WO2015161935A1 - Skalierbare induktive ladestation - Google Patents

Skalierbare induktive ladestation Download PDF

Info

Publication number
WO2015161935A1
WO2015161935A1 PCT/EP2015/052623 EP2015052623W WO2015161935A1 WO 2015161935 A1 WO2015161935 A1 WO 2015161935A1 EP 2015052623 W EP2015052623 W EP 2015052623W WO 2015161935 A1 WO2015161935 A1 WO 2015161935A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
charging
ground
electrical energy
ground unit
Prior art date
Application number
PCT/EP2015/052623
Other languages
English (en)
French (fr)
Inventor
Josef Krammer
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201580020883.5A priority Critical patent/CN106232419B/zh
Publication of WO2015161935A1 publication Critical patent/WO2015161935A1/de
Priority to US15/331,171 priority patent/US10427531B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the invention relates to an inductive charging system for a vehicle.
  • the invention relates to the construction of an inductive charging station.
  • Electric vehicles typically have a battery in which electrical energy can be stored to operate an electric machine of the vehicle.
  • the battery of the vehicle can be charged with electrical energy from a power grid.
  • the battery is coupled to the power supply network to the electrical energy from the
  • Power supply network to be transferred to the battery of the vehicle.
  • the coupling can be wired (via a charging cable) and / or wireless (based on an inductive coupling between a charging station and the vehicle).
  • One approach to automatically, wirelessly, inductively charging the battery of the vehicle is to transmit electrical energy to the battery from the floor to the underbody of the vehicle via magnetic induction via the underbody clearance 120. This is shown by way of example in FIG.
  • Fig. 1 shows a vehicle 100 having an electrical energy storage 103 (e.g., a rechargeable battery 103).
  • the vehicle 100 includes a so-called secondary coil in the vehicle underbody, wherein the secondary coil is connected to the memory 103 via an impedance matching, not shown, and a rectifier 101.
  • the secondary coil is typically part of a so-called “Wireless Power Transfer” (WPT) vehicle unit 102.
  • WPT Wireless Power Transfer
  • the secondary coil of the WPT vehicle unit 102 may be positioned over a primary coil, with the primary coil mounted, for example, on the floor of a garage.
  • the primary coil is typically part of a so-called WPT Ground unit 111.
  • the primary coil is connected to a power supply 110 (also referred to as a charging unit 110 in this document).
  • the power supply 110 may include a radio-frequency generator that generates an alternating current current in the primary coil of the WPT ground unit 111, thereby inducing a magnetic field. This magnetic field is also referred to in this document as the electromagnetic charging field.
  • the electromagnetic charging field may have a predefined charging field frequency range.
  • the charging field frequency range may be in the frequency range of e.g. 80-90kHz (especially at 85kHz) are.
  • Charging may be controlled in the vehicle 100 by a charging controller 105 (also referred to as WPT controller 105).
  • the load controller 105 may be configured for this purpose, e.g. wirelessly communicating with the charging unit 110 (e.g., with a wallbox).
  • the WPT ground unit 111 may be reduced by, for example, outsourcing certain components from the WPT ground unit 111 to the loading unit 110. However, this can lead to increased requirements with respect to a connecting cable 112 between ground unit 111 and loading unit 110.
  • the present document addresses the technical problem of constructing a WPT ground unit 111 which reduces the size of the WPT ground unit 111
  • connection cable 112 between ground unit 111 and loading unit 110 is made possible.
  • a ground unit (in particular a WPT ground unit) is described, which is set up to generate an electromagnetic charging field for the transmission of electrical energy to a vehicle (in particular a vehicle with electric drive).
  • the vehicle can be one
  • the ground unit may be part of a charging station which includes, in addition to the ground unit, a charging unit (e.g., a wallbox) connected to the ground unit via a connection cable.
  • a charging unit e.g., a wallbox
  • the ground unit includes a first interface configured to receive electrical energy in the form of a DC current at the ground unit.
  • the connection cable can be connected by a charging unit via the first interface of the ground unit.
  • the ground unit may thus be configured to receive a DC (Direct Current) current at an input of the ground unit (i.e., at the first interface).
  • DC Direct Current
  • the ground unit further includes an AC generator (also referred to herein as an HF (High Frequency) generator) configured to convert the DC to AC.
  • the alternating current typically has the same frequency as the electromagnetic charging field generated by the ground unit.
  • the alternating current may have a frequency of 80-90 kHz (in particular 85 kHz).
  • the ground unit also includes a primary coil configured to generate the electromagnetic charging field from the alternating current.
  • the ground unit is thus configured to generate the electromagnetic charging field on the basis of a direct current at the input of the ground unit. This makes it possible to transfer direct current from the charging unit via the connecting cable to the ground unit, whereby the requirements of the
  • the ground unit does not comprise units for generating the direct current from a supply network and / or for correcting a power factor (power factor correction). These units can be arranged in the loading unit.
  • the ground unit may further include a sensor configured to acquire measurement data regarding a state of the ground unit. For example, a temperature of the ground unit and / or the presence of a foreign body in the vicinity of the ground unit can be detected.
  • the ground unit may comprise a communication unit which is set up to transmit data based on the measurement data to the charging unit.
  • the charging unit may be configured to provide the electrical energy in the form of a direct current to the ground unit.
  • the charging unit can be set up to provide the electrical energy as a function of the received data.
  • the communication unit may be configured to be a wireless
  • the charging unit establishe.g., a WLAN connection
  • a corresponding communication unit in the charging unit e.g., a WLAN connection
  • the communication unit of the ground unit can be set up, a power line communication (PLC).
  • PLC power line communication
  • connection cable thus does not require a dedicated signal line for transmitting the data from the ground unit to the charging unit (or vice versa).
  • Connecting cable can be reduced.
  • the ground unit may comprise a control unit.
  • the control unit may be configured to control the generation of the alternating current by the AC generator.
  • the control unit may be configured to receive instructions from the charging unit (via the
  • the control unit may then generate the alternating current in dependence on the received
  • the ground unit may include a second interface (and possibly other interfaces).
  • the second interface may be configured to pass electrical energy in the form of a direct current to another ground unit.
  • several ground units can be connected in series or cascaded. This is advantageous since a plurality of ground units can thus be supplied with a loading unit. This can reduce the cost of charging stations with multiple parking spaces.
  • a charging unit for a charging station for the wireless transmission of electrical energy to a vehicle comprises a Power Factor Correction (PFC) unit, which is set up to draw electrical energy in the form of a direct current from an electrical supply network.
  • the electrical utility grid may provide alternating current (AC) power.
  • the PFC unit may include a rectifier to disconnect from the AC power of the electric
  • the charging unit further includes a first interface configured to provide the electrical energy in the form of a direct current to a ground unit.
  • the first interface of the charging unit may be connected to a first interface of the ground unit via a connecting cable to transfer the electrical energy from the charging unit to the ground unit.
  • Ground unit to be reduced.
  • PFC unit can be used for a variety of ground units, thereby reducing the cost of a charging station with a plurality of parking spaces.
  • the charging unit may include a plurality of interfaces configured to provide the electrical energy in the form of a direct current to a corresponding plurality of ground units. As already explained above, this makes it possible to provide a cost-reduced charging station with a large number of charging stations.
  • the charging unit may comprise a communication unit that is set up with the vehicle and with the ground unit (possibly with a plurality of
  • the communication unit may be configured to establish a wireless communication connection (e.g., WLAN) and / or a power line communication (PLC) connection.
  • a wireless communication connection e.g., WLAN
  • PLC power line communication
  • the charging unit may include a control unit configured to control the transmission of electrical energy to the vehicle by the ground unit.
  • instructions can be transmitted via the communication unit to the one or more ground units.
  • a charging station for the wireless transmission of electrical energy to a vehicle comprises a charging unit described in this document and configured to provide electrical energy in the form of a direct current at a first interface of the charging unit.
