WO2015162771A1 - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
WO2015162771A1
WO2015162771A1 PCT/JP2014/061647 JP2014061647W WO2015162771A1 WO 2015162771 A1 WO2015162771 A1 WO 2015162771A1 JP 2014061647 W JP2014061647 W JP 2014061647W WO 2015162771 A1 WO2015162771 A1 WO 2015162771A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
wireless communication
communication system
data
encoding
Prior art date
Application number
PCT/JP2014/061647
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 青野
武井 健
大倉 敬規
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/061647 priority Critical patent/WO2015162771A1/en
Publication of WO2015162771A1 publication Critical patent/WO2015162771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation

Definitions

  • the present invention relates to a wireless communication system.
  • Patent Document 1 describes a configuration characterized in that spectrum transmission is performed by spread spectrum using a spreading code in which the side lobe of the autocorrelation function is 0 and the cross-correlation function is 0 at a predetermined phase” It is described.
  • Patent Document 1 describes a multiplex communication system using spreading codes. In this method, it is necessary to synchronize between a code used for encoding and a code used for decoding at the time of decoding. However, there is a problem that the longer the code length, the larger the scale of the synchronization circuit and the time required for synchronization.
  • the present invention provides a wireless communication system that can perform decoding without having to synchronize codes.
  • the present invention is a wireless communication system that performs communication using a plurality of pairs of codes used for encoding and codes used for decoding, and communication data is transmitted using any code.
  • the code to be decoded and the code to be decoded are multiplied by a certain phase and added over a fixed period, and become a non-zero value, and different pairs of codes are multiplied with a random phase and added over a fixed period. Then, it becomes about 0.
  • the present invention provides a wireless communication system capable of decoding without having to synchronize between a code used for encoding transmission data and a code used for decoding received data.
  • the circuit that decodes the data encoded with the code (1 + i 1-i -1-i -1 + i) was encoded with the code (1 + i -1 + i -1-i 1-i) It is an example when data is input
  • a wireless communication system in which a plurality of wireless terminals communicate with one wireless base station is shown.
  • Fig. 1 shows an example of the configuration of this wireless communication system.
  • 100.a, 100.b, and 100.c are representative of wireless terminals. These wireless terminals perform wireless communication with the base station 200 using radio waves of the same frequency.
  • Different data A, B, and C are transmitted from the wireless terminals 100.a, 100.b, and 100.c, and the base station 200 receives the combined signal as a received wave.
  • spectrum spreading is performed using a different spreading code for each transmission wave.
  • the base station 200 can identify a signal from each wireless terminal 100.a, 100.b, ⁇ ⁇ 100.c by decoding using a code corresponding to each spreading code.
  • Code set [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)] as a code for encoding, and a combination of translation, rotation, and scaling on the complex plane A modified code set is used.
  • a spreading code used for encoding is called an encoding code
  • a code used for decoding corresponding to the encoding code is called a decoding code.
  • Fig. 2 shows a configuration example of a transmitter in this wireless system.
  • the transmission data generated by the transmission data generation unit 101 is multiplied by the multiplier 102 and the encoding code generated by the code generation unit 104 in two systems of I phase and Q phase. Since the same transmission data is multiplied by a code in two systems of the I phase and the Q phase, it is possible to multiply a code composed of complex numbers.
  • a code set of code length 4 [(1 + i 1 + i 1 + i 1 + i 1 + i), (1 + i 1-i -1-i -1 + i), ( 1 + i -1 + i -1-i 1-i)].
  • This is the original code set [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)] rotated 45 ° on the complex plane and expanded to ⁇ 2 times. is there.
  • the code set [(1 + i 1 + i 1 + i 1 + i 1 + i), (1 + i -1 + i -1-i 1-i), (1 + i 1-i -1-i -1 + i)].
  • the real part of the code is repeated in the order of (1I1 -1 -1) in the I phase. Multiply.
  • the coefficient of the imaginary part of the code is repeatedly multiplied in the order of (1 -1 -1 1). At this time, the code repetition period is shorter than the transmission data period.
  • the encoded transmission data is converted into an analog signal in each of the I-phase and Q-phase by a digital-analog converter (hereinafter referred to as DAC) 103.
  • the carrier wave generated by the oscillator 106 is modulated by being multiplied by the analog-converted signal.
  • the phase of the Q-phase carrier is delayed by a quarter period with respect to the I-phase carrier by the delay unit 105.
  • the adder 107 adds the I-phase and Q-phase signals.
  • the added signal is band-limited by a band-pass filter 109, amplified by a power amplifier (hereinafter referred to as PA) 110, and transmitted from the transmission antenna 108.
  • PA power amplifier
  • Fig. 3 shows a configuration example of a receiver in this wireless system.
  • the receiver 200 requires the receiving circuit shown in FIG. 3, one for each code of the code set.
  • a signal transmitted from the transmitter 100 is received by the receiving antenna 201 and amplified by a low noise amplifier (hereinafter referred to as LNA) 202.
  • LNA low noise amplifier
  • the amplified received wave is band-limited by a bandpass filter 109.
  • the received wave is multiplied by the carrier 102 regenerated by the carrier regenerator 207 and multiplied by the multiplier 102 in two systems of I phase and Q phase, and demodulated by passing through the low-pass filter 205.
  • the carrier wave multiplied by the Q phase is delayed by a quarter period with respect to the carrier wave multiplied by the I phase by the delay unit 105.
  • the demodulated signal is digitally converted by an analog-to-digital converter (hereinafter referred to as ADC) 203 for each of the I phase and Q phase.
  • ADC analog-to-digital converter
  • the digitally converted signal is complex multiplied by the decoding code generated by the code generation unit 104 by the complex multiplication circuit 300.
  • the complex-multiplied signal is accumulated by the period adder 204 for the same time as the period of the code, and is processed by the reception data processing unit 206 to become reception data.
  • the decryption method In decoding, it is necessary to distinguish between data encoded with a target encoding code and data encoded with other encoding codes. In the following description of the decoding method, the data to be encoded is always 1 for simplicity.
  • the code period is t.
  • the complex decoding circuit 300 performs complex multiplication on the corresponding decoding code, and the period addition circuit 204 performs integration for the same period as the code period.
  • FIG. 4 shows a configuration example of the complex multiplication circuit 300.
  • the real part of the decoding code generated by the code real part generation unit 301 is multiplied by the multiplier 102 in the I phase, and the code imaginary part generation unit 302 in the Q phase.
  • the multiplier 102 sequentially multiplies the coefficients of the imaginary part of the generated decoding code.
  • the multiplication results are added separately by the adder 107 for the real part and the imaginary part, and the real part is output as the I phase and the imaginary part is output as the Q phase.
  • the complex decoding circuit 300 multiplies the same code (1 + i 1 + i 1 + i 1 + i) as the corresponding decoding code.
  • FIG. 5 is a diagram showing a case where data encoded with an encoding code (1 + i 1 + i 1 + i 1 + i) targeted by the complex multiplication circuit is received. Since it is assumed that the data to be encoded is always 1 at this time, the encoded data 501 is a repetition of (1 + i 1 + i 1 + i 1 + i). On the other hand, when the decoding code 502 is multiplied, the complex multiplication result 503 is repeated as (2i 2i 2i 2i). When this is integrated over time in the cycle t of the code in the cycle adder 204, the result is 8i ⁇ t. It is obvious that the addition result is constant regardless of the phase of the encoding code and the decoding code.
  • FIG. 6 is a diagram showing a case where data encoded with different encoding codes (1 + i, 1-i, -1-i, -1 + i) of the same code set is received.
  • the encoded data 601 is a repetition of (1 + i 1-i -1-i -1 + i).
  • the decoding code 602 is multiplied here, the complex multiplication result 603 is repeated (2i, 2, -2i, -2).
  • this is integrated in the period addition circuit 204 for the time of the period t of the code, it becomes zero. Also in this case, it is obvious that the addition result is constant regardless of the phase of the encoding code and the decoding code.
  • the addition result is 0.
  • FIG. 7 is a diagram showing a case where data encoded with an encoding code (1 + i 1-i -1-i -1 + i) as an object is received by this complex multiplication circuit. It is assumed that the decoding code 702 is multiplied by the time ⁇ t (0 ⁇ ⁇ t ⁇ t / 4) and multiplied by the encoded data 701. Then, the complex multiplication result 703 becomes (2 2i 2 2i 2 2i 2 2i). At this time, the time when 2 is output is ⁇ t, and the time when 2i is output is 4 / t ⁇ t. From this result, it can be seen that the complex multiplication result 703 takes a non-zero value regardless of ⁇ t.
  • FIG. 8 is a diagram showing a case where data encoded with different encoding codes (1 + i -1 + i -1-i 1-i) of the same code set is received.
  • the decoding data 802 is multiplied by the time ⁇ t (0 ⁇ ⁇ t ⁇ t / 4) and multiplied by the encoded data 801.
  • the complex multiplication result 803 is the repetition of (2 2i -2 -2i 2 2i -2 -2i).
  • the time when 2 and -2 are output is ⁇ t
  • the time when 2i and -2i are output is 4 / t- ⁇ t
  • the period addition result is 0 regardless of ⁇ t.
  • data encoded with the code of the code set (1 + i 1 + i 1 + i 1 + i) is received, it becomes 0 regardless of ⁇ t.
  • the period adder 204 can continuously accumulate, but in reality, it is discretely added at a certain period. However, if the number of times of sampling in each element of the code is the same as the timing, the same result can be obtained even in a discrete case.
  • the transmission data generating unit 101 adds identification data (1 ⁇ ⁇ ⁇ ⁇ -1 1 -1 1) for identifying the binary data to the head of the data string. This identification data is determined in advance and shared by the transceiver. The data to which the identification data is added is multiplied by an encoding code.
  • This encoded data is transmitted from the transmitter and received by the receiver.
  • the receiver multiplies the decoding code (1 + i -1 + i -1-i 1-i), and the period adder 204 adds one period of the code for decoding.
  • the decoded data is 4 + 4i while the transmission data is 1, and -4 while the transmission data is -1. -4i.
  • the added identification data is (4 + 4i -4-4i 4 + 4i -4-4i 4 + 4i 4 + 4i), and this is detected by the received data processing unit 206.
  • communication is performed using a plurality of pairs of encoding codes and decoding codes.
  • the encoding code and decoding code to be used are codes that have strong autocorrelation and zero cross-correlation.
  • the paired encoding code and decoding code are multiplied by an arbitrary phase and cyclic addition is performed, a non-zero value is obtained, and different pairs of encoding code and decoding code are multiplied by any phase and cyclic addition is performed. Then it becomes zero.
  • the synchronization circuit is not necessary, and the apparatus can be reduced in size.
  • Example 1 since the code length of the code used was 4, the number of wireless terminals that can communicate simultaneously was 3 or less. In the present embodiment, an example is applicable even when the number of wireless terminals is four or more. When the number of wireless terminals is 4 or more, the code is expanded and the number of codes in the code set is increased. The extension of the code can be realized by repeating the code, expanding the similarity, and a combination thereof.
  • a code set of code length 8 is created based on a code set of code length 4 [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)], the code set [( 1 1 1 1 1 1 1), (1 1 ii -1 -1 -i -i), (1 1 -i -i -1 ii), (1 i -1 -i 1 i -1- i), (1 -i -1 i 1 -i i)].
  • the decoding code corresponding to this coding code is [(1 1 1 1 1 1 1 1), (1 1 -i -i -1 -1 ii), (1 1 ii -1 -1 -i -i ), (1 -i -1 i 1 -i -1 i), (1 i -1 -i 1 i -1 -i)].
  • FIG. 9 shows a configuration example of this embodiment.
  • Three transmitters 100 according to the first embodiment are mounted in the transmitter 901, and the communication capacity is increased by transmitting different data simultaneously from the respective antennas 903.a, 903.b, and 903.c.
  • the code set [(1 + i 1 + i 1 + i 1 + i), (1 + i 1-i -1-i -1 + i), (1 + i -1 + i -1-i 1-i)].
  • Each of the receiving antennas 904.a, 904.b, and 904.c has three transmitting antennas 903.a and 903.b.
  • the transmission wave from 903.c is synthesized and received. At this time, the phases of the encoding codes of the three transmission waves synthesized are not aligned.
  • a decoding code set [(1 + i 1 + i 1 + i 1 + i 1 + i), (1 + i -1 + i -1-i 1-i), ( 1 + i 1-i -1-i -1 + i)]
  • the data other than the data encoded with the target encoding code is 0 regardless of the code phase. Therefore, only data encoded by the target encoding code can be selectively extracted.
  • the communication capacity can be increased.
  • the communication capacity can be increased in addition to the effects of the first embodiment. Further, by expanding the code as in the second embodiment, the number of antennas that can be simultaneously transmitted and received can be increased, so that the communication capacity can be further increased.
  • Fig. 10 shows a configuration example of the transmitter of this system.
  • the encoding code can be switched by a code switch 1001. Further, the polarization angle of the transmission wave can be changed by adjusting the power input to the vertically polarized antenna 1003 and the horizontally polarized antenna 1004 by the antenna switch 1002.
  • Fig. 11 shows a configuration example of the receiver of this wireless system.
  • One set of each of the code generation unit 104, the complex multiplication circuit 300, and the period adder 204 is required for the number of polarization angles to be used.
  • the transmitted wave may pass through different propagation paths for each polarization angle.
  • the transmission waves having a plurality of polarization angles transmitted from the transmitter 1000 reach the receiver 1100 in a combined state.
  • the code pairs of the present invention [(1 + i 1 + i 1 + i 1 + i), (1 + i 1-i -1-i -1 + i), (1 + i -1 + i -1-i 1-i)] is used to encode the data.
  • a code (1 + i 1 + i 1 + i 1 + i 1 + i) is transmitted for a transmission wave transmitted at a polarization angle of 0 °
  • a code (1 + i 1) is transmitted for a transmission wave transmitted at a polarization angle of 45 °.
  • -i -1-i -1 + i) is transmitted for a transmission wave transmitted at a polarization angle of 45 °.
  • -i -1-i -1 + i) is transmitted for a transmission wave transmitted at a polarization angle of 45 °.
  • -i -1-i -1 + i a transmission wave transmitted at a polarization angle of 90 ° is encoded using a code (1 + i -1 + i -1-i 1-i).
  • the code switch 1001 that switches the encoding code and the antenna switch 1002 that changes the polarization angle are time-synchronized, and the encoding code and the polarization angle can be switched simultaneously.
  • the decoding code sets [(1 + i 1 + i 1 + i 1 + i 1 + i), (1 + i -1 + i -1-i 1-i), (1 + i 1-i- 1-i -1 + i)] is used in the same manner as in the first embodiment, so that data for each polarization angle can be selectively received from the synthesized received wave. Further, by extending the code as in the second embodiment, it is possible to increase the polarization angle to be used.
  • FIG. 11 shows a configuration example of a transmitter
  • FIG. 12 shows a configuration example of a receiver.
  • the transmission data generation unit 101 adds a header (1 -1 1 -1 1 1) to the transmission data.
  • the multiplier 102 multiplies the real part of the code in the I phase and the imaginary part of the code in the Q phase. Each of these is multiplied by the carrier wave generated by the carrier wave generating unit 401 in the FPGA. At this time, the phase of the carrier wave multiplied by the Q phase is shifted by a quarter period by the delay unit 105.
  • the encoded data is added by the adder 107 and converted into an analog signal by the DAC 103 outside the FPGA 1301.
  • the analog-converted data is amplified by the PA 110, band-limited by the band-pass filter 109, and then transmitted from the transmission antenna 108.
  • the transmitted data is received by the antenna 201 of the receiver and amplified by the LNA 202.
  • the amplified signal passes through the band-pass filter 109, is digitally converted by the ADC 203, and is input to the FPGA 1301.
  • the input signals are I-phase and Q-phase, respectively, and the multiplier 102 multiplies the sine wave 4 generated by the sine wave generation unit 402 and having the same frequency as the carrier wave.
  • the sine wave multiplied by the Q phase is delayed by a quarter period with respect to the I phase by the delay unit 104. At this time, since the phase of the sine wave to be multiplied is not synchronized with the phase of the carrier wave of the received signal, the phase may be shifted.
  • Phase shift is (1) - ⁇ / 4 or more and less than ⁇ / 4 (2) ⁇ / 4 or more and less than 3 ⁇ / 4 (3) 3 ⁇ / 4 or more and less than 5 ⁇ / 4 (4) 5 ⁇ / 4 or more and 7 ⁇ /
  • the case is divided into one of less than 4.
  • Data is received correctly in the case of (1), but is received i times in the case of (2), -1 times in the case of (3), and -i times in the case of (4).
  • the phase is shifted by ⁇ / 4
  • the power of the data is reduced by a maximum of cos ( ⁇ / 4) times.
  • this is not a problem if it is sufficiently amplified by the amplifier.
  • the signal multiplied by the sine wave passes through the low-pass filter 205 and is then multiplied by the decoding code in the complex multiplier 300. Thereafter, one period of code is added by the period adder 204, and the reception data processing unit 206 becomes reception data.
  • the received data is multiplied by a constant due to the deviation of the sine wave.
  • the added identification data is By confirming, it is possible to obtain desired data.
  • the identification data is (i -i i -i i i).
  • Embodiment 2-4 can be implemented with the same configuration.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

