる。したがって、衛星が
19から21の間又は22から24の間にいるとき追尾
用太陽センサ3の信号を用いて閉ループ追尾制御を行う
と、太陽電池パドルは合成光17又は18の方向を指向
し、本来の太陽光16の方向を向かない。逆に、衛星が
21から22の間に居る時は合成光17及び18の影響
を受けていないことがわかる。
As can be seen from FIG. 2, satellites from 19 to 2
The rays measured by the tracking sun sensor when between 1 or between 22 and 24 are synthetic rays 17 and 18, which are different in direction from the original sunlight 16. Therefore, when the closed loop tracking control is performed using the signal of the tracking sun sensor 3 when the satellite is between 19 and 21 or between 22 and 24, the solar array paddle points in the direction of the combined light 17 or 18. It does not face the original direction of sunlight 16. On the contrary, it can be seen that when the satellite is between 21 and 22, it is not affected by the combined lights 17 and 18.

【0012】上記から衛星が19から21まで移動する
時間をt1とし、衛星が19から21まで移動する時間を
2として、タイミング処理部7の遅延時間t1、t2
設定する。軌道と太陽の関係は打上げ以前から解析で求
められるため、t1、t2は事前に決定することができ
る。したがって、タイミング処理部7の遅延時間t1
2をこのように設定することから、衛星が日陰から日
照に移っても、軌道上位置21に至るまでは軌道角速度
の一定回転でパドルは駆動される。軌道上位置21から
22までは追尾用太陽センサ3を用いた閉ループ追尾制
御が行われ、太陽光の地球による反射光の影響による指
向誤差は生じない。また、軌道上位置22から日陰に至
る間は軌道角速度の一定回転でパドルは駆動される。
[0012] The time to move from the satellite from above 19 to 21 and t 1, the time to move from the satellite 19 to 21 as t 2, to set the delay time t 1, t 2 of the timing processor 7. Since the relationship between the orbit and the sun is obtained by analysis before launch, t 1 and t 2 can be determined in advance. Therefore, the delay time t 1 of the timing processing unit 7,
Since t 2 is set in this way, even if the satellite moves from the shade to the sunshine, the paddle is driven at a constant rotation of the orbital angular velocity until it reaches the on-orbit position 21. The closed loop tracking control using the tracking sun sensor 3 is performed from the positions 21 to 22 on the orbit, and the pointing error due to the influence of the reflected light of the sun on the earth does not occur. Further, the paddle is driven at a constant rotation of the orbital angular velocity from the on-orbit position 22 to the shade.

【0013】図1の中で、太陽プレゼンス発生部4、回
転角速度発生部5、軌道角速度発生部6、タイミング処
理部7及びパドル駆動制御回路9はディジタル計算機を
使用してプログラムで実現できることはいうまでもな
い。
In FIG. 1, the sun presence generator 4, the rotational angular velocity generator 5, the orbital angular velocity generator 6, the timing processor 7, and the paddle drive control circuit 9 can be realized by a program using a digital computer. There is no end.

【0014】また、図1にコマンド処理部12を設け、
地上コマンドによりタイミング処理部7の遅延時間
1、t2を変更するようにもできる。この時間変更によ
り予測できない太陽光の地球による反射光の影響を衛星
打上げ後にも補正することが可能になる。
Further, a command processing unit 12 is provided in FIG.
It is also possible to change the delay times t 1 and t 2 of the timing processing section 7 by a ground command. This change in time makes it possible to correct the unpredictable effects of sunlight reflected by the earth even after the satellite is launched.

【0015】[0015]

【発明の効果】以上のように、この発明によればタイミ
ング処理部7で追尾用太陽センサ3を使用した閉ループ
追尾制御を行う軌道上位置を制約することで、太陽光の
地球による反射光(アルベド)の影響を抑え、太陽電池
パドルの太陽指向誤差をおさえることができるという効
果がある。
As described above, according to the present invention, the timing processor 7 restricts the on-orbit position for performing closed-loop tracking control using the tracking sun sensor 3, so that sunlight reflected by the earth ( This has the effect of suppressing the influence of the albedo) and suppressing the sun pointing error of the solar cell paddle.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す機能ブロック図であ
る。
FIG. 1 is a functional block diagram showing an embodiment of the present invention.

