WO2015163683A1 - 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템 - Google Patents

그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템 Download PDF

Info

Publication number
WO2015163683A1
WO2015163683A1 PCT/KR2015/004007 KR2015004007W WO2015163683A1 WO 2015163683 A1 WO2015163683 A1 WO 2015163683A1 KR 2015004007 W KR2015004007 W KR 2015004007W WO 2015163683 A1 WO2015163683 A1 WO 2015163683A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
fog
dissipation
mist
generated
Prior art date
Application number
PCT/KR2015/004007
Other languages
English (en)
French (fr)
Inventor
최준성
Original Assignee
솔루션테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔루션테크 주식회사 filed Critical 솔루션테크 주식회사
Publication of WO2015163683A1 publication Critical patent/WO2015163683A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H13/00Dispersing or preventing fog in general, e.g. on roads, on airfields

Definitions

  • the present invention relates to a remote control fog dissipation system having a mesh-type filter, and more particularly, to a remote control fog dissipation system having a mesh-type filter dissipating fog according to a determination result by determining whether a fog is generated. To provide.
  • fog is a condensation phenomenon occurs when the water vapor in the air is in contact with the cold water or the ground, such as the fog, the following conditions are required to make a large amount of very fine water droplets gather in the air. These conditions include a large amount of water vapor in the atmosphere, the air to be cooled below the dew point temperature, the presence of many condensation nuclei, which are hygroscopic particulates that promote the production of fine droplets in the atmosphere, and a source of steam around them. Things.
  • fog occurs.
  • Fog a natural phenomenon caused by sudden changes in temperature, can greatly deteriorate the clock and cause enormous disruption to safe operation.
  • the habitual fog area occurs in the highway section where the car runs, and the occurrence of fog is the most dangerous factor that obstructs the driver's vision on the road, and in fact, it causes huge obstacles to the safe operation due to the fog. High and likely to grow due to chain collisions.
  • the fog is classified into various types based on various factors such as the cause of occurrence, terrain, and features. Some of these fogs occur in certain areas and remain congested up to high altitudes on the ground, while others occur in other areas and run along the ground. Installing physical barriers along both sides prevents fog from entering the road and obstructing the driver's vision. In practice, however, the barrier is only able to physically block the fog and does not remove the fog. Eventually, the fog running along the ground rises and falls along the barrier wall and penetrates the road. Therefore, it is difficult to expect the barrier to block the fog and prevent various damages caused by the fog on the road. There was an expensive issue.
  • an object of the present invention is to install a predetermined interval in the area where the fog occurs in a regular interval to dissipate the fog, the remote control fog having a mesh-type filter
  • the purpose is to provide a dissipation system.
  • the remote control mist dissipation system having a mesh-type filter heats air through combustion of fuel to generate dry air, and generates condensation nuclei by combustion particles generated through combustion of the fuel.
  • a mist dissipation device unit for anionizing the coagulation tube via anion generated from tourmaline and spraying the dry air and anionized coagulation tube;
  • a failure presence sensor unit for measuring the temperature, humidity, wind speed, and vibration of the dry air and the anionized tuberculosis sprayed when the fog dissipation device is driven;
  • Fog visibility distance measuring unit for measuring the presence of fog; And determining whether the fog dissipation unit is broken through the failure presence sensor unit, and determining whether fog is generated through the fog correction distance measuring unit, according to a determination result of whether the fog dissipating device is broken and whether fog is generated.
  • a mist dissipation controller for controlling the mist dissipation unit.
  • the mist dissipation device unit heating air through the combustion of the fuel to generate dry air, the heating unit for generating condensation nuclei by the combustion particles generated through the combustion of the fuel; A coagulation tube anion generating unit generating anion through tourmaline and combining the generated anion with the coagulation tube to generate the anionized coagulation tube; And a blowing unit for injecting the dry air generated in the heating unit and the anionized coagulation nucleus.
  • the mist dissipation device unit is characterized in that it further comprises a dust collecting filter for filtering the dust material from the dry air generated in the heating unit.
  • the mist dissipation device portion is characterized in that it further comprises a filter of the net form having a heating wire to remove the moisture of the air in the air primarily and generates heat.
  • the mist dissipation device unit is characterized in that it further comprises a guide vane for controlling the injection speed and direction of the dry air and the anionized coagulum tuberculosis.
  • the fog dissipation control unit includes a data collection unit for collecting the temperature and humidity data and the wind speed and vibration data measured by the failure presence sensor; Compare the temperature and humidity data collected by the data collection unit with the normal temperature and humidity value for the hot air generated in the heating unit, and the normal wind speed value and vibration spraying each of the wind speed and vibration data collected by the data collection unit A data analysis unit for analyzing the amount and failure of the heating unit and the blower unit respectively; And a fog dissipation driving controller controlling the fog dissipation device according to an analysis result of the data analyzer.
  • the fog dissipation controller comprises: an image resolution comparison unit for comparing the image resolution of the visibility distance sign photographed by the fog visibility distance measurement unit with a preset image resolution; A fog generation determining unit determining whether fog is generated based on a comparison result of the image resolution comparing unit; And a dissipation driving controller for controlling the fog dissipation device according to a determination result of the fog generation determination unit.
  • the fog dissipation control unit receives the control command data from the remote management unit by wireless communication and transmits the failure status data by the fog dissipation driving control unit to the remote management unit and the image taken through the fog visibility distance measuring unit And a wireless communication unit for transmitting to the remote management unit.
  • the present invention has the effect that can be dissipated by being installed at regular intervals in the area where the fog occurs regularly.
  • the present invention determines whether the fog dissipation unit failure, the remote manager can quickly cope with the failure of the fog dissipation unit, the remote manager controls the spraying direction and injection speed of dry air and anionized tuberculosis So that the fog can be easily dissipated.