Provided is a wireless communication system which can decode without needing to synchronize the codes. This wireless communication system performs communication using multiple code pairs made up of a code used in encoding and a code used in decoding, and is characterized by being provided with a transmitter which uses one of the codes to encode and transmit communication data, and a receiver which decodes the received communication data using the code paired with the code used by the transmitter to encode said communication data, wherein the code for encoding and the code for decoding are a non-zero value when the paired codes are multiplied by any phase and added across a fixed period, and are approximately 0 when codes of different pairs are multiplied by any phase and added over a fixed period.

Description

無線通信システムWireless communication system
 本発明は、無線通信システムに関する。
The present invention relates to a wireless communication system.
 本技術分野の背景技術として、特開2001-345783号公報(特許文献1)がある。この公報には「自己相関関数のサイドローブが0であり、かつ相互相関関数が所定の位相で0である拡散符号を用いてスペクトラム拡散して多重化伝送することを特徴とする構成を有する」と記載されている。
As background art of this technical field, there is JP-A-2001-345783 (Patent Document 1). This publication “has a configuration characterized in that spectrum transmission is performed by spread spectrum using a spreading code in which the side lobe of the autocorrelation function is 0 and the cross-correlation function is 0 at a predetermined phase” It is described.
特開2001-345783号公報Japanese Patent Laid-Open No. 2001-345783
 前記特許文献1には、拡散符号による多重通信方式が記載されている。この方式では復号の際に、符号化に用いた符号と復号に用いる符号の間で同期を取る必要がある。しかし符号長が長くなるほど、同期回路の規模や同期に要する時間が増大するという課題がある。 Patent Document 1 describes a multiplex communication system using spreading codes. In this method, it is necessary to synchronize between a code used for encoding and a code used for decoding at the time of decoding. However, there is a problem that the longer the code length, the larger the scale of the synchronization circuit and the time required for synchronization.
 そこで本発明は、符号同士の同期をとる必要なく復号可能な無線通信システムを提供する。
Therefore, the present invention provides a wireless communication system that can perform decoding without having to synchronize codes.
 上記課題を解決するために、本発明では符号化に用いる符号と、復号化に用いる符号との対を複数用いて通信を行う無線通信システムであって、通信データをいずれかの符号を用いて符号化して送信する送信機と、受信した前記通信データに、前記送信機が符号化に用いた符号と対となる符号を用いて前記通信データを複合する受信機と、を備え、前記符号化する符号と、前記復号化する符号とは、対となる符号同士を任意の位相で掛け合わせ一定周期にわたり加算すると0でない値となり、異なる対の符号同士を任意の位相で掛け合わせ一定周期にわたり加算するとおよそ0となることを特徴とする。
In order to solve the above-described problem, the present invention is a wireless communication system that performs communication using a plurality of pairs of codes used for encoding and codes used for decoding, and communication data is transmitted using any code. A transmitter for encoding and transmitting; and a receiver for combining the received communication data with the communication data using a code paired with the code used by the transmitter for encoding. The code to be decoded and the code to be decoded are multiplied by a certain phase and added over a fixed period, and become a non-zero value, and different pairs of codes are multiplied with a random phase and added over a fixed period. Then, it becomes about 0.
 本発明は、送信データの符号化に用いる符号と受信データの復号に用いる符号の間で同期をとる必要なく復号可能である無線通信システムを提供する。
The present invention provides a wireless communication system capable of decoding without having to synchronize between a code used for encoding transmission data and a code used for decoding received data.
本無線通信システムのアプリケーションの例である。It is an example of the application of this radio | wireless communications system. 送信機の構成の例である。It is an example of a structure of a transmitter. 受信機の構成の例である。It is an example of a structure of a receiver. 複素乗算器の構成の例である。It is an example of a structure of a complex multiplier. 符号(1+i 1+i 1+i 1+i)で符号化されたデータを復号する例である。This is an example of decoding data encoded with a code (1 + i + 1 + i 1 + i 1 + i). 符号(1+i 1+i 1+i 1+i)で符号化されたデータを復号する回路に符号(1+i 1-i -1-i -1+i)で符号化されたデータが入力された場合の例である。The circuit encoded with the code (1 + i 1 + i 1 + i 1 + i) receives the data encoded with the code (1 + i 1-i -1-i -1 + i). It is an example when it is input. 符号(1+i 1-i -1-i -1+i)で符号化されたデータを復号する例である。This is an example of decoding data encoded with a code (1 + i 1-i -1-i -1 + i). 符号(1+i 1-i -1-i -1+i)で符号化されたデータを復号する回路に符号(1+i -1+i -1-i 1-i)で符号化されたデータが入力された場合の例であるThe circuit that decodes the data encoded with the code (1 + i 1-i -1-i -1 + i) was encoded with the code (1 + i -1 + i -1-i 1-i) It is an example when data is input 本無線システムのMIMO方式を用いた無線機への適用例である。This is an example of application of the present radio system to a radio using the MIMO scheme. 偏波角度ダイバシティ方式を用いた無線通信システムの送信機の構成例である。It is a structural example of the transmitter of the radio | wireless communications system using a polarization angle diversity system. 偏波角度ダイバシティ方式を用いた無線通信システムの受信機の構成例である。It is a structural example of the receiver of the radio | wireless communications system using a polarization angle diversity system. 偏波角度ダイバシティ方式を用いた無線通信ステムの構成例である。It is an example of a structure of the radio | wireless communication system using a polarization angle diversity system. FPGAを用いた送信機の構成の例である。It is an example of the structure of the transmitter using FPGA. FPGAを用いた受信機の構成の例である。It is an example of the structure of the receiver using FPGA.
 以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 本実施例では、複数の無線端末と1つの無線基地局が通信する無線通信システムを示す。 In this embodiment, a wireless communication system in which a plurality of wireless terminals communicate with one wireless base station is shown.
 図1は本無線通信システムの構成例である。100.a, 100.b, 100.cは無線端末の代表である。これらの無線端末は同一周波数の電波を用いて基地局200と無線通信を行う。 Fig. 1 shows an example of the configuration of this wireless communication system. 100.a, 100.b, and 100.c are representative of wireless terminals. These wireless terminals perform wireless communication with the base station 200 using radio waves of the same frequency.
 各無線端末100.a, 100.b, 100.cからは異なったデータA,B,Cが送信されており、基地局200ではその合成信号が受信波として受信される。各無線端末100.a, 100.b, 100.cからの送信データを識別するため、送信波に対し各々異なった拡散符号を用いてスペクトラム拡散を行う。 Different data A, B, and C are transmitted from the wireless terminals 100.a, 100.b, and 100.c, and the base station 200 receives the combined signal as a received wave. In order to identify transmission data from each wireless terminal 100.a, a100.b, and 100.c, spectrum spreading is performed using a different spreading code for each transmission wave.
 基地局200では各々の拡散符号に対応した符号を用いて復号することで、各無線端末100.a, 100.b, 100.cからの信号を識別することが可能である。符号化用の符号として符号組[(1 1 1 1),(1 i -1 -i),(1 -i -1 i)]及びそれを複素平面上で並進、回転、拡大縮小の組み合わせにより変形した符号組を用いる。以下全ての実施例で、符号化に用いる拡散符号を符号化用符号、符号化用符号に対応した復号に用いる符号を復号用符号と呼称する。 図2はこの無線システムにおける送信機の構成例である。送信データ生成部101で生成された送信データはI相とQ相の2つの系統において、符号生成部104で生成された符号化用符号と乗算器102で乗算される。同一の送信データに対しI相とQ相の2系統で符号を乗算するため、複素数からなる符号を乗算することが可能である。 The base station 200 can identify a signal from each wireless terminal 100.a, 100.b, こ と 100.c by decoding using a code corresponding to each spreading code. Code set [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)] as a code for encoding, and a combination of translation, rotation, and scaling on the complex plane A modified code set is used. In all the embodiments below, a spreading code used for encoding is called an encoding code, and a code used for decoding corresponding to the encoding code is called a decoding code. Fig. 2 shows a configuration example of a transmitter in this wireless system. The transmission data generated by the transmission data generation unit 101 is multiplied by the multiplier 102 and the encoding code generated by the code generation unit 104 in two systems of I phase and Q phase. Since the same transmission data is multiplied by a code in two systems of the I phase and the Q phase, it is possible to multiply a code composed of complex numbers.