【図2】三軸安定衛星の軌道上での太陽光との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a triaxial stable satellite and sunlight in orbit.

【図3】従来の三軸安定衛星の太陽電池パドル駆動制御
装置を示す機能ブロック図である。
FIG. 3 is a functional block diagram showing a conventional solar cell paddle drive control device for a triaxial stable satellite.

【符号の説明】[Explanation of symbols]

1 追尾用太陽セルA 2 追尾用太陽セルB 3 追尾用太陽センサ 4 太陽プレゼンス発生部 5 回転角速度発生部 6 軌道角速度発生部 7 タイミング処理部 8 加算器 9 パドル駆動制御回路 10 駆動パルス発生電子回路 11 パドル駆動機構 12 コマンド処理部 13 衛星軌道 14 地球 15 日陰 16 太陽光 17 太陽光と太陽光の地球からの反射光との合成光 18 太陽光と太陽光の地球からの反射光との合成光 19 日陰から日照にうつる軌道上の位置 20 合成光を追尾用太陽センサが測定する軌道上の
位置 21 合成光の影響が殆どなくなる軌道上の位置 22 合成光の影響が殆どなくなる軌道上の位置 23 合成光を追尾用太陽センサが測定する軌道上の
位置 24 日照から日陰にうつる軌道上の位置
1 solar cell for tracking A 2 solar cell for tracking B 3 solar sensor for tracking 4 solar presence generation section 5 rotational angular velocity generation section 6 orbital angular velocity generation section 7 timing processing section 8 adder 9 paddle drive control circuit 10 drive pulse generation electronic circuit 11 Paddle drive mechanism 12 Command processing unit 13 Satellite orbit 14 Earth 15 Shade 16 Sunlight 17 Synthetic light of sunlight and reflected light from the earth 18 Synthetic light of sunlight and reflected light from the earth 19 Position on the orbit that moves from shade to sunshine 20 Position on the orbit where the tracking sun sensor measures the synthetic light 21 Position on the orbit where the influence of the synthetic light is almost eliminated 22 Position on the orbit where the influence of the synthetic light is almost eliminated 23 Position on the orbit measured by the tracking sun sensor for synthetic light 24 Position on the orbit that moves from sunshine to shade