  • FIG. 1 is a perspective view of a remote control fog dissipation system having a mesh type filter according to an embodiment of the present invention
  • FIG. 2 is a view showing a mist dissipation device unit of a remote control mist dissipation system having a mesh-type filter according to an embodiment of the present invention.
  • FIG. 3 is a view illustrating a principle of measuring fog visibility distance of a remote control fog dissipation system having a mesh type filter according to an exemplary embodiment of the present invention.
  • FIG. 3 is a block diagram of a fog dissipation control unit of the remote control fog dissipation system having a mesh-type filter according to an embodiment of the present invention.
  • FIG. 4 is a view showing the principle of measuring the fog visibility distance of the remote control fog dissipation system having a mesh-type filter according to an embodiment of the present invention.
  • FIG. 5 is a view showing an embodiment of the present invention.
  • FIG. 6 is a view showing another embodiment of the present invention.
  • FIG. 1 is a perspective view of a remote control fog dissipation system having a mesh-type filter according to an embodiment of the present invention
  • Figure 2 is a remote control fog dissipation system having a mesh-type filter according to an embodiment of the present invention
  • 3 is a block diagram of the fog dissipation device of Figure 3 is a block diagram of the fog dissipation control unit of the remote control fog dissipation system having a mesh-type filter according to an embodiment of the present invention
  • Figure 4 is an embodiment of the present invention
  • FIG. 5 is a view illustrating a principle of measuring a fog visibility distance of a remote control fog dissipation system having a mesh type filter according to FIG. 5
  • FIG. 5 is a diagram illustrating an embodiment of the present invention
  • FIG. Drawing is
  • the remote control fog dissipation system having a mesh-type filter according to an embodiment of the present invention is installed at regular intervals in the area where the fog occurs at regular intervals automatically Dissipate the fog.
  • the remote control fog dissipation system having a mesh-type filter is the fog dissipation device unit 100, the support 200, the failure presence sensor unit 300, fog visibility distance measuring unit 400
  • the fog dissipation control unit 500 and the remote management unit 600 is included.
  • the mist dissipation device unit 100 is installed in a region where the fog is generated at regular intervals, and generates dry air by heating the air through fuel combustion of the heating unit 110 and by the combustion particles generated through combustion of the fuel. Generates clogged tuberculosis and anionizes clogged tuberculosis through anion generated from tourmaline, and removes moisture primarily through the filter 160 in the form of net air, which is sucked by the dry air and the ionized clogged tuberculosis And by blowing through the blower 120 to remove moisture to the air in the air including the fog.
  • the support 200 supports the plurality of fog dissipation units 100 to be installed on the road at a predetermined height so as not to interfere with the running of the vehicle and to fix the fog dissipation units 100.
  • the failure sensor 300 detects the failure of the fog dissipation device 100 through a temperature / humidity sensor 310, a wind speed sensor 320, and a vibration sensor 330. That is, each of the temperature and humidity sensor 310, the wind speed sensor 320, and the vibration sensor 330 of the failure presence sensor unit 300 is sprayed when the fog dissipation unit unit 100 is driven and the anionized tuberculosis nucleus. Measure the temperature, humidity, wind speed and vibration.
  • the fog visibility distance measuring unit 400 is installed on the plurality of supports 200 to detect the occurrence of fog, the LED indicator 410 is installed on one side of the support 200 is a certain distance away from the camera 420 Shoot through and measure the presence of fog.
  • the fog dissipation controller 500 detects the failure of the fog dissipation unit 100 by analyzing the temperature, humidity, wind speed, and vibration data of the failure presence sensor unit 300, and photographed by the fog visibility distance measuring unit 400.
  • the image of the LED indicator 410 is analyzed to determine whether fog is generated through the resolution of the photographed image of the LED indicator 410, and when the fog is generated, the fog dissipation device 100 is driven.
  • the remote management unit 600 controls the fog dissipation control unit 500 through wireless communication at a remote location, and the user controls the operation of the fog dissipation device 100 at a remote location according to the presence or absence of fog.
  • the fog dissipation device 100 is largely connected to the heating unit 110, the blowing unit 120, and the heating unit 110 and the blowing unit 120.
  • a housing 180 having a fuel tank 181 for protecting the connecting pipe 130, the heating unit 110, the blowing unit 120, and the connecting pipe 130.
  • the heating unit 110 is installed in a region where fog occurs in a habitual manner and generates dry air by heating air through combustion of fuel, and generates condensation nuclei due to combustion particles generated through combustion of fuel.
  • the blower 120 is connected to the heating unit 110 and the connection pipe 130 to receive the dry air generated from the heating unit 110 and the coagulation nucleus and to spray at a long distance with a strong wind pressure in the area where the fog occurs.
  • the connecting tube 130 connecting the heating unit 110 and the blowing unit 120 has a tuberculosis negative ion generating unit 140 including a tourmaline on one side thereof, and the tuberculosis negative ion generating unit 140 is the heating unit.
  • the coagulated tuberculosis produced at 110 is combined with the anion generated from the tourmaline to produce anionized coagulated tuberculosis.
  • the front end of the tuberculosis negative ion generating unit 140 is provided with a cylindrical dust collecting filter unit 150, the dust collecting filter unit 150 filters the dust material contained in the dry air generated by the heating unit 110. .
  • the blower 120 is provided at the rear end of the net-shaped filter unit 160, when the suction of air in the air driven by the blower 120, the net-shaped filter unit 160 is the air of the air Remove moisture primarily.
  • a heating wire is provided at the rear end of the mesh-type filter unit 160, and the heating wire prevents the mesh-type filter unit 160 from freezing in winter by the filtered moisture.
  • a guide vane 170 is formed at the front end of the blower 120, and the guide vane 170 controls the spraying speed and the spraying direction by adjusting the guide vane 170 when spraying the dry air and the anionized tuberculosis. do.
  • the mist dissipation method of the mist dissipation device unit 100 which dissipates the mist by injecting the dry air and the anionized condensation nuclei, is formed in the rear end of the blower 120, the filter unit of the mesh type having a heating wire 160 ) Is primarily filtered to remove moisture from the air in the atmosphere, including mist that is sucked for the injection of dry air and anionized tuberculosis.