 符号化用符号として、本実施例では符号長4の符号組[(1+i 1+i 1+i 1+i),(1+i 1-i -1-i -1+i),(1+i -1+i -1-i 1-i)]を用いる。これは元の符号組[(1 1 1 1),(1 i -1 -i),(1 -i -1 i)]を複素平面上で45゜回転し、√2倍に拡大したものである。 As the encoding code, in this embodiment, a code set of code length 4 [(1 + i 1 + i 1 + i 1 + i), (1 + i 1-i -1-i -1 + i), ( 1 + i -1 + i -1-i 1-i)]. This is the original code set [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)] rotated 45 ° on the complex plane and expanded to √2 times. is there.
 この符号組を用いる場合、復号用符号として符号組[(1+i 1+i 1+i 1+i), (1+i -1+i -1-i 1-i) ,(1+i 1-i -1-i -1+i)]を用いる。例えば符号化用符号として符号組の符号(1+i 1-i -1-i -1+i)を用いる場合は、I相で符号の実部を(1 1 -1 -1)の順に繰り返し乗算していく。同様にQ相では符号の虚部の係数を(1 -1 -1 1)の順に繰り返し乗算していく。この際に符号の繰り返し周期は送信データの周期より短くする。符号化された送信データはデジタルアナログ変換器(以下DAC)103によってI相、Q相それぞれでアナログ信号に変換される。発振器106により生成された搬送波は、アナログ変換された信号と乗算されることにより変調される。この時Q相の搬送波の位相を、遅延器105によりI相の搬送波に対して1/4周期遅らせる。I相とQ相の信号は加算器107によって加算される。加算された信号はバンドパスフィルタ109で帯域制限された後、電力増幅器(以下PA)110により増幅され送信アンテナ108から送信される。 When this code set is used, the code set [(1 + i 1 + i 1 + i 1 + i), (1 + i -1 + i -1-i 1-i), (1 + i 1-i -1-i -1 + i)]. For example, when a code (1 + i 1-i -1-i -1 + i) is used as the encoding code, the real part of the code is repeated in the order of (1I1 -1 -1) in the I phase. Multiply. Similarly, in the Q phase, the coefficient of the imaginary part of the code is repeatedly multiplied in the order of (1 -1 -1 1). At this time, the code repetition period is shorter than the transmission data period. The encoded transmission data is converted into an analog signal in each of the I-phase and Q-phase by a digital-analog converter (hereinafter referred to as DAC) 103. The carrier wave generated by the oscillator 106 is modulated by being multiplied by the analog-converted signal. At this time, the phase of the Q-phase carrier is delayed by a quarter period with respect to the I-phase carrier by the delay unit 105. The adder 107 adds the I-phase and Q-phase signals. The added signal is band-limited by a band-pass filter 109, amplified by a power amplifier (hereinafter referred to as PA) 110, and transmitted from the transmission antenna 108.
 図3は本無線システムにおける受信機の構成例である。 Fig. 3 shows a configuration example of a receiver in this wireless system.
 受信機200には符号組の各符号に対して1個ずつ、図3の受信回路が必要となる。送信機100から送信された信号は受信アンテナ201によって受信され、低雑音増幅器(以下LNA)202によって増幅される。増幅された受信波はバンドパスフィルタ109により、帯域制限される。その後受信波はI相とQ相の2系統において、搬送波再生器207により再生された搬送波と乗算器102で乗算され、ローパスフィルタ205に通すことで復調される。この際にQ相で乗算される搬送波は、遅延器105によりI相で乗算される搬送波に対して1/4周期遅らせる。復調された信号はI相、Q相それぞれで、アナログデジタル変換器(以下ADC)203によりデジタル変換される。デジタル変換された信号は複素乗算回路300により、符号生成部104で生成された復号用符号と複素乗算される。複素乗算された信号は周期加算器204で符号の周期と同じ時間積算され、受信データ処理部206により処理され受信データとなる。 The receiver 200 requires the receiving circuit shown in FIG. 3, one for each code of the code set. A signal transmitted from the transmitter 100 is received by the receiving antenna 201 and amplified by a low noise amplifier (hereinafter referred to as LNA) 202. The amplified received wave is band-limited by a bandpass filter 109. Thereafter, the received wave is multiplied by the carrier 102 regenerated by the carrier regenerator 207 and multiplied by the multiplier 102 in two systems of I phase and Q phase, and demodulated by passing through the low-pass filter 205. At this time, the carrier wave multiplied by the Q phase is delayed by a quarter period with respect to the carrier wave multiplied by the I phase by the delay unit 105. The demodulated signal is digitally converted by an analog-to-digital converter (hereinafter referred to as ADC) 203 for each of the I phase and Q phase. The digitally converted signal is complex multiplied by the decoding code generated by the code generation unit 104 by the complex multiplication circuit 300. The complex-multiplied signal is accumulated by the period adder 204 for the same time as the period of the code, and is processed by the reception data processing unit 206 to become reception data.
  復号方法に関して述べる。復号においては、対象とする符号化用符号で符号化されたデータとそれ以外の符号化用符号で符号化されたデータを識別する必要がある。以下復号方法の説明においては、簡単のため符号化するデータは常に1とする。また、符号の周期はtとする。 ある符号化用符号で符号化されたデータを復号するためには、対応する復号用符号を複素乗算回路300で複素乗算し、周期加算回路204で符号の周期と同じ時間積算する。 Describes the decryption method. In decoding, it is necessary to distinguish between data encoded with a target encoding code and data encoded with other encoding codes. In the following description of the decoding method, the data to be encoded is always 1 for simplicity. The code period is t. In order to decode data encoded with a certain encoding code, the complex decoding circuit 300 performs complex multiplication on the corresponding decoding code, and the period addition circuit 204 performs integration for the same period as the code period.
  図4は複素乗算回路300の構成例である。複素乗算回路300に入力された信号に対して、I相では符号実部生成部301で生成された復号用符号の実部が乗算器102で乗算され,Q相では符号虚部生成部302で生成された復号用符号の虚部の係数が順に乗算器102で乗算される。乗算結果は実部と虚部で別々に加算器107で加算され、実部はI相、虚部はQ相として出力される。 まず符号組の符号(1+i 1+i 1+i 1+i)で符号化されたデータを復号することを考える。この場合は、対応する復号用符号として同じ符号(1+i 1+i 1+i 1+i)を複素乗算回路300で乗算する。 FIG. 4 shows a configuration example of the complex multiplication circuit 300. For the signal input to the complex multiplication circuit 300, the real part of the decoding code generated by the code real part generation unit 301 is multiplied by the multiplier 102 in the I phase, and the code imaginary part generation unit 302 in the Q phase. The multiplier 102 sequentially multiplies the coefficients of the imaginary part of the generated decoding code. The multiplication results are added separately by the adder 107 for the real part and the imaginary part, and the real part is output as the I phase and the imaginary part is output as the Q phase. First, consider decoding data encoded with a code set code (1 + i 1 + i 1 + i 1 + i). In this case, the complex decoding circuit 300 multiplies the same code (1 + i 1 + i 1 + i 1 + i) as the corresponding decoding code.
  図5は、この複素乗算回路に対象とする符号化用符号(1+i 1+i 1+i 1+i)で符号化されたデータが受信された場合を示した図である。いま符号化するデータは常に1であると仮定しているため、符号化されたデータ501は(1+i 1+i 1+i 1+i)の繰り返しとなる。これに対して復号用符号502を乗算すると、複素乗算結果503は(2i 2i 2i 2i)の繰り返しとなる。これを周期加算回路204において符号の周期tの時間積算すると、結果は8i・tとなる。この加算結果が符号化用符号と復号用符号の位相によらず一定であることは自明である。 FIG. 5 is a diagram showing a case where data encoded with an encoding code (1 + i 1 + i 1 + i 1 + i) targeted by the complex multiplication circuit is received. Since it is assumed that the data to be encoded is always 1 at this time, the encoded data 501 is a repetition of (1 + i 1 + i 1 + i 1 + i). On the other hand, when the decoding code 502 is multiplied, the complex multiplication result 503 is repeated as ( 2i 2i 2i 2i). When this is integrated over time in the cycle t of the code in the cycle adder 204, the result is 8i · t. It is obvious that the addition result is constant regardless of the phase of the encoding code and the decoding code.
 一方、符号(1+i 1+i 1+i 1+i)で符号化されたデータを復号するための複素乗算回路300に対して、同じ符号組の異なる符号化用符号(1+i,1-i,-1-i,-1+i)で符号化されたデータが受信された場合を考える。 On the other hand, for the complex multiplication circuit 300 for decoding data encoded with the code (1 + i 1 + i 1 + i 1 + i), different encoding codes (1 + i, Consider a case where data encoded with 1-i, -1-i, -1 + i) is received.
