WO2015165046A1 - 无线通信系统和无线射频装置 - Google Patents

无线通信系统和无线射频装置 Download PDF

Info

Publication number
WO2015165046A1
WO2015165046A1 PCT/CN2014/076503 CN2014076503W WO2015165046A1 WO 2015165046 A1 WO2015165046 A1 WO 2015165046A1 CN 2014076503 W CN2014076503 W CN 2014076503W WO 2015165046 A1 WO2015165046 A1 WO 2015165046A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transceivers
splitter
rru
transceiver
Prior art date
Application number
PCT/CN2014/076503
Other languages
English (en)
French (fr)
Inventor
冯烈训
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020167032719A priority Critical patent/KR102006964B1/ko
Priority to JP2016565453A priority patent/JP6522659B2/ja
Priority to CN201811511084.XA priority patent/CN109818675B/zh
Priority to ES14890981.5T priority patent/ES2690389T3/es
Priority to EP14890981.5A priority patent/EP3139525B1/en
Priority to EP18185234.4A priority patent/EP3457595A1/en
Priority to CN201480000671.6A priority patent/CN104137454B/zh
Priority to PCT/CN2014/076503 priority patent/WO2015165046A1/zh
Publication of WO2015165046A1 publication Critical patent/WO2015165046A1/zh
Priority to US15/338,557 priority patent/US10270530B2/en
Priority to US16/357,739 priority patent/US10826610B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a wireless communication system and a wireless radio frequency device. Background technique
  • the wireless network uses a large number of distributed base station architectures.
  • the remote radio unit (RRU) and the baseband control unit (BBU) are connected by optical fibers, and one BBU can support multiple RRUs.
  • RRU remote radio unit
  • BBU baseband control unit
  • multiple RRU cascading is a common networking mode.
  • the data transmission mode of the wireless communication system 900 that supports the two RRUs is described as an example.
  • the BBU 90 receives the downlink data sent by the gateway, and performs downlink data on the downlink data. After processing, the processed downlink data is sent to an optical transceiver 93 through a Common Public Radio Interface (CPRI), which is also called an optical module.
  • CPRI Common Public Radio Interface
  • the optical transceiver 93 converts the processed downlink data into a first downlink optical carrier signal and transmits the optical data to the optical transceiver 94 corresponding to the RRU 91 through the optical fiber, and the optical transceiver 94 converts the first downlink optical carrier signal into the first a downlink electrical signal, and the first downlink electrical signal is sent to the RRU 91, the RRU 91 selects to receive a part of the signal in the first downlink electrical signal, and sends the other signal to the optical transceiver 95 to be converted into the first
  • the second downlink optical carrier signal is sent to the optical transceiver 96 through the optical fiber, and the optical transceiver 96 converts the second downlink optical carrier signal into a second downlink electrical signal, and sends the second downlink electrical signal to the RRU 92;
  • the downlink data received from the gateway is transmitted to the mobile terminal through the RRU 91 and the RRU 92.
  • the RRU 91 and the RRU 92 respectively receive uplink data sent by the mobile terminal, and process the uplink data to obtain an uplink electrical signal.
  • the RRU 92 sends the obtained first uplink electrical signal to the optical transceiver 96 corresponding to the RRU 92, and the optical transceiver 96 converts the first uplink electrical signal into a first uplink optical carrier signal, and the foregoing An upstream optical carrier signal is sent to
  • the optical transceiver 95 corresponding to the RRU 91 converts the first uplink optical carrier signal into a second uplink electrical signal, and sends the second uplink electrical signal to the RRU 91, and the RRU 91 sends the second
  • the uplink electrical signal is integrated with the uplink electrical signal to obtain a third uplink electrical signal, and the third uplink electrical signal is sent to the optical transceiver 94 connected to the RRU 91, and the optical transceiver 94 transmits the third uplink electrical The signal is converted into a second uplink optical carrier signal, and
  • the RRU 91 needs to forward data to or from the RRU 92.
  • the RRU 92 will not work.
  • the networking structure of the existing distributed base station has the following defects: When a certain RRU (referred to as the current level RRU) in the cascaded RRU fails, the latter RRU cannot work, and the system reliability decreases. Summary of the invention
  • the embodiments of the present invention provide a wireless communication system and a radio frequency device, which solves the problem that in an existing distributed base station architecture, when a certain RRU fails in a plurality of cascaded RRUs, the RRU of the latter stage cannot be Work, causing technical problems with low system reliability.
  • the first aspect provides a radio frequency device, where the radio frequency device includes: M radio remote units, M optical transceivers, and at least one optical splitter, where M is an integer greater than or equal to 2, and the M lights
  • the transceivers are respectively connected to the M radio remote units, and the operating wavelengths of the M optical transceivers are different from each other; the M optical transceivers are connected to the same optical fiber through the at least one optical splitter.
  • the optical splitter is a 1:N splitter, and the N is an integer greater than or equal to 2 and less than or equal to M.
  • the optical splitter is a 1:2 splitter, and the number of the splitters is M-1.
  • the M-1 optical splitters are connected by a single-core optical fiber.
  • the optical fiber is a single-core optical fiber.
  • the first optical transceiver and the second optical The operating wavelength of each optical transceiver in the transceiver includes a receiving wavelength and a transmitting wavelength.
  • a second aspect of the present application provides a wireless communication system, where the wireless communication system includes: a baseband processing unit, an optical multiplexer, M first optical transceivers, and a radio frequency device, where the M first optical transceivers are disposed on Between the baseband processing unit and the optical multiplexer, wherein the operating wavelengths of the M first optical transceivers are different from each other, and the M is an integer greater than or equal to 2;
  • the radio frequency device includes: M a radio remote unit, M second optical transceivers, and at least one optical splitter, wherein the M second optical transceivers are respectively connected to the M radio remote units, and respectively connected to the M first lights Corresponding to the transceiver, and the working wavelengths of the corresponding first optical transceiver and the second optical transceiver are matched; the M second optical transceivers are connected to the same optical fiber by the at least one optical splitter, and the optical fiber connection station One of the optical multiplexer and the at least one optical splitter.
  • the optical splitter is a 1:N splitter, and the N is an integer greater than or equal to 2 and less than or equal to M.
  • the optical splitter is a 1:2 splitter, and the number of the splitters is M-1.
  • the M-1 optical splitters are connected by a single-core optical fiber .
  • the optical fiber is a single-core optical fiber.
  • the first optical transceiver and the second The operating wavelength of each optical transceiver in the optical transceiver includes a receiving wavelength and a transmitting wavelength.
  • the working wavelengths of the corresponding first optical transceiver and the second optical transceiver are matched, including: corresponding first In the optical transceiver and the second optical transceiver, the transmission wavelength of the first optical transceiver and the second optical transceiver
  • the receiving wavelength of the device is the same; the receiving wavelength of the first optical transceiver is the same as the transmitting wavelength of the second optical transceiver.
  • the wireless communication system of the present application transmits different optical wavelengths of different RRUs (including transmission from RRU to BBU and transmission from BBU to RRU), and correspondingly, the optical transceiver of the cascaded RRU operates at On different wavelengths.
  • a splitter is further provided, and the optical transceivers of the cascaded RRUs are connected to the optical splitter and connected to the same optical fiber through the optical splitter. In this way, the optical signals of the plurality of RRUs transmitted on the optical fiber can be transmitted to the optical transceivers of the respective RRUs through the optical splitter, and each optical transceiver only receives the signal corresponding to its working wavelength, so each RRU can be correct.
  • each RRU receives its own signal and does not need to forward signals of other RRUs, which reduces the bandwidth requirement of the CPRI interface, reduces the cost, and does not cause the number of cascaded RRUs to be limited. . And each RRU no longer needs to set up two CPRI interfaces, thus further reducing costs. In addition, the reduction in the bandwidth requirements of the CPRI interface further reduces the rate requirement for the optical transceiver, and the cost is further reduced.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a wireless communication system according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a wireless communication system according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a wireless communication system in the prior art. detailed description
  • multiple RRU cascading is a common networking mode.
  • the current RRU uses the forwarding mode to send data to the subsequent RRU. After the RRU fails, all RRUs in the latter stage cannot work, resulting in reduced system reliability.
  • This application fully considers this problem, and transmits optical signals of different RRUs with different wavelengths (including transmission from RRU to BBU and transmission from BBU to RRU), and correspondingly, optical transceivers for cascading RRUs. Work at different wavelengths.
  • a splitter is further provided, and the optical transceivers of the cascaded RRUs are connected to the optical splitter and connected to the same optical fiber through the optical splitter.
  • the optical signals of the multiple RRUs transmitted on the optical fiber can be transmitted to the optical transceivers of the respective RRUs through the optical splitter, and each optical transceiver only receives the signal corresponding to its working wavelength, so each RRU can be correct. Receiving its own signal, and when an RRU fails, it will not affect the work of other RRUs, greatly improving the reliability of the system.
  • each RRU receives its own signal and does not need to forward other RRU signals, which reduces the bandwidth requirement of the CPRI interface, reduces the cost, and does not limit the number of cascaded RRUs. And each RRU no longer needs to set up two CPRI interfaces, thus further reducing costs.
  • the reduction in the bandwidth requirements of the CPRI interface further reduces the rate requirement for the optical transceiver, and the cost is further reduced.
  • FIG. 1 is a schematic structural diagram of a wireless communication system 100 according to an embodiment of the present invention.
  • the wireless communication system 100 includes: a baseband processing unit 10, an optical multiplexer 20, optical transceivers 31 and 32, and a radio frequency device 500.
  • the radio frequency device 500 includes radio remote units 41 and 42 and optical transceivers. Devices 51 and 52 and beam splitter 60.
  • the baseband processing unit 10, abbreviated as BBU, is called a Baseband Control Unit, and is also called a baseband control unit.
  • the BBU 10 can include a transmission subsystem, a baseband subsystem, a control subsystem, and a power module.
  • the transmission subsystem is used to implement data transmission and reception.
  • the interface between the BBU and the radio module can be a common public radio interface (CPRI) interface.
  • the OBASI Open Base Station Architecture Initiative
  • the BBU 10 includes two interfaces, that is, the number of interfaces is the same as the number of the radio remote unit 40.
  • the power module is used to provide the BBU 10 with the required power.
  • the baseband subsystem is mainly used to complete the uplink and downlink data baseband processing functions, and is mainly composed of an uplink processing module and a downlink processing module.
  • the uplink processing module is configured to demodulate and decode the uplink baseband data from the transmission subsystem, and transmit the demodulated and decoded data through the transmission subsystem;
  • the downlink processing module is configured to downlink the baseband data from the transmission subsystem. Modulation and encoding are performed, and the modulated and encoded data is transmitted through the transmission subsystem.
  • the control subsystem is used to manage the entire wireless communication system 100.
  • the functions of the control subsystem may include, for example, one or more of the following functions: device management, configuration management, alarm management, software management, commissioning management, etc. operation and maintenance functions, logic Signal processing functions such as resource management, as well as phase-locked GPS clocks, perform frequency division, phase lock, and phase adjustment, and provide clock modules such as clocks that meet the requirements of the entire base station.
  • the radio remote unit referred to as the RRU, is called the Radio Remote Unit.
  • the RRU is used to convert the received downlink baseband signal from the BBU 10 by frequency conversion, filtering, passing through a linear power amplifier, transmitting the filter to the antenna through the transmission filter, or filtering the received uplink signal of the mobile terminal, and low noise. Amplification, further RF small signal amplification filtering and downconversion, then complete analog to digital conversion and Digital intermediate frequency processing, etc.
  • Each RRU is communicatively coupled to the BBU 10 via an interface.
  • the optical multiplexer 20 is an optical multiplexer.
  • the optical multiplexer 20 is a device for combining and separating optical carrier signals of different wavelengths, and can combine optical carrier signals of different wavelengths on one optical fiber. Transmission, or separating the optical carrier signal into a plurality of optical carrier signals according to the wavelength, and transmitting through a plurality of optical fibers.
  • Optical multiplexer 20 typically includes a plurality of input interfaces and an output interface. In this embodiment, the optical multiplexer 20 includes two input interfaces and an output interface, and the input interface and the output interface are both single-core bidirectional interfaces. In other embodiments, the interface may also be a dual-core bidirectional interface.
  • the optical transceiver which is called optical transceiver in English, is also called optical module. It is used to realize photoelectric conversion.
  • the photoelectric conversion mentioned here includes the conversion of optical signals to electrical signals, and also includes the conversion of electrical signals to optical signals.
