WO2015161488A1 - 单模垂直腔面发射激光器收发模块及光信号传播方法 - Google Patents

单模垂直腔面发射激光器收发模块及光信号传播方法 Download PDF

Info

Publication number
WO2015161488A1
WO2015161488A1 PCT/CN2014/076139 CN2014076139W WO2015161488A1 WO 2015161488 A1 WO2015161488 A1 WO 2015161488A1 CN 2014076139 W CN2014076139 W CN 2014076139W WO 2015161488 A1 WO2015161488 A1 WO 2015161488A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
vcsel
photonic crystal
grating coupler
dimensional
Prior art date
Application number
PCT/CN2014/076139
Other languages
English (en)
French (fr)
Inventor
张俪耀
曹彤彤
张灿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480000637.9A priority Critical patent/CN105408791B/zh
Priority to PCT/CN2014/076139 priority patent/WO2015161488A1/zh
Publication of WO2015161488A1 publication Critical patent/WO2015161488A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to the technical field of optical interconnection, and in particular to a single mode vertical cavity surface emitting laser transceiver module and an optical signal propagation method. Background technique
  • silicon materials As a traditional material in the field of microelectronics, silicon materials have absolute advantages in processing technology and production cost.
  • the microelectronics integration process based on silicon materials is quite mature.
  • Electrical interconnects face the challenges of wire interconnect delay, power consumption, and bandwidth, making it difficult to meet the global needs of future mass-on-chip systems.
  • photonic integrated circuits Compared with microelectronic circuits, photonic integrated circuits have many advantages, such as large bandwidth, low power consumption, and low delay. Silicon-based optoelectronic integration is expected to break through the dilemma facing electrical interconnection.
  • silicon-based optoelectronic integration technology has achieved one major breakthrough in light sources, modulators, detectors, etc., and the main technical bottleneck has been broken. Silicon-based optoelectronic integration will become the mainstream technology in the future of integration.
  • Silicon-based optical transceiver modules are the main components in silicon-based optoelectronic integration. At present, among a large number of optical transceiver modules, VCSEL-based transceiver modules are widely used because of their advantages of direct modulation, low power consumption, low cost, and easy expansion of large-scale arrays. However, traditional VCSELs also face many problems due to their own characteristics. Conventional VCSELs are multimode lasers with large spot sizes (50-100 ⁇ m) and wavelengths typically 850 nm or 980 nm (less than 1 ⁇ ). These features limit the application of VCSEL transceiver modules to silicon-based waveguide materials. Its multi-model nature makes it impossible to utilize WDM technology and limits the increase of transmission bandwidth. The larger spot size makes the whole module bulky and limits the increase of interconnect density. In addition, the larger spot size and small size The silicon waveguides do not match.
  • the base optical waveguide has a cross-sectional dimension that is not strictly symmetrical, which results in a waveguide having a strong polarization dependence, which affects the application of polarization sensitive devices.
  • AWG Arrayed Waveguide Grating
  • microrings have very different test spectra in different polarization states.
  • most of the current optical modules do not take into account the problem of polarization sensitivity. Summary of the invention
  • the invention provides a single-mode vertical cavity surface emitting laser transceiver module and an optical signal propagation method for realizing single-mode transmission of optical signals and polarization separation, thereby improving stability during operation.
  • a single-mode vertical cavity surface emitting laser VCSEL transceiver module includes: an optical waveguide layer, a single-mode photonic crystal VCSEL disposed on the optical waveguide layer, and the single-mode photonic crystal a detector corresponding to the VCSEL; wherein, in the optical waveguide layer, a vertical grating coupler is disposed at a position below the single-mode photonic crystal VCSEL and a detector corresponding thereto, and the single-mode photonic crystal VCSEL is emitted The optical signal is incident into the detector after changing the propagation path through the two vertical grating couplers.
  • the transceiver module further includes an optical interconnect layer, and the single-mode photonic crystal VCSEL and the detector are disposed on the same side of the optical interconnect layer.
  • the optical waveguide layer is disposed on a side of the optical interconnect layer facing away from the detector.
  • the single-mode photonic crystal VCSEL and the detector are respectively bonded to the optical interconnect layer.
  • the optical interconnect layer is a transparent dielectric material layer or a two-dimensional vertical photonic crystal waveguide.
  • the two-dimensional vertical photonic crystal waveguide is located at a portion below the single-mode photonic crystal VCSEL and the detector A plurality of air holes are respectively provided.
  • the single-mode photonic crystal VCSEL is a single-polarized single-mode photonic crystal VCSEL
  • the vertical grating coupler is a one-dimensional single-polarization vertical grating coupler
  • the coupling angle of the one-dimensional single-polarization vertical grating coupler is 90°
  • the light polarization mode of the one-dimensional single-polarization vertical grating coupler matches the light polarization mode of the single-polarized single-mode photonic crystal VCSEL.
  • the one-dimensional single-polarization vertical grating coupler is an oblique grating, a blazed grating, a chirped grating or an asymmetric grating.
  • the single-polarized single-mode photonic crystal VCSEL includes: an n-type ohmic contact layer, in a direction away from the n-type ohmic contact layer, a substrate, a bottom layer distributed Bragg mirror DBR, an active layer, an oxide layer, and a top layer DBR; wherein the top layer DBR is etched with a two-dimensional photonic crystal VCSEL and a p-type ohmic contact layer, the etched
  • the two-dimensional photonic crystal VCSEL includes a plurality of elliptical holes.
  • the single-mode photonic crystal VCSEL is a non-polarization mode single-mode photonic crystal VCSEL
  • the vertical grating coupler is a two-dimensional vertical grating coupler
  • the second The dimensional vertical grating coupler has a coupling angle of 90°.
  • the non-polarization mode single-mode photonic crystal VCSEL includes: an n-type ohmic contact layer, and a distance away from the n-type ohmic contact layer Direction, sequentially disposed substrate, underlying distributed Bragg mirror DBR, active layer, oxide layer, top layer DBR; wherein the top layer DBR is etched with a two-dimensional photonic crystal VCSEL and a p-type ohmic contact layer,
  • the etched two-dimensional photonic crystal VCSEL includes a plurality of circular holes.
  • the two-dimensional vertical grating coupler is a two-dimensional vertical chirped grating coupler.