 図6は、同じ符号組の異なる符号化用符号(1+i,1-i,-1-i,-1+i)で符号化されたデータが受信された場合を示した図である。符号化されたデータ601は(1+i 1-i -1-i -1+i)の繰り返しとなる。ここに復号用符号602を乗算すると、複素乗算結果603は(2i,2,-2i,-2)の繰り返しとなる。これを周期加算回路204において符号の周期tの時間積算すると0になる。この場合も加算結果が符号化用符号と復号用符号の位相によらず一定であることは自明である。また別の符号(1+i -1+i -1-i 1-i)によって符号化されたデータが受信された場合も同様に加算結果は0となる。 FIG. 6 is a diagram showing a case where data encoded with different encoding codes (1 + i, 1-i, -1-i, -1 + i) of the same code set is received. The encoded data 601 is a repetition of (1 + i 1-i -1-i -1 + i). When the decoding code 602 is multiplied here, the complex multiplication result 603 is repeated (2i, 2, -2i, -2). When this is integrated in the period addition circuit 204 for the time of the period t of the code, it becomes zero. Also in this case, it is obvious that the addition result is constant regardless of the phase of the encoding code and the decoding code. Similarly, when data encoded by another code (1 + i -1 + i -1-i 1-i) is received, the addition result is 0.
 次に同じ符号組の別の符号(1+i 1-i -1-i -1+i)で符号化されたデータを復号することを考える。このデータを復号するには、対応する復号用符号として符号(1+i -1+i -1-i 1-i)を複素乗算する。 Next, consider decoding data encoded with another code (1 + i 1-i -1-i -1 + i) of the same code set. In order to decode this data, a code (1 + i -1 + i -1-i 1-i) is complex multiplied as a corresponding decoding code.
 図7は、この複素乗算回路に対象とする符号化用符号(1+i 1-i -1-i -1+i)で符号化されたデータが受信された場合を示した図である。いま復号用符号702が符号化されたデータ701に対して時間Δt(0≦Δt<t/4)だけずれて乗算されたとする。すると複素乗算結果703は(2 2i 2 2i 2 2i 2 2i)の繰り返しとなる。その際に2が出力される時間はΔt,2iが出力される時間は4/t-Δtとなる。この結果から、複素乗算結果703はΔtによらず0でない値を取ることが分かる。またこの値は実部の絶対値と虚部の絶対値の和がΔtによらず一定値2tをとる。これはΔtがt/4より大きい場合にも成り立つ。このことから符号化用符号と復号用符号の相関関数はいずれの位相でも0でない値となることが分かる。 FIG. 7 is a diagram showing a case where data encoded with an encoding code (1 + i 1-i -1-i -1 + i) as an object is received by this complex multiplication circuit. It is assumed that the decoding code 702 is multiplied by the time Δt (0 ≦ Δt <t / 4) and multiplied by the encoded data 701. Then, the complex multiplication result 703 becomes (2 2i 2 2i 2 2i 2 2i). At this time, the time when 2 is output is Δt, and the time when 2i is output is 4 / t−Δt. From this result, it can be seen that the complex multiplication result 703 takes a non-zero value regardless of Δt. The sum of the absolute value of the real part and the absolute value of the imaginary part takes a constant value 2t regardless of Δt. This is also true when Δt is greater than t / 4. From this, it can be seen that the correlation function of the encoding code and the decoding code is a non-zero value at any phase.
 一方、符号(1+i 1-i -1-i -1+i)で符号化されたデータを復号するための複素乗算回路300に対して、同じ符号組の違う符号化用符号(1+i -1+i -1-i 1-i)で符号化されたデータが受信された場合を考える。 On the other hand, for the complex multiplication circuit 300 for decoding the data encoded with the code (1 + i 1-i -1-i -1 + i), different encoding codes (1+ Consider a case where data encoded by i -1 + i -1-i 1-i) is received.
 図8は、同じ符号組の違う符号化用符号(1+i -1+i -1-i 1-i)で符号化されたデータが受信された場合を示す図である。いま復号用符号802が符号化されたデータ801に対して時間Δt(0≦Δt<t/4)だけずれて乗算されたとする。すると複素乗算結果803は(2 2i -2 -2i 2 2i -2 -2i)の繰り返しとなる。2と-2が出力される時間はΔt,2iと-2iが出力される時間は4/t-Δtとなり、周期加算結果はΔtによらず0となる。符号組の符号(1+i 1+i 1+i 1+i)で符号化されたデータが受信された場合も、同様にΔtによらず0となる。 FIG. 8 is a diagram showing a case where data encoded with different encoding codes (1 + i -1 + i -1-i 1-i) of the same code set is received. Now, it is assumed that the decoding data 802 is multiplied by the time Δt (0 ≦ Δt <t / 4) and multiplied by the encoded data 801. Then, the complex multiplication result 803 is the repetition of (2 2i -2 -2i 2 2i -2 -2i). The time when 2 and -2 are output is Δt, the time when 2i and -2i are output is 4 / t-Δt, and the period addition result is 0 regardless of Δt. Similarly, when data encoded with the code of the code set (1 + i 1 + i 1 + i 1 + i) is received, it becomes 0 regardless of Δt.
 最後に符号組の符号(1+i -1+i -1-i 1-i)で符号化されたデータを復号する際には、符号(1+i 1-i -1-i -1+i)を複素乗算する。以降の結果は符号(1+i 1-i -1-i -1+i)で符号化されたデータを復号する際と同じである。 Finally, when decoding the data encoded with the code (1 + i -1 + i -1-i 1-i), the code (1 + i 1-i -1-i -1+ i) Complex multiplication. The subsequent results are the same as when decoding data encoded with the code (1 + i 1-i -1-i -1 + i).
 これまでの復号の説明においては、周期加算器204は連続的に積算可能であるとしてきたが、実際にはある周期で離散的に加算されていく。しかし、符号の各要素においてサンプリングする回数とタイミングが同じであれば、離散的な場合でも同様の結果を得ることが可能である。 In the description of the decoding so far, it has been assumed that the period adder 204 can continuously accumulate, but in reality, it is discretely added at a certain period. However, if the number of times of sampling in each element of the code is the same as the timing, the same result can be obtained even in a discrete case.
 これらの復号方法から分かる通り、復号の際には対象の符号化用符号により符号化されたデータを復号すると位相によらず0でない値となり、それ以外の符号化用符号により符号化されたデータを復号すると0となる。よって例えば対象の符号化用符号により符号化されたデータとそれ以外の符号化用符号により符号化されたデータが同時に到来した場合においても位相に関わらず復号用符号を乗算するだけで、対象の符号化用符号により符号化されたデータのみを取り出すことが出来る。 As can be seen from these decoding methods, when decoding the data encoded with the target encoding code, the value becomes non-zero regardless of the phase, and the data encoded with the other encoding codes Decodes to 0. Therefore, for example, even when data encoded by the target encoding code and data encoded by other encoding codes arrive at the same time, the multiplication of the decoding code regardless of the phase is sufficient. Only data encoded by the encoding code can be extracted.
 ここまではデータが全て1であると仮定して復号方法を述べてきたが、次にこの符号化及び復号の方法を用いて実際のデータを送受信する方法を述べる。ここではデジタルの2値を1と-1として扱う。まず送信したいデータを準備する。この際、データの1bitの時間は、符号の1周期に比べて長い必要がある。そのデータ列に対して、送信データ生成部101で(1 -1 1 -1 1 1)というデジタルの2値を識別するための識別データを先頭に付加する。この識別データはあらかじめ決めておき、送受信機で共有する。この識別データを付加したデータに対して、符号化用符号を乗算する。符号(1+i 1-i -1-i -1+i)の場合を例に取ると、データが1である間は(1+i 1-i -1-i -1+i)、-1である間は(-1-i -1+i 1+i 1-i)が繰り返される。 So far, the decoding method has been described on the assumption that all the data is 1. Next, a method of transmitting and receiving actual data using this encoding and decoding method will be described. Here, digital binary values are treated as 1 and -1. First, prepare the data you want to send. At this time, the 1-bit time of the data needs to be longer than one cycle of the code. The transmission data generating unit 101 adds identification data (1 デ ジ タ ル -1 1 -1 1 1) for identifying the binary data to the head of the data string. This identification data is determined in advance and shared by the transceiver. The data to which the identification data is added is multiplied by an encoding code. Taking the case of sign (1 + i 1-i -1-i -1 + i) as an example, while data is 1, (1 + i 1-i -1-i -1 + i),- While it is 1, (-1-i -1 + i 1 + i 1-i) is repeated.
  この符号化されたデータを送信機から送信し、受信機にて受信する。受信機で復号用符号(1+i -1+i -1-i 1-i)を乗算し、周期加算器204で符号1周期分加算して復号する。いま復号用符号が符号化用符号から符号の周期tに対してt/8ずれていたとすると、復号されたデータは送信データが1である間は4+4i、-1である間は-4-4iとなる。この復号されたデータにおいては付加した識別データは(4+4i -4-4i 4+4i -4-4i 4+4i 4+4i)となっており、これを受信データ処理部206で見つけることで4+4iが1、-4-4iが-1に対応することが分かる。これにより復号されたデータから元の送信データを正しく復元可能である。以上がこの無線通信システムにおける送受信の方法である。 上述の結果より本無線通信システムにおいては、スペクトラム拡散された送信データを符号化用符号と復号用符号の同期を取ることなく復号可能である。 This encoded data is transmitted from the transmitter and received by the receiver. The receiver multiplies the decoding code (1 + i -1 + i -1-i 1-i), and the period adder 204 adds one period of the code for decoding. Assuming that the decoding code is shifted from the coding code by t / 8 with respect to the code period t, the decoded data is 4 + 4i while the transmission data is 1, and -4 while the transmission data is -1. -4i. In this decoded data, the added identification data is (4 + 4i -4-4i 4 + 4i -4-4i 4 + 4i 4 + 4i), and this is detected by the received data processing unit 206. It can be seen that 4 + 4i corresponds to 1, and -4-4i corresponds to -1. As a result, the original transmission data can be correctly restored from the decoded data. The above is the transmission / reception method in this wireless communication system. From the above results, in this wireless communication system, it is possible to decode the spread spectrum transmission data without synchronizing the encoding code and the decoding code.