  • the optical transceivers 31 and 32 are disposed between the BBU 10 and the optical multiplexer 20, wherein the optical transceiver 31 is connected to one input interface of the optical multiplexer 20 and one CPRI interface of the BBU 10; the optical transceiver 32 and the optical multiplexer The other input interface of 20 is connected to another CPRI interface of the BBU 10.
  • Optical transceivers 51 and 52 are coupled to RRUs 41 and 42, respectively, that is, optical transceiver 51 is coupled to RRU 41; optical transceiver 52 is coupled to RRU 42.
  • Optical transceivers are typically comprised of optoelectronic devices, functional circuits, optical interfaces, etc., wherein the optoelectronic devices include both transmit and receive components.
  • the implementation of the transmitting part is as follows: The electrical signal inputting a certain code rate is processed by an internal driving chip to drive a semiconductor laser (LD) or a light emitting diode (LED) to emit a modulated light signal of a corresponding rate, and an optical power automatic control circuit is internally provided therein. , to keep the output optical signal power stable.
  • the implementation of the receiving portion is as follows: The optical signal input module of a certain code rate is converted into an electrical signal by the photodetecting diode. After the preamplifier, the electrical signal of the corresponding code rate is output. Simply put, the role of an optical transceiver is photoelectric conversion.
  • Each optical transceiver connected to the BBU 10 corresponds to one RRU, and an optical transceiver corresponding thereto is disposed at each RRU.
  • the operating wavelengths of the optical transceivers corresponding to different RRUs are different, for example, the working wavelengths of the optical transceivers 31 and 51 corresponding to the RRU 41 are matched, and the optical transceiver corresponding to the RRU 42
  • the operating wavelengths of 32 and 52 match, but the optical transceivers 31 and 32, the optical transceivers 51 and 52 have different operating wavelengths, thereby guaranteeing each RRU
  • the corresponding optical transceiver only receives signals corresponding to its own operating wavelength.
  • the working wavelength matching described herein means that the transmission wavelength of one optical transceiver is the same as the reception wavelength of another optical transceiver, so that another optical transceiver can receive the optical signal transmitted by the optical transceiver.
  • the transmission wavelength of the optical transceiver 31 is equal to the reception wavelength of the optical transceiver 51; and the reception wavelength of the optical transceiver 31 is equal to the transmission wavelength of the optical transceiver 51.
  • the transmission wavelength of the optical transceiver 32 is equal to the reception wavelength of the optical transceiver 52; and the reception wavelength of the optical transceiver 32 is equal to the transmission wavelength of the optical transceiver 52.
  • the above optical transceiver may be a dual-core bidirectional optical transceiver or a single-core bidirectional optical transceiver.
  • each optical transceiver operates at one wavelength, both for transmission and reception; when the optical transceiver is a single-core bidirectional optical transceiver, each light The transceiver operates at two wavelengths, including the transmit and receive wavelengths.
  • the optical transceiver is a single-core bidirectional optical transceiver, that is, the transmission and reception are combined on one optical fiber, and the optical signals transmitted and received are used at different wavelengths.
  • the optical transceiver 31 has a transmission wavelength of ⁇ ⁇ and a reception wavelength of ⁇ 2 , where ⁇ 2 is not equal to ⁇ 1 .
  • the optical transceiver 32 has a transmission wavelength of ⁇ 3 and a reception wavelength of ⁇ 4, where ⁇ 4 is not equal to ⁇ 3.
  • the transmission wavelength ⁇ of the optical transceiver 31 is different from the transmission wavelength ⁇ 3 of the optical transceiver 32, and the reception wavelength ⁇ 2 of the optical transceiver 31 is different from the reception wavelength ⁇ 4 of the optical transceiver 32 to ensure that different optical transceivers transmit
  • the outgoing optical signal can be received by different RRUs; and since the above optical transceiver is a single-core bidirectional optical transceiver, the transmitting wavelength ⁇ ⁇ and the receiving wavelength ⁇ 2 of the optical transceiver 31 are different, and the transmitting wavelength ⁇ 3 of the optical transceiver 32 is The reception wavelength ⁇ 4 is different, so that ⁇ ⁇ , ⁇ 2, ⁇ 3, and ⁇ 4 are different from each other.
  • the optical transceiver 51 is used in pair with the optical transceiver 31, and the optical transceiver 52 is used in pair with the optical transceiver 32.
  • the transmission wavelength of the optical transceiver 31 is ⁇ and the reception wavelength is ⁇ 2
  • the reception wavelength of the optical transceiver 51 For ⁇ the transmission wavelength is ⁇ 2
  • the transmission wavelength of the optical transceiver 32 is ⁇ 3 and the reception wavelength is ⁇ 4
  • the reception wavelength of the optical transceiver 52 is ⁇ 3, the transmission wavelength is ⁇ 4, and ⁇ 1, XI, ⁇ 3, and ⁇ 4 are mutually Not the same.
  • the optical transceivers 51 and 52 are connected to the optical fiber 70 connected to the optical multiplexer 20 through the optical splitter 60.
  • an optical fiber connection such as a single-core bidirectional optical fiber, can be used between the optical transceivers 51 and 52 and the optical splitter 60.
  • An optical fiber connection can also be used between the optical multiplexer 20 and the optical splitter 60, such as a single-core dual To the fiber. The use of single-core bidirectional fiber reduces the cost compared to dual-core bidirectional fiber.
  • the optical splitter 60 also known as the optical splitter, is one of the important passive components in the optical fiber link for coupling, branching, and distributing optical signals.
  • the number of input and output interfaces of the beam splitter 60 can be selected as needed. As shown in FIG. 1, in the present embodiment, the number of RRUs is two, the number of optical splitters 60 is one, and the number of optical multiplexers 20 is one. At this time, the optical splitter 60 is 1:2. Splitter. Alternatively, as shown in FIG. 3 or 4, when a plurality of RRUs are connected in a cascade manner, that is, each RRU is connected to the optical splitter 60 through an optical transceiver, and the optical splitter 60 is also a 1:2 splitter. . Because the 1 : 2 splitter is small enough to fit directly into the RRU's maintenance chamber, it reduces installation costs.
  • the number of RRUs is two
  • the number of interfaces of the BBU 10 is also two
  • the number of optical transceivers connected to the BBU 10 is also two
  • one light is disposed between each RRU and the optical splitter. transceiver.
  • the BBU 10 and the optical multiplexer 20 can be placed in the equipment room, and the RRUs 41 and 42 can be placed at an outdoor site through the optical fiber.
  • the optical transceiver 31 is mounted on the interface 11 corresponding to the BBU 10 and the RRU 41
  • the optical transceiver 32 is mounted on the interface 12 corresponding to the BBU 10 and the RRU 42.
  • the optical transceiver 51 is mounted on the RRU 41
  • the optical transceiver 52 is mounted on the RRU 42.
  • the beam splitter 60 can be set independently or placed in the maintenance chamber of the RRU 41.
  • the BBU 10 modulates and encodes the downlink baseband data, and transmits the modulated and encoded downlink data to the optical transceivers 31 and 32 through the interface 11 and the interface 12, and the optical transceivers 31 and 32 will receive the downlink.
  • the data is converted into optical carrier signals of different wavelengths, and the optical carrier signals are sent to the optical multiplexer 20; the optical multiplexer 20 combines the optical carrier signals from the optical transceivers 31 and 32 on one optical fiber to transmit through the optical fibers.
  • the beam splitter 60 is given.
  • the optical transceivers 51 and 52 connected to the beam splitter 60 select data corresponding to the reception wavelength in accordance with the wavelength.
  • the receiving wavelength of the optical transceiver 51 is equal to the transmitting wavelength of the optical transceiver 31, and only the data sent by the optical transceiver 31 to the optical multiplexer 20 is received.
  • the receiving wavelength of the optical transceiver 52 is equal to the transmitting wavelength of the optical transceiver 32. Only data transmitted by the optical transceiver 32 to the optical multiplexer 20 can be received.
  • the two optical transceivers 51 and 52 respectively convert the received signals into downlink electrical signals and then send them to the RRUs 41 and 42.
  • the RRUs 41 and 42 pass the received signals to the RF filters, pass through the linear power amplifiers, and transmit them to the transmission filters. Heavenly feedback.
  • the RRUs 41 and 42 receive the received uplink signal of the mobile terminal into the filtering, low noise amplification, further RF small signal amplification filtering and down-conversion, and then complete the analog-to-digital conversion and the digital intermediate frequency processing, etc., to generate the uplink power.
  • the signals are transmitted to the optical transceivers 51 and 52, respectively; and the optical transceivers 51 and 52 convert the received uplink electrical signals into uplink optical carrier signals.
  • the optical transceivers 51 and 52 have different transmission wavelengths, wherein the transmission wavelength of the optical transceiver 51 is equal to the reception wavelength of the optical transceiver 31, the optical transceiver 51 transmits data only to be received by the optical transceiver 31, and the optical transceiver
  • the transmit wavelength of the device 52 is equal to the receive wavelength of the optical transceiver 32, and therefore, the optical transceiver 52 transmits data that can only be received by the optical transceiver 32.
  • the optical splitter 60 couples the received two uplink optical carrier signals to the same downlink optical fiber, and sends the signal to the optical multiplexer 20; the optical multiplexer 20 separates the received optical carrier signals and sends them to the optical carrier signals.
  • the optical transceivers 31 and 32, the optical transceivers 31 and 32 convert the received optical carrier signals into uplink data signals, and then send them to the corresponding interfaces on the BBU 10, and the BBU 10 demodulates and decodes the received uplink data signals. After that, it is transmitted to the gateway.
  • the signal of the RRU 42 can be directly transmitted to the optical splitter 60, and transmitted to the BBU 10 through the optical splitter 60.
  • the signal of the BBU 10 can also be transmitted to the RRU 42 through the optical splitter 60, thereby ensuring that the RRU 42 can normal work.
  • the wireless communication system 100 is provided with a beam splitter 60 between the first RRU 41 and the second RRU 42 of the two RRUs. Even when the first RRU 41 fails, the signal of the second RRU 42 can be directly transmitted to the beam splitter 60.
  • the signal is transmitted to the BBU 10 through the optical splitter 60; the signal of the BBU 10 can also be transmitted to the second RRU 42 through the optical splitter 60 to ensure that the second RRU 42 can work normally, and multiple cascades are solved in the existing distributed base station architecture.
  • the RRU when a radio remote unit fails, the RRU in the latter stage cannot work, resulting in technical problems with low system reliability.
  • each link uses different wavelengths for communication and is completely independent of each other, and when multiple RRUs are cascaded, the communication bandwidth is superimposed, resulting in an increase in the rate of the optical transceiver and a limited number of RRUs cascaded on the same link. technical problem.
  • the present application also provides a wireless communication system 200.
  • the difference between the wireless communication system 200 and the wireless communication system 100 is: Number of optical transceivers, RRU The number of beams is different.
  • the number of the RRUs 40 is M.
  • the M optical transceivers 50 are respectively connected to the M RRUs 40, and the M interfaces between the BBU 10 and the M RRUs 40 are provided with M.
  • the beam splitter 60 can employ a 1:N splitter, where M is an integer greater than or equal to 3, and N is an integer greater than or equal to 2.
  • the M RRUs 40 are connected to the beam splitter 60 via M light transceivers 50, respectively.
  • the N is equal to M
  • the optical splitter 60 is a 1:M optical splitter having M+1 interfaces, and the number is 1. At this time, all of the RRUs 40 are connected to the same splitter 60.
  • the N may not be equal to M.
  • the splitter 60 is a 1:2 splitter having three interfaces, and the number is M-1.
  • An interface of the first optical splitter is connected to the optical multiplexer 20 through an optical fiber to receive the multiple optical signals combined by the optical multiplexer 20, and the other two interfaces are respectively connected to the first RRU 40 and the second optical splitter.
  • One interface of the i-th beam splitter is connected to the i-1th optical splitter, and the other two interfaces are respectively connected to the i-th RRU and the i+1th optical splitter, wherein, 2 M-2; the last optical splitter, That is, one interface of the M-1 optical splitter is connected to the M-2 optical splitter, and the other two interfaces are respectively connected to the M-1th RRU and the Mth RRU.
  • the working principle of the above wireless communication system 200 is the same as that of the wireless communication system 100, and will not be described herein.
  • the signals of the other RRUs can be directly transmitted to the optical splitter 60, and transmitted to the BBU 10 through the optical splitter 60.
  • the signals of the BBU 10 can also be transmitted to the other RRUs through the optical splitter 60. 40, to ensure that the other RRUs 40 can work normally, and solve the problem in the existing distributed base station architecture.
  • the RRU of the latter stage cannot work, resulting in low system reliability. technical problem. .
  • each link uses different wavelengths for communication and is completely independent of each other, and when multiple RRUs are cascaded, the communication bandwidth is superimposed, resulting in an increase in the rate of the optical transceiver and a limited number of RRUs cascaded on the same link. technical problem.
  • FIG. 3 is a schematic structural diagram of a wireless communication system 300 according to another embodiment of the present invention.
  • Wireless communication system The difference between the system 300 and the wireless communication system 100 in FIG. 1 is that the number of the optical splitters 60 is two, and the number of the RRUs 40 is three.
  • the number of interfaces of the BBU 10 is also three, and the light connected to the BBU 10 is connected.
  • the number of transceivers 30 is three, and the number of optical transceivers 50 connected to the RRU 40 is also three.