  • an optical signal propagation method using the single mode VCSEL transceiver module comprising: A single mode photonic crystal VCSEL emits an optical signal;
  • a vertical grating coupler located below the single mode photonic crystal VCSEL couples a signal emitted by the single mode photonic crystal VCSEL into the optical waveguide layer for propagation;
  • a vertical grating coupler located below the detector receives the optical signal propagating in the optical waveguide layer and couples the received optical signal into the detector.
  • the optical signal emitted by the single mode photonic crystal VCSEL propagates through the optical interconnect layer before entering the vertical grating coupler;
  • the vertical grating coupler changes the optical signal after the propagation path to the detector through the optical interconnect layer.
  • the optical signal is propagated through the interconnect layer.
  • the optical signal is a one-dimensional polarized optical signal
  • the vertical grating coupler is a one-dimensional single polarization a vertical grating coupler
  • the optical signal is a polarization independent single mode optical signal
  • the vertical grating coupler is a two-dimensional vertical grating coupler.
  • the second aspect provides an optical signal propagation method using the single-mode VCSEL transceiver module, wherein the transceiver module realizes light by using a single-mode crystal VCSEL.
  • the single-mode transmission of the signal and the coupling of the vertical light coupler reduce the size of the spot of the optical signal propagating in the optical waveguide layer, enabling it to be used in the waveguide of the silicon-based material, thereby improving the mutual interaction of the VCSEL transceiver modules.
  • the vertical grating coupler can realize polarization separation, improve the working stability of the light polarization sensitive device, and solve the polarization sensitivity problem of the silicon-based waveguide.
  • the coupling mode of the grating coupler is easy to couple and align, reducing the accuracy of alignment.
  • FIG. 1 is a schematic structural diagram of a single-mode VCSEL transceiver module according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an end surface of an optical interconnection layer according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view of a single-polarized single-mode photonic crystal VCSEL transceiver module according to an embodiment of the present invention
  • 4 is a schematic structural view of a single-polarized single-mode photonic crystal VCSEL according to an embodiment of the present invention.
  • FIG. 6 is an end view of a two-dimensional photonic crystal VCSEL according to an embodiment of the present invention;
  • FIGS. 7a-7c are schematic diagrams showing different structures of a one-dimensional single polarization vertical grating coupler according to an embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of a non-polarization mode single-mode photonic crystal VCSEL transceiver module according to an embodiment of the present invention
  • FIG. 9 is a flow chart of optical signal propagation of a single-mode VCSEL transceiver module according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a transceiver module of a single-polarized single-mode photonic crystal VCSEL according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a non-polarization mode single mode photonic crystal VCSEL transceiving module according to an embodiment of the present invention.
  • embodiments of the present invention provide a single-mode vertical cavity surface emitting laser transceiver module and an optical signal propagation method.
  • a single-mode optical signal is transmitted by using a single-mode photonic crystal VCSEL, and a propagation path of the optical signal is changed by a vertical grating coupler to be injected into the detector, thereby causing the optical signal to propagate. It can realize polarization separation, improve the working stability of the light polarization sensitive device, and solve the problem of polarization sensitivity of the silicon-based waveguide.
  • the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 shows a schematic structural view of a single mode VCSEL transceiver module provided by this embodiment.
  • the "lower” described in the embodiment is the orientation when the single mode VCSEL transceiver module provided in this embodiment is placed in the manner shown in FIG.
  • An embodiment of the present invention provides a single-mode vertical cavity surface emitting laser VCSEL transceiver module.
  • the transceiver module includes: an optical waveguide layer 40, a single-mode photonic crystal VCSEL 10 disposed on the optical waveguide layer 40, and a single-mode photon.
  • the crystal VCSEL 10 is disposed corresponding to the detector 20; wherein, in the optical waveguide layer 40, a vertical grating coupler, a single mode photonic crystal VCSEL, is disposed at a position below the single mode photonic crystal VCSEL 10 and the detector 20 corresponding thereto
  • the emitted light signal is incident on the detector 20 corresponding to the photonic crystal VCSEL 10 after the propagation path is changed by the two vertical grating couplers.
  • the number of the single-mode photonic crystal VCSELs 10 may be plural or one, and the principle is the same.
  • a set of single-mode photonic crystal VCSELs 10 and detectors 20 corresponding thereto are taken as an example for description.
  • a vertical grating coupler located below the single mode photonic crystal VCSEL 10 is referred to as a first vertical grating coupler 50
  • a vertical grating coupler located below the detector 20 is referred to as a second vertical grating coupler 60.
  • single mode photonic crystal VCSEL 10 emission After the single-mode optical signal is coupled through the first vertical grating coupler 50, the propagation path of the optical signal is changed by 90°, and propagates in the optical waveguide layer 40 to the second vertical grating coupler 60, and the propagation path of the optical signal is again It is changed 90 by the second vertical grating coupler 60.
  • the detector 20 is injected into the detector 20 located above the second vertical grating coupler 60. The detector 20 converts the incident optical signal into an electrical signal to complete the transmission and reception of the optical signal.
  • each photonic crystal VCSEL 10 and detector 20 When a plurality of single-mode photonic crystal VCSELs 10 and detectors 20 are used, the operation principle of each photonic crystal VCSEL 10 and detector 20 is the same as that described above, and is not described here again.
  • single mode transmission is realized by using a single mode photonic crystal VCSEL, so that it can be used in a silicon-based material waveguide, and the interconnection bandwidth and interconnection density of the VCSEL transceiver module are improved; in addition, the transceiver module can also ⁇ Use WDM (Wavelength Division Multiplexing) technology to further increase bandwidth.
  • WDM Widelength Division Multiplexing
  • the vertical grating coupler can realize polarization separation, improve the working stability of the light polarization sensitive device, and solve the polarization sensitivity problem of the silicon-based waveguide.
  • the coupling mode of the grating coupler is easy to couple and align, reducing the accuracy of alignment.
  • the transceiver module provided in this embodiment has a simple structure and can be processed by conventional semiconductor processes, such as growth, etching and bonding, which is convenient for integration and easy to implement.
  • the optical signal propagates from the first vertical grating coupler 50 to the second vertical grating coupler 60, and propagates in the optical waveguide layer 40.
  • the optical waveguide layer 40 is disposed in the optical waveguide layer 40.
  • Various types of optical devices process optical signals, such as modulators, optical switches, optical attenuators, optical amplifiers, etc., to improve the propagation of optical signals.
  • the transceiver module further includes an optical interconnect layer 30, the single-mode photonic crystal VCSEL 10 and the detector 20 are disposed on the same side of the optical interconnect layer 30, and the optical waveguide layer 40 is disposed on the optical interconnect layer 30 away from the detector 20.