  • mist dissipation device unit 100 sprays air in the atmosphere from which the moisture is first removed to the atmosphere together with the dry air generated in the heating unit 110 and the anionized coagulation nucleus.
  • the sprayed dry air and anionized coagulum are mixed with the mist particles in the atmosphere after being injected to ionize the mist particles by the anionized coagulum, and the anionized mist particles are combined with the anionized coagulum
  • the weight is increased, and by the increased weight, it is possible to spray to a long distance by the wind pressure of the blower 120, and settles by the weight of air in the process of spraying the long distance to dissipate the fog.
  • the small particles of mist can be evaporated by the sprayed dry air to dissipate the mist.
  • the fog dissipation control unit 500 illustrated in FIG. 3 controls the driving of the fog dissipation device unit 100, the data collector 510, the data analyzer 520, the image resolution comparator 530, And a fog generation determining unit 540, a fog dissipation driving control unit 550, and a wireless communication unit 560.
  • the data collection unit 510 collects temperature and humidity data, wind speed, and vibration data measured by the failure presence sensor unit 300.
  • the data analyzer 520 sprays the temperature and humidity data collected by the data collector 510, the normal temperature and humidity values of the hot air generated by the heating unit 110, and the blowing unit 120, respectively. Comparing and analyzing the normal wind speed value and the vibration amount to analyze the presence or absence of failure of the heating unit 110 and the blowing unit 120.
  • the image resolution comparison unit 530 may be configured to set the image resolution of the LED indicator 410 photographed by the camera 420 of the fog visibility distance measuring unit 400. ) To the image resolution.
  • the fog generation determination unit 540 determines whether fog is generated at a predetermined time interval through the image resolution of the LED indicator 410 compared through the image resolution comparison unit 530.
  • the fog dissipation driving control unit 550 determines whether the fog is generated at a predetermined time interval by the fog generation determining unit 540 and drives the fog dissipation unit 100 to generate dry air and anion. Control the driving of the mist dissipation unit 100 to dissipate the mist automatically by spraying the coagulation tube, and the heating unit 110 and the driving unit when the fog dissipation unit 100 is driven through the analysis of the data analysis unit 520
  • the blower 110 is controlled to transmit the failure of the blower 110 to a remote location, and controls the spraying direction and the spraying speed of the dry air and anionized coagulated tuberculosis sprayed through the guide vane 170.
  • the wireless communication unit 560 receives the driving or control command data via wireless communication so that the manager of the remote management unit 600 can drive or control the fog dissipation unit 100 by the fog dissipation driving controller 550.
  • the failure data is transmitted to the remote site, and the image taken by the camera is transmitted to the remote site.
  • the wireless communication unit 560 receives a command from the remote management unit 600, and transmits the failure image of the fog dissipation unit 100 and the captured image measured through the camera 420 to the remote management unit 600.
  • the wireless communication unit 560 may transmit and receive data using CDMA, WiFi, LTE, WLAN, Internet, etc. according to the environment of the installation place.
  • the fog visibility distance measuring unit 400 includes an LED indicator 410 and a camera 420.
  • the camera 420 is installed on the support 200, the support 200 of the fog dissipation device 100 is installed at a predetermined distance from the LED indicator 410 that emits light through the LED or installed at regular intervals. It is installed in the) to shoot the LED indicator 410 at a predetermined time interval.
  • the image resolution comparison unit 530 of the fog dissipation controller 500 may determine whether fog is generated by analyzing the photographed image data.
  • the fog visibility distance measuring unit 400 may be photographed at predetermined time intervals and may be driven with small power.
  • FIG. 5 and 6 are views illustrating an embodiment of the present invention.
  • the fog dissipation device unit 100 when the fog dissipation device unit 100 is applied to a road, the driving of the vehicle at regular intervals occurs in an area where fog occurs at regular intervals. It is installed on the road through the support 200 to a certain height so as not to be disturbed.
  • the camera 420 of the fog visibility distance measuring unit 400 installed on one side of the support 200 photographs the LED indicator 410, and analyzes the photographed image in the fog dissipation controller 500 to determine whether fog occurs. Judge. In this case, when it is determined that the fog has occurred, the fog dissipation device 100 is driven by the control of the fog dissipation controller 500 to dissipate the fog.
  • the heating unit 110 and the blower unit 120 is driven, dry air and coagulation nuclei are generated by the heating unit 110, and coagulation nuclei generated by the heating unit 110
  • the anion is anionized through the clot tube negative ion generating unit 140 formed in the connecting tube 130 connecting the heating unit 110 and the blowing unit 120.
  • the anionized coagulum tube is injected with a strong wind pressure of the blowing unit 120 together with the dry air.
  • the injected anionized coagulation nucleus is combined with mist particles to anionize the mist particles, and the anionized haze particles are sprayed at a long distance due to the increased weight by binding with the coagulation tube. It is settled by weight to dissipate the fog, and the small particles of mist particles can be evaporated by dry air to dissipate the fog.
  • the mesh filter unit 160 may maximize the mist dissipation effect by first removing the moisture of the air in the air including the mist sucked for the injection of dry air and coagulation tuberculosis.
  • FIG. 6 is a view showing another embodiment of the present invention applied to a racetrack and the driving method is the same as that applied to the road.
  • the present embodiment has the effect of dissipating the fog is installed at a predetermined interval in the area where the fog occurs in a habitual manner.
  • the present embodiment may determine whether the fog dissipation unit failure or not, the remote manager can quickly cope with the failure of the fog dissipation unit, the remote manager to determine the injection direction and the spraying speed of dry air and anionized tuberculosis Controllable to easily dissipate fog.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 연료의 연소를 통해 공기를 가열하여 건조공기를 생성하고, 상기 연료의 연소를 통해 발생하는 연소입자에 의해 응결핵을 생성한 후 상기 응결핵을 전기석에서 발생하는 음이온을 통해 음이온화하여 상기 건조공기 및 음이온화된 응결핵을 분사하는 안개 소산 장치부; 상기 안개 소산 장치의 구동 시 분사되는 상기 건조공기 및 상기 음이온화된 응결핵의 온습도, 풍속 및 진동을 측정하는 고장유무 센서부; 안개 발생 유무를 측정하는 안개 시정거리 측정부; 및 상기 고장유무 센서부를 통해 상기 안개 소산 장치부의 고장 여부를 판단하고, 상기 안개 시정거리 측정부를 통해 안개의 발생 유무를 판단하여 상기 안개 소산 장치의 고장 여부 및 안개 발생 유무에 대한 판단 결과에 따라 상기 안개 소산 장치부를 제어하는 안개 소산 제어부를 포함하는 것을 특징으로 한다.