  • the number of beamsplitters 60 is one less than the number of RRUs 40, i.e., two, respectively, optical transceivers 61 and 62.
  • the optical splitter 61 is connected to the optical multiplexer 20 and the optical splitter 62.
  • the RRU 41 is connected to the optical splitter 61 through the optical transceiver 51.
  • the RRU 42 is connected to the optical splitter 62 through the optical transceiver 52.
  • the RRU 43 is connected to the optical splitter through the optical transceiver 53. 62.
  • the BBU 10 and the optical multiplexer 20 are placed in the equipment room, and the three RRUs 40 can be placed at an outdoor site through the optical fiber.
  • the optical transceiver 31 is mounted on the interface 11 corresponding to the first RRU 41 of the BBU 10; the optical transceiver 32 is mounted on the interface 12 corresponding to the BBU 10 and the second RRU 42; the optical transceiver 33 is mounted on the BBU 10 and The third RRU 43 corresponds to the interface 13.
  • the optical transceiver 51 is mounted on the RRU 41, the optical transceiver 52 is mounted on the RRU 42, and the optical transceiver 53 is mounted on the RRU 43.
  • the spectroscope 61 is placed in the maintenance chamber of the radio remote unit 41, and the spectroscope 62 is placed in the maintenance chamber of the RRU 42.
  • the BBU 10 modulates and encodes the downlink baseband data, and transmits the modulated and encoded downlink data to the optical transceivers 31, 32, and 33 through the interface 11, the interface 12, and the interface 13, and the optical transceiver 31.
  • 32 and 33 convert the received downlink data into optical carrier signals of different wavelengths, and transmit the optical carrier signals to the optical multiplexer 20; the optical multiplexer 20 combines the received optical carrier signals on one optical fiber.
  • transmitted to the three optical transceivers 50 through the optical splitter 60; the three optical transceivers 50 receive data of the corresponding wavelengths according to the wavelength selection.
  • the receiving wavelength of the optical transceiver 51 is equal to the transmitting wavelength of the optical transceiver 31, and can only receive data transmitted by the optical transceiver 31.
  • the receiving wavelength of the optical transceiver 52 is equal to the transmitting wavelength of the optical transceiver 32, and can only receive and receive optical signals.
  • the data transmitted by the device 32; the receiving wavelength of the optical transceiver 53 is equal to the transmitting wavelength of the optical transceiver 33, and can only receive the data transmitted by the optical transceiver 33.
  • the three optical transceivers 50 convert the received signals into downlink electrical signals and then send them to the three RRUs 40.
  • the three RRUs 40 pass the received signals through the RF filter, pass through the linear power amplifier, and transmit them to the antenna through the transmission filter.
  • the three RRUs 40 filter the received uplink signal of the mobile terminal with low noise. Amplifying, further RF small signal amplification filtering and down-conversion, and then completing analog-to-digital conversion and digital intermediate frequency processing, etc., generating an uplink electrical signal, and transmitting the uplink electrical signal to three optical transceivers 50; three optical transceivers 50 converts the received uplink electrical signal into an uplink optical carrier signal.
  • the three optical transceivers 50 have different transmission wavelengths, wherein the transmission wavelength of the optical transceiver 51 is equal to the reception wavelength of the optical transceiver 31, and the transmission data can only be received by the optical transceiver 31; the transmission wavelength of the optical transceiver 52 is equal to the optical The receiving wavelength of the transceiver 32, the transmitted data can only be received by the optical transceiver 32; the transmitting wavelength of the optical transceiver 53 is equal to the receiving wavelength of the optical transceiver 33, and the transmitted data can only be received by the optical transceiver 33.
  • the optical splitters 61 and 62 couple the three uplink optical carrier signals to the same downlink optical fiber, and transmit the signals to the optical multiplexer 20; the optical multiplexer 20 separates the received optical carrier signals and sends them to the optical respectively.
  • the transceivers 31, 32, and 33 respectively convert the received optical carrier signals into uplink data signals, and then send them to the corresponding three interfaces 11, 12, and 13 on the BBU 10, and the BBU 10
  • the received uplink data signal is demodulated and decoded, and then transmitted to the gateway.
  • the above embodiments transmit different optical signals of different RRUs with different wavelengths, and correspondingly, the optical transceivers of the cascaded RRUs operate at different wavelengths.
  • a splitter is further provided, and the optical transceivers of the cascaded RRUs are connected to the optical splitter and connected to the same optical fiber 70 through the optical splitter.
  • the optical signals of the plurality of RRUs transmitted on the optical fiber can be transmitted to the optical transceivers of the respective RRUs through the optical splitter, and each optical transceiver only receives the signal corresponding to its own working wavelength, so each RRU can be correct. Receiving its own signal, and when an RRU fails, it will not affect the work of other RRUs.
  • the signals of the RRUs 42 and 43 can be directly transmitted to the BBU 10 through the optical splitter 61, and the signals of the BBU 10 can also be transmitted to the RRU 42 and the RRU 43 through the optical splitter 61, thereby ensuring that the RRUs 42 and 43 can normal work.
  • the RRU 43 can pass signals to the BBU 10 through the splitters 62 and 61, and the signals of the BBU 10 can also be transmitted to the RRU 43 through the splitters 61 and 62, solving the existing distributed In a base station architecture, when a certain RRU fails in a plurality of cascaded RRUs, the RRUs in the latter stage cannot work, resulting in technical problems of low system reliability.
  • each link communicates with different wavelengths and is completely independent of each other, the communication bandwidth is superimposed when multiple RRUs are cascaded, resulting in an increase in the rate of the optical transceiver and the same link.
  • the number of associated RRUs is limited by technical issues.
  • FIG. 4 is a schematic structural diagram of a wireless communication system 400 according to another embodiment of the present invention.
  • the wireless communication system 400 differs from the wireless communication system 100 of FIG. 2 in that the number of RRUs 40, the number of optical splitters 60, and the number of optical transceivers 50 are different.
  • the number of RRUs 40 is M, where M is greater than 3; correspondingly, M optical transceivers 50 are respectively connected to M RRUs, and M interfaces between BBUs 10 and M RRUs 40 M optical transceivers 30 are provided thereon.
  • the splitter 60 is a 1:2 splitter, and the number is M-1, wherein a single core fiber 70 is cascaded between the M splitters 60.
  • An interface of the first optical splitter 60 is connected to the optical multiplexer 20 through the optical fiber 70 to receive the multiple optical signals obtained by combining the optical multiplexers 20, and the other two interfaces are respectively connected to the first RRU 40 and the second The optical splitter 60; one interface of the i-th beam splitter 60 is connected to the i-1th optical splitter 60, and the other two interfaces are respectively connected to the i-th RRU and the i+1th optical splitter 60, wherein 2 i M_2; The last splitter 60, that is, one interface of the M-1th splitter 60 is connected to the M-2 splitter 60, and the other two interfaces are connected to the N-1th RRU 40 and the Nth RRU 40, respectively.
  • the BBU 10 and the optical multiplexer 20 can be placed in the equipment room, and the RRUs 40 can be placed at an outdoor site through the optical fiber.
  • the first optical transceiver 30 is mounted on the interface 1 corresponding to the first RRU 40 of the BBU 10; the j-th optical transceiver 30 is mounted on the interface j corresponding to the j-th RRU of the BBU 10, where l ⁇ j ⁇ M;
  • the Mth optical transceiver 30 is mounted on the interface M corresponding to the BBU 10 and the Mth RRU 40.
  • the first optical transceiver 50 is mounted on the first RRU 40, the jth optical transceiver is mounted on the jth RRU 40, l ⁇ j ⁇ M, and the Mth optical transceiver 50 is mounted on the Mth RRU 40 on.
  • the first optical splitter 60 can be placed in the maintenance cavity of the first RRU 40, and the i-th optical splitter 60 can be placed in the maintenance cavity of the i-th RRU 40, where 2 ⁇ i ⁇ M-2 , M-1 beamsplitters 60 can be placed in the maintenance chamber of the M-1th RRU 40.
  • the present embodiment is not limited thereto, and the spectroscope 60 may be placed separately or in other manners.
  • the BBU 10 modulates and encodes the downlink baseband data, and modulates and compiles
  • the downlink data after the code passes through the M optical transceivers 30, and the M optical transceivers 30 convert the received downlink data into optical carrier signals of different wavelengths, and transmit the optical carrier signals to the optical multiplexer 20;
  • the optical carrier signals received by the device 20 are combined on one optical fiber and transmitted to the M optical transceivers 50 through the optical splitter 60.
  • the M optical transceivers 50 receive the data transmitted to themselves according to the wavelength selection.
  • the M optical transceivers 50 respectively convert the received signals into downlink electrical signals and then send them to the M RRUs 40.
  • the M RRUs 40 respectively pass the received signals to the RF filter, pass through the linear power amplifier, and transmit the filters to the sky. Feed.
  • the M RRUs 40 filter the received uplink signals of the mobile terminal, perform low-noise amplification, further RF small-signal amplification filtering and down-conversion, and then perform analog-to-digital conversion and digital intermediate frequency processing, etc., to generate uplink power. And transmitting the uplink electrical signal to the M optical transceivers 50; the M optical transceivers 50 respectively convert the received uplink electrical signal into an uplink optical carrier signal and send the signal to the optical splitter 60.
  • the M optical transceivers 50 have different emission wavelengths.
  • Each of the optical transceivers 50 has a matching optical transceiver 30, that is, the transmission wavelength of each optical transceiver 50 is equal to the reception wavelength of one optical transceiver 30, and the transmission data can only be received by the optical transceiver.
  • the optical splitter 60 couples the M-channel upstream optical carrier signal to the same downlink optical fiber, and transmits the signal to the optical multiplexer 20; the optical multiplexer 20 separates the received optical carrier signals and sends them to the M opticals.
  • the transceiver 30 and the M optical transceivers 30 convert the received optical carrier signal into an uplink data signal, and then send the signal to the BBU 10.
  • the BBU 10 demodulates and decodes the received uplink data signal and transmits the received uplink data signal to the gateway.
  • the above embodiments transmit different optical signals of different RRUs with different wavelengths, and correspondingly, the optical transceivers of the cascaded RRUs operate at different wavelengths.
  • the optical splitter is installed, and the optical transceivers of the cascaded RRUs are connected to the optical splitter and connected to the same optical fiber through the optical splitter.
  • the optical signals of the plurality of RRUs transmitted on the optical fiber can be transmitted to the optical transceivers of the respective RRUs through the optical splitter, and each optical transceiver only receives the signal corresponding to its own working wavelength, so each RRU can be correct. Receiving its own signals, and when an RRU fails, it will not affect the work of other RRUs.
  • the first RRU fails, signals of other RRUs can be directly transmitted to the BBU 10 through the splitter 60, and the signals of the BBU 10 can also be transmitted to the other through the splitter 60.
  • the RRU ensures that other RRUs can work normally.
  • the RRUs in the latter stage cannot work, resulting in low system reliability. problem.
  • the present application further provides a radio frequency device, where the radio frequency device includes:
  • M RRUs the M being an integer greater than or equal to 2;
  • M optical transceivers are respectively connected to M RRUs, and the operating wavelengths of the M optical transceivers are different from each other;
  • At least one optical splitter connecting the M optical transceivers to the same optical fiber. That is, the M optical transceivers are connected to the same optical fiber through the at least one optical splitter.
  • the beam splitter is a 1:N splitter, and the N is an integer greater than or equal to 2 and less than or equal to M.
  • the beam splitter is a 1:2 splitter, and the number of the splitters is M-1.
  • the M-1 optical splitters are connected by a single-core optical fiber.
  • the optical fiber is a single core optical fiber.
  • the operating wavelength of each of the first optical transceiver and the second optical transceiver comprises a receiving wavelength and a transmitting wavelength.
  • optical signals of different RRUs are transmitted with different wavelengths (including transmission from RRU to BBU and transmission from BBU to RRU), and correspondingly, optical transmission and reception of cascaded RRUs is performed.
  • the device works at different wavelengths.
  • a splitter is further provided, and the optical transceivers of the cascaded RRUs are connected to the optical splitter and connected to the same optical fiber through the optical splitter.
  • the optical signals of the plurality of RRUs transmitted on the optical fiber can be transmitted to the optical transceivers of the respective RRUs through the optical splitter, and each optical transceiver only receives the signal corresponding to its own working wavelength, therefore, each RRU Both can correctly receive their own signals, and when an RRU fails, it will not affect the work of other RRUs, greatly improving the reliability of the system.
  • each RRU receives its own signal and does not need to forward other RRU signals, which reduces the bandwidth requirement of the CPRI interface, reduces the cost, and does not limit the number of cascaded RRUs. And each RRU no longer needs to set up two CPRI interfaces, thus further reducing costs.
  • the reduction in the bandwidth requirements of the CPRI interface further reduces the rate requirement for the optical transceiver, and the cost is further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开一种无线通信系统和无线射频装置,所述无线通信系统包括:基带处理单元、光复用器、M个第一光收发器和无线射频装置,所述M个第一光收发器设置于所述基带处理单元和所述光复用器之间,其中,所述M个第一光收发器的工作波长互不相同,所述M为大于等于2的整数;所述无线射频装置包括:M个射频拉远单元、M个第二光收发器和至少一个分光器,所述M个第二光收发器分别与所述M个射频拉远单元连接,且分别与所述M个第一光收发器对应,且对应的第一光收发器和第二光收发器的工作波长匹配;所述M个第二光收发器通过所述至少一个分光器连接于同一光纤,且所述光纤连接所述光复用器和所述至少一个分光器中的一个。