 以上のように、本実施例では、符号化符号と復号符号の対を複数用いて通信を行う。ここで、用いる符号化符号、復号符号は自己相関が強く、相互相関がゼロになるような符号を用いる。すなわち、対となる符号化符号と復号符号は任意の位相で掛け合せて、周期加算を実施するとゼロでない値となり、異なる対の符号化符号と復号符号はいずれの位相で掛け合せて、周期加算を実施するとゼロとなる。 As described above, in this embodiment, communication is performed using a plurality of pairs of encoding codes and decoding codes. Here, the encoding code and decoding code to be used are codes that have strong autocorrelation and zero cross-correlation. In other words, when the paired encoding code and decoding code are multiplied by an arbitrary phase and cyclic addition is performed, a non-zero value is obtained, and different pairs of encoding code and decoding code are multiplied by any phase and cyclic addition is performed. Then it becomes zero.
 このように、符号を掛け合わせる位相によらず所望の値を得ることができるため、同期回路を不要となり、装置の小型化に寄与することができる。 As described above, since a desired value can be obtained regardless of the phase to which the sign is multiplied, the synchronization circuit is not necessary, and the apparatus can be reduced in size.
 実施例1では使用した符号の符号長が4であったため同時に通信可能な無線端末数は3以下であった。本実施例では、無線端末数が4以上でも適用可能な例を示す。無線端末が4以上となる場合には、符号を伸長し、符号組の符号の数を増やす。符号の伸長は、符号の繰り返し、相似拡大及びその組み合わせにより実現可能である。 In Example 1, since the code length of the code used was 4, the number of wireless terminals that can communicate simultaneously was 3 or less. In the present embodiment, an example is applicable even when the number of wireless terminals is four or more. When the number of wireless terminals is 4 or more, the code is expanded and the number of codes in the code set is increased. The extension of the code can be realized by repeating the code, expanding the similarity, and a combination thereof.
  例えば符号長4の符号組[(1 1 1 1),(1 i -1 -i),(1 -i -1 i)]を元に符号長8の符号組を作ると、符号組[(1 1 1 1 1 1 1 1),(1 1 i i -1 -1 -i -i),(1 1 -i -i -1 -1 i i),(1 i -1 -i 1 i -1 -i),(1 -i -1 i 1 -i -1 i) ]となる。この符号化用符合に対応する復号用符号は[(1 1 1 1 1 1 1 1),(1 1 -i -i -1 -1 i i),(1 1 i i -1 -1 -i -i),(1 -i -1 i 1 -i -1 i),(1 i -1 -i 1 i -1 -i) ]である。これを用いて実施例1と同様の処理を行うことにより、同時に無線端末数5までの無線通信システムを構築することが出来る。 以上の結果より符号を伸長することで、無線端末数を増加させた無線通信システムが構築可能である。
For example, when a code set of code length 8 is created based on a code set of code length 4 [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)], the code set [( 1 1 1 1 1 1 1 1), (1 1 ii -1 -1 -i -i), (1 1 -i -i -1 -1 ii), (1 i -1 -i 1 i -1- i), (1 -i -1 i 1 -i -1 i)]. The decoding code corresponding to this coding code is [(1 1 1 1 1 1 1 1), (1 1 -i -i -1 -1 ii), (1 1 ii -1 -1 -i -i ), (1 -i -1 i 1 -i -1 i), (1 i -1 -i 1 i -1 -i)]. By using the same processing as in the first embodiment using this, it is possible to construct a wireless communication system with up to five wireless terminals at the same time. By extending the code from the above results, a wireless communication system with an increased number of wireless terminals can be constructed.
 本実施例では、MIMO(Multiple-Input Multiple-Output)方式を用いた無線通信システムにおける実施形態を示す。図9は本実施例の構成例である。送信機901の内部には実施例1の送信機100が3個実装されており、それぞれのアンテナ903.a,903.b,903.cから同時に異なるデータを送信することにより通信容量を増大させる。その際にそれぞれのアンテナから送信するデータに対して符号組[(1+i 1+i 1+i 1+i),(1+i 1-i -1-i -1+i),(1+i -1+i -1-i 1-i)]を用いて符号化する。受信機902の内部には実施例2の受信機200が3個実装されており、それぞれの受信アンテナ904.a,904.b,904.cでは、3つの送信アンテナ903.a, 903.b 903.cからの送信波が合成されて受信される。この際に合成された3つの送信波の符号化用符号の位相は揃っていない。 In this embodiment, an embodiment in a wireless communication system using a MIMO (Multiple-Input Multiple-Output) scheme is shown. FIG. 9 shows a configuration example of this embodiment. Three transmitters 100 according to the first embodiment are mounted in the transmitter 901, and the communication capacity is increased by transmitting different data simultaneously from the respective antennas 903.a, 903.b, and 903.c. . In this case, the code set [(1 + i 1 + i 1 + i 1 + i), (1 + i 1-i -1-i -1 + i), (1 + i -1 + i -1-i 1-i)]. Three receivers 200 according to the second embodiment are mounted in the receiver 902, and each of the receiving antennas 904.a, 904.b, and 904.c has three transmitting antennas 903.a and 903.b. The transmission wave from 903.c is synthesized and received. At this time, the phases of the encoding codes of the three transmission waves synthesized are not aligned.
 この受信波に対し実施例1と同様に復号用の符号組[(1+i 1+i 1+i 1+i),(1+i -1+i -1-i 1-i),(1+i 1-i -1-i -1+i)]を用いて復号すると、符号の位相によらず対象の符号化用符号で符号化されたデータ以外は0となる。そのため対象の符号化用符号により符号化されたデータのみを選択的に取り出せる。MIMO受信機の3つのアンテナ904.a,904.b,904.cで受信されたデータに対してこの方法で送信データを選択的に取り出すことにより、通信容量を増大させることが出来る。 Similar to the first embodiment, a decoding code set [(1 + i 1 + i 1 + i 1 + i), (1 + i -1 + i -1-i 1-i), ( 1 + i 1-i -1-i -1 + i)], the data other than the data encoded with the target encoding code is 0 regardless of the code phase. Therefore, only data encoded by the target encoding code can be selectively extracted. By selectively extracting transmission data from data received by the three antennas 904.a, 904.b, and 904.c of the MIMO receiver, the communication capacity can be increased.
 上記のように、本発明をMIMO方式を用いた無線通信システムに適用することで、実施例1の効果に加えて通信容量を増大することが出来る。また、実施例2と同様に符号を伸長することで、同時に送受信できるアンテナ数を増やすことが出来るため、さらに通信容量を増大させることが可能である。
As described above, by applying the present invention to the wireless communication system using the MIMO scheme, the communication capacity can be increased in addition to the effects of the first embodiment. Further, by expanding the code as in the second embodiment, the number of antennas that can be simultaneously transmitted and received can be increased, so that the communication capacity can be further increased.
 本実施例では、時間ごとに偏波角度を切り替える偏波角度ダイバシティ方式を適用した無線通信システムにおける実施形態を示す。 In the present embodiment, an embodiment in a wireless communication system to which a polarization angle diversity system that switches a polarization angle every time is applied will be described.
  図10は本システムの送信機の構成例である。符号化用符号は符号切替器1001により、切替が可能である。また、垂直偏波アンテナ1003と水平偏波アンテナ1004に入力する電力をアンテナ切替器1002で調整することで、送信波の偏波角度を変更することが出来る。 Fig. 10 shows a configuration example of the transmitter of this system. The encoding code can be switched by a code switch 1001. Further, the polarization angle of the transmission wave can be changed by adjusting the power input to the vertically polarized antenna 1003 and the horizontally polarized antenna 1004 by the antenna switch 1002.
  図11は本無線システムの受信機の構成例である。符号生成部104、複素乗算回路300、周期加算器204は使用する偏波角度の数に対してそれぞれ1組ずつ必要である。 Fig. 11 shows a configuration example of the receiver of this wireless system. One set of each of the code generation unit 104, the complex multiplication circuit 300, and the period adder 204 is required for the number of polarization angles to be used.
  偏波角度ダイバシティ方式を用いた無線通信では、送信波は偏波角度ごとに異なった伝搬経路を通る場合がある。図12に示すように、通る経路毎に伝搬に要する時間が異なるため、送信機1000から送信された複数の偏波角度の送信波は、合成された状態で受信機1100に届く。送信機1000では、偏波角度毎に本発明の符号組[(1+i 1+i 1+i 1+i),(1+i 1-i -1-i -1+i),(1+i -1+i -1-i 1-i)]を用いてデータを符号化する。 In wireless communication using the polarization angle diversity method, the transmitted wave may pass through different propagation paths for each polarization angle. As shown in FIG. 12, since the time required for propagation differs for each path that passes through, the transmission waves having a plurality of polarization angles transmitted from the transmitter 1000 reach the receiver 1100 in a combined state. In the transmitter 1000, the code pairs of the present invention [(1 + i 1 + i 1 + i 1 + i), (1 + i 1-i -1-i -1 + i), (1 + i -1 + i -1-i 1-i)] is used to encode the data.