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三軸安定衛星の太陽電池パドル上に設置
された太陽角を測定する追尾用太陽センサと、この追尾
用太陽センサが太陽角を測定していることを示す信号を
発生する太陽プレゼンス発生部、上記追尾用太陽センサ
から計算される太陽角に基づき太陽電池パドル回転角速
度誤差信号を発生する回転角速度発生部、太陽電池パド
ルが日陰にある時軌道角速度で回転するための信号を発
生する軌道角速度発生部、上記太陽プレゼンス発生部の
出力信号に基づき所定の遅延時間に従い回転角速度発生
部の出力信号の使用可否信号を出力するタイミング処理
部、上記回転角速度発生部の出力信号と軌道角速度発生
部の出力信号を加算する加算器とを含み、衛星が日陰か
ら日照に移る時所定の遅延時間後に上記追尾用太陽セン
サを用いた太陽電池パドルの追尾制御を行い、また衛星
が日照からに日陰に移る時所定の時間前に軌道角速度発
生部の信号のみで一定回転速度制御を行うパドル駆動制
御回路と、上記パドル駆動制御回路の加算器の出力信号
に基づきパドル駆動機構のモータを駆動するパルスを発
生する駆動パルス発生電子回路と、太陽電池パドルを駆
動するパドル駆動機構とを備えた三軸安定衛星の太陽電
池パドル駆動制御装置。
1. A tracking sun sensor installed on a solar array paddle of a triaxial stability satellite and a tracking sun sensor, and a sun generating a signal indicating that the tracking sun sensor is measuring the solar angle. Presence generation unit, generates a solar cell paddle rotation angular velocity error signal based on the sun angle calculated from the tracking sun sensor, a rotation angular velocity generation unit, generates a signal for the solar cell paddle to rotate at an orbital angular velocity when in shade Orbital angular velocity generator, a timing processing unit that outputs the availability signal of the output signal of the rotational angular velocity generator in accordance with a predetermined delay time based on the output signal of the sun presence generator, the output signal of the rotational angular velocity generator and the orbital angular velocity A solar cell including an adder for adding output signals of the generator, and using the tracking sun sensor after a predetermined delay time when the satellite shifts from the shade to the sunshine A paddle drive control circuit that controls the paddle tracking and a constant rotation speed control only by the signal of the orbital angular velocity generator when the satellite shifts from sunshine to shade in the predetermined time, and an adder of the paddle drive control circuit A solar cell paddle drive control device for a three-axis stable satellite, which includes a drive pulse generating electronic circuit that generates a pulse that drives a motor of a paddle drive mechanism based on the output signal of 1.
【請求項2】 前記太陽プレゼンス発生部の出力信号に
基づき所定の遅延時間に従い回転角速度発生部の出力信
号の使用可否信号を出力するタイミング処理部の遅延時
間を地上コマンドで変更するようにしたことを特徴とす
る請求項1記載の三軸安定衛星の太陽電池パドル駆動制
御装置。
2. The delay time of the timing processing unit for outputting the availability signal of the output signal of the rotational angular velocity generation unit according to a predetermined delay time based on the output signal of the sun presence generation unit is changed by a ground command. The solar cell paddle drive control device of the triaxial stable satellite according to claim 1.
JP6018531A 1994-02-15 1994-02-15 Solar battery paddle drive control device for three-axis stable satellite Pending JPH07228299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6018531A JPH07228299A (en) 1994-02-15 1994-02-15 Solar battery paddle drive control device for three-axis stable satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6018531A JPH07228299A (en) 1994-02-15 1994-02-15 Solar battery paddle drive control device for three-axis stable satellite

Publications (1)

Publication Number Publication Date
JPH07228299A true JPH07228299A (en) 1995-08-29

Family

ID=11974218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6018531A Pending JPH07228299A (en) 1994-02-15 1994-02-15 Solar battery paddle drive control device for three-axis stable satellite

Country Status (1)

Country Link
JP (1) JPH07228299A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2621816C1 (en) * 2016-02-29 2017-06-07 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method for determining the output power of solar panels of spacecraft
RU2624763C1 (en) * 2016-04-04 2017-07-06 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Spacecraft solar batteries output current determination method
RU2624885C2 (en) * 2015-12-22 2017-07-07 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Spacecraft solar batteries maximum output power determination method
RU2629647C1 (en) * 2016-04-04 2017-08-30 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of solar battery panels current status control in spacecrafts
RU2640905C2 (en) * 2016-05-25 2018-01-12 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Method of controling present status of solar battery of a spacecraft with inertiative end organs
RU2640937C2 (en) * 2016-04-18 2018-01-12 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of monitoring present state of solar battery panels of spacecrafts
RU2640943C2 (en) * 2016-03-25 2018-01-12 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method for monitoring present state of solar battery panel of spacecraft
RU2653891C2 (en) * 2016-08-08 2018-05-15 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Method for monitoring the performance of a solar battery of a spacecraft with inertial operating members
RU2653890C2 (en) * 2016-08-08 2018-05-15 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Method of determining performance of an installed on the spacecraft solar panels with a positive power output back surface
RU2655089C1 (en) * 2017-02-07 2018-05-23 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of estimation of state of solar cell of spacecraft with inertial operating members
RU2655561C1 (en) * 2017-02-07 2018-05-28 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method for monitoring performance of solar cell of spacecraft on shadowless orbits
RU2662372C1 (en) * 2017-06-01 2018-07-25 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Equipped with the solar cells spacecraft energy supply system control method
RU2665145C1 (en) * 2017-05-31 2018-08-28 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Equipped with the solar cells spacecraft energy supply system control method
RU2706743C1 (en) * 2019-03-27 2019-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Method of orientation of spacecraft
CN110963077A (en) * 2019-11-11 2020-04-07 上海航天控制技术研究所 Space station solar wing capable of correcting speed and speed correction method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624885C2 (en) * 2015-12-22 2017-07-07 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Spacecraft solar batteries maximum output power determination method
RU2621816C1 (en) * 2016-02-29 2017-06-07 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method for determining the output power of solar panels of spacecraft
RU2640943C2 (en) * 2016-03-25 2018-01-12 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method for monitoring present state of solar battery panel of spacecraft
RU2629647C1 (en) * 2016-04-04 2017-08-30 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of solar battery panels current status control in spacecrafts
RU2624763C1 (en) * 2016-04-04 2017-07-06 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Spacecraft solar batteries output current determination method
RU2640937C2 (en) * 2016-04-18 2018-01-12 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of monitoring present state of solar battery panels of spacecrafts
RU2640905C2 (en) * 2016-05-25 2018-01-12 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Method of controling present status of solar battery of a spacecraft with inertiative end organs
RU2653891C2 (en) * 2016-08-08 2018-05-15 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Method for monitoring the performance of a solar battery of a spacecraft with inertial operating members
RU2653890C2 (en) * 2016-08-08 2018-05-15 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Method of determining performance of an installed on the spacecraft solar panels with a positive power output back surface
RU2655089C1 (en) * 2017-02-07 2018-05-23 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method of estimation of state of solar cell of spacecraft with inertial operating members
RU2655561C1 (en) * 2017-02-07 2018-05-28 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method for monitoring performance of solar cell of spacecraft on shadowless orbits
RU2665145C1 (en) * 2017-05-31 2018-08-28 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Equipped with the solar cells spacecraft energy supply system control method
RU2662372C1 (en) * 2017-06-01 2018-07-25 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Equipped with the solar cells spacecraft energy supply system control method
RU2706743C1 (en) * 2019-03-27 2019-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Method of orientation of spacecraft
CN110963077A (en) * 2019-11-11 2020-04-07 上海航天控制技术研究所 Space station solar wing capable of correcting speed and speed correction method thereof

Similar Documents

Publication Publication Date Title
JPH07228299A (en) Solar battery paddle drive control device for three-axis stable satellite
US4746085A (en) Method for determining the earth&#39;s magnetic field and a satellite&#39;s attitude for attitude control
JP2635821B2 (en) Three-axis stabilizing satellite pointing at the earth and method for capturing the attached sun and earth
US20090050192A1 (en) Tracking-Type Photovoltaic Power Generation System, Method for Controlling the System, and Program Product for Controlling the System
US4837699A (en) Method for controlling the spin axis attitude of a spinning spacecraft
CN110641741B (en) Double-freedom-degree solar panel control method and control system thereof
JPH02262500A (en) Satellite control system
EP0544198A1 (en) Method and apparatus for controlling a solar wing of a satellite using a sun sensor
CN110775302B (en) Emergency sun-checking method based on solar panel output current information
US6068217A (en) Method to reorient a spacecraft using only initial single axis attitude knowledge
CN113310496A (en) Method and device for determining lunar-ground transfer orbit
US3206141A (en) Space vehicle attitude control
US3521835A (en) Synchronous satellite
JP7139089B2 (en) Satellite constellations, ground equipment and satellites
US6017001A (en) Controlling rotation of a spacecraft
CN106777580A (en) Near-earth inclined plane launch window Fast design method
EP0231273B1 (en) Autonomous spin axis attitude controller for a spinning spacecraft
CN111605732B (en) Sun orientation method based on solar panel current information
JP2516879B2 (en) How to launch multiple satellites
JPH01132497A (en) Solar-cell paddle drive control system of triaxial stabilizing satellite
RU2671597C1 (en) Method for spacecraft orientation in solar-terrestrial coordinate system
JP2002087397A (en) Attitude control device for spacecraft
JPH0277400A (en) Solar battery paddle driving control method for three axis stabilizing satellite
JPH11165700A (en) Controller for solar battery paddle mounted on artificial satellite
RU2196710C2 (en) Method of forming control moments on spacecraft provided with powered gyroscopes and swivel solar batteries and system for realization of this method