Description

无线通信系统和无线射频装置
技术领域
本发明涉及通信技术领域, 尤其涉及一种无线通信系统和无线射频装置。 背景技术
无线网络大量使用分布式基站架构, 射频拉远单元( Remote Radio Unit, RRU )和基带处理单元( Baseband Control Unit, BBU )之间用光纤连接, 一 个 BBU可以支持多个 RRU。 在同一站点需要多个 RRU连接到同一 BBU的 场景下, 多个 RRU级联是一种常用的组网方式。
以下以一个 BBU支持两个级联的 RRU的无线通信系统 900的数据传输 方式为例进行说明: 如图 5所示, 在下行方向上, BBU 90接收网关发送的下 行数据, 并对该下行数据进行处理, 将处理后的下行数据通过通用公共无线 接口 (Common Public Radio Interface , CPRI ) 发送给光收发器 (optical transceiver ) 93 , 光收发器又称之为光模块。 光收发器 93将所述处理后的下行 数据转换为第一下行光载波信号并通过光纤发送到 RRU 91对应的光收发器 94, 光收发器 94将第一下行光载波信号转换为第一下行电信号, 并将该第一 下行电信号发送给 RRU 91 , RRU 91选择接收所述第一下行电信号中的部分 信号, 并将其它信号发送给光收发器 95转换为第二下行光载波信号, 并通过 光纤发送给光收发器 96,光收发器 96将第二下行光载波信号转换为第二下行 电信号, 并将该第二下行电信号发送给 RRU 92; 从而可以通过 RRU91 和 RRU92将从网关接收的下行数据发送给移动终端。
在上行方向上, RRU 91和 RRU 92分别接收移动终端发送的上行数据, 并对上行数据进行处理得到上行电信号。其中 RRU 92将得到的第一上行电信 号发送给与 RRU 92对应的光收发器 96, 光收发器 96将所述第一上行电信号 转换为第一上行光载波信号, 通过光纤将所述第一上行光载波信号发送给 RRU 91对应的光收发器 95 , 光收发器 95将所述第一上行光载波信号转换为 第二上行电信号, 并将该第二上行电信号发送给 RRU 91 , RRU 91将所述第 二上行电信号与自身的上行电信号进行整合后获得第三上行电信号, 并将该 第三上行电信号发送给与 RRU 91连接的光收发器 94, 光收发器 94将所述第 三上行电信号转换为第二上行光载波信号, 并通过光纤将所述第二上行光载 波信号发送给 BBU 90 , 以通过 BBU 90进行处理后发送给网关。
可见, RRU 91需要对发往或来自 RRU 92的数据进行转发, 当 RRU 91 故障时, RRU 92将无法工作。
故现有分布式基站的组网结构存在如下缺陷:当级联的 RRU中某个 RRU (称之为当前级 RRU )发生故障时, 后级 RRU无法工作, 系统可靠性降低。 发明内容
有鉴于此, 本发明实施例提供了一种无线通信系统和无线射频装置, 解 决了现有分布式基站架构中, 多个级联的 RRU中, 某个 RRU发生故障时, 后级的 RRU无法工作, 造成系统可靠性低的技术问题。
第一方面提供一种无线射频装置, 所述无线射频装置包括: M个射频拉 远单元、 M个光收发器和至少一个分光器, 所述 M为大于等于 2的整数, 所 述 M个光收发器分别与所述 M个射频拉远单元连接, 所述 M个光收发器的 工作波长互不相同; 所述 M个光收发器通过所述至少一个分光器连接于同一 光纤。
在第一方面第一种可能的实现方式中, 所述分光器为 1 : N的分光器, 所 述 N为大于等于 2小于等于 M的整数。
结合第一方面第一种可能的实现方式, 在第一方面第二种可能的实现方 式中, 所述分光器为 1 :2的分光器, 所述分光器的数量为 M-l。
结合第一方面第二种可能的实现方式, 在第一方面第三种可能的实现方 式中, 当所述 M大于 2时, 所述 M-1个分光器之间釆用单芯光纤连接。
结合第一方面、 第一方面第一种到第三种中任一种可能的实现方式, 在 第一方面第四种可能的实现方式中, 所述光纤为单芯光纤。
结合第一方面、 第一方面第一种到第四种中任一种可能的实现方式, 在 第一方面第五种可能的实现方式中, 所述第一光收发器和所述第二光收发器 中每个光收发器的工作波长包括接收波长和发送波长。
本申请第二方面提供一种无线通信系统, 所述无线通信系统包括: 基带 处理单元、 光复用器、 M个第一光收发器和无线射频装置, 所述 M个第一光 收发器设置于所述基带处理单元和所述光复用器之间, 其中, 所述 M个第一 光收发器的工作波长互不相同, 所述 M为大于等于 2的整数; 所述无线射频 装置包括: M个射频拉远单元、 M个第二光收发器和至少一个分光器, 所述 M个第二光收发器分别与所述 M个射频拉远单元连接, 且分别与所述 M个 第一光收发器对应, 且对应的第一光收发器和第二光收发器的工作波长匹配; 所述 M个第二光收发器通过所述至少一个分光器连接于同一光纤, 且所述光 纤连接所述光复用器和所述至少一个分光器中的一个。
在第二方面第一种可能的实现方式中, 所述分光器为 1 : N的分光器, 所 述 N为大于等于 2小于等于 M的整数。
结合第二方面的第一种可能的实现方式, 在第二方面第二种可能的实现 方式中, 所述分光器为 1 :2的分光器, 且所述分光器的数量为 M-l。
结合第二方面的第二种可能的实现方式, 在第二方面第三种可能的实现 方式中, 当所述 M大于 2时, 所述 M-1个分光器之间釆用单芯光纤连接。
结合第二方面、 第二方面的第一种、 第二种或第三种可能的实现方式, 在第二方面第四种可能的实现方式中, 所述光纤为单芯光纤。
结合第二方面、 第二方面的第一种到第四种中任一种可能的实现方式, 在第二方面第五种可能的实现方式中, 所述第一光收发器和所述第二光收发 器中每个光收发器的工作波长包括接收波长和发送波长。
结合第二方面的第五种可能的实现方式, 在第二方面第六种可能的实现 方式中, 对应的第一光收发器和第二光收发器的工作波长匹配, 包括: 对应 的第一光收发器和第二光收发器中, 第一光收发器的发送波长与第二光收发 器的接收波长相同; 第一光收发器的接收波长与第二光收发器的发送波长相 同。
本申请无线通信系统对不同的 RRU 的光信号釆用不同的波长进行传输 (包括从 RRU到 BBU的传输以及从 BBU到 RRU的传输), 相应的 , 让级联 的 RRU的光收发器工作在不同的波长上。 进而, 再设置分光器, 将这些级联 的 RRU的光收发器均与分光器连接,并通过分光器连接于同一个光纤。如此, 该光纤上传输的多个 RRU的光信号便可以通过分光器传输到各个 RRU的光 收发器, 而每个光收发器只接收自己工作波长对应的信号, 因此, 每个 RRU 都可以正确接收自己的信号, 且在某个 RRU故障时, 不会影响其它 RRU的 工作, 极大的提高了系统的可靠性。 解决了现有分布式基站架构中, 多个级 联的射频拉远单元中, 某个射频拉远单元发生故障时, 后级的所以 RRU都不 能工作, 造成系统可靠性低的技术问题。
另外, 在釆用了以上方案之后, 每个 RRU各自接收自己信号, 无需转发 其它 RRU的信号, 降低了对 CPRI接口带宽的要求, 降低了成本, 且不会导 致级联 RRU的级数受限。且每个 RRU也不再需要设置两个 CPRI接口, 因此 进一步降低了成本。 另外, 对于 CPRI接口带宽的要求的降低, 也进一步降低 了对光收发器的速率要求, 成本得到进一步的降低。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例。
图 1为本发明一实施例提供的无线通信系统的结构示意图;
图 2为本发明另一实施例提供的无线通信系统的结构示意图;
图 3为本发明又一实施例提供的无线通信系统的结构示意图;
图 4为本发明再一实施例提供的无线通信系统的结构示意图;
图 5为现有技术中无线通信系统的结构示意图。 具体实施方式
目前, 在分布式基站架构中, 多个 RRU级联是一种常用的组网方式, 然 而 ,在这种组网方式中 ,当前级 RRU釆用转发的方式将数据发送给后级 RRU, 当前级 RRU故障后, 后级所有 RRU都不能工作, 导致系统可靠性降低。
本申请充分考虑此问题, 对不同的 RRU的光信号釆用不同的波长进行传 输(包括从 RRU到 BBU的传输以及从 BBU到 RRU的传输), 相应的 , 让级 联的 RRU的光收发器工作在不同的波长上。 进而, 再设置分光器, 将这些级 联的 RRU的光收发器均与分光器连接, 并通过分光器连接于同一个光纤。 如 此, 该光纤上传输的多个 RRU的光信号便可以通过分光器传输到各个 RRU 的光收发器, 而每个光收发器只接收自己工作波长对应的信号, 因此, 每个 RRU都可以正确接收自己的信号,且在某个 RRU故障时,不会影响其它 RRU 的工作, 极大的提高了系统的可靠性。
此外,现有技术中,由于所有 RRU的数据都需要通过第一个 RRU的 CPRI 接口, 因此对 CPRI接口带宽的要求较高, 增加了成本; 而在 CPRI接口带宽 有限的情况下, 限制了级联 RRU的级数。 而且, CPRI接口带宽的增加提高 了对光收发器的速率要求, 进一步增加了成本。
而在釆用了以上方案之后, 每个 RRU各自接收自己信号, 无需转发其它 RRU的信号, 降低了对 CPRI接口带宽的要求, 降低了成本, 且不会导致级 联 RRU的级数受限。且每个 RRU也不再需要设置两个 CPRI接口, 因此进一 步降低了成本。 另外, 对于 CPRI接口带宽的要求的降低, 也进一步降低了对 光收发器的速率要求, 成本得到进一步的降低。
可见, 本申请的技术方案不但解决了现有技术中可靠性较低的问题, 也 极大的降低了成本, 且不会导致级联 RRU的级数受限。
为了使本技术领域的人员更好地理解本发明方案, 下面将结合本发明实 施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例仅仅是本发明一部分的实施例, 而不是全部的实施例。 实施例一
图 1为本发明一实施例提供的无线通信系统 100的结构示意图。 如图 1 所示, 无线通信系统 100包括: 基带处理单元 10、 光复用器 20、 光收发器 31 和 32、 和无线射频装置 500, 无线射频装置 500包括射频拉远单元 41和 42、 光收发器 51和 52和分光器 60。