  例えば偏波角度0゜で送信する送信波に対して符号(1+i 1+i 1+i 1+i)、偏波角度45゜で送信する送信波に対しては符号(1+i 1-i -1-i -1+i)、偏波角度90゜で送信する送信波に対して符号(1+i -1+i -1-i 1-i)を用いて符号化する。符号化用符号を切り替える符号切替器1001と偏波角度を変更するアンテナ切替器1002は時刻同期が取られており、符号化用符号と偏波角度は同時に切り替えることが可能である。受信機においては復号用の符号組[(1+i 1+i 1+i 1+i),(1+i -1+i -1-i 1-i),(1+i 1-i -1-i -1+i)]を用いて実施例1と同様に復号することで、合成された受信波から偏波角度ごとのデータを選択的に受信することができる。また実施例2と同様に符号を伸長することで、使用する偏波角度を増やすことが可能である。 For example, a code (1 + i 1 + i 1 + i 1 + i) is transmitted for a transmission wave transmitted at a polarization angle of 0 °, and a code (1 + i 1) is transmitted for a transmission wave transmitted at a polarization angle of 45 °. -i -1-i -1 + i), and a transmission wave transmitted at a polarization angle of 90 ° is encoded using a code (1 + i -1 + i -1-i 1-i). The code switch 1001 that switches the encoding code and the antenna switch 1002 that changes the polarization angle are time-synchronized, and the encoding code and the polarization angle can be switched simultaneously. At the receiver, the decoding code sets [(1 + i 1 + i 1 + i 1 + i), (1 + i -1 + i -1-i 1-i), (1 + i 1-i- 1-i -1 + i)] is used in the same manner as in the first embodiment, so that data for each polarization angle can be selectively received from the synthesized received wave. Further, by extending the code as in the second embodiment, it is possible to increase the polarization angle to be used.
  以上のように、本発明を偏波角度ダイバシティ方式を用いた無線機に適用することで偏波角度が変更されるたび符号の同期をとる必要なくデータを受信することが可能である。
As described above, by applying the present invention to a radio apparatus using the polarization angle diversity system, it is possible to receive data without having to synchronize codes every time the polarization angle is changed.
 本実施例では、FPGAを用いたソフトウェア無線機における実施形態を示す。図11に送信機、図12に受信機の構成例を示す。 In this example, an embodiment of a software defined radio using an FPGA is shown. FIG. 11 shows a configuration example of a transmitter, and FIG. 12 shows a configuration example of a receiver.
  まず送信機のFPGA1301において、送信データ生成部101で送信データに対し(1 -1 1 -1 1 1)というヘッダを付加する。符号組[(1+i 1+i 1+i 1+i),(1+i 1-i -1-i -1+i),(1+i -1+i -1-i 1-i)]を用いて、そのデータを符号化する。I相で符号の実数部、Q相で符号の虚数部が乗算器102により乗算される。このそれぞれに対しFPGA内の搬送波生成部401で生成された搬送波を乗算する。この際にQ相に乗算する搬送波は遅延器105により位相を1/4周期ずらす。この符号化されたデータを加算器107で加算し、FPGA1301外部のDAC103によりアナログ変換する。アナログ変換されたデータはPA110によって増幅されバンドパスフィルタ109で帯域制限された後、送信アンテナ108から送信される。 First, in the FPGA 1301 of the transmitter, the transmission data generation unit 101 adds a header (1 -1 1 -1 1 1) to the transmission data. Code set [(1 + i 1 + i 1 + i 1 + i), (1 + i 1-i -1-i -1 + i), (1 + i -1 + i -1-i 1-i )] Is used to encode the data. The multiplier 102 multiplies the real part of the code in the I phase and the imaginary part of the code in the Q phase. Each of these is multiplied by the carrier wave generated by the carrier wave generating unit 401 in the FPGA. At this time, the phase of the carrier wave multiplied by the Q phase is shifted by a quarter period by the delay unit 105. The encoded data is added by the adder 107 and converted into an analog signal by the DAC 103 outside the FPGA 1301. The analog-converted data is amplified by the PA 110, band-limited by the band-pass filter 109, and then transmitted from the transmission antenna 108.
  送信されたデータは受信機のアンテナ201で受信され、LNA202によって増幅される。増幅された信号はバンドパスフィルタ109を通った後、ADC203によってデジタル変換されFPGA1301へ入力される。入力された信号はI相、Q相それぞれで、正弦波生成部402で生成された、搬送波と同じ周波数の正弦波4を乗算器102で乗算する。Q相で乗算する正弦波は、遅延器104によりI相に対して1/4周期遅らせる。この際に受信信号の搬送波の位相と乗算する正弦波の位相の同期を取っていないため、位相がずれている可能性がある。位相のずれは
 (1)-π/4以上π/4より小さい
(2)π/4以上3π/4より小さい
 (3)3π/4以上5π/4より小さい
(4)5π/4以上7π/4より小さい
のいずれかに場合分けされる。データは(1)の場合には正しく受信されるが、(2)の場合i倍、(3)の場合-1倍、(4)の場合には-i倍されて受信される。またいずれの場合も位相がπ/4ずれている時にデータの電力が最大cos(π/4)倍に減少するが、増幅器で十分増幅していれば問題にならない。正弦波が乗算された信号は、ローパスフィルタ205を通った後複素乗算器300で復号用の符号と乗算される。その後周期加算器204で符号1周期分加算され、受信データ処理部206で受信データとなる。受信されたデータは上記正弦波のずれにより定数倍されているが、実施例1で述べたように所望の符号化用符号で符号化されたデータ以外は0となるため、付加した識別データを確認することにより所望のデータを得ることが可能である。例えば(2)の場合には、識別データは(i -i i -i i i)となる。
The transmitted data is received by the antenna 201 of the receiver and amplified by the LNA 202. The amplified signal passes through the band-pass filter 109, is digitally converted by the ADC 203, and is input to the FPGA 1301. The input signals are I-phase and Q-phase, respectively, and the multiplier 102 multiplies the sine wave 4 generated by the sine wave generation unit 402 and having the same frequency as the carrier wave. The sine wave multiplied by the Q phase is delayed by a quarter period with respect to the I phase by the delay unit 104. At this time, since the phase of the sine wave to be multiplied is not synchronized with the phase of the carrier wave of the received signal, the phase may be shifted. Phase shift is (1) -π / 4 or more and less than π / 4 (2) π / 4 or more and less than 3π / 4 (3) 3π / 4 or more and less than 5π / 4 (4) 5π / 4 or more and 7π / The case is divided into one of less than 4. Data is received correctly in the case of (1), but is received i times in the case of (2), -1 times in the case of (3), and -i times in the case of (4). In either case, when the phase is shifted by π / 4, the power of the data is reduced by a maximum of cos (π / 4) times. However, this is not a problem if it is sufficiently amplified by the amplifier. The signal multiplied by the sine wave passes through the low-pass filter 205 and is then multiplied by the decoding code in the complex multiplier 300. Thereafter, one period of code is added by the period adder 204, and the reception data processing unit 206 becomes reception data. The received data is multiplied by a constant due to the deviation of the sine wave. However, as described in the first embodiment, since data other than the data encoded with the desired encoding code is 0, the added identification data is By confirming, it is possible to obtain desired data. For example, in the case of (2), the identification data is (i -i i -i i i).
  以上により本発明を用いることで、FPGAを用いたソフトウェア無線機において搬送波の位相の同期を取ることなくデータを受信することが可能となる。本実施例では実施例2-4も同様の構成で実施可能である。 As described above, by using the present invention, it is possible to receive data without synchronizing the phase of the carrier wave in the software defined radio using the FPGA. In this embodiment, Embodiment 2-4 can be implemented with the same configuration.
  なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
100、100.a 100.b 100.c 送信機
101 送信データ生成部
102 乗算器
103 デジタルアナログ変換器
104 符号生成部
105 遅延器
106 発振器
107 加算器
108 送信アンテナ
109 バンドパスフィルタ
110 電力増幅器
200 受信機
201 受信アンテナ
202 低雑音増幅器
203 アナログデジタル変換器
204 周期加算器
205 ローパスフィルタ
206 受信データ処理部
300 複素乗算回路
301 符号実部生成部
302 符号虚部生成部
401 搬送波生成部
402 正弦波生成部
501 符号化されたデータ
502 復号用符号
503 複素乗算結果
601 符号化されたデータ
602 復号用符号
603 複素乗算結果
701 符号化されたデータ
702 復号用符号
703 複素乗算結果
801 符号化されたデータ
802 復号用符号
803 複素乗算結果
901 MIMO送信機
902 MIMO受信機
903.a 903.b 903.c MIMO送信アンテナ
904.a 904.b 904.c MIMO受信アンテナ
1000 偏波角度ダイバシティ送信機
1001 符号切替器
1002 アンテナ切替器
1003 垂直偏波アンテナ
1004 水平偏波アンテナ
1100 偏波角度ダイバシティ受信機
1200 遮蔽物
1301 FPGA
100, 100.a 100.b 100.c Transmitter 101 Transmission data generation unit 102 Multiplier 103 Digital analog converter 104 Code generation unit 105 Delay unit 106 Oscillator 107 Adder 108 Transmission antenna 109 Bandpass filter 110 Power amplifier 200 Reception 201 Receiving antenna 202 Low noise amplifier 203 Analog to digital converter 204 Periodic adder 205 Low pass filter 206 Received data processing unit 300 Complex multiplier circuit 301 Code real part generator 302 Code imaginary part generator 401 Carrier wave generator 402 Sine wave generator 501 Encoded data 502 Decoding code 503 Complex multiplication result 601 Encoded data 602 Decoding code 603 Complex multiplication result 701 Encoded data 702 Decoding code 703 Complex multiplication result 801 Encoded data 802 Code 803 Complex multiplication result 901 MIMO transmitter 902 MIMO receiver 903.a 903.b 903.c MIMO transmit antenna 904.a 904.b 904.c MIMO receive antenna 1000 Polarization angle diversity transmitter 1001 Code switcher 1002 Antenna switch 1003 Vertical polarization antenna 1004 Horizontal polarization antenna 1100 Polarization angle diversity receiver 1200 Shield 1301 FPGA