  • the charging station comprises at least one ground unit described in this document, which is set up to receive the electrical energy in the form of a direct current at a first interface of the ground unit, and to generate therefrom an electromagnetic charging field for the transmission of electrical energy to the vehicle.
  • the charging station may further include a connection cable configured to galvanically connect the first interface of the charging unit to the first interface of the ground unit.
  • FIG. 1 shows an exemplary system for inductively charging an electrical storage of a vehicle.
  • FIG. 2 is a block diagram of an exemplary charging station
  • FIG. 3 shows exemplary components of a loading unit, a connection cable and a floor unit
  • FIG. 4 shows an improved structure of a loading unit, a connection cable and a floor unit
  • Fig. 5a shows an exemplary parallel connection of a plurality of
  • 5b shows an exemplary parallel connection and / or cascading of
  • a charging station includes a charging unit 110 configured to communicate with a vehicle 100 (e.g., via a wireless network)
  • the floor unit 111 of the charging station is connected to the charging unit 110 via a connection cable 112.
  • the charging unit 110 is typically provided with an electrical power supply (e.g., an electrical power supply)
  • connection cable 112 is configured to transmit electric power from the charging unit 110 to the ground unit 111. By means of a primary coil in the ground unit 111, this electrical energy can then be transmitted inductively to the secondary coil in the vehicle unit 102 of the vehicle 100.
  • FIG. 3 shows a loading unit 110, comprising a power factor correction (PFC) unit 303 with rectifier, wherein the rectifier is arranged, a direct current from a
  • the charging unit 110 further includes an intermediate circuit capacitor 304 configured to smooth the generated direct current.
  • the RF generator 305 is configured to generate an alternating current for generating the charging field on the direct current.
  • a frequency of the alternating current typically corresponds to the frequency of the charging field (e.g., 85kHz).
  • the charging unit 110 of FIG. 3 further comprises a control unit 302, which is set up to control the charging process (in particular the generation of the alternating current for generating the charging field).
  • the control unit 302 may receive measurement data via a signal line 322 from one or more sensors 311 of the ground unit 311. By way of the one or more sensors 311, e.g. detected that the secondary coil of a vehicle 100 is positioned above the ground unit 111.
  • the charging unit 110 further includes a communication unit 301 configured to communicate with a vehicle 100, e.g. via a wireless communication link 331 (eg, wireless LAN).
  • a charging process by a vehicle 100 can be initiated via the communication unit 301.
  • the ground unit 111 shown in FIG. 3 comprises, in addition to the one or more sensors 311, the primary coil 312 for generating the charging field from the alternating current generated by the HF generator 305. Furthermore, the
  • Ground unit 111 typically includes a resonant capacitor 313 (in particular, to provide an LC resonant circuit).
  • the one or more sensors 311 may be configured to detect the presence of the secondary coil of a vehicle 100. Alternatively or additionally, the one or more sensors 311 may be configured to detect the presence of foreign bodies in the vicinity of the ground unit 111 and / or to detect the temperature of the ground unit 111. In the charging station of FIG. 3, an alternating current is transmitted from the charging unit 110 to the ground unit 111 via the connection cable 112.
  • Transmission of an alternating current typically requires the use of an RF line with an electromagnetic shield 321. Further, the transmission of measurement data from the one or more sensors 311 to the control unit 302 requires the use of a signal line 322. In sum, therefore, relatively high and complex requirements result for cable connection 112 between charging unit 110 and ground unit 112. Further, the choice of the length of cable connection 112 is typically limited by the transmission of an RF alternating current.
  • the cable connection between charging unit 110 and ground unit 111 is thus relatively complicated for the charging station shown in FIG. 3, since so-called high-frequency strands typically have to be used for transmitting the high frequency (HF) to supply the coil 312. These must also be installed typically waterproof and shielded. The assembly of such connection cable 112 (in particular the plug connection) proves to be difficult.
  • Another disadvantage of the charging station 110, 112, 111 shown in Fig. 3 is that a complete charging station (i.e., a respective pair of charging unit 110 with ground unit 111) is required for each charging station. Has a complete charging station (i.e., a respective pair of charging unit 110 with ground unit 111) is required for each charging station. Has a complete charging station (i.e., a respective pair of charging unit 110 with ground unit 111) is required for each charging station. Has a
  • the bottom unit 111 shown in FIG. 4 comprises the HF generator 305.
  • the ground unit 111 can thus receive electrical energy in the form of a direct current via an interface 405.
  • the interface 405 may include a plug or a socket.
  • connection cable 112 can thus be connected via a plug connection with the base unit 111.
  • the charging unit 110 can also have an interface 406 at which electrical energy in the form of a direct current is provided.
  • the ground unit 111 may comprise a dedicated control unit 402, which is set up to receive and possibly evaluate the measurement data of the one or more sensors 311. The measured data and / or the evaluated data can be communicated to the charging unit 110 via a communication unit 401 of the ground unit 111.
  • the ground unit 111 may comprise a dedicated control unit 402, which is set up to receive and possibly evaluate the measurement data of the one or more sensors 311. The measured data and / or the evaluated data can be communicated to the charging unit 110 via a communication unit 401 of the ground unit 111.
  • the ground unit 111 may comprise a dedicated control unit 402, which is set up to receive and possibly evaluate the measurement data of the one or more sensors 311. The measured data and / or the evaluated data can be communicated to the charging unit 110 via a communication unit 401 of the ground unit 111
  • Communication unit 301 of the charging unit 110 via a wireless communication link (e.g., wireless LAN) with the
  • a wireless communication link is suitable for communication between charging unit 110 (e.g., a wallbox) and ground unit 111 because a wireless communication link is already in use for communication with the vehicle 100 in the charging unit 110. Instead of two
  • the wireless communication channel then additionally operates the ground unit 111.
  • Communication unit 401 for the ground unit 111 can be dispensed with a signal line 322 in the connection cable 112. Furthermore, results from the use of a dedicated control unit 402 in the ground unit 111 simplifies the control unit 302 in the charging unit 110.
  • Loading unit 110 reduced.
  • the AC power is converted into DC. This is done in the PFC unit 303 and / or in the rectifier 303.
  • the PFC unit 303 is typically required as a sub-circuit to meet grid connection conditions.
  • the transmission from the loading unit 110 to the ground unit 111 takes place by means of direct current.
  • the ground unit 111 the direct current is converted into the high-frequency alternating current necessary for inductive transmission.
  • the transmission of the signals (i.e., the control signals and / or measurement data) between the loading unit 110 and the ground unit 111 may be carried out by means of a suitable communication medium 431. Examples of suitable
  • Communication media 431 is a CAN bus, Ethernet, PLC (Power Line Communication) via the DC power supply of the connection cable 112, and / or WLAN (as used, for example, for the communication link between vehicle 100 and charging unit 110).
  • the loading unit 110 may include ports or interfaces 406 for a plurality of ground units 111. This is illustrated by way of example in FIGS. 5a and 5b. Both the DC power supply, as well as the
  • Communication medium can be connected in parallel, so that a plurality of ground units 111, 511 can be supplied with a charging unit 110 without additional electronics effort.
  • Fig. 5a shows the parallel
  • Vehicles 100 on the connected ground units 111, 511 are typically limited by the performance of the loading unit 110 (specifically, the PFC unit 303) providing the corresponding sum line for the plurality of ground unit 111.
  • FIG. 5 b shows the possibility of cascading a plurality of ground units 111, 511 or of connecting them in series. For that purpose that is
  • Loading unit 110 required.
  • Number of lines in the cable connection 112 (loading unit 110 ⁇ -> ground unit 111) can be reduced by alternative communication methods.
  • signal lines 322 can be dispensed with completely.
  • Ground unit 111 an additional communication unit 401 are provided, since in the loading unit 110 already a communication unit 301 is present. Furthermore, the structure described in this document allows a simple (even subsequent) and cost-effective extension of a charging station on several parking spaces (ie, more ground unit 111, 511).
  • the loading of a fleet of vehicles 100 can be easily organized by loading vehicles 100 parked above the ground units 111, 511 in succession under the control of the central loading unit 110.
  • a charging unit 110 with increased power and several ground units 111, 511 can be operated simultaneously. As a result, a fleet of vehicles 110 can be loaded in a correspondingly faster manner.
  • the central charging unit 110 distributes the power to the connected ground units 111, 511 and can