基带处理单元 10, 简称 BBU, 全称为 Baseband Control Unit, 又叫基带 控制单元。 BBU 10可以包括传输子系统、 基带子系统、 控制子系统和电源模 块。传输子系统用于实现数据收发的功能, 包括 BBU与核心网 /控制器的接口 和 BBU与射频模块的接口, BBU与射频模块的接口可以为通用公共无线接口 ( Common Public Radio Interface, CPRI )接口或者 OBASI ( Open Base Station Architecture Initiative )接口, 在本实施方式中, BBU 10包括两个接口, 也就 是说, 接口的个数与射频拉远单元 40的个数相同。 电源模块用于为 BBU 10 提供需要的电源。
基带子系统主要用于完成上下行数据基带处理功能, 主要由上行处理模 块和下行处理模块组成。 上行处理模块用于对来自传输子系统的上行基带数 据进行解调和解码, 并将解调和解码后的数据通过传输子系统进行传输; 下 行处理模块用于对来自传输子系统的下行基带数据进行调制和编码, 并将调 制和编码后的数据通过传输子系统进行传输。
控制子系统用于管理整个无线通信系统 100,控制子系统的功能例如可以 包括以下功能的一个或多个: 设备管理、 配置管理、 告警管理、 软件管理、 调测管理等等操作维护功能, 逻辑资源管理等信令处理功能, 以及锁相 GPS 时钟, 进行分频、 锁相和相位调整, 并为整个基站提供符合要求的时钟等时 钟模块功能。
射频拉远单元, 简称 RRU, 全称为 Radio Remote Unit。 RRU用于将接收 到的来自 BBU 10的下行基带信号经变频、 滤波, 经过射频滤波、 经线性功率 放大器后通过发送滤波传至天馈, 或者将收到的移动终端上行信号进滤波、 低噪声放大、 进一步的射频小信号放大滤波和下变频, 然后完成模数转换和 数字中频处理等。 每个 RRU通过一个接口与 BBU 10通信连接。
光复用器 20, 简称 optical MUX, 全称为 optical multiplexer 光复用器 20 是一种将若干不同波长的光载波信号进行合并和分离的设备, 可以将若干不 同波长的光载波信号合并在一根光纤上传输, 或者根据波长将光载波信号分 离为多个光载波信号, 通过多根的光纤传输。 光复用器 20通常包括多个输入 接口和一个输出接口。 在本实施方式中, 光复用器 20包括两个输入接口和一 个输出接口, 所述输入接口和输出接口均为单芯双向接口, 在其他实施方式, 所述接口也可以为双芯双向接口。
光收发器, 英文全称为 optical transceiver, 又称之为光模块; 用于实现光 电转换, 这里所说的光电转换包括光信号到电信号的转换, 也包括电信号到 光信号的转换。光收发器 31和 32设置于 BBU 10和光复用器 20之间,其中, 光收发器 31与光复用器 20的一个输入接口和 BBU 10的一个 CPRI接口连接; 光收发器 32与光复用器 20的另一个输入接口和 BBU 10的另一个 CPRI接口 连接。 光收发器 51和 52分别与 RRU 41和 42连接, 也就是说, 光收发器 51 连接 RRU 41; 光收发器 52连接 RRU 42。
光收发器通常由光电子器件、 功能电路和光接口等组成, 其中, 光电子 器件包括发射和接收两部分。 发射部分的实现如下: 输入一定码率的电信号 经内部的驱动芯片处理后驱动半导体激光器 (LD )或发光二极管 (LED )发 射出相应速率的调制光信号, 其内部带有光功率自动控制电路, 使输出的光 信号功率保持稳定。 接收部分的实现如下: 一定码率的光信号输入模块后由 光探测二极管转换为电信号。 经前置放大器后输出相应码率的电信号。 简单 地说, 光收发器的作用就是光电转换。
每个与 BBU 10连接的光收发器对应一个 RRU,且每个 RRU处设置一个 与之对应的光收发器。 对应同一个 RRU的光收发器的工作波长匹配, 对应不 同 RRU的光收发器的工作波长不同, 例如对应于 RRU 41的光收发器 31和 51的工作波长匹配, 对应于 RRU 42的光收发器 32和 52的工作波长匹配, 但光收发器 31和 32 ,光收发器 51和 52的工作波长不同,从而保证每个 RRU 对应的光收发器只接收自己工作波长对应的信号。 这里所述的工作波长匹配 是指一个光收发器的发送波长与另一个光收发器的接收波长相同, 以使得另 一个光收发器可以接收这个光收发器发送的光信号。 例如, 光收发器 31的发 送波长等于光收发器 51 的接收波长; 且光收发器 31 的接收波长等于光收发 器 51的发送波长。 光收发器 32的发送波长等于光收发器 52的接收波长; 且 光收发器 32的接收波长等于光收发器 52的发送波长。
另外, 以上光收发器可以为双芯双向光收发器, 也可以为单芯双向光收 发器。 当光收发器为双芯双向光收发器时, 每个光收发器的工作波长为一个, 既用于发送, 也用于接收; 当光收发器为单芯双向光收发器时, 每个光收发 器的工作波长为两个, 包括发送波长和接收波长。 在本实施方式中, 以光收 发器为单芯双向光收发器为例, 即, 发送和接收合并在一根光纤上进行, 发 送和接收的光信号釆用不同的波长。
如, 光收发器 31的发送波长为 λΐ , 接收波长为 λ2 , 其中 λ2不等于 λ1。 光收发器 32的发送波长为 λ3 ,接收波长为 λ4,其中 λ4不等于 λ3。进一步的, 光收发器 31的发送波长 λΐ与光收发器 32的发送波长 λ3不同, 光收发器 31 的接收波长为 λ2与光收发器 32的接收波长 λ4不同, 以保证不同的光收发器 发送出去的光信号可以被不同的 RRU所接收; 且由于以上光收发器为单芯双 向光收发器, 光收发器 31的发送波长 λΐ和接收波长 λ2不相同, 光收发器 32 的发送波长 λ3和接收波长 λ4不相同, 从而 λΐ、 λ2、 λ3和 λ4互不相同。
光收发器 51与光收发器 31配对使用, 光收发器 52与光收发器 32配对 使用, 从而, 在光收发器 31的发送波长为 λΐ , 接收波长为 λ2时, 光收发器 51的接收波长为 λΐ , 发送波长为 λ2; 且在光收发器 32的发送波长为 λ3 , 接 收波长为 λ4时, 光收发器 52的接收波长为 λ3 , 发送波长为 λ4, 且 λ1、 XI、 λ3和 λ4互不相同。
光收发器 51和 52通过分光器 60连接到与光复用器 20相连的光纤 70。 具体地, 光收发器 51和 52与分光器 60之间可以釆用光纤连接, 例如, 单芯 双向光纤。 光复用器 20和分光器 60之间亦可以釆用光纤连接, 例如单芯双 向光纤。 釆用单芯双向光纤相较于釆用双芯双向光纤, 降低了成本。
分光器 60又称为光分路器, 是光纤链路中重要的无源器件之一, 用于将 光信号进行耦合、 分支、 分配。 分光器 60的输入输出接口数目可以根据需要 进行选择。 如图 1 所示, 在本实施方式中, RRU的个数为 2个, 分光器 60 的数目为 1个,光复用器 20的个数为一个,此时,分光器 60为 1 :2的分光器。 或者, 如图 3或 4所示, 多个 RRU釆用级联的方式连接时, 即每个 RRU通 过一个光收发器连接于分光器 60上, 且分光器 60亦为 1 :2的分光器。 因为 1 :2的分光器的体积小, 可以直接放置在 RRU的维护腔中, 从而减少安装成 本。
在本实施方式中, RRU的数目为两个, BBU 10的接口数目也为两个, 且 与 BBU 10连接的光收发器的数目也为两个, 每个 RRU与分光器之间设置一 个光收发器。 在具体实现方式中, BBU 10和光复用器 20可以放置于机房内, RRU 41和 42可以通过光纤拉远放置于室外站点。光收发器 31安装在 BBU 10 与 RRU 41对应的接口 11上, 光收发器 32安装在 BBU 10与 RRU 42对应的 的接口 12上。 光收发器 51安装在 RRU 41上, 光收发器 52安装在 RRU 42 上。 分光器 60可以独立设置, 也可以放置在 RRU 41的维护腔内。
在下行方向上, BBU 10将下行基带数据进行调制和编码, 并将调制和编 码后的下行数据通过接口 11和接口 12发送给光收发器 31和 32 , 光收发器 31和 32将收到的下行数据转换为不同波长的光载波信号,并将光载波信号发 送给光复用器 20;光复用器 20将来自光收发器 31和 32的光载波信号复合在 一根光纤上, 以通过该光纤发送给分光器 60。 与分光器 60连接的光收发器 51和 52根据波长选择接收波长对应的数据。 其中, 光收发器 51的接收波长 等于光收发器 31的发送波长, 只能接收光收发器 31发送给光复用器 20的数 据, 光收发器 52的接收波长等于光收发器 32的发送波长, 只能接收光收发 器 32发送给光复用器 20的数据。 两个光收发器 51和 52分别将收到的信号 转换为下行电信号后发送给 RRU 41和 42; RRU 41和 42将收到的信号经过 射频滤波、 经线性功率放大器后通过发送滤波传至天馈。 在上行方向上, RRU 41和 42将收到的移动终端上行信号进滤波、 低噪 声放大、 进一步的射频小信号放大滤波和下变频, 然后完成模数转换和数字 中频处理等后, 生成上行电信号, 并将生成的上行电信号分别传输给光收发 器 51和 52; 光收发器 51和 52将收到的上行电信号转换为上行光载波信号。 由于光收发器 51和 52具有不同的发射波长, 其中, 光收发器 51的发射波长 等于光收发器 31 的接收波长, 因此, 光收发器 51发送数据只能被光收发器 31接收, 光收发器 52的发射波长等于光收发器 32的接收波长, 因此, 光收 发器 52发送数据只能被光收发器 32接收。 分光器 60将收到的两路上行光载 波信号耦合到下行的同一根光纤上, 并将该信号发送给光复用器 20; 光复用 器 20将收到的光载波信号进行分离后分别发送给光收发器 31和 32, 光收发 器 31和 32将收到的光载波信号转换为上行数据信号后,发送给 BBU 10上的 对应接口, BBU 10将收到的上行数据信号进行解调和解码后, 传输给网关。
可见,当 RRU 41出现故障时, RRU 42的信号可以直接传输给分光器 60, 通过分光器 60传递给 BBU 10, BBU 10的信号也可以通过分光器 60传输给 RRU 42, 从而保证 RRU 42能够正常工作。
上述无线通信系统 100在两个 RRU的第一 RRU 41和第二 RRU 42之间 设置分光器 60, 即便在第一 RRU 41出现故障时, 第二 RRU 42的信号可以直 接传输给分光器 60,通过分光器 60传递给 BBU 10; BBU 10的信号也可以通 过分光器 60传输给第二 RRU 42,从而保证第二 RRU 42能够正常工作,解决 了现有分布式基站架构中, 多个级联的 RRU 中, 某个射频拉远单元发生故障 时, 后级的所以 RRU都不能工作, 造成系统可靠性低的技术问题。