  • the single mode photonic crystal VCSEL 10 and the detector 20 are bonded to the optical interconnect layer 30, respectively.
  • the optical signal emitted from the single mode photonic crystal VCSEL 10 passes through the optical interconnect layer 30 and then enters the first vertical grating coupler 50 through the second vertical grating coupler.
  • the 60 coupled optical signals also propagate through the optical interconnect layer 30 into the detector 20.
  • optical interconnection The layer 30 can be made of different materials and structures to facilitate the propagation of the optical signal.
  • the optical interconnect layer 30 is a transparent dielectric material layer or a two-dimensional vertical photonic crystal waveguide.
  • the optical interconnect layer 30 is a two-dimensional vertical photonic crystal waveguide, as shown in FIG. 2, in the two-dimensional vertical photonic crystal waveguide, a plurality of air are respectively disposed at positions below the single-mode photonic crystal VCSEL 10 and the detector 20.
  • the holes 31 and any three mutually adjacent air holes 31 are arranged in an equilateral triangle, but are not limited to one form of an equilateral triangle, but may be square and other arrangements.
  • the material is single crystal silicon
  • the intermediate portion surrounded by the air holes 31 is a core diameter of the light guiding light
  • the light is along the vertical paper direction. propagation.
  • the FDTD ( Finite Difference Time Domain) method shows that the optical waveguide has good light guiding performance and can achieve polarization independent, and the loss of 1.5 ⁇ ⁇ is ⁇ 0.07 dB.
  • the single-mode photonic crystal VCSEL and the vertical grating coupler can employ different structures, and the structure thereof will be described in detail below with reference to the drawings.
  • a single mode photonic crystal VCSEL is a single polarization single mode photonic crystal VCSEL.
  • the vertical grating coupler is a one-dimensional single polarization vertical grating coupler 70, that is, the first vertical grating coupler 50 and the second vertical grating coupler 60 are one-dimensional single polarization vertical grating couplers 70, and one-dimensional single polarization
  • the vertical grating coupler 70 has a coupling angle of 90.
  • the light polarization mode of the one-dimensional single-polarization vertical grating coupler matches the light polarization mode of the single-polarized single-mode photonic crystal VCSEL 11.
  • FIG. 4 shows the structure of a single-polarized single-mode photonic crystal VCSEL
  • FIG. 5 shows the end structure of a two-dimensional photonic crystal VCSEL
  • the method includes: an n-type ohmic contact layer 118, a substrate 117 disposed in a direction away from the n-type ohmic contact layer 118, a bottom layer distributed Bragg mirror DBR 116, an active layer 115, an oxide layer 114, and a top layer DBR 113;
  • the top layer DBR 113 is etched with a two-dimensional photonic crystal VCSEL
  • the etched two-dimensional photonic crystal VCSEL 112 includes a plurality of ellipses Shaped hole 119.
  • the elliptical hole 119 has a major axis of 2 ⁇ m and a minor axis of 1.4 ⁇ m, and the spacing between adjacent two elliptical holes 119 is 4 ⁇ m. It should be understood that the above specific data is only an example. The size of the elliptical hole is not limited to the specific size of the above elliptical hole.
  • the single-polarized single-mode photonic crystal VCSEL 11 utilizes the conduction mode of the two-dimensional photonic crystal to direct optical amplification in the VCSEL cavity. Since the two-dimensional photonic crystal VCSEL 112 is of a single-mode structure, and the air hole fabrication process of the two-dimensional photonic crystal VCSEL 112 is simple, it is easy to fabricate a single-mode VCSEL using this structure. And the elliptical hole 119 is etched on the light-emitting end surface, which not only ensures the single-mode light-emitting, but also achieves the effect of single polarization. With continued reference to FIG.
  • the elliptical hole 119 has a pitch of 4 ⁇ m, the elliptical hole 119 has a major axis of 2 ⁇ m, and the elliptical hole 119 has a minor axis of 1.4 ⁇ m, and a single polarization can be produced by using this structure.
  • the result of the light is shown in Fig. 6.
  • Fig. 6 shows the spectrum produced by this structure. It can be seen from the spectrum display that the light intensity is almost concentrated in a single polarization state.
  • the one-dimensional single-polarization vertical grating coupler 70 can use different grating couplers, such as oblique gratings, blazed gratings, chirped gratings or asymmetric gratings, to be able to input optical signals into the grating coupler.
  • the propagation path changes by 90. .
  • the structure is as shown in FIGS. 7a to 7c, wherein FIG. 7a shows the structure of the asymmetric grating, which includes a silicon sinker 73, an oxide layer 72 disposed on the silicon sinker 73, and an oxide layer.
  • FIG. 7b shows the structure of the slant grating or blazed grating, which comprises a silicon sinker 73', an oxide layer 72' disposed on the silicon sinker 73', and is disposed on the oxide layer 72'
  • FIG. 7c shows the structure of the germanium grating, which includes a silicon sinker 73", disposed on the silicon sinker 73" An oxide layer 72", and a silicon waveguide layer 71" disposed on the oxide layer 72".
  • the propagation path of the optical signal can be changed by 90° by the above-described grating coupler.
  • a transparent dielectric material can be used, and a two-dimensional photonic crystal waveguide can also be used.
  • a single polarized single mode photonic crystal VCSEL 11 produces an optical signal of a single polarization state, which is transmitted via optical interconnect layer 30 to a one-dimensional single polarization vertical grating coupler 70 (first vertical grating coupling)
  • the device 50 is coupled into the optical waveguide layer 40, and the optical signal processed by the optical waveguide layer 40 is coupled to the optical mutual through a one-dimensional single-polarization vertical grating coupler 70 (second vertical grating coupler 60) located below the detector 20.
  • the layer 30 is finally passed to the detector 20 to convert the optical signal into an electrical signal to complete the transmission and reception of the optical signal.
  • the preliminary calculations of the main performance of the modules involved in this embodiment are made below.
  • the loss is mainly due to the coupling of the grating coupler.
  • the transmission loss of the optical interconnect layer 30 itself and the coupling loss of other portions are small, which is recorded as 0.5 dB.
  • the total loss can be calculated to be approximately 4.24 dB in an asymmetric grating scheme.
  • Single-mode photonic crystals VCSELs currently have a maximum transmission rate of ⁇ 30 GHz. Considering the single-mode single-polarization case, external modulation techniques can be used. Currently, the modulation rate of silicon-based modulators can reach above 40 GHz.
  • the communication capacity is mainly limited by the communication bandwidth of the grating coupler.
  • the LDB bandwidth of the grating coupler is about 35 nm, which can provide 43 wavelength division multiplexing channels with channel spacing of 100G.
  • the single mode photonic crystal VCSEL is a non-polarization mode single mode photonic crystal VCSEL 12
  • the vertical grating coupler is a two-dimensional vertical grating coupler 80
  • the two-dimensional vertical grating coupler 80 has a coupling angle of 90. That is, the first vertical grating coupler 50 and the second vertical grating coupler 60 are both two-dimensional vertical grating couplers 80.
  • the non-polarization mode single-mode photonic crystal VCSEL 12 includes: an n-type ohmic contact layer, a substrate disposed in a direction away from the n-type ohmic contact layer, a bottom-layer distributed Bragg mirror DBR, an active layer, and an oxide layer. a top layer DBR; wherein the top layer DBR is etched with a two-dimensional photonic crystal VCSEL and a p-type ohmic contact layer, and the etched two-dimensional photonic crystal VCSEL comprises a plurality of circular holes.
  • the two-dimensional photonic crystal VCSEL etches a two-dimensional photonic crystal structure on the light-emitting end face of a conventional VCSEL.
  • the light amplification in the VCSEL cavity is guided by the conduction mode of the two-dimensional photonic crystal. Since the two-dimensional photonic crystal is a single-mode structure, this structure makes it easy to fabricate a single-mode VCSEL. And a circular hole is etched on the light-emitting end surface, which can ensure the single-mode light emission and the polarization-independent effect.
  • the VCSEL has an emission wavelength of 1.287 ⁇ , a power of 1.7 mW, and a side mode suppression ratio of 30 dB, which can meet the requirements of system applications.
  • the two-dimensional vertical grating coupler 80 uses a two-dimensional ⁇ grating coupler to realize split coupling and shunt collection of two polarization states, and the coupling angle is 90°, and the coupling loss of the structure is 5.2 dB. . It should be understood that the implementation method of the two-dimensional vertical grating coupler 80 may be, but not limited to, a two-dimensional chirped grating coupler.
  • the optical interconnect layer 30 of the present embodiment may use a transparent dielectric material, and may also use two. Dimensional photonic crystal waveguide.
  • the photonic crystal VCSEL produces a polarization-independent optical signal that passes through the optical interconnect layer 30 to a two-dimensional vertical grating coupler 80 (first vertical grating coupler 50) that splits the light into two-dimensional vertical grating couplers 80.
  • a two-dimensional vertical grating coupler 80 first vertical grating coupler 50
  • Two paths enter the optical waveguide layer 60, the optical waveguide layer 60 processes the optical signal, and then the two optical signals are coupled to the optical interconnect layer 30 via a two-dimensional vertical grating coupler 80 (second vertical grating coupler 60), respectively.
  • the detector 20 transmits the optical signal into an electrical signal to complete the transmission and reception of the optical signal.
  • the preliminary calculations are made on the main performance of the modules involved in this embodiment, namely loss, rate and communication capacity.
  • the loss is primarily due to the coupling of the two-dimensional vertical grating coupler 80.
  • the transmission loss of the optical interconnect layer 30 itself and the coupling loss of other portions are small, which is recorded as 0.5 dB.
  • the total loss can be calculated to be about 10.9 dB.
  • the current maximum transmission rate of single-mode photonic crystal VCSELs is ⁇ 30 GHz.
  • external modulation technology can be used.
  • the modulation rate of silicon-based modulators can reach above 40 GHz.
  • the communication capacity is mainly limited by the communication bandwidth of the grating coupler.
  • the ldB bandwidth of the grating coupler is about 35nm, which can provide 43 wavelength division multiplexing channels with channel spacing of 100G. If double-channel multiplexing is considered, the communication capacity is doubled, which can be supported. 86 wavelength division multiplexing channels spaced 100G apart. It can be seen from the descriptions of the foregoing specific embodiments 1 and 2 that the single-mode photonic crystal VCSEL provided by the embodiment of the present invention can realize single-mode transmission, so that it can be used in a silicon-based material waveguide, and the VCSEL transceiver module is improved. Interconnect bandwidth and interconnect density; in addition, the transceiver module can also Use WDM technology to further increase bandwidth.
  • the vertical grating coupler can realize polarization separation, improve the working stability of the light polarization sensitive device, and solve the polarization sensitivity problem of the silicon-based waveguide.
  • the coupling mode of the grating coupler is easy to couple and align, reducing the accuracy of alignment.
  • the transceiver module is simple in structure and can be processed by conventional semiconductor processes such as growth, etching and bonding, which is easy to integrate and easy to implement.
  • FIG. 9 is a flowchart of optical signal propagation of a single mode VCSEL transceiver module according to an embodiment of the present invention.
  • the embodiment of the invention further provides an optical signal propagation method using the single-mode VCSEL transceiver module, the method comprising:
  • Step 101 A single-mode photonic crystal VCSEL emits an optical signal
  • Step 102 A vertical grating coupler located under the single mode photonic crystal VCSEL couples a signal emitted by the single mode photonic crystal VCSEL into the optical waveguide layer for propagation;
  • Step 103 A vertical grating coupler located below the detector receives the optical signal propagating in the optical waveguide layer and couples the received optical signal into the detector.
  • FIG. 10 is a flowchart of a transceiver module of a single-polarized single-mode photonic crystal VCSEL according to an embodiment of the present invention
  • Step 201 A single-polarized single-mode photonic crystal VCSEL emits a light signal of a single polarization state;
  • Step 202 The optical interconnect layer propagates the emitted optical signal to a one-dimensional single polarization vertical under a single-polarized single-mode photonic crystal VCSEL In the grating coupler;
  • Step 203 A one-dimensional single-polarization vertical grating coupler under the single-polarized single-mode photonic crystal VCSEL couples the optical signal into the optical waveguide layer, wherein the optical signal propagation direction changes by 90°.
  • Step 204 A one-dimensional single-polarization vertical grating coupler located under the detector couples the received optical signal into the optical interconnect layer, wherein the optical signal propagation direction changes by 90. ;
  • Step 205 The optical interconnect layer transmits an optical signal that changes a propagation direction to the detector.
  • Step 206 The detector converts the optical signal into an electrical signal to complete transmission and reception of the optical signal.
  • FIG. 11 is a non-polarization mode single mode photonic crystal according to an embodiment of the present invention.
  • Step 301 a non-polarization mode single-mode photonic crystal VCSEL emits a polarization-independent optical signal
  • Step 302 The optical interconnection layer transmits the optical signal to a single-mode photonic crystal in a non-polarization mode
  • Step 303 the two-dimensional vertical grating coupler couples the optical signal and splits into two polarized lights to enter the optical waveguide layer for propagation;
  • Step 304 A two-dimensional vertical grating coupler located below the detector combines and couples the two paths into the optical interconnect layer;
  • Step 305 The optical interconnect layer transmits an optical signal that changes a propagation direction to the detector.
  • Step 306 The detector converts the optical signal into an electrical signal to complete transmission and reception of the optical signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种单模垂直腔面发射激光器VCSEL收发模块,包括光波导层(40)、设置于光波导层(40)上的单模光子晶体VCSEL(10)和与单模光子晶体VCSEL(10)对应的探测器(20)、以及能够改变单模光子晶体VCSEL(10)发射出的光信号使其射入到探测器(20)内的垂直光栅耦合器(50、60)。通过单模光子晶体VCSEL(10)实现光信号单模传输,并通过垂直光栅耦合器(50、60)缩小了光波导层中传播的光信号的光斑尺寸,使其能够用于硅基材料波导,提高了VCSEL收发模块的互连带宽和互连密度。同时,垂直光栅耦合器(50、60)可以实现偏振分离,提高光偏振敏感器件的工作稳定性。

Description

单模垂直腔面发射激光器收发模块及光信号传播方法 技术领域
本发明涉及到光互连的技术领域, 尤其涉及到一种单模垂直腔面发射激 光器收发模块及光信号传播方法。 背景技术
硅材料作为微电子领域的传统材料, 在加工工艺和制作成本上有着绝对 的优势。 基于硅材料的微电子集成工艺相当成熟。 然而, 微电子电路集成的 发展受制于物理特性已经发展到极限。 电互连面临金属线互连延迟、 功耗和 带宽的挑战, 难于满足未来众核片上系统全局的需求。 与微电子电路相比, 光子集成回路有很多优势, 它具有带宽大、 功耗小、 延迟小等特点。 硅基光 电集成有望突破电互连面临的困境。 近年来, 硅基光电集成技术在光源、 调 制器、 探测器等方面取得了一个又一个重大得出破, 主要技术瓶颈已经打破。 硅基光电集成将成为集成领域未来的主流技术。
硅基光收发模块是硅基光电集成中的主要组件。 目前, 在众多的光收发 模块中, 基于 VCSEL的收发模块具有直接调制、 功耗低、 成本低、 便于扩展 大规模阵列等优点, 因而被广泛地应用。 然而, 传统的 VCSEL由于自身特点 也面临很多问题。常规的 VCSEL为多模激光器,光斑尺寸比较大( 50-100 μ m ), 波长一般为 850nm或 980nm (小于 1 μ πι )。 它这些特点限制了 VCSEL收发模块 在硅基波导材料上的应用。 其多模特性使得它不能利用波分复用技术, 也限 制了传输带宽的提高; 较大的光斑尺寸使得整个模块体积很大, 限制互连密 度的提高; 另外, 较大光斑尺寸和小的硅波导不匹配。
此外, 以 SOI ( Silicon On Insulator , 绝缘沉底上的硅) 为主要材料的硅 基光波导, 其截面尺寸并非严格对称, 这造成了波导具有很强的偏振相关性, 影响偏振敏感器件的应用。 比如, AWG ( Arrayed Waveguide Grating , 阵列波 导光栅)和微环等器件在不同的偏振态下的测试光谱会有很大的区别。 而且 目前的大部分光模块并没有考虑到偏振敏感的问题。 发明内容
本发明提供了一种单模垂直腔面发射激光器收发模块及光信号传播方 法, 用以实现光信号单模传输以及偏振分离, 提高工作时的稳定性。
第一方面, 提供了一种单模垂直腔面发射激光器 VCSEL收发模块, 该收 发模块包括: 光波导层, 设置于所述光波导层上的单模光子晶体 VCSEL以及 与所述单模光子晶体 VCSEL对应设置的探测器; 其中, 所述光波导层中, 位 于所述单模光子晶体 VCSEL 以及与其对应的探测器下方的位置分别设置有 垂直光栅耦合器,所述单模光子晶体 VCSEL发射出的光信号经过所述两个垂 直光栅耦合器改变传播路径后射入到与所述探测器内。
结合上述第一方面、 在第一种可能的实现方式中, 该收发模块还包括光 互连层, 所述单模光子晶体 VCSEL 和所述探测器设置于所述光互连层同一 侧, 所述光波导层设置于所述光互连层上背离所述探测器的一侧。
结合上述第一方面的第一种可能的实现方式, 在第二种可能的实现方式 中, 所述单模光子晶体 VCSEL和所述探测器分别键合在所述光互连层。
结合上述第一方面的第一种可能的实现方式, 在第三种可能的实现方式 中, 所述光互连层为透明介质材料层或二维垂直光子晶体波导。
结合上述第一方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 所述二维垂直光子晶体波导中, 位于所述单模光子晶体 VCSEL和所述探 测器下方的部位分别设置有多个空气孔。