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein induktives Ladesystem für ein Fahrzeug. Insbesondere betrifft die Erfindung den Aufbau einer induktiven Ladestation. Es wird eine Bodeneinheit (111) beschrieben, die eingerichtet ist, ein elektromagnetisches Ladefeld zur Übertragung von elektrischer Energie an ein Fahrzeug (100) zu erzeugen. Die Bodeneinheit (111) umfasst eine erste Schnittstelle (405), die eingerichtet ist, elektrische Energie in Form eines Gleichstroms an der Bodeneinheit (111) zu empfangen. Desweiteren umfasst die Bodeneinheit (111) einen Wechselstrom-Generator (305), der eingerichtet ist, den Gleichstrom in einen Wechselstrom zu wandeln. Außerdem umfasst die Bodeneinheit (11) eine Primärspule (312), die eingerichtet ist, anhand des Wechselstroms das elektromagnetische Ladefeld zu erzeugen.

Description

Skalierbare induktive Ladestation
Die Erfindung betrifft ein induktives Ladesystem für ein Fahrzeug. Insbesondere betrifft die Erfindung den Aufbau einer induktiven Ladestation.
Fahrzeuge mit Elektroantrieb verfügen typischerweise über eine Batterie, in der elektrische Energie zum Betrieb einer Elektromaschine des Fahrzeugs gespeichert werden kann. Die Batterie des Fahrzeugs kann mit elektrischer Energie aus einem Stromversorgungsnetz aufgeladen werden. Zu diesem Zweck wird die Batterie mit dem Stromversorgungsnetz gekoppelt, um die elektrische Energie aus dem
Stromversorgungsnetz in die Batterie des Fahrzeugs zu übertragen. Die Kopplung kann drahtgebunden (über ein Ladekabel) und/oder drahtlos (anhand einer induktiven Kopplung zwischen einer Ladestation und dem Fahrzeug) erfolgen. Ein Ansatz zum automatischen, kabellosen, induktiven Laden der Batterie des Fahrzeugs besteht darin, dass vom Boden zum Unterboden des Fahrzeugs über magnetische Induktion über die Unterbodenfreiheit 120 die elektrische Energie zu der Batterie übertragen wird. Dies ist beispielhaft in Figur 1 dargestellt.
Insbesondere zeigt Fig. 1 ein Fahrzeug 100 mit einem Speicher 103 für elektrische Energie (z.B. mit einer aufladbaren Batterie 103). Das Fahrzeug 100 umfasst eine sogenannte Sekundärspule im Fahrzeug-Unterboden, wobei die Sekundärspule über eine nicht gezeigte Impedanzanpassung und einen Gleichrichter 101 mit dem Speicher 103 verbunden ist. Die Sekundärspule ist typischerweise Teil einer sogenannten„Wireless Power Transfer" (WPT) Fahrzeugeinheit 102.
Die Sekundärspule der WPT-Fahrzeugeinheit 102 kann über einer Primärspule positioniert werden, wobei die Primärspule z.B. auf dem Boden einer Garage angebracht ist. Die Primärspule ist typischerweise Teil einer sogenannten WPT- Bodeneinheit 111. Die Primärspule ist mit einer Stromversorgung 110 (in diesem Dokument auch als Ladeeinheit 110 bezeichnet) verbunden. Die Stromversorgung 110 kann einen Radio-Frequenz-Generator umfassen, der einen AC (Alternating Current) Strom in der Primärspule der WPT-Bodeneinheit 111 erzeugt, wodurch ein magnetisches Feld induziert wird. Dieses magnetische Feld wird in diesem Dokument auch als elektromagnetisches Ladefeld bezeichnet. Das
elektromagnetische Ladefeld kann einen vordefinierten Ladefeld-Frequenzbereich aufweisen. Der Ladefeld-Frequenzbereich kann im Frequenzbereich von z.B. 80- 90kHz (insbesondere bei 85kHz) liegen.
Bei ausreichender magnetischer Kopplung zwischen Primärspule der WPT- Bodeneinheit 111 und Sekundärspule der WPT-Fahrzeugeinheit 102 über die Unterbodenfreiheit 120 wird durch das magnetische Feld eine entsprechende Spannung und damit auch ein Strom in der Sekundärspule induziert. Der induzierte Strom in der Sekundärspule der WPT-Fahrzeugeinheit 102 wird durch den Gleichrichter 101 gleichgerichtet und im Speicher 103 (z.B. in der Batterie) gespeichert. So kann elektrische Energie kabellos von der Stromversorgung 110 zum Energie-Speicher 103 des Fahrzeugs 100 übertragen werden. Der
Ladevorgang kann im Fahrzeug 100 durch ein Lade-Steuergerät 105 (auch als WPT-Steuergerät 105 bezeichnet) gesteuert werden. Das Lade-Steuergerät 105 kann zu diesem Zweck eingerichtet sein, z.B. drahtlos, mit der Ladeeinheit 110 (z.B. mit einer Wallbox) zu kommunizieren.
Aufgrund der begrenzten Unterbodenfreiheit 120 sind die möglichen
Dimensionen einer WPT-Bodeneinheit 111 typischerweise begrenzt. Die
Dimensionen der WPT-Bodeneinheit 111 können z.B. dadurch reduziert werden, dass gewisse Komponenten aus der WPT-Bodeneinheit 111 in die Ladeeinheit 110 ausgelagert werden. Dies kann jedoch zu erhöhten Anforderungen bzgl. eines Verbindungskabels 112 zwischen Bodeneinheit 111 und Ladeeinheit 110 führen. Das vorliegende Dokument befasst sich mit dem technischen Problem des Aufbaus einer WPT-Bodeneinheit 111, durch den eine Reduzierung der
Dimensionen der WPT-Bodeneinheit 111 und eine Reduzierung der
Anforderungen an das Verbindungskabel 112 zwischen Bodeneinheit 111 und Ladeeinheit 110 ermöglicht wird.
Die Aufgabe wird durch die unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen werden u.a. in den abhängigen Ansprüchen beschrieben. Gemäß einem Aspekt wird eine Bodeneinheit (insbesondere eine WPT- Bodeneinheit) beschrieben, die eingerichtet ist, ein elektromagnetisches Ladefeld zur Übertragung von elektrischer Energie an ein Fahrzeug (insbesondere ein Fahrzeug mit Elektroantrieb) zu erzeugen. Das Fahrzeug kann einen
Personenkraftwagen, einen Lastkraftwagen und/oder ein Motorrad umfassen. Die Bodeneinheit kann Teil einer Ladestation sein, die neben der Bodeneinheit eine Ladeeinheit (z.B. eine Wallbox) umfasst, die mit der Bodeneinheit über ein Verbindungskabel verbunden ist.
Die Bodeneinheit umfasst eine erste Schnittstelle, die eingerichtet ist, elektrische Energie in Form eines Gleichstroms an der Bodeneinheit zu empfangen bzw. aufzunehmen. Über die erste Schnittstelle der Bodeneinheit kann insbesondere das Verbindungskabel von einer Ladeeinheit angeschlossen sein. Die Bodeneinheit kann somit eingerichtet sein, an einem Eingang der Bodeneinheit (d.h. an der ersten Schnittstelle) einen DC (Direct Current) Strom aufzunehmen.
Die Bodeneinheit umfasst weiter einen Wechselstrom-Generator (in diesem Dokument auch als HF (High Frequency) Generator bezeichnet), der eingerichtet ist, den Gleichstrom in einen Wechselstrom zu wandeln. Der Wechselstrom hat typischerweise die gleiche Frequenz wie das elektromagnetische Ladefeld, das durch die Bodeneinheit erzeugt wird. Beispielsweise kann der Wechselstrom eine Frequenz von 80-90kHz (insbesondere 85kHz) aufweisen. Die Bodeneinheit umfasst außerdem eine Primärspule, die eingerichtet ist, anhand des Wechselstroms das elektromagnetische Ladefeld zu erzeugen. Die Bodeneinheit ist somit eingerichtet, das elektromagnetische Ladefeld auf Basis eines Gleichstroms am Eingang der Bodeneinheit zu generieren. Dadurch wird es ermöglicht, Gleichstrom von der Ladeeinheit über das Verbindungskabel an die Bodeneinheit zu übertragen, wodurch die Anforderungen an das