另外, 由于各个链路釆用不同的波长通信, 互相之间完全独立, 也解决 了多个 RRU级联时,通信带宽叠加,导致光收发器速率增加和同一链路上级 联的 RRU数量受限技术问题。
实施例二
基于同样的发明构思,本申请还提供一种无线通信系统 200。如图 2所示, 无线通信系统 200与无线通信系统 100的区别在于: 光收发器的个数、 RRU 的个数不同, 分光器不同。
在本实施方式中, RRU 40的个数为 M个, 相应的, M个光收发器 50分 别与 M个 RRU 40连接, 且 BBU 10与 M个 RRU 40之间的 M个接口上设置 有 M个光收发器 30。 分光器 60可以釆用 1 : N的分光器, 其中, M为大于 等于 3个的整数, N为大于等于 2的整数。 M个 RRU 40分别通过 M个光收 发器 50连接于分光器 60上。
在本实施方式中, 所述 N等于 M, 分光器 60为 1 :M分光器, 具有 M+1 个接口, 且个数为 1。 此时, 所有的 RRU 40都连接到该同一个分光器 60上。
在其它实施方式中, 所述 N可以不等于 M, 如当 N等于 2时, 分光器 60 为 1:2分光器, 具有三个接口, 且个数为 M-l。 其中, 第一个分光器的一个接 口通过光纤与光复用器 20连接, 以接收光复用器 20合并得到的多路光信号, 另外两个接口分别连接第一个 RRU 40和第二个分光器; 第 i个分光器的一个 接口与第 i-1个分光器连接,另外两个接口分别连接第 i个 RRU和第 i+1个分 光器, 其中, 2 M-2; 最后一个分光器, 即第 M-1个分光器的一个接口与 第 M-2个分光器连接,另外两个接口分别连接第 M-1个 RRU和第 M个 RRU。
上述无线通信系统 200工作原理与无线通信系统 100相同, 在此不再赘 述。 当 M个 RRU 40中的任一 RRU出现故障时, 其它 RRU的信号可以直接 传输给分光器 60,通过分光器 60传递给 BBU 10, BBU 10的信号也可以通过 分光器 60传输给其他的 RRU 40,从而保证其它的 RRU 40能够正常工作,解 决了现有分布式基站架构中, 多个级联的 RRU中, 某个 RRU发生故障时, 后级的 RRU不能工作, 造成系统可靠性低的技术问题。。
另外, 由于各个链路釆用不同的波长通信, 互相之间完全独立, 也解决 了多个 RRU级联时, 通信带宽叠加, 导致光收发器速率增加和同一链路上级 联的 RRU数量受限技术问题。
实施例三
基于同样的发明构思,本申请还提供一种无线通信系统 300。如图 3所示, 为本发明另一实施例提供的无线通信系统 300 的结构示意图。 该无线通信系 统 300与图 1中的无线通信系统 100的区别在于分光器 60的数目为两个, RRU 40的数目为三个, 对应地, BBU 10的接口数目也为三个, 与 BBU 10连接的 光收发器 30的数目为三个, 与 RRU 40连接的光收发器 50的数目也为三个。
分光器 60的数目比 RRU 40的数目少一个, 即为两个, 分别为光收发器 61和 62。 其中, 分光器 61连接光复用器 20和分光器 62, RRU 41通过光收 发器 51与分光器 61连接, RRU 42通过光收发器 52连接分光器 62 , RRU 43 通过光收发器 53连接分光器 62。
在具体实现方式中, BBU 10和光复用器 20放置于机房内, 三个 RRU40 可以通过光纤拉远放置于室外站点。 光收发器 31 安装在 BBU 10 与第一个 RRU 41对应的接口 11上; 光收发器 32安装在 BBU 10与第二个 RRU 42对 应的的接口 12上; 光收发器 33安装在 BBU 10与第三个 RRU 43对应的的接 口 13上。 光收发器 51安装在 RRU 41上, 光收发器 52安装在 RRU42上, 光 收发器 53安装在 RRU 43上。 分光器 61放置射频拉远单元 41的维护腔内, 分光器 62放置 RRU 42的维护腔内。
在下行方向上, BBU 10将下行基带数据进行调制和编码, 并将调制和编 码后的下行数据发送到通过接口 11、 接口 12和接口 13发送给光收发器 31、 32和 33 , 光收发器 31、 32和 33将收到的下行数据转换为不同波长的光载波 信号, 并将所述光载波信号发送给光复用器 20; 光复用器 20将收到的光载波 信号复合在一根光纤上, 并通过分光器 60发送给三个光收发器 50; 三个光收 发器 50根据波长选择接收对应波长的数据。 其中, 光收发器 51 的接收波长 等于光收发器 31 的发送波长, 只能接收光收发器 31发送的数据; 光收发器 52的接收波长等于光收发器 32的发送波长, 只能接收光收发器 32发送的数 据; 光收发器 53的接收波长等于光收发器 33的发送波长, 只能接收光收发 器 33发送的数据。 三个光收发器 50将收到的信号转换为下行电信号后发送 给三个 RRU 40; 三个 RRU 40将收到的信号经过射频滤波、 经线性功率放大 器后通过发送滤波传至天馈。
在上行方向上,三个 RRU 40将收到的移动终端上行信号进滤波、低噪声 放大、 进一步的射频小信号放大滤波和下变频, 然后完成模数转换和数字中 频处理等后, 生成上行电信号, 并将该上行电信号传输给三个光收发器 50; 三个光收发器 50将收到的上行电信号转换为上行光载波信号。 三个光收发器 50具有不同的发射波长, 其中, 光收发器 51的发射波长等于光收发器 31的 接收波长, 发送数据只能被光收发器 31接收; 光收发器 52的发射波长等于 光收发器 32的接收波长, 发送数据只能被光收发器 32接收; 光收发器 53的 发射波长等于光收发器 33的接收波长, 发送数据只能被光收发器 33接收。 分光器 61和 62将三路上行光载波信号耦合到下行的同一根光纤上, 并将该 信号发送给光复用器 20;光复用器 20将收到的光载波信号进行分离后分别发 送给光收发器 31、 32和 33 , 光收发器 31、 32和 33分别将收到的光载波信号 转换为上行数据信号后, 发送给 BBU 10上的对应的 3个接口 11、 12和 13 , BBU 10将收到的上行数据信号进行解调和解码后, 传输给网关。
可见, 以上实施例对不同的 RRU的光信号釆用不同的波长进行传输, 相 应的, 让级联的 RRU的光收发器工作在不同的波长上。 再设置分光器, 将这 些级联的 RRU的光收发器均与分光器连接, 并通过分光器连接于同一个光纤 70。 如此, 该光纤上传输的多个 RRU的光信号便可以通过分光器传输到各个 RRU的光收发器, 而每个光收发器只接收自己工作波长对应的信号, 因此, 每个 RRU都可以正确接收自己的信号, 且在某个 RRU故障时, 不会影响其 它 RRU的工作。 例如, 在 RRU 41出现故障时, RRU42和 43的信号可以直 接通过分光器 61传递给 BBU 10, BBU 10的信号也可以通过分光器 61传输 给 RRU 42和 RRU 43 , 从而保证 RRU 42和 43能够正常工作。 在 RRU 41和 RRU 42都发生故障时, RRU 43可以通过分光器 62和 61将信号传递给 BBU 10, BBU 10的信号也可以通过分光器 61和 62传递给 RRU 43 , 解决了现有 分布式基站架构中,多个级联的 RRU中,某个 RRU发生故障时,后级的 RRU 都不能工作, 造成系统可靠性低的技术问题。
另外, 由于各个链路釆用不同的波长通信, 互相之间完全独立, 也解决 了多个 RRU级联时, 通信带宽叠加, 导致光收发器速率增加和同一链路上级 联的 RRU数量受限技术问题。
实施例四
基于同样的发明构思,本申请还提供一种无线通信系统 400。如图 4所示, 为本发明又一实施例提供的无线通信系统 400 的结构示意图。 该无线通信系 统 400与图 2中的无线通信系统 100的区别在于: RRU 40的数目、分光器 60 的数目、 光收发器 50的数目不同。在本实施方式中, RRU 40的数目为 M个, 其中, M大于 3; 相应的, M个光收发器 50分别与 M个 RRU连接, 且 BBU 10与 M个 RRU 40之间的 M个接口上设置有 M个光收发器 30。 分光器 60 为 1 :2分光器, 且数目为 M-1个, 其中, M个分光器 60之间釆用单芯光纤 70 级联。
其中, 第一个分光器 60的一个接口通过光纤 70与光复用器 20连接, 以 接收光复用器 20合并得到的多路光信号,另外两个接口分别连接第一个 RRU 40和第二个分光器 60;第 i个分光器 60的一个接口与第 i-1个分光器 60连接, 另外两个接口分别连接第 i个 RRU和第 i+1个分光器 60, 其中, 2 i M_2; 最后一个分光器 60, 即第 M-1个分光器 60的一个接口与第 M-2个分光器 60 连接, 另外两个接口分别连接第 N-1个 RRU 40和第 N个 RRU 40。
在具体实现方式中, BBU 10和光复用器 20可以放置于机房内,Μ个 RRU 40可以通过光纤拉远放置于室外站点。 第一个光收发器 30安装在 BBU 10与 第一个 RRU 40对应的接口 1上; 第 j个光收发器 30安装在 BBU 10与第 j个 RRU对应的的接口 j上, 其中 l<j<M; 第 M个光收发器 30安装在 BBU 10与 第 M个 RRU 40对应的的接口 M上。第一个光收发器 50安装在第一个 RRU 40 上, 第 j个光收发器安装在第 j 个 RRU 40上, l<j<M, 第 M个光收发器 50 安装在第 M个 RRU 40上。 且第一个分光器 60可以放置在第一个 RRU 40的 维护腔内, 第 i个分光器 60可以放置在第 i个 RRU 40的维护腔内, 其中, 2 < i < M-2 , 第 M-1个分光器 60可以放置在第 M-1个 RRU 40的维护腔内。 然 而, 本实施例不此为限, 也可以将分光器 60独立放置, 或以其它方式放置。
在下行方向上, BBU 10将下行基带数据进行调制和编码, 并将调制和编 码后的下行数据通过 M个光收发器 30 , M个光收发器 30将收到的下行数据 转换为不同波长的光载波信号, 并将所述光载波信号发送给光复用器 20; 光 复用器 20将来收到的光载波信号复合在一根光纤上, 并通过分光器 60发送 给 M个光收发器 50; M个光收发器 50根据波长选择接收发送给自己的数据。 M个光收发器 50分别将收到的信号转换为下行电信号后发送给 M个 RRU 40; M个 RRU 40分别将收到的信号经过射频滤波、 经线性功率放大器后通过发 送滤波传至天馈。
在上行方向上, M个 RRU 40将收到的移动终端上行信号进滤波、 低噪 声放大、 进一步的射频小信号放大滤波和下变频, 然后完成模数转换和数字 中频处理等后, 生成上行电信号, 并对应将该上行电信号传输给 M个光收发 器 50; M个光收发器 50分别将收到的上行电信号转换为上行光载波信号发送 给分光器 60。
M个光收发器 50具有不同的发射波长。 其中, 每个光收发器 50有一个 相匹配的光收发器 30, 即每个光收发器 50的发射波长等于一个光收发器 30 的接收波长,发送数据只能被该光收发器接收。分光器 60将 M路上行光载波 信号耦合到下行的同一根光纤上, 并将该信号发送给光复用器 20; 光复用器 20将收到的光载波信号进行分离后分别发送给 M个光收发器 30, M个光收 发器 30将收到的光载波信号转换为上行数据信号后,发送给 BBU 10上, BBU 10将收到的上行数据信号进行解调和解码后, 传输给网关。
可见, 以上实施例对不同的 RRU的光信号釆用不同的波长进行传输, 相 应的, 让级联的 RRU的光收发器工作在不同的波长上。 再设置分光器, 将这 些级联的 RRU的光收发器均与分光器连接,并通过分光器连接于同一个光纤。 如此,该光纤上传输的多个 RRU的光信号便可以通过分光器传输到各个 RRU 的光收发器, 而每个光收发器只接收自己工作波长对应的信号, 因此, 每个 RRU都可以正确接收自己的信号,且在某个 RRU故障时,不会影响其它 RRU 的工作。 例如, 在第一个 RRU出现故障时, 其它 RRU的信号可以直接通过 分光器 60传递给 BBU 10, BBU 10的信号也可以通过分光器 60传输给其它 RRU, 从而保证其它 RRU能够正常工作, 解决了现有分布式基站架构中, 多 个级联的 RRU中, 某个 RRU发生故障时, 后级的 RRU都不能工作, 造成系 统可靠性低的技术问题。
同时, 由于各个链路釆用不同的波长通信, 互相之间完全独立, 也解决 了多个 RRU级联时, 通信带宽叠加, 导致光收发器速率增加和同一链路上级 联的 RRU数量受限技术问题。
实施例五
基于同样的发明构思, 本申请还提供一种无线射频装置, 所述无线射频 装置包括:
M个 RRU, 所述 M为大于等于 2的整数;
M个光收发器, 分别与 M个 RRU连接, 所述 M个光收发器的工作波长 互不相同;
至少一个分光器, 将所述 M个光收发器连接于同一光纤。 即, 所述 M个 光收发器通过所述至少一个分光器连接于同一光纤。
优选地, 所述分光器为 1 : N的分光器, 所述 N为大于等于 2小于等于 M的整数。
优选地, 所述分光器为 1 :2的分光器, 所述分光器的数量为 M-l。
优选地,当所述 M大于 2时,所述 M-1个分光器之间釆用单芯光纤连接。 优选地, 所述光纤为单芯光纤。
优选地, 所述第一光收发器和所述第二光收发器中每个光收发器的工作 波长包括接收波长和发送波长。
可见, 在本实施例中, 对不同的 RRU的光信号釆用不同的波长进行传输 (包括从 RRU到 BBU的传输以及从 BBU到 RRU的传输), 相应的 , 让级联 的 RRU的光收发器工作在不同的波长上。 进而, 再设置分光器, 将这些级联 的 RRU的光收发器均与分光器连接,并通过分光器连接于同一个光纤。如此, 该光纤上传输的多个 RRU的光信号便可以通过分光器传输到各个 RRU的光 收发器, 而每个光收发器只接收自己工作波长对应的信号, 因此, 每个 RRU 都可以正确接收自己的信号, 且在某个 RRU故障时, 不会影响其它 RRU的 工作, 极大的提高了系统的可靠性。
此外,现有技术中,由于所有 RRU的数据都需要通过第一个 RRU的 CPRI 接口, 因此对 CPRI接口带宽的要求较高, 增加了成本; 而在 CPRI接口带宽 有限的情况下, 限制了级联 RRU的级数。 而且, CPRI接口带宽的增加提高 了对光收发器的速率要求, 进一步增加了成本。
而在釆用了以上方案之后, 每个 RRU各自接收自己信号, 无需转发其它 RRU的信号, 降低了对 CPRI接口带宽的要求, 降低了成本, 且不会导致级 联 RRU的级数受限。且每个 RRU也不再需要设置两个 CPRI接口, 因此进一 步降低了成本。 另外, 对于 CPRI接口带宽的要求的降低, 也进一步降低了对 光收发器的速率要求, 成本得到进一步的降低。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种无线射频装置, 其特征在于, 所述无线射频装置包括:
M个射频拉远单元, 所述 M为大于等于 2的整数;
M个光收发器, 分别与所述 M个射频拉远单元连接, 所述 M个光收发 器的工作波长互不相同;
至少一个分光器, 所述 M个光收发器通过所述至少一个分光器连接于同 一光纤。
2、 如权利要求 1所述的装置, 其特征在于, 所述分光器为 1 : N的分光 器, 所述 N为大于等于 2小于等于 M的整数。
3、 如权利要求 2所述的装置, 其特征在于, 所述分光器为 1 :2的分光器, 所述分光器的数量为 M-l。
4、 如权利要求 3所述的装置, 其特征在于, 当所述 M大于 2时, 所述 M-1个分光器之间釆用单芯光纤连接。
5、 如权利要求 1-4任一项权利要求所述的装置, 其特征在于, 所述光纤 为单芯光纤。
6、 如权利要求 1-5任一项权利要求所述的装置, 其特征在于, 所述第一 光收发器和所述第二光收发器中每个光收发器的工作波长包括接收波长和发 送波长。
7、 一种无线通信系统, 其特征在于, 所述无线通信系统包括:
基带处理单元;
光复用器;
M个第一光收发器, 设置于所述基带处理单元和所述光复用器之间, 其 中, 所述 M个第一光收发器的工作波长互不相同, 所述 M为大于等于 2的整 ; 和
无线射频装置, 所述无线射频装置包括:
M个射频拉远单元; M个第二光收发器, 分别与所述 M个射频拉远单元连接, 且分别与 所述 M个第一光收发器对应, 且对应的第一光收发器和第二光收发器的工作 波长匹配;
至少一个分光器,所述 M个第二光收发器通过所述至少一个分光器连 接于同一光纤, 且所述光纤连接所述光复用器和所述至少一个分光器中的一 个。
8、 如权利要求 7所述的无线通信系统, 其特征在于, 所述分光器为 1 : N的分光器, 所述 N为大于等于 2小于等于 M的整数。
9、 如权利要求 8所述的无线通信系统, 其特征在于, 所述分光器为 1 :2 的分光器, 且所述分光器的数量为 M-l。
10、 如权利要求 9所述的无线通信系统, 其特征在于, 当所述 M大于 2 时, 所述 M-1个分光器之间釆用单芯光纤连接。
11、如权利要求 7-10中任一权利要求所述的无线通信系统, 其特征在于, 所述光纤为单芯光纤。
12、如权利要求 7-11中任一权利要求所述的无线通信系统, 其特征在于, 所述第一光收发器和所述第二光收发器中每个光收发器的工作波长包括接收 波长和发送波长。
13、 如权利要求 12所述的系统, 其特征在于, 对应的第一光收发器和第 二光收发器的工作波长匹配, 包括:
对应的第一光收发器和第二光收发器中, 第一光收发器的发送波长与第 二光收发器的接收波长相同; 第一光收发器的接收波长与第二光收发器的发 送波长相同。
PCT/CN2014/076503 2014-04-29 2014-04-29 无线通信系统和无线射频装置 WO2015165046A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020167032719A KR102006964B1 (ko) 2014-04-29 2014-04-29 무선 통신 시스템 및 무선 라디오 주파수 장치
JP2016565453A JP6522659B2 (ja) 2014-04-29 2014-04-29 無線通信システムおよび無線ラジオ周波数装置
CN201811511084.XA CN109818675B (zh) 2014-04-29 2014-04-29 无线通信系统和无线射频装置
ES14890981.5T ES2690389T3 (es) 2014-04-29 2014-04-29 Sistema de comunicaciones inalámbricas y aparato de radiofrecuencia
EP14890981.5A EP3139525B1 (en) 2014-04-29 2014-04-29 Wireless communications system and radio frequency apparatus
EP18185234.4A EP3457595A1 (en) 2014-04-29 2014-04-29 Wireless communications system and wireless radio frequency apparatus
CN201480000671.6A CN104137454B (zh) 2014-04-29 2014-04-29 无线通信系统和无线射频装置
PCT/CN2014/076503 WO2015165046A1 (zh) 2014-04-29 2014-04-29 无线通信系统和无线射频装置
US15/338,557 US10270530B2 (en) 2014-04-29 2016-10-31 Wireless communications system and wireless radio frequency apparatus
US16/357,739 US10826610B2 (en) 2014-04-29 2019-03-19 Wireless communications system and wireless radio frequency apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076503 WO2015165046A1 (zh) 2014-04-29 2014-04-29 无线通信系统和无线射频装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/338,557 Continuation US10270530B2 (en) 2014-04-29 2016-10-31 Wireless communications system and wireless radio frequency apparatus

Publications (1)

Publication Number Publication Date
WO2015165046A1 true WO2015165046A1 (zh) 2015-11-05

Family

ID=51808350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076503 WO2015165046A1 (zh) 2014-04-29 2014-04-29 无线通信系统和无线射频装置

Country Status (7)

Country Link
US (2) US10270530B2 (zh)
EP (2) EP3457595A1 (zh)
JP (1) JP6522659B2 (zh)
KR (1) KR102006964B1 (zh)
CN (2) CN104137454B (zh)
ES (1) ES2690389T3 (zh)
WO (1) WO2015165046A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133932A1 (en) * 2017-01-18 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Node for a fronthaul network and monitoring of optical trasceivers in fronthaul networks
CN116929436A (zh) * 2023-09-13 2023-10-24 宁德时代新能源科技股份有限公司 测试系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522659B2 (ja) * 2014-04-29 2019-05-29 華為技術有限公司Huawei Technologies Co.,Ltd. 無線通信システムおよび無線ラジオ周波数装置
EP3332579B1 (en) * 2015-08-06 2019-10-09 Telefonaktiebolaget LM Ericsson (PUBL) Communications network control
US10637602B2 (en) * 2016-07-15 2020-04-28 Safe-Com Wireless Method, apparatus and system to amplify and transport analog signals
KR102054180B1 (ko) * 2016-11-29 2020-01-22 한국전자통신연구원 대용량의 데이터 트래픽을 지원하는 분산형 안테나 시스템을 위한 리모트 라디오 헤드 장치 및 호스트 장치
CN110611514B (zh) * 2019-09-20 2022-05-17 内蒙古信元网络安全技术股份有限公司 分布式接收机的信号解调系统、方法及计算机存储介质
CN113572525B (zh) * 2020-04-28 2022-11-04 华为技术有限公司 一种通信方法及系统
WO2023155077A1 (en) * 2022-02-16 2023-08-24 Huawei Technologies Co.,Ltd. Systems and methods for power saving in a transmit-and-receive point (trp)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166041A (zh) * 2006-10-18 2008-04-23 中兴通讯股份有限公司 无线通讯系统中的射频远端分布系统
CN101841748A (zh) * 2009-03-17 2010-09-22 中国移动通信集团公司 信号传输系统以及相关装置
CN102065343A (zh) * 2009-11-16 2011-05-18 华为技术有限公司 波长选择方法、装置及系统
CN202374404U (zh) * 2011-12-22 2012-08-08 深圳国人通信有限公司 多业务无源光网络系统
CN102710361A (zh) * 2012-06-01 2012-10-03 华为技术有限公司 一种分布式基站信号传输系统及通信系统
CN102984604A (zh) * 2011-09-02 2013-03-20 中兴通讯股份有限公司 数据交互系统及方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3568145B2 (ja) * 1998-05-25 2004-09-22 株式会社エヌ・ティ・ティ・ドコモ 光波長多重を用いる高周波の光ファイバ伝送システム
JP2003324393A (ja) 2002-02-26 2003-11-14 Matsushita Electric Ind Co Ltd 双方向光伝送システム並びにそれに用いられる親局及び子局
US7200342B2 (en) * 2002-06-06 2007-04-03 The Aerospace Corporation Direct-sequence spread-spectrum optical-frequency-shift-keying code-division-multiple-access communication system
JP2004363948A (ja) * 2003-06-04 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> 光ネットワークシステムおよび光送受信装置
US8958697B2 (en) * 2003-06-10 2015-02-17 Alexander I. Soto System and method for optical layer management in optical modules and remote control of optical modules
US8374508B2 (en) * 2003-06-12 2013-02-12 Alexander I Soto Augmenting passive optical networks
JP2005012447A (ja) * 2003-06-18 2005-01-13 Nippon Telegr & Teleph Corp <Ntt> 光送受信装置および光伝送システム
JP2005094263A (ja) * 2003-09-16 2005-04-07 Panasonic Mobile Communications Co Ltd 固定無線通信用光リモートシステムならびにそれに用いられるセンタ局装置、リモート局装置および通信方法
US7609971B1 (en) * 2004-12-06 2009-10-27 The United States Of America As Represented By The Secretary Of The Army Electro optical scanning multi-function antenna
JP4852260B2 (ja) * 2005-05-16 2012-01-11 三菱電機株式会社 1心双方向波長多重伝送システム
US7668463B2 (en) * 2006-03-03 2010-02-23 Alcatel-Lucent Usa Inc. Method and apparatus for generating and transmitting WDM MWOF signals
CA2657196C (en) * 2006-06-02 2013-10-08 Aurora Networks, Inc. Dwdm transport of catv and digital signals over optical fiber in low-dispersion spectral regions
CN101098206B (zh) * 2006-06-26 2012-05-02 华为技术有限公司 一种无源光网络系统及其光路处理方法
CN101232345A (zh) * 2008-01-04 2008-07-30 中兴通讯股份有限公司 一种射频单元与基站之间的信号传输方法及系统
CN101350662B (zh) * 2008-09-01 2010-06-23 成都优博创技术有限公司 基于波分复用(xWDM)射频拉远单元的级联组网方法
US8532489B2 (en) * 2009-03-04 2013-09-10 Futurewei Technologies, Inc. Multi-fiber ten gigabit passive optical network optical line terminal for optical distribution network coexistence with gigabit passive optical network
JP2010245987A (ja) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> 光/無線アクセスシステム
CN101995616B (zh) * 2009-08-19 2012-05-23 中国科学院半导体研究所 全硅基材料多通道光收发模块
CN102360106A (zh) * 2011-10-31 2012-02-22 索尔思光电(成都)有限公司 一种单纤双向收发模块及其封装
US9100121B2 (en) * 2011-06-30 2015-08-04 Electronics And Telecommunications Research Institute Link setup method for wavelength division multiplexing wavelength passive optical network(WDM PON) system
US9184842B2 (en) * 2011-10-06 2015-11-10 Telefonaktiebolaget L M Ericsson (Publ) Apparatus for communicating a plurality of antenna signals at different optical wavelengths
US9374187B2 (en) * 2012-03-12 2016-06-21 Advanced Rf Technologies, Inc. Distributed antenna system and method
JP5856310B2 (ja) * 2012-10-19 2016-02-09 日本電信電話株式会社 分散型無線通信基地局システム、信号処理装置、無線装置、及び分散型無線通信基地局システムの動作方法
JP6094666B2 (ja) * 2013-03-08 2017-03-15 富士通株式会社 光ネットワークシステムおよび光通信方法
US9225453B2 (en) * 2013-04-09 2015-12-29 Futurewei Technologies, Inc. Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
JP6522659B2 (ja) * 2014-04-29 2019-05-29 華為技術有限公司Huawei Technologies Co.,Ltd. 無線通信システムおよび無線ラジオ周波数装置
US9236949B1 (en) * 2014-06-24 2016-01-12 Applied Optoelectronics, Inc. Laser transceiver with improved bit error rate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166041A (zh) * 2006-10-18 2008-04-23 中兴通讯股份有限公司 无线通讯系统中的射频远端分布系统
CN101841748A (zh) * 2009-03-17 2010-09-22 中国移动通信集团公司 信号传输系统以及相关装置
CN102065343A (zh) * 2009-11-16 2011-05-18 华为技术有限公司 波长选择方法、装置及系统
CN102984604A (zh) * 2011-09-02 2013-03-20 中兴通讯股份有限公司 数据交互系统及方法
CN202374404U (zh) * 2011-12-22 2012-08-08 深圳国人通信有限公司 多业务无源光网络系统
CN102710361A (zh) * 2012-06-01 2012-10-03 华为技术有限公司 一种分布式基站信号传输系统及通信系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133932A1 (en) * 2017-01-18 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Node for a fronthaul network and monitoring of optical trasceivers in fronthaul networks
CN116929436A (zh) * 2023-09-13 2023-10-24 宁德时代新能源科技股份有限公司 测试系统及方法

Also Published As

Publication number Publication date
CN104137454B (zh) 2019-01-08
US20170047996A1 (en) 2017-02-16
JP2017517198A (ja) 2017-06-22
US20190215068A1 (en) 2019-07-11
CN104137454A (zh) 2014-11-05
KR102006964B1 (ko) 2019-08-02
US10826610B2 (en) 2020-11-03
CN109818675A (zh) 2019-05-28
EP3139525A1 (en) 2017-03-08
CN109818675B (zh) 2022-04-22
KR20160145808A (ko) 2016-12-20
JP6522659B2 (ja) 2019-05-29
EP3139525B1 (en) 2018-08-15
ES2690389T3 (es) 2018-11-20
EP3457595A1 (en) 2019-03-20
EP3139525A4 (en) 2017-05-03
US10270530B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2015165046A1 (zh) 无线通信系统和无线射频装置
US10292056B2 (en) Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
AU2017261802B2 (en) Redundancy in a public safety distributed antenna system
US7127176B2 (en) Optical transmission system of radio signal over optical fiber link
WO2018103469A1 (zh) 一种分布式无线信号覆盖系统
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
KR102144964B1 (ko) 디지털 맵핑 데이터 전송 방법
KR102189745B1 (ko) 광 중계 시스템의 리모트 장치
WO2015024453A1 (zh) 基于ftth网络的光纤和无线混合接入系统及混合接入方法
US9236941B2 (en) System for implementing a radio over fiber transmission in a passive optical network
US10972183B2 (en) N-input receiver: RFoG OBI mitigation with retransmission
EP3242450B1 (en) Method of summing forward digital signal in distributed antenna system
JP6899856B2 (ja) 無線通信システムおよび無線ラジオ周波数装置
KR20060119288A (ko) 수신 다이버시티 기능을 갖는 인빌딩 rf 분산형 중계기
US10454582B2 (en) Transponder for a radio-over-fibre transmission system allowing retransmission from the antenna management interface
KR101175002B1 (ko) 이동통신 중계기 및 이동통신 중계기용 리모트
KR20010004636A (ko) 광신호 재생 장치 및 그를 이용한 무선통신 기지국 시스템
KR20140059900A (ko) 엘리베이터 내 통화 및 데이터 서비스 시스템
KR20080067842A (ko) 기지국 확장장치
JP2011250066A (ja) 光通信システム及び局舎集約方法
KR20150060206A (ko) 조명 기능을 구비한 광중계 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014890981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014890981

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167032719

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201608037

Country of ref document: ID