Claims (7)

  1.  符号化に用いる符号と、復号化に用いる符号との対を複数用いて通信を行う無線通信システムであって、
     通信データをいずれかの符号を用いて符号化して送信する送信機と、
     受信した前記通信データに、前記送信機が符号化に用いた符号と対となる符号を用いて前記通信データを複合する受信機と、を備え、
     前記符号化する符号と、前記復号化する符号とは、対となる符号同士を任意の位相で掛け合わせ一定周期にわたり加算すると0でない値となり、異なる対の符号同士を任意の位相で掛け合わせ一定周期にわたり加算するとおよそ0となることを特徴とする無線通信システム。
    A wireless communication system that performs communication using a plurality of pairs of codes used for encoding and codes used for decoding,
    A transmitter that encodes and transmits communication data using any code;
    A receiver that combines the communication data with the received communication data using a code that is paired with the code used by the transmitter for encoding;
    The code to be encoded and the code to be decoded have a non-zero value when the codes in pairs are multiplied by an arbitrary phase and added over a certain period, and the codes of different pairs are multiplied by an arbitrary phase and are constant. A wireless communication system characterized in that the sum is approximately 0 when added over a period.
  2.  請求項1記載の無線通信システムにおいて、
     前記受信機は、受信した無線信号を復調した復調信号と符号を複素乗算する乗算器と、前記乗算器の出力の実部と虚部を一定周期にわたりそれぞれ加算する周期加算器と、と備えることを特徴とする無線通信システム。
    The wireless communication system according to claim 1, wherein
    The receiver includes a multiplier that performs complex multiplication of a demodulated signal obtained by demodulating a received radio signal and a code, and a periodic adder that adds a real part and an imaginary part of the output of the multiplier over a certain period, respectively. A wireless communication system.
  3.  請求項1記載の無線通信システムにおいて、
     前記符号化に用いる符号は、iを虚数単位としたときに符号組[(1 1 1 1),(1 i -1 -i),(1 -i -1 i)]、または、それを複素平面上で並進、回転、拡大縮小の組み合わせにより変形した符号組を用いることを特徴とした無線通信システム。
    The wireless communication system according to claim 1, wherein
    The code used for the encoding is a code set [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)] or complex when i is an imaginary unit. A wireless communication system using a code set deformed by a combination of translation, rotation, and enlargement / reduction on a plane.
  4.  請求項1記載の無線通信システムにおいて、
     前記符号化に用いる符号は、iを虚数単位としたときに符号組[(1 1 1 1 1 1 1 1),(1 1 i i -1 -1 -i -i),(1 1 -i -i -1 -1 i i),(1 i -1 -i 1 i -1 -i),(1 -i -1 i 1 -i -1 i)]を用いることを特徴とした無線通信システム。
    The wireless communication system according to claim 1, wherein
    The codes used for the encoding are code sets [(1 1 1 1 1 1 1 1), (1 1 ii -1 -1 -i -i), (1 1 -i- i -1 -1 ii), (1 i -1 -i 1 i -1 -i), (1 -i -1 i 1 -i -1 i)].
  5.  請求項1記載の無線通信システムにおいて、
     前記符号化に用いる符号は、iを虚数単位としたときに符号組[(1 1 1 1),(1 i -1 -i),(1 -i -1 i)]、または、それを複素平面上で並進、回転、拡大縮小の組み合わせにより変形した符号組を繰り返し、相似拡大およびその組み合わせにより伸長した符号組を用いることを特徴とした無線通信システム。
    The wireless communication system according to claim 1, wherein
    The code used for the encoding is a code set [(1 1 1 1), (1 i -1 -i), (1 -i -1 i)] or complex when i is an imaginary unit. A wireless communication system characterized in that a code set deformed by a combination of translation, rotation, and enlargement / reduction on a plane is repeated, and a code set expanded by similarity enlargement and the combination thereof is used.
  6.  請求項1記載の無線通信システムにおいて、
     前記送信機は、あらかじ前記受信機と共有した識別データを前記通信データに付加して送信することを特徴とした無線通信システム。
    The wireless communication system according to claim 1, wherein
    The wireless communication system, wherein the transmitter adds identification data shared with the receiver in advance to the communication data for transmission.
  7.  請求項1記載の無線通信システムにおいて、
     前記送信機は、異なる偏波角度の搬送波を複数用いて送信するものであって、前記通信データをのせる搬送波の偏波角度ごとに定められた符号を用いて前記通信データを符号化して無線送信することを特徴とする無線通信システム。
    The wireless communication system according to claim 1, wherein
    The transmitter transmits a plurality of carrier waves having different polarization angles, and wirelessly encodes the communication data using a code determined for each polarization angle of the carrier wave carrying the communication data. A wireless communication system characterized by transmitting.
PCT/JP2014/061647 2014-04-25 2014-04-25 Wireless communication system WO2015162771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061647 WO2015162771A1 (en) 2014-04-25 2014-04-25 Wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061647 WO2015162771A1 (en) 2014-04-25 2014-04-25 Wireless communication system