Description

그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템
본 발명은 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템에 관한 것으로써, 더욱 상세하게는 안개 발생 여부를 판단하여 판단 결과에 따라 안개를 소산시키는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템을 제공하는 것이다.
일반적으로 안개는 대기중의 수증기가 차가운 수면이나 지면과 맞닿아 응결현상이 일어나는 것으로 상기 안개와 같이 대기중의 수중기가 모여서 매우 미세한 물방울을 다량으로 만들기 위해서는 다음과 같은 조건이 필요하다. 이러한 조건에는 대기 중에 수증기가 다량으로 함유되어 있을 것, 공기가 이슬점 온도 이하로 냉각될 것, 대기 중에 미세한 물방울의 생성을 촉진시키는 흡습성의 미립자인 응결핵이 많이 떠 있을 것, 주변에 수증기 공급원이 있을 것 등이 있다.
상기와 같은 조건에 공기의 냉각이 일어나면 안개가 발생하게 되며, 안개가 발생하는 지역에서는 도로의 자동차 운행, 항구의 배 입출항, 비행기의 이착륙에 있어서 운전자, 선장, 조종사가 양호한 시계를 확보하는 것이 매우 중요하다. 온도의 급격한 변화로 발생되는 자연현상인 안개는 시계를 크게 악화시켜 안전운행에 막대한 지장을 초래하게 된다.
즉, 짙은 안개속에서 항공기의 조종사는 충분한 가시거리를 확보할 수 없게 되기 때문에 비행기의 이착륙이 불가능하게 되며, 특히 착륙하는 비행기의 경우 활주로에 짙은 안개가 발생되면 다른 지역의 공항으로 회항하게 되므로 승객들에게 불편을 줄 뿐만 아니라 항공사의 경우에는 막대한 손실을 갖게 되는 문제점이 있었다.
또한 자동차가 주행하는 고속도로 구간 중에서도 상습안개지역이 발생되고 있으며, 안개의 발생은 도로상의 운전자 시야를 방해하는 가장 위험한 요인이 되어 실제로 안개 발생으로 안전운행에 막대한 지장을 초래해 이로 인한 사고 발생 빈도가 높고 연쇄 추돌사고로 커질 가능성이 있다.
따라서, 이에 대한 대책으로 자동차의 전방에 안개등을 장착하거나 비상등을 점멸하여 전방시계를 좀더 양호하게 하는 방법이 있었으나 상기와 같은 방법도 차량의 운행 속도가 매우 떨어지므로 원활한 교통 흐름에 방해가 되고 교통 정체 요인으로 작용하므로 경제적 손실 요인이 되며, 안개가 원천적으로 제거되는 것이 아니므로 상습 안개 지역에서는 매년 동일한 사고가 반복되어 많은 인명피해가 발생되는 문제점이 있었다.
상기와 같은 안개는 발생 원인이나 지형, 지물 등의 여러 요인에 의거하여 다양한 종류로 구분된다. 이러한 안개 중에서 일정 지역에서 발생하여 지면에서 높은 고도까지 정체 상태로 존재하는 안개도 있지만, 다른 지역에서 발생하여 지면을 따라서 진행하는 안개도 있으며, 후자의 경우 안개가 지면을 따라서 진행하는 경우 도로 경계부의 양측을 따라서 물리적인 차단벽을 설치하면 도로에 안개가 침투하여 운전자의 시계를 방해하는 것을 어느 정도 방지할 수 있다. 그렇지만, 실제로는 차단벽이 안개를 물리적으로 차단할 수 있을 뿐이며, 안개를 제거하지는 못한다는 특성을 지니고 있다. 결국 지면을 따라서 진행하는 안개가 차단벽을 따라서 상승 및 하강하여 도로에 침투하기 때문에, 차단벽이 안개를 차단하여 도로 상에서 안개에 따른 각종 피해를 방지하는 것을 기대하기 어렵고 차단벽을 설치하는 비용도 고가인 문제점이 있었다.
본 발명의 배경기술은 대한민국 공개특허공보 제2014-0028843호(2014.03.10)의 '무인 비행선을 이용한 활주로의 안개 저감 시스템 및 이를 이용한 안개 저감 방법'에 개시되어 있다.
본 발명은 전술한 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 안개가 상습적으로 발생하는 지역에 일정간격으로 설치하여 안개를 소산할 수 있도록 한, 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템을 제공하는데 그 목적이 있다.
본 발명의 일측면에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템은 연료의 연소를 통해 공기를 가열하여 건조공기를 생성하고, 상기 연료의 연소를 통해 발생하는 연소입자에 의해 응결핵을 생성한 후 상기 응결핵을 전기석에서 발생하는 음이온을 통해 음이온화하여 상기 건조공기 및 음이온화된 응결핵을 분사하는 안개 소산 장치부; 상기 안개 소산 장치의 구동 시 분사되는 상기 건조공기 및 상기 음이온화된 응결핵의 온습도, 풍속 및 진동을 측정하는 고장유무 센서부; 안개 발생 유무를 측정하는 안개 시정거리 측정부; 및 상기 고장유무 센서부를 통해 상기 안개 소산 장치부의 고장 여부를 판단하고, 상기 안개 시정거리 측정부를 통해 안개의 발생 유무를 판단하여 상기 안개 소산 장치의 고장 여부 및 안개 발생 유무에 대한 판단 결과에 따라 상기 안개 소산 장치부를 제어하는 안개 소산 제어부를 포함하는 것을 특징으로 한다.
본 발명에서, 상기 안개 소산 장치부는 상기 연료의 연소를 통해 공기를 가열하여 건조공기를 생성하고, 연료의 연소를 통해 발생하는 연소입자에 의한 응결핵을 생성하는 히팅부; 전기석을 통해 음이온을 생성하고 생성된 음이온과 상기 응결핵을 결합하여 상기 음이온화된 응결핵을 생성하는 응결핵 음이온 생성부; 및 상기 히팅부에서 생성된 건조공기 및 상기 음이온화된 응결핵을 분사하는 송풍부를 포함하는 것을 특징으로 한다.
본 발명에서, 상기 안개 소산 장치부는 상기 히팅부에서 발생하는 건조공기에서 나오는 분진물질을 필터링하는 집진 필터부를 더 포함하는 것을 특징으로 한다.
본 발명에서, 상기 안개 소산 장치부는 대기중의 공기의 습기를 1차적으로 제거하고 열을 발생하는 열선을 구비하는 그물망 형태의 필터부를 더 포함하는 것을 특징으로 한다.
본 발명에서, 상기 안개 소산 장치부는 상기 건조공기 및 상기 음이온화된 응결핵의 분사 속도와 방향을 조절하는 가이드 베인을 더 포함하는 것을 특징으로 한다.
본 발명에서, 상기 안개 소산 제어부는 상기 고장 유무 센서부에서 측정한 온습도 데이터와 풍속 및 진동 데이터를 수집하는 데이터 수집부; 상기 데이터 수집부에서 수집한 온습도 데이터를 상기 히팅부에서 발생하는 열풍에 대한 정상적인 온습도 수치와 비교하고, 상기 데이터 수집부에서 수집한 풍속 및 진동 데이터 각각을 상기 송풍부에서 분사하는 정상적인 풍속 수치 및 진동량과 각각 비교 분석하여 상기 히팅부와 송풍부의 고장 유무를 분석하는 데이터 분석부; 및 상기 데이터 분석부의 분석 결과에 따라 상기 안개 소산 장치를 제어하는 안개 소산 구동 제어부를 포함하는 것을 특징으로 한다.
본 발명에서, 상기 안개 소산 제어부는 상기 안개 시정거리 측정부에서 촬영한 시정거리 표지판의 이미지 해상도와 기 설정된 이미지 해상도를 비교하는 이미지 해상도 비교부; 상기 이미지 해상도 비교부의 비교 결과를 통해 안개의 발생 유무를 판단하는 안개 발생 판단부; 및 상기 안개 발생 판단부의 판단 결과에 따라 상기 안개 소산 장치를 제어하는 소산 구동 제어부를 포함하는 것을 특징으로 한다.
본 발명에서, 상기 안개 소산 제어부는 원격지 관리부로부터 제어 명령 데이터를 무선통신으로 전송받고 상기 안개 소산 구동 제어부에 의해 고장 유무 데이터를 상기 원격지 관리부로 전송하며 상기 안개 시정거리 측정부를 통해 촬영한 영상을 상기 원격지 관리부에 전송하는 무선 통신부를 포함하는 것을 특징으로 한다.
본 발명은 안개가 상습적으로 발생하는 지역에 일정간격으로 설치되어 안개를 소산할 수 있는 효과가 있다.
또한, 본 발명은 안개 소산 장치부의 고장 유무를 판단하고, 원격지 관리자가 안개 소산 장치부의 고장 시 신속하게 대처를 할 수 있으며, 원격지 관리자가 건조공기와 음이온화된 응결핵의 분사 방향 및 분사속도를 제어하여 손쉽게 안개를 소산시킬 수 있도록 한다.
도1은 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 사시도이다
도2는 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 안개 소산 장치부를 나타내는 도면이다.
도3은 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 안개 시정거리 측정 원리를 나타낸 도면이다.
도3은 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 안개 소산 제어부의 구성도이다.
도4는 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 안개 시정거리 측정 원리를 나타낸 도면이다.
도5는 본 발명의 일 실시예를 나타낸 도면이다.
도6은 본 발명의 다른 실시예를 나타낸 도면이다.
이하에서는 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템을 첨부된 도면들을 참조하여 상세하게 설명한다. 이러한 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 이용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야할 것이다.
도1은 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 사시도이고, 도2는 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 안개 소산 장치부를 나타내는 도면이며, 도3은 본 발명예의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 안개 소산 제어부의 구성도이고, 도4는 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템의 안개 시정거리 측정 원리를 나타낸 도면이며, 도5는 본 발명의 일 실시예를 나타낸 도면이고, 도6은 본 발명의 다른 실시예를 나타낸 도면이다.
상기 도1 내지 도4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템은 안개가 상습적으로 발생하는 지역에 일정간격으로 설치하여 안개 발생 시 자동으로 안개를 소산시킨다.
본 발명의 일 실시예에 따른 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템은 안개 소산 장치부(100), 지지대(200), 고장 유무 센서부(300), 안개 시정거리 측정부(400), 안개 소산 제어부(500) 및 원격지 관리부(600)를 포함한다.
안개 소산 장치부(100)는 상기 안개가 상습적으로 발생하는 지역에 설치되어 히팅부(110)의 연료 연소를 통해 공기를 가열하여 건조공기를 생성하고 상기 연료의 연소를 통해 발생하는 연소입자에 의해 응결핵을 생성하여 전기석에서 발생하는 음이온을 통해 응결핵을 음이온화하며, 상기 건조공기 및 음이온화된 응결핵의 분사 시 흡입되는 대기중의 공기를 그물망 형태의 필터(160)를 통해 1차적으로 습기를 제거하고 송풍부(120)를 통해 분사시켜 안개를 포함한 대기중의 공기에 대한 습기를 제거한다.
지지대(200)는 상기 다수의 안개 소산 장치부(100)를 지지하여 차량의 주행에 방해되지 않도록 일정 높이로 도로에 설치하고 안개 소산 장치부(100)를 고정한다.
고장 유무 센서부(300)는 상기 안개 소산 장치부(100)의 고장 유무를 온습도 센서(310)와 풍속센서(320)와 진동센서(330)를 통해 감지한다. 즉, 고장 유무 센서부(300)의 온습도 센서(310)와 풍속센서(320)와 진동센서(330) 각각은 안개 소산 장치부(100)의 구동 시 분사되는 상기 건조공기 및 상기 음이온화된 응결핵의 온습도, 풍속 및 진동을 각각 측정한다.
안개 시정거리 측정부(400)는 상기 다수의 지지대(200)에 설치하여 안개의 발생 유무를 감지하기 위해 일정거리 떨어진 지지대(200)의 일측에 설치되는 LED 표지부(410)를 카메라(420)를 통해 촬영하여 안개 발생 유무를 측정한다.
안개 소산 제어부(500)는 상기 고장 유무 센서부(300)의 온습도, 풍속, 진동 데이터를 분석하여 안개 소산 장치부(100)의 고장 유무를 감지하고 상기 안개 시정거리 측정부(400)에서 촬영한 LED 표지부(410)의 이미지를 분석하여 상기 LED 표지부(410)의 촬영 이미지 해상도를 통해 안개의 발생 유무를 판단하고 안개가 발생하였을 경우 안개 소산 장치부(100)를 구동하도록 제어한다.
원격지 관리부(600)는 상기 안개 소산 제어부(500)를 원격지에서 무선통신을 통해 제어하여 안개 발생 유무에 따라 원격지에서 안개 소산 장치부(100)의 구동을 사용자가 무선통신을 통해 제어한다.
더욱 상세히 설명하면, 상기 안개 소산 장치부(100)는 도2에 도시된 바와 같이 크게 히팅부(110)와, 송풍부(120)와, 상기 히팅부(110)와 송풍부(120)를 연결하는 연결관(130)과, 상기 히팅부(110)와 송풍부(120)와 연결관(130)을 보호하는 연료탱크(181)를 구비한 하우징(180)을 포함한다.
상기 히팅부(110)는 안개가 상습적으로 발생하는 지역에 설치되고 연료의 연소를 통해 공기를 가열하여 건조공기를 생성하고, 연료의 연소를 통해 발생하는 연소입자에 의한 응결핵을 생성한다.
상기 송풍부(120)는 히팅부(110)와 연결관(130)으로 연결되어 히팅부(110)에서 생성된 건조공기와 응결핵을 전달받아 안개가 발생하는 지역에 강력한 풍압으로 원거리에 분사한다.
상기 히팅부(110)와 송풍부(120)를 연결하는 연결관(130)은 내부 일측에 전기석을 포함하는 응결핵 음이온 생성부(140)를 구미하며, 응결핵 음이온 생성부(140)는 상기 히팅부(110)에서 생성된 응결핵을 전기석에서 생성된 음이온과 결합시켜 음이온화된 응결핵을 생성한다.
상기 응결핵 음이온 생성부(140)의 전단에는 원통형 모양의 집진 필터부(150)가 구비되며, 집진 필터부(150)는 상기 히팅부(110)에서 생성된 건조공기에 포함된 분진물질을 필터링한다.
상기 송풍부(120)는 후단에 그물망 형태의 필터부(160)가 구비되며, 송풍부(120)의 구동으로 대기중의 공기를 흡입할 경우 그물망 형태의 필터부(160)는 대기중 공기의 습기를 1차적으로 제거한다. 상기 그물망 형태의 필터부(160) 후단에는 열선이 구비되며, 열선은 상기 필터링된 습기에 의해 그물망 형태의 필터부(160)가 겨울철에 얼지 않도록 한다.
상기 송풍부(120)의 전단에는 가이드 베인(170)이 형성되며, 가이드 베인(170)은 상기 건조공기와 음이온화된 응결핵의 분사 시 가이드 베인(170)의 조절로 분사 속도 및 분사 방향을 조절한다.
상기 건조공기와 음이온화된 응결핵을 분사하여 안개를 소산하는 안개 소산 장치부(100)의 안개 소산 방법은, 상기 송풍부(120)의 후단에 형성되어 열선을 구비한 그물망 형태의 필터부(160)를 통해 건조공기 및 음이온화된 응결핵의 분사를 위해 흡입되는 안개를 포함하는 대기중의 공기의 습기를 일차적으로 필터링하여 제거한다.
이어 안개 소산 장치부(100)는 상기 습기가 일차적으로 제거된 대기중의 공기를 히팅부(110)에서 생성된 건조공기와 음이온화된 응결핵과 함께 대기중으로 분사한다.
상기 분사된 건조공기와 음이온화된 응결핵은 분사된 후 대기중의 안개 입자와 혼화되어 상기 음이온화된 응결핵에 의해 안개 입자를 음이온화시키고, 상기 음이온화된 안개입자는 음이온화된 응결핵과 결합하여 무게가 증가하게 되고 증가된 무게에 의해 송풍부(120)의 풍압으로 원거리까지 분사할 수 있게 되고, 상기 원거리로 분사되는 과정에서 공기 중의 무게에 의해 침강하여 안개를 소산할 수 있다. 또한 작은 입자의 안개입자는 분사된 건조공기에 의해 증발하여 안개를 소산할 수 있다.
상기 도3에 도시된 안개 소산 제어부(500)는 상기 안개 소산 장치부(100)의 구동을 제어하는 것으로서, 데이터 수집부(510), 데이터 분석부(520), 이미지 해상도 비교부(530), 안개 발생 판단부(540), 안개 소산 구동 제어부(550) 및 무선 통신부(560)를 포함한다.
데이터 수집부(510)는 상기 고장 유무 센서부(300)에서 측정한 온습도 데이터와 풍속 및 진동 데이터를 수집한다.
데이터 분석부(520)는 상기 데이터 수집부(510)에서 수집한 온습도 데이터와 풍속 및 진동 데이터 각각을 상기 히팅부(110)에서 발생하는 열풍에 대한 정상적인 온습도 수치와 상기 송풍부(120)에서 분사하는 정상적인 풍속 수치 및 진동량과 각각 비교 분석하여 상기 히팅부(110)와 송풍부(120)의 고장 유무를 분석한다.
이미지 해상도 비교부(530)는 상기 안개 시정거리 측정부(400)의 카메라(420)에서 촬영한 LED 표지부(410)의 이미지 해상도를 기 설정해 놓은 안개가 발생하지 않는 날의 LED 표지부(410)의 이미지 해상도와 비교한다.
안개 발생 판단부(540)는 상기 이미지 해상도 비교부(530)를 통해 비교한 LED 표지부(410)의 이미지 해상도를 통해 안개의 발생 유무를 일정 시간간격으로 판단한다.
안개 소산 구동 제어부(550)는 상기 안개 발생 판단부(540)에서 안개 발생 유무를 일정 시간간격으로 판단하여 상기 안개가 발생하였다고 판단하면 안개 소산 장치부(100)를 구동시켜 건조공기와 음이온화된 응결핵을 분사하여 안개를 자동적으로 소산하도록 안개 소산 장치부(100)의 구동을 제어하고, 상기 데이터 분석부(520)의 분석을 통해 안개 소산 장치부(100)의 구동 시 히팅부(110)와 송풍부(110)의 고장 유무를 원격지에 전송하도록 제어하며 가이드 베인(170)을 통해 분사되는 건조공기 및 음이온화된 응결핵의 분사 방향 및 분사 속도를 제어한다.
무선 통신부(560)는 상기 안개 소산 장치부(100)를 원격지 관리부(600)의 관리자가 구동 또는 제어할 수 있도록 구동 또는 제어 명령 데이터를 무선통신으로 전송받고 상기 안개 소산 구동 제어부(550)에 의해 고장 유무 데이터를 원격지에 전송하며 상기 카메라를 통해 촬영한 영상을 원격지에 전송한다.
이때 상기 무선 통신부(560)는 원격지 관리부(600)로부터 명령을 전송받고, 상기 안개 소산 장치부(100)의 고장 유무와 카메라(420)를 통해 측정한 촬영 영상을 원격지 관리부(600)로 전송한다. 무선 통신부(560)는 설치장소의 환경에 따라 CDMA, WiFi, LTE, 무선 랜, 인터넷 등을 이용하여 데이터를 전송 및 수신할 수 있다.
상기 안개 시정거리 측정부(400)는 도4에 도시된 바와 같이, LED 표지부(410) 및 카메라(420)를 포함한다.
카메라(420)는 지지대(200)에 설치되며, LED를 통해 빛을 발광하는 LED 표지부(410)와 일정거리 떨어진 위치에 설치되거나 또는 일정 간격으로 설치된 안개 소산 장치부(100)의 지지대(200)에 설치되어 일정 시간 간격으로 LED 표지부(410)를 촬영한다. 안개 소산 제어부(500)의 이미지 해상도 비교부(530)는 상기 촬영된 이미지 데이터를 분석하여 안개의 발생 유무를 판단할 수 있다. 상기 안개 시정거리 측정부(400)는 일정 시간 간격으로 촬영하여 작은 전력으로도 구동할 수 있다.
상기 도5와 도6은 본 발명의 일 실시예를 나타낸 도면으로, 도5를 참조하면 안개 소산 장치부(100)가 도로에 적용 시 안개가 상습적으로 발생하는 지역에 일정 간격으로 차량의 주행에 방해되지 않도록 일정 높이로 지지대(200)를 통해 도로에 설치된다.
상기 지지대(200)에 일측에 설치된 안개 시정거리 측정부(400)의 카메라(420)는 LED 표지부(410)를 촬영하며, 상기 촬영된 영상을 안개 소산 제어부(500)에서 분석하여 안개 발생 여부를 판단한다. 이때 안개가 발생하였다고 판단하면 안개 소산 제어부(500)의 제어에 의해 안개 소산 장치부(100)를 구동하여 안개를 소산한다.
안개 소산 제어부(500)의 제어에 따라 히팅부(110)와 송풍부(120)가 구동되고 상기 히팅부(110)에 의해 건조공기와 응결핵이 생성되고, 상기 히팅부(110)에서 생성된 응결핵은 히팅부(110)와 송풍부(120)를 연결하는 연결관(130)에 형성된 응결핵 음이온 생성부(140)를 통해 음이온화된다.
상기 음이온화된 응결핵은 건조공기와 함께 송풍부(120)의 강력한 풍압으로 분사된다. 상기 분사된 음이온화된 응결핵은 안개입자와 결합하여 상기 안개입자를 음이온화하거, 음이온화된 안개입자는 응결핵과의 결합에 의해 증가된 무게로 인해 원거리로 분사되는데, 분사되는 과정에서 공기중의 무게에 의해 침강하여 안개를 소산하며, 작은입자의 안개입자는 건조공기에 의해 증발하여 안개를 소산할 수 있다. 또한, 그물망 형태의 필터부(160)는 건조공기와 응결핵의 분사를 위해 흡입되는 안개를 포함하는 대기중의 공기의 습기를 일차적으로 제거함으로써 안개 소산 효과를 극대화할 수 있다.
도6은 본 발명의 따른 또 다른 실시예를 나타낸 것으로 경마장에 적용된 도면이며 구동방법은 도로에 적용되는 방법과 동일하다.
이와 같이 본 실시예는 안개가 상습적으로 발생하는 지역에 일정간격으로 설치되어 안개를 소산할 수 있는 효과가 있다.
또한, 본 실시예는 안개 소산 장치부의 고장 유무를 판단하고, 원격지 관리자가 안개 소산 장치부의 고장 시 신속하게 대처를 할 수 있으며, 원격지 관리자가 건조공기와 음이온화된 응결핵의 분사 방향 및 분사속도를 제어하여 손쉽게 안개를 소산시킬 수 있도록 한다.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의하여 정해져야할 것이다.

Claims (8)

  1. 연료의 연소를 통해 공기를 가열하여 건조공기를 생성하고, 상기 연료의 연소를 통해 발생하는 연소입자에 의해 응결핵을 생성한 후 상기 응결핵을 전기석에서 발생하는 음이온을 통해 음이온화하여 상기 건조공기 및 음이온화된 응결핵을 분사하는 안개 소산 장치부;
    상기 안개 소산 장치부의 구동 시 분사되는 상기 건조공기 및 상기 음이온화된 응결핵의 온습도, 풍속 및 진동을 측정하는 고장유무 센서부;
    안개 발생 유무를 측정하는 안개 시정거리 측정부; 및
    상기 고장유무 센서부를 통해 상기 안개 소산 장치부의 고장 여부를 판단하고, 상기 안개 시정거리 측정부를 통해 안개의 발생 유무를 판단하여 상기 안개 소산 장치부의 고장 여부 및 안개 발생 유무에 대한 판단 결과에 따라 상기 안개 소산 장치부를 제어하는 안개 소산 제어부를 포함하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
  2. 제 1 항에 있어서, 상기 안개 소산 장치부는
    상기 연료의 연소를 통해 공기를 가열하여 건조공기를 생성하고, 연료의 연소를 통해 발생하는 연소입자에 의한 응결핵을 생성하는 히팅부;
    전기석을 통해 음이온을 생성하고 생성된 음이온과 상기 응결핵을 결합하여 상기 음이온화된 응결핵을 생성하는 응결핵 음이온 생성부; 및
    상기 히팅부에서 생성된 건조공기 및 상기 음이온화된 응결핵을 분사하는 송풍부를 포함하는 것을 특징으로 하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
  3. 제 2 항에 있어서, 상기 안개 소산 장치부는
    상기 히팅부에서 발생하는 건조공기에서 나오는 분진물질을 필터링하는 집진 필터부를 더 포함하는 것을 특징으로 하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
  4. 제 2 항에 있어서, 상기 안개 소산 장치부는
    대기중의 공기의 습기를 1차적으로 제거하고 열을 발생하는 열선을 구비하는 그물망 형태의 필터부를 더 포함하는 것을 특징으로 하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
  5. 제 2 항에 있어서, 상기 안개 소산 장치부는
    상기 건조공기 및 상기 음이온화된 응결핵의 분사 속도와 방향을 조절하는 가이드 베인을 더 포함하는 것을 특징으로 하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
  6. 제 2 항에 있어서, 상기 안개 소산 제어부는
    상기 고장 유무 센서부에서 측정한 온습도 데이터와 풍속 및 진동 데이터를 수집하는 데이터 수집부;
    상기 데이터 수집부에서 수집한 온습도 데이터를 상기 히팅부에서 발생하는 열풍에 대한 정상적인 온습도 수치와 비교하고, 상기 데이터 수집부에서 수집한 풍속 및 진동 데이터 각각을 상기 송풍부에서 분사하는 정상적인 풍속 수치 및 진동량과 각각 비교 분석하여 상기 히팅부와 송풍부의 고장 유무를 분석하는 데이터 분석부; 및
    상기 데이터 분석부의 분석 결과에 따라 상기 안개 소산 장치부를 제어하는 안개 소산 구동 제어부를 포함하는 것을 특징으로 하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
  7. 제 2 항에 있어서, 상기 안개 소산 제어부는
    상기 안개 시정거리 측정부에서 촬영한 시정거리 표지판의 이미지 해상도와 기 설정된 이미지 해상도를 비교하는 이미지 해상도 비교부;
    상기 이미지 해상도 비교부의 비교 결과를 통해 안개의 발생 유무를 판단하는 안개 발생 판단부; 및
    상기 안개 발생 판단부의 판단 결과에 따라 상기 안개 소산 장치부를 제어하는 소산 구동 제어부를 포함하는 것을 특징으로 하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
  8. 제 2 항에 있어서, 상기 안개 소산 제어부는
    원격지 관리부로부터 제어 명령 데이터를 무선통신으로 전송받고 상기 안개 소산 구동 제어부에 의해 고장 유무 데이터를 상기 원격지 관리부로 전송하며 상기 안개 시정거리 측정부를 통해 촬영한 영상을 상기 원격지 관리부에 전송하는 무선 통신부를 포함하는 것을 특징으로 하는 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템.
PCT/KR2015/004007 2014-04-22 2015-04-22 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템 WO2015163683A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140048093A KR20150121909A (ko) 2014-04-22 2014-04-22 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템
KR10-2014-0048093 2014-04-22

Publications (1)

Publication Number Publication Date
WO2015163683A1 true WO2015163683A1 (ko) 2015-10-29

Family

ID=54332774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004007 WO2015163683A1 (ko) 2014-04-22 2015-04-22 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템

Country Status (2)

Country Link
KR (1) KR20150121909A (ko)
WO (1) WO2015163683A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132694B1 (ko) * 2018-06-28 2020-07-10 정길 임팩트 해머를 이용한 안개소산장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060101990A (ko) * 2005-03-22 2006-09-27 주식회사 화흥도로안전씨스템 안개 방재 시스템
KR20120031821A (ko) * 2010-09-27 2012-04-04 웅진코웨이주식회사 고장 확인 기능을 가진 이온 발생 장치, 그 방법 및 이를 포함한 공기 청정기
KR101226574B1 (ko) * 2010-04-20 2013-01-28 이종혁 공압을 이용한 안개 차단막
US20130299603A1 (en) * 2011-01-31 2013-11-14 Km Industries Co Ltd Fog removal system
KR20140038014A (ko) * 2012-09-19 2014-03-28 한국유지관리 주식회사 능동형 안개 소산 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060101990A (ko) * 2005-03-22 2006-09-27 주식회사 화흥도로안전씨스템 안개 방재 시스템
KR101226574B1 (ko) * 2010-04-20 2013-01-28 이종혁 공압을 이용한 안개 차단막
KR20120031821A (ko) * 2010-09-27 2012-04-04 웅진코웨이주식회사 고장 확인 기능을 가진 이온 발생 장치, 그 방법 및 이를 포함한 공기 청정기
US20130299603A1 (en) * 2011-01-31 2013-11-14 Km Industries Co Ltd Fog removal system
KR20140038014A (ko) * 2012-09-19 2014-03-28 한국유지관리 주식회사 능동형 안개 소산 시스템

Also Published As

Publication number Publication date
KR20150121909A (ko) 2015-10-30

Similar Documents

Publication Publication Date Title
WO2012105771A2 (ko) 안개 제거 시스템
KR101387710B1 (ko) 능동형 안개 소산 시스템
CN109760837A (zh) 一种电缆沟与隧道巡检无人机系统
KR101559546B1 (ko) 안개소산수단
CN108022440A (zh) 基于无人飞机和车路协同的高速公路团雾预警系统及预警方法
KR102156755B1 (ko) 도로 분진 청소 차량의 분진 제거 성능 평가 장치 및 시스템
CN104594278B (zh) 一种高速公路雾、霾净化系统及净化方法
CN210983749U (zh) 监控车辆车牌的智能装置
CN109024333A (zh) 一种低能见度下的诱导装置
US10352854B2 (en) Motor vehicle having dust sensor for reducing dust resuspension
WO2015163683A1 (ko) 그물망 형태의 필터를 구비한 원격제어 안개 소산 시스템
KR101559550B1 (ko) 안개소산장치
CN203606318U (zh) 机动车尾气检测监管仪
CN210530904U (zh) 一种应用于隧道内的可移动式侧向排烟结构
WO2011004973A2 (ko) 워터 커튼에 의한 도로의 안개 차폐 방법 및 시스템
KR101967896B1 (ko) 안개제거장치 및 이를 이용한 안개제거시스템
KR101607932B1 (ko) 안개 제거장치
WO2016163607A1 (ko) 안개소산수단 및 이를 가지는 안개소산장치 및 이를 이용한 이동식 안개소산장치
KR20110005987A (ko) 실외 화재 감지기를 구비한 철도차량
WO2020032317A1 (ko) 이동수단을 이용한 미세먼지 정화장치
CN113838293A (zh) 一种适用于智能汽车的雨雾环境测试场及测试方法
CN209387624U (zh) 一种机动车尾气遥感监测系统
CN105910179B (zh) 一种具有除尘功能的空调室外机组及其除尘控制方法
KR102460934B1 (ko) 공기오염 측정 및 오염공기 포집 드론장치
CN216816028U (zh) 一种适用于智能汽车的雨雾环境测试场

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15782809

Country of ref document: EP

Kind code of ref document: A1