Verbindungskabel reduziert werden. Gleichzeitig umfasst die Bodeneinheit keine Einheiten zur Erzeugung des Gleichstroms aus einem Versorgungsnetz und/oder zur Korrektur eines Power Faktors (Power Factor Correction). Diese Einheiten können in der Ladeeinheit angeordnet sein. So kann eine möglichst kompakte Bodeneinheit bereitgestellt werden. Die Bodeneinheit kann weiter einen Sensor umfassen, der eingerichtet ist, Messdaten bzgl. eines Zustands der Bodeneinheit zu erfassen. Beispielsweise kann eine Temperatur der Bodeneinheit und/oder die Präsenz eines Fremdkörpers in der Umgebung der Bodeneinheit erfasst werden. Desweiteren kann die Bodeneinheit eine Kommunikationseinheit umfassen, die eingerichtet ist, auf den Messdaten basierende Daten an die Ladeeinheit zu übermitteln. Wie oben dargelegt, kann die Ladeeinheit eingerichtet sein, die elektrische Energie in Form eines Gleichstroms an der Bodeneinheit bereitzustellen. Insbesondere kann die Ladeeinheit eingerichtet sein, die elektrische Energie in Abhängigkeit von den empfangenen Daten bereitzustellen.
Die Kommunikationseinheit kann eingerichtet sein, eine drahtlose
Kommunikationsverbindung (z.B. eine WLAN Verbindung) mit der Ladeeinheit aufzubauen, insbesondere mit einer entsprechenden Kommunikationseinheit in der Ladeeinheit. Alternativ oder ergänzend kann die Kommunikationseinheit der Bodeneinheit eingerichtet sein, eine Power Line Communication (PLC)
Verbindung mit der Ladeeinheit aufzubauen, insbesondere über die Stromleitung des Verbindungskabels. Das Verbindungskabel benötigt somit keine dedizierte Signalleitung zur Übertragung der Daten von der Bodeneinheit zur Ladeeinheit (oder umgekehrt). Somit können die Anforderungen und Kosten des
Verbindungskabels reduziert werden.
Die Bodeneinheit kann eine Steuereinheit umfassen. Die Steuereinheit kann eingerichtet sein, die Erzeugung des Wechselstroms durch den Wechselstrom- Generator zu steuern. Insbesondere kann die Steuereinheit eingerichtet sein, Anweisungen von der Ladeeinheit zu empfangen (über die
Kommunikationseinheit der Bodeneinheit). Die Steuereinheit kann dann die Erzeugung des Wechselstroms in Abhängigkeit von den empfangenen
Anweisungen steuern.
Die Bodeneinheit kann eine zweite Schnittstelle (und ggf. weitere Schnittstellen) umfassen. Die zweite Schnittstelle kann eingerichtet sein, elektrische Energie in Form eines Gleichstroms an eine andere Bodeneinheit weiterzugeben. Es können somit mehrere Bodeneinheiten in Reihe geschaltet oder kaskadiert werden. Dies ist vorteilhaft, da so mit einer Ladeeinheit eine Vielzahl von Bodeneinheiten versorgt werden können. So können die Kosten für Ladestationen mit mehreren Stellplätzen reduziert werden.
Gemäß einem weiteren Aspekt wird eine Ladeeinheit für eine Ladestation zur drahtlosen Übertragung von elektrischer Energie an ein Fahrzeug beschrieben. Die Ladeeinheit umfasst eine Power Factor Correction (PFC) Einheit, die eingerichtet ist, elektrische Energie in Form eines Gleichstroms aus einem elektrischen Versorgungsnetz zu entnehmen. Das elektrische Versorgungsnetz kann einen AC (Alternating Current) Strom bereitstellen. Die PFC Einheit kann einen Gleichrichter umfassen, um aus dem AC Strom des elektrischen
Versorgungsnetzes einen Gleichstrom zu generieren, der über eine erste
Schnittstelle der Ladeeinheit einer Bodeneinheit bereitgestellt werden kann. Die Ladeeinheit umfasst weiter eine erste Schnittstelle, die eingerichtet ist, die elektrische Energie in Form eines Gleichstroms für eine Bodeneinheit bereitzustellen. Die erste Schnittstelle der Ladeeinheit kann mit einer ersten Schnittstelle der Bodeneinheit über ein Verbindungskabel verbunden werden, um die elektrische Energie von der Ladeeinheit an die Bodeneinheit zu übertragen. Die Bereitstellung eines Gleichstroms ermöglicht die Verwendung eines kostengünstigen und flexibel gestaltbaren Verbindungskabels. Desweiteren kann durch die Anordnung der PFC Einheit in der Ladeeinheit die Größe der
Bodeneinheit reduziert werden. Außerdem kann so eine PFC Einheit für eine Vielzahl von Bodeneinheiten verwendet werden, wodurch die Kosten einer Ladestation mit einer Vielzahl von Stellplätzen reduziert werden.
Die Ladeeinheit kann eine Vielzahl von Schnittstellen umfasst, die eingerichtet sind, die elektrische Energie in Form eines Gleichstroms für eine entsprechende Vielzahl von Bodeneinheiten bereitzustellen. Wie bereits oben dargelegt, ermöglicht dies die Bereitstellung einer kostenreduzierten Ladestation mit einer Vielzahl von Ladeplätzen.
Die Ladeeinheit kann eine Kommunikationseinheit umfassen, die eingerichtet ist, mit dem Fahrzeug und mit der Bodeneinheit (ggf. mit einer Vielzahl von
Bodeneinheiten) zu kommunizieren. Die Kommunikationseinheit kann eingerichtet sein, eine drahtlose Kommunikationsverbindung (z.B. WLAN) und/oder eine Power Line Communication (PLC) Verbindung aufzubauen. Somit kann auf dedizierte Signalleitungen in dem Verbindungskabel verzichtet werden.
Die Ladeeinheit kann eine Steuereinheit umfassen, die eingerichtet ist, die Übertragung von elektrischer Energie an das Fahrzeug durch die Bodeneinheit zu steuern. Dazu können Anweisungen über die Kommunikationseinheit an die ein oder mehreren Bodeneinheiten übermittelt werden. Gemäß einem weiteren Aspekt wird eine Ladestation zur drahtlosen Übertragung von elektrischer Energie an ein Fahrzeug beschrieben. Die Ladestation umfasst eine in diesem Dokument beschriebene Ladeeinheit, die eingerichtet ist, elektrische Energie in Form eines Gleichstroms an einer ersten Schnittstelle der Ladeeinheit bereitzustellen. Desweiteren umfasst die Ladestation zumindest eine in diesem Dokument beschriebene Bodeneinheit, die eingerichtet ist, die elektrische Energie in Form eines Gleichstroms an einer ersten Schnittstelle der Bodeneinheit aufzunehmen, und daraus ein elektromagnetisches Ladefeld zur Übertragung von elektrischer Energie an das Fahrzeug zu erzeugen. Die
Ladestation kann weiter ein Verbindungskabel umfassen, das eingerichtet ist, die erste Schnittstelle der Ladeeinheit galvanisch mit der ersten Schnittstelle der Bodeneinheit zu verbinden.
Es ist zu beachten, dass die in diesem Dokument beschriebenen Verfahren, Vorrichtungen und Systeme sowohl alleine, als auch in Kombination mit anderen in diesem Dokument beschriebenen Verfahren, Vorrichtungen und Systemen verwendet werden können. Desweiteren können jegliche Aspekte der in diesem Dokument beschriebenen Verfahren, Vorrichtung und Systemen in vielfältiger Weise miteinander kombiniert werden. Insbesondere können die Merkmale der Ansprüche in vielfältiger Weise miteinander kombiniert werden.
Im Weiteren wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben. Dabei zeigt
Fig. 1 ein beispielhaftes System zum induktiven Laden eines elektrischen Speichers eines Fahrzeugs;
Fig. 2 ein Blockdiagram einer beispielhaften Ladestation;
Fig. 3 beispielhafte Komponenten einer Ladeeinheit, eines Verbindungskabels und einer Bodeneinheit;
Fig. 4 einen verbesserten Aufbau einer Ladeeinheit, eines Verbindungskabels und einer Bodeneinheit; Fig. 5a eine beispielhafte Parallelschaltung von einer Vielzahl von
Bodeneinheiten; und
Fig. 5b eine beispielhafte Parallelschaltung und/oder Kaskadierung von
Bodeneinheiten.
Wie eingangs dargelegt, befasst sich das vorliegende Dokument mit dem Aufbau einer Ladestation. Eine beispielhafte Ladestation ist in Fig. 2 dargestellt. Eine Ladestation umfasst insbesondere eine Ladeeinheit 110, die eingerichtet ist, mit einem Fahrzeug 100 zu kommunizieren (z.B. über eine drahtlose
Kommunikationsverbindung) und die eingerichtet ist, den Ladevorgang eines elektrischen Speichers 103 des Fahrzeugs 100 über eine Bodeneinheit 111 zu steuern. Die Bodeneinheit 111 der Ladestation ist über ein Verbindungskabel 112 mit der Ladeeinheit 110 verbunden. Die Ladeeinheit 110 ist typischerweise mit einer elektrischen Energieversorgung (z.B. mit einem elektrischen
Versorgungsnetz) verbunden. Das Verbindungskabel 112 ist eingerichtet, elektrische Energie von der Ladeeinheit 110 an die Bodeneinheit 111 zu übertragen. Mittels einer Primärspule in der Bodeneinheit 111 kann diese elektrische Energie dann induktiv an die Sekundärspule in der Fahrzeugeinheit 102 des Fahrzeugs 100 übertragen werden.
Wie eingangs dargelegt, ist es vorteilhaft eine WPT-Bodeneinheit 111 bereitzustellen, die eine möglichst geringe räumliche Ausbreitung aufweist. Dies ermöglicht es, die Bodeneinheit 111 in flexibler Weise mit unterschiedlichen Typen von Fahrzeugen 100 zu verwenden, insbesondere mit Fahrzeugen 100, welche eine relativ geringe Unterbodenfreiheit 120 aufweisen.
Um die Bodeneinheit 111 möglichst klein dimensionieren zu können, kann ein HF-Generator (auch als Wechselstrom-Generator bezeichnet) 305 zur Erzeugung eines Wechselstroms für das Ladefeld in die Ladeeinheit 110 integriert werden, für welche keine (oder verminderte) Platzanforderungen vorliegen. Eine derartige Anordnung ist in Fig. 3 gezeigt. Insbesondere zeigt Fig. 3 eine Ladeeinheit 110, die eine Power Factor Correction (PFC) Einheit 303 mit Gleichrichter umfasst, wobei der Gleichrichter eingerichtet ist, einen Gleichstrom aus einem
Wechselstrom (z.B. aus dem Versorgungsnetz) zu erzeugen. Die Ladeeinheit 110 umfasst weiter einen Zwischenkreiskondensator 304, der eingerichtet ist, den erzeugten Gleichstrom zu glätten. Der HF-Generator 305 ist eingerichtet, auf dem Gleichstrom einen Wechselstrom zur Erzeugung des Ladefelds zu erzeugen. Eine Frequenz des Wechselstroms entspricht typischerweise der Frequenz des Ladefelds (z.B. 85kHz). Die Ladeeinheit 110 aus Fig. 3 umfasst weiter eine Steuereinheit 302, die eingerichtet ist, den Ladevorgang (insbesondere die Erzeugung des Wechselstroms zur Erzeugung des Ladefelds) zu steuern. Zu diesem Zweck kann die Steuereinheit 302 Messdaten über eine Signalleitung 322 von ein oder mehreren Sensoren 311 der Bodeneinheit 311 empfangen. Anhand der ein oder mehreren Sensoren 311 kann z.B. detektiert werden, dass die Sekundärspule eines Fahrzeugs 100 über der Bodeneinheit 111 positioniert ist.
Die Ladeeinheit 110 umfasst weiter eine Kommunikationseinheit 301, die eingerichtet ist, mit einem Fahrzeug 100 zu kommunizieren, z.B. über eine drahtlose Kommunikationsverbindung 331 (beispielsweise Wireless LAN). Insbesondere kann über die Kommunikationseinheit 301 ein Ladevorgang von einem Fahrzeug 100 angestoßen werden.
Die in Fig. 3 dargestellte Bodeneinheit 111 umfasst neben den ein oder mehreren Sensoren 311 die Primärspule 312 zur Erzeugung des Ladefelds aus dem von dem HF-Generator 305 erzeugten Wechselstrom. Desweiteren umfasst die
Bodeneinheit 111 typischerweise einen Resonanzkondensator 313 (insbesondere zur Bereitstellung eines LC Schwingkreises). Wie oben dargelegt, können die ein oder mehreren Sensoren 311 eingerichtet sein, die Präsenz der Sekundärspule eines Fahrzeugs 100 zu detektieren. Alternativ oder ergänzend können die ein oder mehreren Sensoren 311 eingerichtet sein, die Präsenz von Fremdkörpern in der Umgebung der Bodeneinheit 111 zu detektieren und/oder die Temperatur der Bodeneinheit 111 zu erfassen. In der Ladestation von Fig. 3 wird ein Wechselstrom über das Verbindungskabel 112 von der Ladeeinheit 110 an die Bodeneinheit 111 übertragen. Die
Übertragung eines Wechselstroms erfordert typischerweise die Verwendung einer HF-Leitung mit einem elektromagnetischen Schirm 321. Desweiteren erfordert die Übertragung von Messdaten von den ein oder mehreren Sensoren 311 an die Steuereinheit 302 die Verwendung einer Signalleitung 322. In Summe ergeben sich somit relativ hohe und komplexe Anforderungen für die Kabelverbindung 112 zwischen Ladeeinheit 110 und Bodeneinheit 112. Desweiteren wird die Wahl der Länge der Kabelverbindung 112 typischerweise durch die Übertragung eines HF- Wechselstroms begrenzt.
Die Kabel Verbindung zwischen Ladeeinheit 110 und Bodeneinheit 111 ist somit für die in Fig. 3 dargestellte Ladestation relativ aufwendig, da zur Übertragung der Hochfrequenz (HF) zur Versorgung der Spule 312 typischerweise sogenannte Hochfrequenzlitzen verwendet werden müssen. Diese müssen zusätzlich typischerweise wasserdicht und geschirmt verlegt werden. Die Konfektionierung derartiger Verbindungskabel 112 (insbesondere des Stecker- Anschlusses) erweist sich als schwierig.
Neben der Leistungsversorgung der Primärspule 312 sind in dem
Verbindungskabel 112 oder in einem separaten parallelen Kabel zahlreiche Signale zu übertragen. Dies erhöht zusätzlich den Aufwand für die Verbindung zwischen Ladeeinheit 110 und Bodeneinheit 111.
Ein weiterer Nachteil der in Fig. 3 dargestellten Ladestation 110, 112, 111 ist, dass für jeden Ladeplatz eine vollständige Ladestation (d.h. ein jeweils eigenes Paar Ladeeinheit 110 mit Bodeneinheit 111) benötigt wird. Verfügt ein
Elektrofahrzeugbesitzer mehrere Stellplätze (z.B. in der Garage und vor der Garage) an denen er abwechselnd parkt, benötigt der Fahrzeugbesitzer zwei vollständige Ladestationen, obwohl immer nur eine Ladestation genutzt wird. Aufgrund der oben dargelegten Nachteile des in Fig. 3 dargestellten Aufbaus, wird in diesem Dokument vorgeschlagen, den HF-Generator 305 mit in die Bodeneinheit 111 zu integrieren. Ein derartiger Aufbau ist in Fig. 4 dargestellt. Die in Fig. 4 dargestellte Bodeneinheit 111 umfasst den HF-Generator 305. Dies hat den Vorteil, dass über das Verbindungskabel 112 ein Gleichstrom übertragen wird, wodurch die Anforderungen an das Verbindungskabel 112 reduziert werden. Die Bodeneinheit 111 kann somit über eine Schnittstelle 405 elektrische Energie in Form eines Gleichstroms aufnehmen. Die Schnittstelle 405 kann einen Stecker oder eine Steckdose aufweisen. Das Verbindungskabel 112 kann so über eine Steckverbindung mit der Bodeneinheit 111 verbunden sein. In entsprechender Weise kann auch die Ladeeinheit 110 eine Schnittstelle 406 aufweisen, an der elektrische Energie in Form eines Gleichstroms bereitgestellt wird. Desweiteren kann die Bodeneinheit 111 eine dedizierte Steuereinheit 402 umfassen, die eingerichtet ist, die Messdaten der ein oder mehreren Sensoren 311 zu empfangen und ggf. auszuwerten. Die Messdaten und/oder die ausgewerteten Daten können über eine Kommunikationseinheit 401 der Bodeneinheit 111 an die Ladeeinheit 110 kommuniziert werden. Insbesondere kann die
Kommunikationseinheit 301 der Ladeeinheit 110 eingerichtet sein, über eine drahtlose Kommunikationsverbindung (z.B. Wireless LAN) mit der
Kommunikationseinheit 401 der Bodeneinheit 111 zu kommunizieren. Eine drahtlose Kommunikationsverbindung bietet sich zur Kommunikation zwischen Ladeeinheit 110 (z.B. einer Wallbox) und Bodeneinheit 111 an, da eine drahtlose Kommunikationsverbindung zur Kommunikation mit dem Fahrzeug 100 in der Ladeeinheit 110 bereits genutzt wird. Anstelle von zwei
Kommunikationsteilnehmern (d.h. der Ladeeinheit 110 und dem Fahrzeug 100), bedient der drahtlose Kommunikationskanal dann zusätzlich die Bodeneinheit 111. Durch die Verwendung einer dedizierten Steuereinheit 402 und
Kommunikationseinheit 401 für die Bodeneinheit 111 kann auf eine Signalleitung 322 im Verbindungskabel 112 verzichtet werden. Desweiteren ergibt sich durch die Verwendung einer dedizierten Steuereinheit 402 in der Bodeneinheit 111 eine Vereinfachung der Steuereinheit 302 in der Ladeeinheit 110.
Mit anderen Worten, es wird in diesem Dokument vorgeschlagen, die Funktion der Ladeeinheit 110 zumindest teilweise in die Bodeneinheit 111 zu verlagern. Dadurch werden die Anforderungen an das Verbindungskabel 112 zur
Ladeeinheit 110 reduziert. In der Ladeeinheit 110 wird der Netzwechselstrom in Gleichstrom gewandelt. Dies erfolgt in der PFC Einheit 303 und/oder in dem Gleichrichter 303. Die PFC Einheit 303 ist typischerweise als Teilschaltung zur Einhaltung der Netzanschlussbedingungen erforderlich. Die Übertragung von der Ladeeinheit 110 zur Bodeneinheit 111 erfolgt mittels Gleichstrom. In der Bodeneinheit 111 wird der Gleichstrom in den zur induktiven Übertragung notwendigen hochfrequenten Wechselstrom gewandelt. Die Übertragung der Signale (d.h. der Steuersignale und/oder Messdaten) zwischen Ladeeinheit 110 und Bodeneinheit 111 kann mittels eines geeigneten Kommunikationsmediums 431 erfolgen. Beispiele für geeignete
Kommunikationsmedien 431 sind ein CAN-Bus, Ethernet, PLC (Power- Line- Communication) über die Gleichstromversorgung des Verbindungskabels 112, und/oder WLAN (wie z.B. für die Kommunikationsverbindung zwischen Fahrzeug 100 und Ladeeinheit 110 verwendet).
Die Ladeeinheit 110 kann Anschlüsse oder Schnittstellen 406 für eine Vielzahl von Bodeneinheit 111 umfassen. Dies ist beispielhaft in Figuren 5a und 5b dargestellt. Sowohl die Gleichstromversorgung, als auch das
Kommunikationsmedium können parallel geschaltet werden, so dass mit einer Ladeeinheit 110 ohne zusätzlichen Elektronikaufwand mehrere Bodeneinheiten 111, 511 versorgt werden können. Fig. 5a zeigt die parallelen
Versorgungsleitungen 112, 512 und die parallelen Kommunikationskanäle 431, 531. Es sei darauf hingewiesen, dass der gleichzeitige Ladevorgang mehrerer
Fahrzeuge 100 auf den angeschlossenen Bodeneinheiten 111, 511 typischerweise durch die Leistungsfähigkeit der Ladeeinheit 110 (insbesondere der PFC Einheit 303), die die entsprechende Summenleitung für die Vielzahl von Bodeneinheit 111 zur Verfügung stellt, limitiert ist.
Fig. 5b zeigt die Möglichkeit eine Vielzahl von Bodeneinheit 111, 511 zu kaskadieren oder in Reihe zu schalten. Zu diesem Zweck ist das
Kaskadierungskabel 513 von einer ersten Bodeneinheit 111 zu einer zweiten Bodeneinheit 511 dargestellt. Die Ladeeinheit 110 benötigt dann eine reduzierte Anzahl von Anschlüssen für die Bodeneinheiten 111, 511. Insbesondere wird dann kein Verbindungskabel 512 zwischen der Bodeneinheit 511 zu der
Ladeeinheit 110 benötigt. Durch den in den Figuren 4, 5a und 5b gezeigten Aufbau der Ladeeinheit 110 und der ein oder mehreren Bodeneinheiten 111, 511 ergeben sich eine Vielzahl von Vorteilen. Insbesondere ergibt sich eine Vereinfachung der Anforderungen an das Verbindungskabel 112, 512 zwischen Ladeeinheit 110 und Bodeneinheit 111 durch die Gleichstromübertragung. Es können bspw. Standardkabel und
Standardstecker statt Speziallösungen für HF verwendet werden. Außerdem ergeben sich Vereinfachungen bei der Installation. Desweiteren kann die
Leitungsanzahl in der Kabel Verbindung 112 (Ladeeinheit 110 <-> Bodeneinheit 111) durch alternative Kommunikationsverfahren reduziert werden. Bei PLC und WLAN kann vollständig auf Signalleitungen 322 verzichtet werden. Bei
Verwendung des Kommunikationskanals, der bereits zwischen Fahrzeug 100 und Ladeeinheit 110 (insbesondere WLAN) verwendet wird, muss nur in der
Bodeneinheit 111 eine zusätzliche Kommunikationseinheit 401 bereitgestellt werden, da in der Ladeeinheit 110 bereits eine Kommunikationseinheit 301 vorhanden ist. Desweiteren ermöglicht der in diesem Dokument beschriebene Aufbau eine einfache (auch nachträgliche) und kostengünstige Erweiterung einer Ladestation auf mehrere Stellplätze (d.h. mehrere Bodeneinheit 111, 511). Außerdem kann das Laden einer Flotte von Fahrzeugen 100 einfach organisiert werden, indem über den Bodeneinheiten 111, 511 abgestellt Fahrzeuge 100 nacheinander durch die zentrale Ladeeinheit 110 gesteuert geladen werden. Durch die Verwendung einer Ladeeinheit 110 mit erhöhter Leistung können auch mehrere Bodeneinheiten 111, 511 gleichzeitig betrieben werden. Entsprechend schneller kann so eine Flotte von Fahrzeugen 110 geladen werden. Für die in Fig. 5a, 5b dargestellte Ladestation ist nur ein Netzanschluss erforderlich. Die zentrale Ladeeinheit 110 verteilt die Leistung auf die angeschlossenen Bodeneinheiten 111, 511 und kann
gewährleisten, dass der Netzanschluss nicht überlastet wird.
Die vorliegende Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt. Insbesondere ist zu beachten, dass die Beschreibung und die Figuren nur das Prinzip der vorgeschlagenen Verfahren, Vorrichtungen und Systeme veranschaulichen sollen.

Claims

Ansprüche
Bodeneinheit (111), die eingerichtet ist, ein elektromagnetisches Ladefeld zur Übertragung von elektrischer Energie an ein Fahrzeug (100) zu erzeugen, wobei die Bodeneinheit (111) umfasst,
- eine erste Schnittstelle (405), die eingerichtet ist, elektrische Energie in Form eines Gleichstroms an der Bodeneinheit (111) zu empfangen;
- einen Wechselstrom-Generator (305), der eingerichtet ist, den
Gleichstrom in einen Wechselstrom zu wandeln; und
- eine Primärspule (312), die eingerichtet ist, anhand des Wechselstroms das elektromagnetische Ladefeld zu erzeugen.
Bodeneinheit (111) gemäß Anspruch 1, wobei die Bodeneinheit weiter umfasst,
- einen Sensor (311), der eingerichtet ist, Messdaten bzgl. eines
Zustands der Bodeneinheit (111) zu erfassen; und
- eine Kommunikationseinheit (401), die eingerichtet ist, auf den
Messdaten basierende Daten an eine Ladeeinheit (110) zu übermitteln; wobei die Ladeeinheit (110) eingerichtet ist, die elektrische Energie in Form eines Gleichstroms an der Bodeneinheit (111) bereitzustellen.
3) Bodeneinheit (111) gemäß Anspruch 3, wobei die Kommunikationseinheit (401) eingerichtet ist,
- eine drahtlose Kommunikationsverbindung mit der Ladeeinheit (110) aufzubauen; und/oder
- eine Power Line Communication Verbindung mit der Ladeeinheit (110) aufzubauen.
4) Bodeneinheit (111) gemäß einem vorhergehenden Anspruch, wobei
- die Bodeneinheit (111) eine Steuereinheit (402) umfasst; und - die Steuereinheit (111) eingerichtet ist, die Erzeugung des
Wechselstroms durch den Wechselstrom-Generator (305) zu steuern.
5) Bodeneinheit (111) gemäß einem vorhergehenden Anspruch, wobei
- die Bodeneinheit (111) eine zweite Schnittstelle umfasst; und
- die zweite Schnittstelle eingerichtet ist, elektrische Energie in Form eines Gleichstroms an eine andere Bodeneinheit (511) weiterzugeben.
6) Bodeneinheit (111) gemäß einem vorhergehenden Anspruch, wobei der
Wechselstrom eine Frequenz von 80-90kHz aufweist.
7) Ladeeinheit (110) für eine Ladestation (110, 112, 111) zur drahtlosen
Übertragung von elektrischer Energie an ein Fahrzeug (100), wobei die Ladeeinheit (110) umfasst,
- eine Power Factor Correction Einheit (303), die eingerichtet ist,
elektrische Energie in Form eines Gleichstroms aus einem elektrischen Versorgungsnetz zu entnehmen; und
- eine erste Schnittstelle (406), die eingerichtet ist, die elektrische
Energie in Form eines Gleichstroms für eine Bodeneinheit (111) bereitzustellen.
8) Ladeeinheit (110) gemäß Anspruch 7, wobei die Ladeeinheit (110) eine
Vielzahl von Schnittstellen umfasst, die eingerichtet sind, die elektrische Energie in Form eines Gleichstroms für eine entsprechende Vielzahl von Bodeneinheiten (111, 511) bereitzustellen.
9) Ladeeinheit (110) gemäß einem der Ansprüche 7 bis 8, wobei die Ladeeinheit (110) eine Kommunikationseinheit (301) umfasst, die eingerichtet ist, mit dem Fahrzeug (100) und mit der Bodeneinheit (111) zu kommunizieren. 10) Ladeeinheit (110) gemäß einem der Ansprüche 7 bis 9, wobei die Ladeeinheit (110) eine Steuereinheit (302) umfasst, die eingerichtet ist, die Übertragung von elektrischer Energie an das Fahrzeug (100) durch die Bodeneinheit (111) zu steuern.
11) Eine Ladestation (110, 112, 111) zur drahtlosen Übertragung von elektrischer Energie an ein Fahrzeug (100), wobei die Ladestation (110, 111) umfasst,
- eine Ladeeinheit (110) gemäß einem der Ansprüche 7 bis 10, die
eingerichtet ist, elektrische Energie in Form eines Gleichstroms an einer ersten Schnittstelle (406) der Ladeeinheit (110) bereitzustellen;
- eine Bodeneinheit (111) gemäß einem der Ansprüche 1 bis 6, die eingerichtet ist, die elektrische Energie in Form eines Gleichstroms an einer ersten Schnittstelle (405) der Bodeneinheit (111) aufzunehmen, und daraus ein elektromagnetisches Ladefeld zur Übertragung von elektrischer Energie an das Fahrzeug (100) zu erzeugen; und
- ein Verbindungskabel (112), das eingerichtet ist, die erste Schnittstelle (406) der Ladeeinheit (110) galvanisch mit der ersten Schnittstelle (405) der Bodeneinheit (111) zu verbinden.
PCT/EP2015/052623 2014-04-24 2015-02-09 Skalierbare induktive ladestation WO2015161935A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580020883.5A CN106232419B (zh) 2014-04-24 2015-02-09 可扩展的感应充电站
US15/331,171 US10427531B2 (en) 2014-04-24 2016-10-21 Scalable inductive charging station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014207719.2 2014-04-24
DE102014207719.2A DE102014207719A1 (de) 2014-04-24 2014-04-24 Skalierbare induktive Ladestation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/331,171 Continuation US10427531B2 (en) 2014-04-24 2016-10-21 Scalable inductive charging station

Publications (1)

Publication Number Publication Date
WO2015161935A1 true WO2015161935A1 (de) 2015-10-29

Family

ID=52464396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/052623 WO2015161935A1 (de) 2014-04-24 2015-02-09 Skalierbare induktive ladestation

Country Status (4)

Country Link
US (1) US10427531B2 (de)
CN (1) CN106232419B (de)
DE (1) DE102014207719A1 (de)
WO (1) WO2015161935A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221585B3 (de) * 2015-11-04 2017-04-06 Continental Automotive Gmbh Verfahren zum Betreiben einer Ladevorrichtung zum induktiven Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, Ladevorrichtung sowie Anordnung
DE102016219491A1 (de) * 2016-10-07 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Spuleneinheit zum induktiven Laden eines Fahrzeuges
CN111247025B (zh) 2017-10-18 2023-10-03 索尤若驱动有限及两合公司 用于向具有蓄能器和次级绕组的移动设备传输能量的充电设备和系统
DE102018203959A1 (de) * 2018-03-15 2019-09-19 Continental Automotive Gmbh System zur induktiven Energieübertragung zwischen einer Primär- und einer Sekundärseite
US11520386B2 (en) * 2021-03-26 2022-12-06 Lenovo (Singapore) Pte. Ltd. Fan motor for wireless charging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127455A2 (en) * 2010-04-08 2011-10-13 Qualcomm Incorporated Wireless power antenna alignment adjustment system for vehicles
US20110285349A1 (en) * 2010-05-19 2011-11-24 Qualcomm Incorporated Adaptive wireless energy transfer system
US20130029595A1 (en) * 2011-07-29 2013-01-31 Qualcomm Incorporated Communications related to electric vehicle wired and wireless charging
FR2981521A1 (fr) * 2012-03-19 2013-04-19 Continental Automotive France Dispositif reversible de charge de batteries de vehicules electriques ou hybrides
US20140320090A1 (en) * 2013-04-29 2014-10-30 Qualcomm Incorporated Induction power transfer system with coupling and reactance selection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594318A (en) 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
US8183827B2 (en) * 2003-01-28 2012-05-22 Hewlett-Packard Development Company, L.P. Adaptive charger system and method
DE10325246B3 (de) * 2003-06-03 2004-11-18 Huf Hülsbeck & Fürst Gmbh & Co. Kg Elektronische Zugangskontrollvorrichtung
KR100935967B1 (ko) * 2007-10-31 2010-01-08 삼성전기주식회사 집적 코일을 갖는 역률 개선 회로
EP3185432B1 (de) * 2008-09-27 2018-07-11 WiTricity Corporation Drahtlose stromübertragungssysteme
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
NL2005026C2 (en) * 2010-07-05 2012-01-09 Epyon B V Charger for a battery, plurality of coupled chargers and method of operating.
US20120109519A1 (en) * 2010-10-27 2012-05-03 Honda Motor Co., Ltd. System and method for routing bev to charging station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127455A2 (en) * 2010-04-08 2011-10-13 Qualcomm Incorporated Wireless power antenna alignment adjustment system for vehicles
US20110285349A1 (en) * 2010-05-19 2011-11-24 Qualcomm Incorporated Adaptive wireless energy transfer system
US20130029595A1 (en) * 2011-07-29 2013-01-31 Qualcomm Incorporated Communications related to electric vehicle wired and wireless charging
FR2981521A1 (fr) * 2012-03-19 2013-04-19 Continental Automotive France Dispositif reversible de charge de batteries de vehicules electriques ou hybrides
US20140320090A1 (en) * 2013-04-29 2014-10-30 Qualcomm Incorporated Induction power transfer system with coupling and reactance selection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: ""Das bringt eine größere Flexibilität"", 11 November 2013 (2013-11-11), XP055192037, Retrieved from the Internet <URL:http://www.automobil-industrie.vogel.de/zulieferer/articles/424400/> [retrieved on 20150528] *

Also Published As

Publication number Publication date
DE102014207719A1 (de) 2015-10-29
US10427531B2 (en) 2019-10-01
CN106232419A (zh) 2016-12-14
CN106232419B (zh) 2019-11-29
US20170036553A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
EP2670624B1 (de) Ladevorrichtung für einen elektrischen energiespeicher in einem kraftfahrzeug
EP3681755B1 (de) Fahrzeugverbindungsvorrichtung, bodenkontakteinheit, fahrzeugkoppelsystem sowie verfahren zur automatischen, konduktiven verbindung einer fahrzeugkontakteinheit mit einer bodenkontakteinheit
WO2015161935A1 (de) Skalierbare induktive ladestation
WO2016062553A1 (de) Aufbau einer ladekommunikation zwischen ladestation und fahrzeug
DE102018128275A1 (de) Zusammengesetztes bidirektionales integriertes ladegerät für ein fahrzeug
DE102015102836B4 (de) Kostengrünstiger drahtloser (resistiver) auf Impedanzkopplung / Modulation unter Verwendung von MRC basierender Sensor
DE102016122968A1 (de) Drahtloses Ladesystem zum Laden einer Fahrzeugbatterie
DE102010055696A1 (de) System zur kontaktlosen Energieübertragung, Verwendung eines Systems zur kontaktlosen Energieübertragung und Fahrzeug mit einem System zur kontaktlosen Energieübertragung zwischen einem ersten Fahrzeugteil und einem zweiten Fahrzeugteil
DE102014205672A1 (de) Herstellerübergreifendes Positionierungssystem für induktives Laden
EP3566897A1 (de) Energiesystem für ein kraftfahrzeug und verfahren zum laden eines elektrischen energiespeichers
DE102013212221A1 (de) Ladeanschlusserkennung
DE102017222968A1 (de) Ladekabel für einen Ladevorgang zum Laden eines elektrischen Energiespeichers eines Fahrzeugs
WO2017092950A1 (de) Verfahren zum betrieb einer überwachungsvorrichtung zur überwachung einer induktiven energieübertragungsvorrichtung
DE102015225980A1 (de) Verfahren und System zum Laden von Fahrzeugen an Ladestationen
WO2018019510A1 (de) Anordnung aus einem kraftfahrzeug und einem verbindungsmittel, kraftfahrzeug und verbindungsmittel
DE102009021797B4 (de) Fahrzeug mit Ladeanordnung für einen Energiespeicher des Fahrzeugs
EP2657063A1 (de) Ladevorrichtung
WO2015149962A1 (de) Bereitstellung von fahrzeugfunktionen in kombination mit einem induktivladesystem
WO2016096884A1 (de) Primäreinheit mit mehreren teilspulen für induktives laden
DE102018130847A1 (de) Drahtlos-Ladevorrichtung mit Ferrit verschiedener Strukturen in einem Drahtlos-Energie-Übertragungssystem für ein elektrisches Fahrzeug
DE102019202201A1 (de) Verfahren und Vorrichtung zum Steuern einer Energieübertragung zwischen einer Ladestation eines elektrischen Versorgungsnetzes und einem Energiespeicher eines elektrischen Fahrzeugbordnetzes
EP3533658A1 (de) Ladestation und ladesystem für elektromobile
WO2017076542A1 (de) Verfahren zur induktiven energieübertragung und vorrichtung zum betrieb einer induktiven energieübertragungsvorrichtung
WO2011116970A2 (de) Verfahren und anordnung elektrischer leiter zum laden einer fahrzeugbatterie
DE102014226397A1 (de) Verfahren und Vorrichtung zur Anpassung der Ladeleistung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15703578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15703578

Country of ref document: EP

Kind code of ref document: A1