Publications (1)

Publication Number Publication Date
WO2015162771A1 true WO2015162771A1 (en) 2015-10-29

Family

ID=54331958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061647 WO2015162771A1 (en) 2014-04-25 2014-04-25 Wireless communication system

Country Status (1)

Country Link
WO (1) WO2015162771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213102A1 (en) * 2016-06-09 2017-12-14 株式会社日立製作所 Wireless system, elevator control system using same, and transformer facility monitoring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156720A (en) * 1999-11-22 2001-06-08 Toshiba Corp Optical transmission system and optical transmission method
JP2002290273A (en) * 2001-03-27 2002-10-04 Hitachi Kokusai Electric Inc Sliding correlator for spread spectrum communication
JP2003134041A (en) * 2001-10-30 2003-05-09 Matsushita Electric Ind Co Ltd Radio transmitter, antenna measuring instrument, and radio transmitting method
JP2003244046A (en) * 2002-02-15 2003-08-29 Japan Telecom Co Ltd Cdma base station apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156720A (en) * 1999-11-22 2001-06-08 Toshiba Corp Optical transmission system and optical transmission method
JP2002290273A (en) * 2001-03-27 2002-10-04 Hitachi Kokusai Electric Inc Sliding correlator for spread spectrum communication
JP2003134041A (en) * 2001-10-30 2003-05-09 Matsushita Electric Ind Co Ltd Radio transmitter, antenna measuring instrument, and radio transmitting method
JP2003244046A (en) * 2002-02-15 2003-08-29 Japan Telecom Co Ltd Cdma base station apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AYE AUNG ET AL.: "Conjugate Symmetric Sequency-Ordered ComplexHadamard Transform", SIGNAL PROCESSING, IEEE TRANSACTIONS ON, July 2009 (2009-07-01), XP011253575 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213102A1 (en) * 2016-06-09 2017-12-14 株式会社日立製作所 Wireless system, elevator control system using same, and transformer facility monitoring system

Similar Documents

Publication Publication Date Title
CN111133696B (en) OAM multiplex communication method and system, transmitting device, and receiving device
CN111989877B (en) Apparatus and receiver for performing synchronization in analog spread spectrum system
US20190334744A1 (en) Method and device for transmitting pay load sequence
US10447340B2 (en) Devices and methods employing hermetic transforms for encoding and decoding digital information in spread-spectrum communication systems
JP2011035921A5 (en)
JP2008236383A (en) Radio communication system
WO2015162771A1 (en) Wireless communication system
EP3427458B1 (en) Systems and methods for spreading and co-orthogonal multi-stream spreading
US20120207010A1 (en) Wireless communication system, transmitter, receiver and wireless communication method
CN109964415B (en) Transmission device, transmission method, reception device, and reception method
JPWO2015129195A1 (en) Wireless transmission device, wireless reception device, wireless communication system, and wireless communication method
KR101292642B1 (en) Communication method for high reception sensitivity and low cost, and communication device using it
JP2014120836A (en) Transmission device and coding method
JP2016163267A (en) Radio base station device, base station system and baseband unit
JP3818535B2 (en) Orthogonal frequency division multiplex signal transmission / reception system and orthogonal frequency division multiplex signal transmission / reception method
JP3818534B2 (en) Orthogonal frequency division multiplex signal transmission / reception system and orthogonal frequency division multiplex signal transmission / reception method
JP3818537B2 (en) Orthogonal frequency division multiplex signal transmission / reception system and orthogonal frequency division multiplex signal transmission / reception method
JP3818530B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP3818528B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP3818527B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP3818531B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP3818525B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP3818538B2 (en) Orthogonal frequency division multiplex signal transmission / reception system and orthogonal frequency division multiplex signal transmission / reception method
JP3818533B2 (en) Orthogonal frequency division multiplex signal transmission / reception system and orthogonal frequency division multiplex signal transmission / reception method
WO2015179949A1 (en) A method and apparatus for encoding data using instantaneous frequency dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP