WO2015161679A1 - 一种模块化光伏并网逆变器并联控制系统及方法 - Google Patents

一种模块化光伏并网逆变器并联控制系统及方法 Download PDF

Info

Publication number
WO2015161679A1
WO2015161679A1 PCT/CN2015/070130 CN2015070130W WO2015161679A1 WO 2015161679 A1 WO2015161679 A1 WO 2015161679A1 CN 2015070130 W CN2015070130 W CN 2015070130W WO 2015161679 A1 WO2015161679 A1 WO 2015161679A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
module
disturbance
current
control
Prior art date
Application number
PCT/CN2015/070130
Other languages
English (en)
French (fr)
Inventor
翦志强
司徒琴
Original Assignee
深圳市金宏威技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金宏威技术股份有限公司 filed Critical 深圳市金宏威技术股份有限公司
Publication of WO2015161679A1 publication Critical patent/WO2015161679A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/42Synchronising a generator for connection to a network or to another generator with automatic parallel connection when synchronisation is achieved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the field of photovoltaic grid-connected power generation, and particularly relates to a modular photovoltaic grid-connected inverter parallel control system and method.
  • the photovoltaic grid-connected inverters on the market are integrated and modular, and the modular photovoltaic inverters are small in size, low in cost and convenient in maintenance.
  • 1 is a structure of a modular photovoltaic grid-connected inverter, comprising one or more inverter modules connected in parallel, the input end of the inverter module is connected to a solar photovoltaic array, and the output end is connected to the power grid through an isolation transformer,
  • the system is modular in design for easy expansion and maintenance.
  • control system for the above-mentioned modular photovoltaic grid-connected inverter has the problem that the current sharing, maximum power tracking and island protection consistency between the inverter modules cannot be solved.
  • the object of the embodiments of the present invention is to provide a modular photovoltaic grid-connected inverter parallel control system, which aims to solve the problem that the current control system of the modular photovoltaic grid-connected inverter cannot solve the current sharing between the inverter modules.
  • a modular photovoltaic grid-connected inverter parallel control system is respectively connected to a solar photovoltaic array and an inverter module, and the system includes:
  • a second control unit configured to be embedded in the inverter module, to control an output current of the inverter module
  • the first control unit includes:
  • a first detection module a maximum power tracking module, a voltage control module, an anti-island detection module, and a first communication module
  • a first detecting module for detecting an input voltage of the system and a three-phase grid voltage
  • the maximum power tracking module is configured to complete the maximum power point tracking of the solar photovoltaic array according to the input power value output by the second control unit and the input voltage detected by the first detecting module, and obtain the input voltage reference value u d_ref at the next moment;
  • a voltage control module is connected to the solar photovoltaic array for controlling an input voltage of the system according to an input voltage reference value u d — ref obtained by the maximum power tracking module, so that the input voltage tracks the voltage reference value and the output current reference value i d — ref ;
  • the anti-island detecting module is configured to adopt a frequency disturbance detecting method, periodically perform frequency disturbance, calculate a frequency error before and after the disturbance, and calculate a disturbance amount and a disturbance direction at a next moment;
  • a first communication module configured to send the current reference value i d_ref , the disturbance amount and the disturbance direction to the second control unit;
  • the second control unit is further configured to add the disturbance amount and the disturbance direction to the phase-locked loop to perform frequency disturbance, and the second control unit includes:
  • a second detection module a current control module, and a second communication module
  • a second detecting module configured to detect an input voltage and an input current of the inverter module, calculate an input power value, and transmit the input power value to the first control unit through the serial communication system;
  • a current control module configured to control an output current of the inverter module according to a current reference value i d — ref output by the first control unit;
  • a second communication module configured to transmit the input power value to the first control unit.
  • Another object of the embodiments of the present invention is to provide a control method based on the modular photovoltaic grid-connected inverter parallel control system as described above, the method comprising:
  • the second control unit detects an input voltage and an input current of the inverter module, calculates an input power value, and transmits the input power value to the first control unit through the serial communication system;
  • the first control unit receives the input power value transmitted by the second control unit, completes the maximum power point tracking of the solar photovoltaic array, obtains the input voltage reference value u d — ref , and controls the input voltage of the system, and outputs the current reference value i. D_ref , the first control unit performs anti-islanding detection, outputs the disturbance amount of the frequency and the disturbance direction, and sends the disturbance to the second control unit;
  • the second control unit controls an output current of the inverter module through a current control loop according to a current reference value i d — ref sent by the first control unit;
  • the second control unit adds a disturbance amount and a disturbance direction of the output frequency sent by the first control unit to the phase-locked loop to perform frequency disturbance.
  • the modular photovoltaic grid-connected inverter parallel control system can track the maximum power of the solar photovoltaic array well, avoiding the problem of tracking non-synchronization between the inverter modules, and is also unified by the first control unit.
  • Sending a current reference value to the second control unit the second control unit controls the inverter module output current, thereby achieving current sharing between the inverter modules, and the first control unit uniformly transmits the frequency disturbance amount and the frequency disturbance direction To the second control unit, it is possible to prevent the problem that the disturbance between the inverter modules is not synchronized.
  • FIG. 1 is a structural diagram of a conventional modular photovoltaic grid-connected inverter
  • FIG. 2 is a structural diagram of a parallel control system for a modular photovoltaic grid-connected inverter according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a first control unit and a second control unit according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a parallel control method for a modular photovoltaic grid-connected inverter according to a first embodiment of the present invention
  • FIG. 5 is a flow chart of a parallel control method for a modular photovoltaic grid-connected inverter according to a second embodiment of the present invention.
  • FIG. 6 is a flow chart of a parallel control method for a modular photovoltaic grid-connected inverter according to a third embodiment of the present invention.
  • FIG. 2 shows the structure of a modular photovoltaic grid-connected inverter parallel control system according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • a modular photovoltaic grid-connected inverter parallel control system 1 is respectively connected with the solar photovoltaic array 2 and the inverter module 3, and the modular photovoltaic grid-connected inverter parallel control system 1 comprises:
  • a second control unit 102 configured to be embedded in the inverter module 3, to control the output current of the inverter module 3;
  • a serial communication system 103 that connects the two control units.
  • FIG. 3 shows the structure of the first control unit and the second control unit provided by the embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the first control unit 101 includes:
  • a first detecting module 1011 a maximum power tracking module 1012, a voltage control module 1013, an anti-island detecting module 1014, and a first communication module 1015;
  • a first detecting module 1011 configured to detect an input voltage of the system and a three-phase grid voltage
  • the maximum power tracking module 1012 is configured to complete the maximum power point tracking of the solar photovoltaic array 2 according to the input power value output by the second control unit 102 and the input voltage detected by the first detecting module 1011, and obtain the next time input voltage reference. Value u d_ref ;
  • the voltage control module 1013 is connected to the solar photovoltaic array 2 for controlling the input voltage of the system according to the input voltage reference value u d — ref obtained by the maximum power tracking module 1012 , so that the input voltage tracks the voltage reference value and outputs the current reference value i d — ref ;
  • the anti-island detecting unit 1014 is configured to perform frequency perturbation by using a frequency disturbance detecting method, calculate a frequency error before and after the disturbance, and calculate a disturbance amount and a disturbance direction at a next moment;
  • the first communication module 1015 is configured to send the current reference value i d — ref , the disturbance amount and the disturbance direction to the second control unit 102 .
  • the second control unit 102 is further configured to add the disturbance amount and the disturbance direction to the phase-locked loop to perform frequency disturbance, and the second control unit 102 includes:
  • a second detecting module 1021 a current control module 1022 and a second communication module 1023;
  • the second detecting module 1021 is configured to detect the input voltage and the input current of the inverter module 3, calculate the input power value, and transmit the input power value to the first control unit 101 through the serial communication system 103;
  • the current control module 1022 is configured to control an output current of the inverter module 3 according to the current reference value i d — ref output by the first control unit 101;
  • the second communication module 1023 is configured to transmit the input power value to the first control unit 101.
  • the current control module 1022 includes a PI controller and a repeating controller, and the repeating controller can better control harmonic component disturbances, and has better grid-connected current control effects.
  • the PI controller includes:
  • a first PI controller that controls the positive sequence d-axis current
  • a second PI controller that controls the positive sequence q-axis current
  • a third PI controller that controls the negative sequence d-axis current
  • a fourth PI controller that controls the negative sequence q-axis current.
  • the serial communication system 103 includes RS485, RS232 or CAN.
  • FIG. 4 shows a flow of a parallel control method of a modular photovoltaic grid-connected inverter provided by a first embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown.
  • control method based on the modular photovoltaic grid-connected inverter parallel control system 1 described above, the control method comprising the following steps:
  • step S1 the second control unit 102 detects the input voltage and input current of the inverter module 3, calculates the input power value, and transmits the input power value to the first control unit 101 through the serial communication system 103;
  • step S2 the first control unit 101 receives the input power value transmitted by the second control unit 102, completes the maximum power point tracking of the solar photovoltaic array 2, obtains the input voltage reference value u d_ref , and controls the input voltage of the system, and outputs The current reference value i d_ref , the first control unit 101 performs anti-islanding detection, the output frequency of the disturbance amount and the disturbance direction, and is sent to the second control unit 102;
  • the disturbance of the frequency is k*e f , where e f is the error before and after the frequency disturbance, k is the amplification factor, k is greater than 1, and the frequency error is amplified. If the island occurs, positive feedback is formed, and the final frequency is formed. Abnormal protection.
  • step S3 the second control unit 102 controls the output current of the inverter module 3 through the current control loop according to the current reference value i d_ref sent by the first control unit 101;
  • step S4 the second control unit 102 adds a disturbance amount and a disturbance direction of the output frequency transmitted by the first control unit 101 to the phase-locked loop to perform frequency disturbance.
  • FIG. 5 shows a flow of a parallel control method for a modular photovoltaic grid-connected inverter provided by a second embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • step S2 specifically includes:
  • step S201 the first detecting module 1011 detects the input voltage of the system, the three-phase grid voltage and the output current, and performs phase lock processing to calculate the grid frequency and the input voltage phase;
  • step S202 the first communication module 1015 receives the input power value output by the second control unit 102, and calculates a total input power value;
  • step S203 the maximum power tracking module 1012 completes the maximum power point tracking of the solar photovoltaic array 2 according to the input power value output by the second control unit 102 and the input voltage detected by the first detecting module 1011, and obtains the next time input.
  • Voltage reference value u d_ref the maximum power tracking module 1012 completes the maximum power point tracking of the solar photovoltaic array 2 according to the input power value output by the second control unit 102 and the input voltage detected by the first detecting module 1011, and obtains the next time input.
  • step S204 the voltage control module 1013 controls the input voltage of the system according to the input voltage reference value u d — ref such that the input voltage follows the voltage reference value and outputs the current reference value i d — ref ;
  • step S205 the anti-islanding detection module 1014 uses the frequency disturbance detection method to periodically perform frequency disturbance, calculate the frequency error before and after the disturbance, and calculate the disturbance amount and the disturbance direction at the next moment;
  • step S206 the first communication module 1015 transmits the current reference value i d_ref , the disturbance amount, and the disturbance direction to the second control unit 102.
  • FIG. 6 shows a flow of a parallel control method of a modular photovoltaic grid-connected inverter provided by a third embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • step S3 specifically includes:
  • step S301 the second detecting module 1021 detects an input voltage and an input current of the inverter module 3;
  • step S302 the current control module 1022 controls the output current of the inverter module 3 according to the current reference value i d_ref output by the first control unit 101 and the analog quantity detected by the second detection module 1021.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The steps of the foregoing method embodiments, wherein the foregoing storage medium comprises: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the modular photovoltaic grid-connected inverter parallel control system can track the maximum power of the solar photovoltaic array well, avoiding the problem of tracking non-synchronization between the inverter modules, and is also unified by the first control unit.
  • Sending a current reference value to the second control unit the second control unit controls the inverter module output current, thereby achieving current sharing between the inverter modules, and the first control unit uniformly transmits the frequency disturbance amount and the frequency disturbance direction To the second control unit, it is possible to prevent the problem that the disturbance between the inverter modules is not synchronized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

一种模块化光伏并网逆变器并联控制系统及方法。模块化光伏并网逆变器并联控制系统(1)能够很好地跟踪太阳能光伏阵列(2)的最大功率,避免逆变器模块(3)之间跟踪不同步问题,同样由第一控制单元(101)统一发送电流参考值给第二控制单元(102),由第二控制单元控制逆变器模块输出电流,从而实现逆变器模块之间的均流,并且由第一控制单元统一发送频率扰动量和频率扰动方向给第二控制单元,能够防止逆变器模块之间扰动不同步的问题。

Description

一种模块化光伏并网逆变器并联控制系统及方法 技术领域
本发明属于光伏并网发电领域,尤其涉及一种模块化光伏并网逆变器并联控制系统及方法。
背景技术
当前,随着传统能源的日渐紧张,新能源的开发越来越被重视,太阳能作为一种取之不尽、用之不竭的清洁能源受到了各国的青睐。随着电力电子技术的发展,太阳能光伏逆变器得到了飞速的发展,目前在全世界范围内已经形成了相当的规模。
目前,市场上的光伏并网逆变器有一体式的和模块化两种,其中模块化的光伏逆变器体积小、成本低、维护方便。
图1为一种模块化光伏并网逆变器的结构,包括一个或多个并联的逆变器模块,逆变器模块的输入端接太阳能光伏阵列,输出端通过隔离变压器接入电网,上述系统采用模块化的设计,方便扩容和更新维护。
但是,现在针对上述模块化光伏并网逆变器的控制系统存在无法解决逆变器模块之间的均流、最大功率跟踪和孤岛防护一致性的问题。
技术问题
本发明实施例的目的在于提供一种模块化光伏并网逆变器并联控制系统,旨在解决现在模块化光伏并网逆变器的控制系统存在无法解决逆变器模块之间的均流、最大功率跟踪和孤岛防护一致性的问题。
技术解决方案
本发明实施例是这样实现的,一种模块化光伏并网逆变器并联控制系统,分别与太阳能光伏阵列以及逆变器模块连接,所述系统包括:
第一控制单元;
第二控制单元,用于嵌入在所述逆变器模块中,控制逆变器模块输出电流;以及
连接两控制单元的串行通信系统;
所述第一控制单元包括:
第一检测模块、最大功率跟踪模块、电压控制模块、防孤岛检测模块以及第一通信模块;
第一检测模块,用于检测系统的输入电压和三相电网电压;
最大功率跟踪模块,用于根据第二控制单元输出的输入功率值,以及第一检测模块检测的输入电压,完成对太阳能光伏阵列的最大功率点跟踪,得到下一时刻输入电压参考值ud_ref
电压控制模块,与所述太阳能光伏阵列连接,用于根据最大功率跟踪模块得到的输入电压参考值ud_ref来控制系统的输入电压,使得输入电压跟踪电压参考值,输出电流参考值id_ref
防孤岛检测模块,用于采用频率扰动检测方法,周期性地进行频率扰动,计算扰动前后频率误差,计算出下一时刻的扰动量和扰动方向;
第一通信模块,用于将所述电流参考值id_ref、扰动量和扰动方向发送给所述第二控制单元;
所述第二控制单元,还用于将所述扰动量和扰动方向,加入到锁相环路,进行频率的扰动,所述第二控制单元包括:
第二检测模块、电流控制模块和第二通信模块;
第二检测模块,用于检测逆变器模块的输入电压和输入电流,计算输入功率值,并将输入功率值通过所述串行通信系统传送给所述第一控制单元;
电流控制模块,用于根据所述第一控制单元输出的电流参考值id_ref,控制所述逆变器模块的输出电流;
第二通信模块,用于将所述输入功率值传送给所述第一控制单元。
本发明实施例的另一目的在于提供一种基于如上述的模块化光伏并网逆变器并联控制系统的控制方法,所述方法包括:
所述第二控制单元检测逆变器模块的输入电压和输入电流,计算输入功率值,并将输入功率值通过串行通信系统传送给第一控制单元;
所述第一控制单元接收第二控制单元传送的输入功率值,完成对所述太阳能光伏阵列的最大功率点跟踪,得到输入电压参考值ud_ref,并控制系统的输入电压,输出电流参考值id_ref,第一控制单元进行防孤岛检测,输出频率的扰动量和扰动方向,并发送给所述第二控制单元;
所述第二控制单元根据第一控制单元发送的电流参考值id_ref,通过电流控制环路,控制所述逆变器模块的输出电流;
所述第二控制单元根据第一控制单元发送的输出频率的扰动量和扰动方向,加入到锁相环路,进行频率的扰动。
有益效果
在本发明实施例中,本模块化光伏并网逆变器并联控制系统能够很好地跟踪太阳能光伏阵列的最大功率,避免逆变器模块之间跟踪不同步问题,同样由第一控制单元统一发送电流参考值给第二控制单元,由第二控制单元控制逆变器模块输出电流,从而实现逆变器模块之间的均流,并且由第一控制单元统一发送频率扰动量和频率扰动方向给第二控制单元,能够防止逆变器模块之间扰动不同步的问题。
附图说明
图1是现有的模块化光伏并网逆变器的结构图;
图2是本发明实施例提供的模块化光伏并网逆变器并联控制系统的结构图;
图3是本发明实施例提供的第一控制单元和第二控制单元的结构图;
图4是本发明第一实施例提供的模块化光伏并网逆变器并联控制方法的流程图;
图5是本发明第二实施例提供的模块化光伏并网逆变器并联控制方法的流程图;
图6是本发明第三实施例提供的模块化光伏并网逆变器并联控制方法的流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图2示出了本发明实施例提供的模块化光伏并网逆变器并联控制系统的结构,为了便于说明,仅示出了与本发明实施例相关的部分。
一种模块化光伏并网逆变器并联控制系统1,分别与太阳能光伏阵列2以及逆变器模块3连接,模块化光伏并网逆变器并联控制系统1包括:
第一控制单元101;
第二控制单元102,用于嵌入在逆变器模块3中,控制逆变器模块3输出电流;以及
连接两控制单元的串行通信系统103。
图3示出了本发明实施例提供的第一控制单元和第二控制单元的结构,为了便于说明,仅示出了与本发明实施例相关的部分。
第一控制单元101包括:
第一检测模块1011、最大功率跟踪模块1012、电压控制模块1013、防孤岛检测模块1014以及第一通信模块1015;
第一检测模块1011,用于检测系统的输入电压和三相电网电压;
最大功率跟踪模块1012,用于根据第二控制单元102输出的输入功率值,以及第一检测模块1011检测的输入电压,完成对太阳能光伏阵列2的最大功率点跟踪,得到下一时刻输入电压参考值ud_ref
电压控制模块1013,与太阳能光伏阵列2连接,用于根据最大功率跟踪模块1012得到的输入电压参考值ud_ref来控制系统的输入电压,使得输入电压跟踪电压参考值,输出电流参考值id_ref
防孤岛检测单元1014,用于采用频率扰动检测方法,周期性地进行频率扰动,计算扰动前后频率误差,计算出下一时刻的扰动量和扰动方向;
第一通信模块1015,用于将所述电流参考值id_ref、扰动量和扰动方向发送给第二控制单元102。
第二控制单元102,还用于将扰动量和扰动方向,加入到锁相环路,进行频率的扰动,第二控制单元102包括:
第二检测模块1021、电流控制模块1022和第二通信模块1023;
第二检测模块1021,用于检测逆变器模块3的输入电压和输入电流,计算输入功率值,并将输入功率值通过串行通信系统103传送给第一控制单元101;
电流控制模块1022,用于根据第一控制单元101输出的电流参考值id_ref,控制逆变器模块3的输出电流;
第二通信模块1023,用于将输入功率值传送给第一控制单元101。
作为本发明一实施例,电流控制模块1022包括PI控制器和重复控制器,重复控制器可以更好的控制谐波分量扰动,具有更好的并网电流控制效果。
其中,PI控制器包括:
控制正序d轴电流的第一PI控制器;
控制正序q轴电流的第二PI控制器;
控制负序d轴电流的第三PI控制器;
控制负序q轴电流的第四PI控制器。
作为本发明一实施例,串行通信系统103包括RS485、RS232或CAN。
图4示出了本发明第一实施例提供的模块化光伏并网逆变器并联控制方法的流程,为了便于说明,仅示出了与本发明实施例相关的部分。
一种基于上述的模块化光伏并网逆变器并联控制系统1的控制方法,控制方法包括如下步骤:
在步骤S1中,第二控制单元102检测逆变器模块3的输入电压和输入电流,计算输入功率值,并将输入功率值通过串行通信系统103传送给第一控制单元101;
在步骤S2中,第一控制单元101接收第二控制单元102传送的输入功率值,完成对太阳能光伏阵列2的最大功率点跟踪,得到输入电压参考值ud_ref,并控制系统的输入电压,输出电流参考值id_ref,第一控制单元101进行防孤岛检测,输出频率的扰动量和扰动方向,并发送给第二控制单元102;
其中,频率的扰动量为k*ef,其中ef为频率扰动前后的误差,k为放大系数,k取值大于1,对频率误差进行放大,如果孤岛发生,则形成正反馈,最终频率异常保护。
在步骤S3中,第二控制单元102根据第一控制单元101发送的电流参考值id_ref,通过电流控制环路,控制逆变器模块3的输出电流;
在步骤S4中,第二控制单元102根据第一控制单元101发送的输出频率的扰动量和扰动方向,加入到锁相环路,进行频率的扰动。
图5示出了本发明第二实施例提供的模块化光伏并网逆变器并联控制方法的流程,为了便于说明,仅示出了与本发明实施例相关的部分。
作为本发明一实施例,步骤S2具体包括:
在步骤S201中,第一检测模块1011检测系统的输入电压、三相电网电压和输出电流,并进行锁相处理,计算电网频率和输入电压相位;
在步骤S202中,第一通信模块1015接收第二控制单元102输出的输入功率值,计算总的输入功率值;
在步骤S203中,最大功率跟踪模块1012根据第二控制单元102输出的输入功率值,以及第一检测模块1011检测的输入电压,完成对太阳能光伏阵列2的最大功率点跟踪,得到下一时刻输入电压参考值ud_ref
在步骤S204中,电压控制模块1013根据输入电压参考值ud_ref来控制系统的输入电压,使得输入电压跟踪电压参考值,输出电流参考值id_ref
在步骤S205中,防孤岛检测模块1014采用频率扰动检测方法,周期性地进行频率扰动,计算扰动前后频率误差,计算出下一时刻的扰动量和扰动方向;
在步骤S206中,第一通信模块1015将电流参考值id_ref、扰动量和扰动方向发送给第二控制单元102。
图6示出了本发明第三实施例提供的模块化光伏并网逆变器并联控制方法的流程,为了便于说明,仅示出了与本发明实施例相关的部分。
作为本发明一实施例,步骤S3具体包括:
在步骤S301中,第二检测模块1021检测逆变器模块3的输入电压和输入电流;
在步骤S302中,电流控制模块1022根据第一控制单元101输出的电流参考值id_ref以及第二检测模块1021检测的模拟量,控制逆变器模块3的输出电流。
本领域普通技术人员可以理解:实现上述方法实施例的步骤或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤,而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本发明实施例中,本模块化光伏并网逆变器并联控制系统能够很好地跟踪太阳能光伏阵列的最大功率,避免逆变器模块之间跟踪不同步问题,同样由第一控制单元统一发送电流参考值给第二控制单元,由第二控制单元控制逆变器模块输出电流,从而实现逆变器模块之间的均流,并且由第一控制单元统一发送频率扰动量和频率扰动方向给第二控制单元,能够防止逆变器模块之间扰动不同步的问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种模块化光伏并网逆变器并联控制系统,分别与太阳能光伏阵列以及逆变器模块连接,其特征在于,所述系统包括:
    第一控制单元;
    第二控制单元,用于嵌入在所述逆变器模块中,控制逆变器模块输出电流;以及
    连接两控制单元的串行通信系统;
    所述第一控制单元包括:
    第一检测模块、最大功率跟踪模块、电压控制模块、防孤岛检测模块以及第一通信模块;
    第一检测模块,用于检测系统的输入电压和三相电网电压;
    最大功率跟踪模块,用于根据第二控制单元输出的输入功率值,以及第一检测模块检测的输入电压,完成对太阳能光伏阵列的最大功率点跟踪,得到下一时刻输入电压参考值ud_ref
    电压控制模块,与所述太阳能光伏阵列连接,用于根据最大功率跟踪模块得到的输入电压参考值ud_ref来控制系统的输入电压,使得输入电压跟踪电压参考值,输出电流参考值id_ref
    防孤岛检测模块,用于采用频率扰动检测方法,周期性地进行频率扰动,计算扰动前后频率误差,计算出下一时刻的扰动量和扰动方向;
    第一通信模块,用于将所述电流参考值id_ref、扰动量和扰动方向发送给所述第二控制单元;
    所述第二控制单元,还用于将所述扰动量和扰动方向,加入到锁相环路,进行频率的扰动,所述第二控制单元包括:
    第二检测模块、电流控制模块和第二通信模块;
    第二检测模块,用于检测逆变器模块的输入电压和输入电流,计算输入功率值,并将输入功率值通过所述串行通信系统传送给所述第一控制单元;
    电流控制模块,用于根据所述第一控制单元输出的电流参考值id_ref,控制所述逆变器模块的输出电流;
    第二通信模块,用于将所述输入功率值传送给所述第一控制单元。
  2. 如权利要求1所述的模块化光伏并网逆变器并联控制系统,其特征在于,所述电流控制模块包括PI控制器和重复控制器;
    所述PI控制器包括:
    控制正序d轴电流的第一PI控制器;
    控制正序q轴电流的第二PI控制器;
    控制负序d轴电流的第三PI控制器;
    控制负序q轴电流的第四PI控制器。
  3. 如权利要求1所述的模块化光伏并网逆变器并联控制系统,其特征在于,所述串行通信系统包括RS485、RS232或CAN。
  4. 一种基于如权利要求1所述的模块化光伏并网逆变器并联控制系统的控制方法,其特征在于,所述方法包括:
    所述第二控制单元检测逆变器模块的输入电压和输入电流,计算输入功率值,并将输入功率值通过串行通信系统传送给第一控制单元;
    所述第一控制单元接收第二控制单元传送的输入功率值,完成对所述太阳能光伏阵列的最大功率点跟踪,得到输入电压参考值ud_ref,并控制系统的输入电压,输出电流参考值id_ref,第一控制单元进行防孤岛检测,输出频率的扰动量和扰动方向,并发送给所述第二控制单元;
    所述第二控制单元根据第一控制单元发送的电流参考值id_ref,通过电流控制环路,控制所述逆变器模块的输出电流;
    所述第二控制单元根据第一控制单元发送的输出频率的扰动量和扰动方向,加入到锁相环路,进行频率的扰动。
  5. 如权利要求4所述的控制方法,其特征在于,所述第一控制单元接收第二控制单元传送的输入功率值,完成对所述太阳能光伏阵列的最大功率点跟踪,得到输入电压参考值ud_ref,并控制系统的输入电压,输出电流参考值id_ref,第一控制单元进行防孤岛检测,输出频率的扰动量和扰动方向,并发送给所述第二控制单元的步骤,具体包括:
    所述第一检测模块检测系统的输入电压、三相电网电压和输出电流,并进行锁相处理,计算电网频率和输入电压相位;
    所述第一通信模块接收所述第二控制单元输出的输入功率值,计算总的输入功率值;
    所述最大功率跟踪模块根据第二控制单元输出的输入功率值,以及第一检测模块检测的输入电压,完成对所述太阳能光伏阵列的最大功率点跟踪,得到下一时刻输入电压参考值ud_ref
    所述电压控制模块根据所述输入电压参考值ud_ref来控制系统的输入电压,使得输入电压跟踪电压参考值,输出电流参考值id_ref
    所述防孤岛检测模块采用频率扰动检测方法,周期性地进行频率扰动,计算扰动前后频率误差,计算出下一时刻的扰动量和扰动方向;
    所述第一通信模块将所述电流参考值id_ref、扰动量和扰动方向发送给所述第二控制单元。
  6. 如权利要求4所述的控制方法,其特征在于,所述第二控制单元根据第一控制单元发送的电流参考值id_ref,通过电流控制环路,控制所述逆变器模块的输出电流的步骤,具体包括:
    所述第二检测模块检测逆变器模块的输入电压和输入电流;
    所述电流控制模块根据所述第一控制单元输出的电流参考值id_ref以及第二检测模块检测的模拟量,控制所述逆变器模块的输出电流。
PCT/CN2015/070130 2014-04-22 2015-01-05 一种模块化光伏并网逆变器并联控制系统及方法 WO2015161679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410163468.2 2014-04-22
CN201410163468.2A CN103944193B (zh) 2014-04-22 2014-04-22 一种模块化光伏并网逆变器并联控制系统及方法

Publications (1)

Publication Number Publication Date
WO2015161679A1 true WO2015161679A1 (zh) 2015-10-29

Family

ID=51191743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070130 WO2015161679A1 (zh) 2014-04-22 2015-01-05 一种模块化光伏并网逆变器并联控制系统及方法

Country Status (2)

Country Link
CN (1) CN103944193B (zh)
WO (1) WO2015161679A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769260A (zh) * 2017-12-04 2018-03-06 河南城建学院 一种两级式光伏逆变器并网控制装置
CN112134308A (zh) * 2020-08-31 2020-12-25 中国东方电气集团有限公司 一种风电变流器并联系统的控制方法和控制装置
CN112671032A (zh) * 2020-12-14 2021-04-16 广西电网有限责任公司电力科学研究院 一种光伏发电系统并网稳态启动方法及装置
CN115224720A (zh) * 2022-05-19 2022-10-21 盐城工学院 多谐振vpi和pi联合控制的单相光伏并网逆变器控制方法
CN115411748A (zh) * 2022-09-20 2022-11-29 上海正泰自动化软件系统有限公司 光伏发电系统频率的调节方法、调节装置和调节系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944193B (zh) * 2014-04-22 2016-05-18 深圳市金宏威技术有限责任公司 一种模块化光伏并网逆变器并联控制系统及方法
CN104578861B (zh) * 2015-02-04 2017-06-09 国网山东省电力公司聊城供电公司 一种基于分频虚拟复阻抗的微电网多逆变器并联控制方法
CN104950199B (zh) * 2015-05-28 2018-02-02 江苏固德威电源科技股份有限公司 多路pv输入模式识别方法
CN106684912B (zh) * 2016-12-23 2019-10-25 上海致远绿色能源股份有限公司 一种多模块并联运行的太阳能发电系统的控制方法
CN108054774B (zh) * 2017-12-14 2020-12-04 易事特集团股份有限公司 逆变器并网孤岛检测方法、装置、存储介质和计算机设备
CN109861400B (zh) * 2019-01-15 2022-04-15 中国电力科学研究院有限公司 无线电能传输系统模块化逆变源系统
CN113746131B (zh) * 2021-08-06 2023-11-03 万帮数字能源股份有限公司 逆变器并联系统及其零馈网控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675480A (en) * 1996-05-29 1997-10-07 Compaq Computer Corporation Microprocessor control of parallel power supply systems
CN101645605A (zh) * 2009-09-09 2010-02-10 合肥工业大学 模块化并联组合式大功率光伏并网逆变装置、其控制系统及控制方法
CN103683324A (zh) * 2013-12-04 2014-03-26 浙江大学 一种微型电网系统中用于分布式电源并联运行模式的基于通信网络的改进的下垂控制方法
CN103944193A (zh) * 2014-04-22 2014-07-23 深圳市金宏威技术股份有限公司 一种模块化光伏并网逆变器并联控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488668A (zh) * 2008-04-30 2009-07-22 江苏南自通华新能源电力有限公司 可重构分布式接入并网逆变器
CN101483346B (zh) * 2009-02-25 2010-10-13 云南电网公司 一种多逆变器太阳能光伏并网发电系统的组群控制方法
CN102185513B (zh) * 2011-05-18 2014-03-26 华北电力大学(保定) 一种光伏发电并网逆变器的并联结构及其控制方法
CN103219749A (zh) * 2012-11-28 2013-07-24 东方日立(成都)电控设备有限公司 一种动态切换逆变单元的光伏并网发电系统及其切换方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675480A (en) * 1996-05-29 1997-10-07 Compaq Computer Corporation Microprocessor control of parallel power supply systems
CN101645605A (zh) * 2009-09-09 2010-02-10 合肥工业大学 模块化并联组合式大功率光伏并网逆变装置、其控制系统及控制方法
CN103683324A (zh) * 2013-12-04 2014-03-26 浙江大学 一种微型电网系统中用于分布式电源并联运行模式的基于通信网络的改进的下垂控制方法
CN103944193A (zh) * 2014-04-22 2014-07-23 深圳市金宏威技术股份有限公司 一种模块化光伏并网逆变器并联控制系统及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769260A (zh) * 2017-12-04 2018-03-06 河南城建学院 一种两级式光伏逆变器并网控制装置
CN107769260B (zh) * 2017-12-04 2024-03-22 河南城建学院 一种两级式光伏逆变器并网控制装置
CN112134308A (zh) * 2020-08-31 2020-12-25 中国东方电气集团有限公司 一种风电变流器并联系统的控制方法和控制装置
CN112134308B (zh) * 2020-08-31 2023-05-23 中国东方电气集团有限公司 一种风电变流器并联系统的控制方法和控制装置
CN112671032A (zh) * 2020-12-14 2021-04-16 广西电网有限责任公司电力科学研究院 一种光伏发电系统并网稳态启动方法及装置
CN115224720A (zh) * 2022-05-19 2022-10-21 盐城工学院 多谐振vpi和pi联合控制的单相光伏并网逆变器控制方法
CN115411748A (zh) * 2022-09-20 2022-11-29 上海正泰自动化软件系统有限公司 光伏发电系统频率的调节方法、调节装置和调节系统
CN115411748B (zh) * 2022-09-20 2023-12-05 上海正泰自动化软件系统有限公司 光伏发电系统频率的调节方法、调节装置和调节系统

Also Published As

Publication number Publication date
CN103944193B (zh) 2016-05-18
CN103944193A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2015161679A1 (zh) 一种模块化光伏并网逆变器并联控制系统及方法
US9728970B2 (en) Feedforward voltage series compensator based on complementary use of wind power and photovoltaic power
Nema et al. Inverter topologies and control structure in photovoltaic applications: A review
WO2018171765A1 (zh) 兼具pid效应抑制及修复功能的控制装置和控制方法
ITMO20090256A1 (it) Sistema e metodo per la compensazione dello sbilanciamento delle tensioni in ingresso in inverter multilivello o simili
WO2012152072A1 (zh) 太阳能光伏三相微逆变器以及太阳能光伏发电系统
WO2012113271A1 (zh) 太阳能光伏三相微逆变器以及太阳能光伏发电系统
WO2021098201A1 (zh) 一种预充电电路、逆变器以及发电系统
CN104538988B (zh) 分布式电源接入的电压稳定调节系统及其控制方法
WO2011068368A2 (ko) 전력 제어 방법 및 장치
Wang et al. Control Strategy of Three‐Phase Photovoltaic Inverter under Low‐Voltage Ride‐Through Condition
CN102879672A (zh) 一种双向有功功率扰动孤岛检测方法
CN108599224A (zh) 基于自适应电流偏差控制的hvdc连续换相失败抑制方法
US20240088828A1 (en) Photovoltaic power generation system and conversion circuit
CN109103935A (zh) 一种三相储能变流器的离并网无缝切换控制方法
WO2024001674A1 (zh) 光储柔性并网系统及方法
CN104701877A (zh) 新型建筑光伏发电最大功率点跟踪与并网控制装置
CN109510223A (zh) 一种三相电流不平衡治理控制器、装置及控制方法
Guo et al. First‐Order and High‐Order Repetitive Control for Single‐Phase Grid‐Connected Inverter
CN201829966U (zh) 一种具有不间断电源功能的光伏风能并网发电系统
CN108347051A (zh) 一种混合多端口电力电子功率调节器
CN104539181A (zh) 基于llc谐振变换的微型光伏并网逆变器
JP2013009481A (ja) 電力平準化装置
WO2021208044A1 (zh) 一种电源系统
WO2021208141A1 (zh) 一种电源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782296

Country of ref document: EP

Kind code of ref document: A1