结合上述第一方面、 第一方面的第一种可能的实现方式、 第一方面的第 二种可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四 种可能的实现方式, 在第五种可能的实现方式中, 所述单模光子晶体 VCSEL 为单一偏振的单模光子晶体 VCSEL, 所述垂直光栅耦合器为一维单偏振垂直 光栅耦合器, 且所述一维单偏振垂直光栅耦合器的耦合角度为 90° , 所述一 维单偏振垂直光栅耦合器的光偏振模式与所述单一偏振的单模光子晶体 VCSEL的光偏振模式相匹配。
结合上述第一方面的第五种可能实施方式, 在第六种可能实施方式中, 所述一维单偏振垂直光栅耦合器为斜刻光栅、 闪耀光栅、 啁啾光栅或非对称 光栅。
结合上述第一方面的第五种可能实施方式, 在第七种可能实施方式中, 所述单一偏振的单模光子晶体 VCSEL包括: n型欧姆接触层, 沿远离 n型欧 姆接触层的方向, 依次设置的衬底、 底层分布布拉格反射镜 DBR、 有源层、 氧化物层、 顶层 DBR; 其中, 所述顶层 DBR刻蚀有二维光子晶体 VCSEL以 及 p型欧姆接触层, 所述刻蚀的二维光子晶体 VCSEL包括多个椭圓形孔。
结合上述第一方面、 第一方面的第一种可能的实现方式、 第一方面的第 二种可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四 种可能的实现方式, 在第八种可能的实现方式中, 所述单模光子晶体 VCSEL 为非偏振模式的单模光子晶体 VCSEL, 所述垂直光栅耦合器为二维垂直光栅 耦合器, 且所述二维垂直光栅耦合器的耦合角度为 90° 。
结合上述第一方面的第八种可能的实现方式, 在第九中可能实现的方式 中, 所述非偏振模式的单模光子晶体 VCSEL包括: n型欧姆接触层, 沿远离 n型欧姆接触层的方向, 依次设置的衬底、 底层分布布拉格反射镜 DBR、 有 源层、氧化物层、顶层 DBR;其中,所述顶层 DBR刻蚀有二维光子晶体 VCSEL 以及 p型欧姆接触层, 所述刻蚀的二维光子晶体 VCSEL包括多个圓形孔。
结合上述第一方面的第八种可能的实现方式, 在第十种可能实现的方式 中, 所述二维垂直光栅耦合器为二维垂直啁啾光栅耦合器。
第二方面, 提供一种利用上述单模 VCSEL收发模块的光信号传播方法, 该方法包括: 单模光子晶体 VCSEL发射出光信号;
位于单模光子晶体 VCSEL 下方的垂直光栅耦合器将单模光子晶体 VCSEL发射出的信号耦合到光波导层中传播;
位于探测器下方的垂直光栅耦合器接收到光波导层中传播的光信号, 并 将接收到的光信号耦合到探测器中。
结合上述第二方面,在第一可能实现的方式中,所述单模光子晶体 VCSEL 发射出的光信号在进入到垂直光栅耦合器之前, 通过光互连层传播; 所述经 位于探测器下方的垂直光栅耦合器改变传播路径后的光信号通过光互连层传 播至所述探测器。 通过互连层传播光信号。
结合上述第二方面、 第二方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 所述光信号为一维偏振光信号, 所述垂直光栅耦合器为一维 单偏振垂直光栅耦合器; 或, 所述光信号为与偏振无关的单模光信号, 所述 垂直光栅耦合器为二维垂直光栅耦合器。
根据第一方面提供的单模垂直腔面发射激光器 VCSEL收发模块、第二方 面提供的提供一种利用上述单模 VCSEL收发模块的光信号传播方法,上述收 发模块通过釆用单模晶体 VCSEL实现光信号的单模传输,并通过垂直光线耦 合器的耦合作用, 缩小了在光波导层中传播的光信号的光斑的尺寸, 使之能 够用于硅基材料波导中, 提高了 VCSEL收发模块的互连带宽和互连密度; 同 时, 釆用垂直光栅耦合器, 可以实现偏振分离, 提高光偏振敏感器件的工作 稳定性, 解决硅基波导偏振敏感的问题。 此外, 釆用光栅耦合器的耦合方式, 容易耦合对准, 降低对准精度要求。 附图说明
图 1为本发明实施例提供的单模 VCSEL收发模块的结构示意图; 图 2为本发明实施例提供的光互连层的端面示意图;
图 3为本发明实施例提供的单一偏振的单模光子晶体 VCSEL收发模块的 分解示意图; 图 4为本发明实施例提供的单一偏振的单模光子晶体 VCSEL的结构示意 图 5为本发明实施例提供的二维光子晶体 VCSEL 的端面视图; 图 6为本发明实施例提供的单一偏振的单模光子晶体 VCSEL发射的光信 号的光谱图;
图 7a〜图 7c为本发明实施例提供的一维单偏振垂直光栅耦合器的不同结 构示意图;
图 8为本发明实施例提供的非偏振模式的单模光子晶体 VCSEL收发模块 的分解示意图;
图 9为本发明实施例提供的单模 VCSEL收发模块的光信号传播的流程 图 10为本发明实施例提供的单一偏振的单模光子晶体 VCSEL的收发模 块的流程图;
图 11为本发明实施例提供的非偏振模式的单模光子晶体 VCSEL收发模 块的流程图。
附图标记:
10-单模光子晶体 VCSEL 11-单一偏振的单模光子晶体 VCSEL
111-p型欧姆接触层 112-二维光子晶体 VCSEL
113-顶层081 114-氧化物层
115-有源层 116-底层分布格拉反射镜 DBR
117-衬底 118-n型欧姆接触层
119-椭圓形孔 12-非偏振模式的单模光子晶体 VCSEL
20-探测器 30-光互连层
31-空气孔 40-光波导层
50-第一垂直光栅耦合器 60-第二垂直光栅耦合器
70-—维单偏振垂直光栅耦合 71、 7Γ、 7Γ-硅波导层
72、 72'、 72"-氧化层 73、 73'、 73'-硅沉底 80-二维垂直光栅耦合器 具体实施方式
为了实现光信号单模传输以及偏振分离, 提高工作时的稳定性, 本发明 实施例提供了一种单模垂直腔面发射激光器收发模块及光信号传播方法。 在 本发明的技术方案中, 通过釆用单模光子晶体 VCSEL发射单模光信号, 并通 过垂直光栅耦合器改变光信号的传播途径使其射入到探测器内, 从而使得光 信号在传播时可以实现偏振分离, 提高光偏振敏感器件的工作稳定性, 解决 硅基波导偏振敏感的问题。 为了使本领域技术人员更好的理解本发明的技术方案, 下面结合说明书 附图对本发明实施例进行详细的描述。
如图 1所示, 图 1示出了本实施例提供的单模 VCSEL收发模块的结构示 意图。 其中, 实施例中所述的 "下方" 为本实施例提供的单模 VCSEL收发模 块以图 1所示方式放置时的方位。
本发明实施例提供了一种单模垂直腔面发射激光器 VCSEL收发模块,该 收发模块包括: 光波导层 40 , 设置于所述光波导层 40 上的单模光子晶体 VCSEL 10以及与单模光子晶体 VCSEL 10对应设置的探测器 20; 其中, 所述 光波导层 40中,位于单模光子晶体 VCSEL 10以及与其对应的探测器 20下方 的位置分别设置有垂直光栅耦合器,单模光子晶体 VCSEL 10发射出的光信号 经过所述两个垂直光栅耦合器改变传播路径后射入到与所述光子晶体 VCSEL 10对应的探测器 20内。 在上述实施例中,单模光子晶体 VCSEL 10的个数可以为多个也可以为一 个, 其原理相同, 下面以一组单模光子晶体 VCSEL 10和与其对应的探测器 20为例进行说明, 为了方便描述, 将位于单模光子晶体 VCSEL 10下方的垂 直光栅耦合器称为第一垂直光栅耦合器 50,将位于探测器 20下方的垂直光栅 耦合器称为第二垂直光栅耦合器 60。 具体的, 单模光子晶体 VCSEL 10发射 出的单模光信号经过第一垂直光栅耦合器 50耦合后, 光信号的传播路径被改 变 90° , 并在光波导层 40 内传播至第二垂直光栅耦合器 60, 光信号的传播 路径再次被第二垂直光栅耦合器 60改变 90。 ,射入到位于第二垂直光栅耦合 器 60上方的探测器 20内, 探测器 20将射入的光信号转变成电信号, 完成光 信号的收发过程。 在釆用多个单模光子晶体 VCSEL 10及探测器 20时, 每个 光子晶体 VCSEL 10、 探测器 20的工作原理与上述原理相同, 在此不再—— 赘述。 在上述实施例中通过釆用单模光子晶体 VCSEL实现单模传输, 使之能 够用于硅基材料波导中, 提高了 VCSEL收发模块的互连带宽和互连密度; 此 外, 该收发模块还可以釆用 WDM ( Wavelength Division Multiplexing, 波分复 用)技术进一步提高带宽。 同时, 釆用垂直光栅耦合器, 可以实现偏振分离, 提高光偏振敏感器件的工作稳定性, 解决硅基波导偏振敏感的问题。 此外, 釆用光栅耦合器的耦合方式, 容易耦合对准, 降低对准精度要求。 同时, 本 实施例提供的收发模块构造简单, 釆用常规半导体工艺, 如生长、 刻蚀和键 合即可加工实现, 便于集成, 容易实现。 其中光信号从第一垂直光栅耦合器 50传播到第二垂直光栅耦合器 60的 过程中, 是在光波导层 40中传播的, 为了提高光信号的传播效果, 在光波导 层 40中设置有各类光器件对光信号进行处理,如调制器、光开关、光衰减器、 光放大器等, 改善了光信号的传播效果。
此外, 该收发模块还包括光互连层 30, 单模光子晶体 VCSEL 10和探测 器 20设置于光互连层 30同一侧, 光波导层 40设置于光互连层 30上背离探 测器 20的一侧。较佳的,单模光子晶体 VCSEL 10和探测器 20分别键合在光 互连层 30。 在光信号传播时, 从单模光子晶体 VCSEL 10发射出的光信号通 过光互连层 30后射入到第一垂直光栅耦合器 50, 通过第二垂直光栅耦合器
60耦合后的光信号也通过光互连层 30传播到探测器 20内。 具体的, 光互连 层 30可以釆用不同的材质和结构, 以便于光信号的传播, 较佳的, 光互连层 30为透明介质材料层或二维垂直光子晶体波导。其中光互连层 30为二维垂直 光子晶体波导时, 如图 2 所示, 该二维垂直光子晶体波导中, 位于单模光子 晶体 VCSEL 10和探测器 20下方的部位分别设置有多个空气孔 31 ,且任意三 个互相相邻的空气孔 31呈正三角形排列, 但不仅限于正三角形一种形式, 也 可以为正方形以及其他的排列形式。 具体的, 它是由沿垂直纸面方向的空气 孔 31形成的折射率引导型光波导, 材料为单晶硅, 空气孔 31 包围的中间区 域为导光的芯径, 光沿垂直纸面方向传播。 空气孔 31的排列结构为三角形, 且空气孔 31直径 a=120nm, 相邻的空气孔 31间距为 d=430nm, 波导芯层直 径约 4.3 μ m。 通过 FDTD ( Finite Difference Time Domain, 时域有限差分)方 法模拟表明, 光波导具有良好的导光性能, 能够实现偏振无关, 传播 1.5 μ πι 的损耗 <0.07dB。
在具体使用时,单模光子晶体 VCSEL和垂直光栅耦合器可以釆用不同结 构, 下面结合附图对其结构进行详细的说明。
实施例 1 如图 3所示, 单模光子晶体 VCSEL为单一偏振的单模光子晶体 VCSEL
11 , 垂直光栅耦合器为一维单偏振垂直光栅耦合器 70, 即第一垂直光栅耦合 器 50和第二垂直光栅耦合器 60均为一维单偏振垂直光栅耦合器 70, 且一维 单偏振垂直光栅耦合器 70的耦合角度为 90。 ,所述一维单偏振垂直光栅耦合 器的光偏振模式与单一偏振的单模光子晶体 VCSEL 11的光偏振模式相匹配。
一并参考图 4和图 5 , 图 4示出了单一偏振的单模光子晶体 VCSEL的结 构, 图 5示出了二维光子晶体 VCSEL的端面结构; 其中, 单一偏振的单模光 子晶体 VCSEL 11包括: n型欧姆接触层 118, 沿远离 n型欧姆接触层 118的 方向, 依次设置的衬底 117、 底层分布布拉格反射镜 DBR 116、 有源层 115、 氧化物层 114、顶层 DBR 113;其中,顶层 DBR 113刻蚀有二维光子晶体 VCSEL
112以及 p型欧姆接触层 111 ,刻蚀的二维光子晶体 VCSEL 112包括多个椭圓 形孔 119。 较佳的, 椭圓形孔 119的长轴为 2μπι, 短轴为 1.4μπι, 且相邻的两 个椭圓形孔 119之间的间距为 4μπι, 应当理解的是上述具体数据仅为一个举 例, 椭圓形孔的尺寸不仅限于上述椭圓孔的具体尺寸。
具体的,该单一偏振的单模光子晶体 VCSEL 11利用二维光子晶体的传导 模式引导 VCSEL谐振腔中的光放大。 由于二维光子晶体 VCSEL 112是单模 结构, 而且二维光子晶体 VCSEL 112的空气孔制作工艺简单, 因此利用这种 结构可以很容易制作出单模的 VCSEL。且在其出光端面刻蚀出椭圓形孔 119 , 不但可以保证出光单模,而且可以达到单一偏振的效果。继续参考图 5 ,其中, 椭圓形孔 119间距为 4μπι、 椭圓形孔 119的长轴为 2μπι、 椭圓形孔 119的短 轴为 1.4μπι, 釆用这种结构可以制作出单一偏振的光, 其结果如图 6所示, 图 6为这种结构产生的光谱, 通过光谱图显示可以看出, 出光光强几乎集中在单 一偏振态上。
其中的一维单偏振垂直光栅耦合器 70可以釆用不同的光栅耦合器, 如斜 刻光栅、 闪耀光栅、 啁啾光栅或非对称光栅等, 能够将射入到光栅耦合器中 的光信号的传播路径改变 90。 。 具体的, 其结构如图 7a~7c所示, 其中, 图 7a示出了非对称光栅的结构, 其包括硅沉底 73、 设置在硅沉底 73上的氧化 层 72, 以及设置在氧化层 72上的硅波导层 71 ; 图 7b示出了斜刻光栅或闪耀 光栅的结构, 其包括硅沉底 73'、 设置在硅沉底 73'上的氧化层 72', 设置在氧 化层 72'上的硅波导层 7Γ, 以及设置在硅波导层 71 '上的氧化层 72'; 图 7c示 出了啁啾光栅的结构, 其包括硅沉底 73"、 设置在硅沉底 73"上的氧化层 72", 以及设置在氧化层 72"上的硅波导层 71 "。 通过上述的光栅耦合器均能够实现 将光信号的传播路径改变 90° 。 本实施例所涉及的光互连层 30可以釆用透明介质材料, 亦可以釆用二维 光子晶体波导。
在其使用时,单一偏振的单模光子晶体 VCSEL 11产生单一偏振态的光信 号, 经由光互连层 30传到一维单偏振垂直光栅耦合器 70 (第一垂直光栅耦合 器 50 )耦合进入光波导层 40中, 光波导层 40处理后的光信号再经过位于探 测器 20下方的一维单偏振垂直光栅耦合器 70 (第二垂直光栅耦合器 60 )耦 合到光互连层 30, 最后传到探测器 20处将光信号转换成电信号, 完成光信号 的收发。
下面对本实施例所涉及模块主要性能, 即损耗、 速率和通信容量做初步 计算。 损耗主要产生于光栅耦合器的耦合。 光互连层 30本身的传输损耗以及 其他部分的耦合损耗很小, 姑且记为 0.5dB。 根据前面的结果, 按非对称光栅 的方案,可以计算总损耗约为 4.24dB。单模光子晶体 VCSEL目前的最高传输 速率〜 30GHz, 考虑到单模单偏振情况下可以釆用外调制技术, 目前硅基调制 器调制速率可以达到 40GHz以上。 通信容量主要由光栅耦合器的的通信带宽 限定, 光栅耦合器的 ldB带宽约 35nm, 可以提供通道间隔 100G的 43个波 分复用通道。
实施例 2
如图 8所示,单模光子晶体 VCSEL为非偏振模式的单模光子晶体 VCSEL 12, 垂直光栅耦合器为二维垂直光栅耦合器 80, 且二维垂直光栅耦合器 80的 耦合角度为 90。 , 即第一垂直光栅耦合器 50和第二垂直光栅耦合器 60均为 二维垂直光栅耦合器 80。
其中的非偏振模式的单模光子晶体 VCSEL 12包括: n型欧姆接触层, 沿 远离 n型欧姆接触层的方向,依次设置的衬底、底层分布布拉格反射镜 DBR、 有源层、氧化物层、顶层 DBR; 其中,顶层 DBR刻蚀有二维光子晶体 VCSEL 以及 p型欧姆接触层, 刻蚀的二维光子晶体 VCSEL包括多个圓形孔。 二维光 子晶体 VCSEL是在常规 VCSEL的出光端面刻蚀出二维的光子晶体结构。 利 用二维光子晶体的传导模式引导 VCSEL谐振腔中的光放大。 由于二维光子晶 体是单模结构, 因此这种结构很容易制作出单模的 VCSEL。 且在出光端面刻 蚀出正圓形的孔, 既可以保证出光单模, 也可以达到偏振无关的效果。 该 VCSEL发光波长为 1.287 μπι, 功功率为 1.7 mW, 边模抑制比为 30 dB, 可以 满足系统应用的要求。 本实施例中所述二维垂直光栅耦合器 80釆用二维啁啾光栅耦合器以实现 两种偏振态的分路耦合和分路收集, 其耦合角度为 90° , 该结构耦合损耗 5.2dB。 应当理解的是二维垂直光栅耦合器 80 的实现方法可以是但不限于二 维啁啾光栅耦合器, 本实施例所涉及的光互连层 30可以釆用透明介质材料, 亦可以釆用二维 光子晶体波导。
在其使用时, 光子晶体 VCSEL产生偏振无关的光信号, 经由光互连层 30传到二维垂直光栅耦合器 80 (第一垂直光栅耦合器 50 ), 二维垂直光栅耦 合器 80将光分成两路进入光波导层 60中, 光波导层 60处理光信号, 然后两 路光信号再分别经过二维垂直光栅耦合器 80 (第二垂直光栅耦合器 60 )耦合 到光互连层 30, 最后传到探测器 20处将光信号转换成电信号, 完成光信号的 收发。 下面对本实施例所涉及模块主要性能, 即损耗、 速率和通信容量做初步 计算。 损耗主要产生于二维垂直光栅耦合器 80的耦合。 光互连层 30本身的传 输损耗以及其他部分的耦合损耗很小, 姑且记为 0.5dB。 根据前面的结果, 按 二维啁啾光栅的方案, 可以计算总损耗约为 10.9dB。 单模光子晶体 VCSEL目 前的最高传输速率〜 30GHz, 考虑到单模单偏振情况下可以釆用外调制技术, 目前硅基调制器调制速率可以达到 40GHz以上。通信容量主要由光栅耦合器的 通信带宽限定, 光栅耦合器的 ldB带宽约 35nm, 可以提供通道间隔 100G的 43 个波分复用通道; 若考虑双路复用, 通信容量增加 1倍, 可支持 86个间隔 100G 的波分复用通道。 通过上述具体的实施例 1和实施 2的描述可以看出, 本发明实施例提供 的单模光子晶体 VCSEL可以实现单模传输, 使之能够用于硅基材料波导中, 提高了 VCSEL收发模块的互连带宽和互连密度; 此外, 该收发模块还可以釆 用 WDM技术进一步提高带宽。 同时, 釆用垂直光栅耦合器, 可以实现偏振 分离, 提高光偏振敏感器件的工作稳定性, 解决硅基波导偏振敏感的问题。 此外, 釆用光栅耦合器的耦合方式, 容易耦合对准, 降低对准精度要求。 且 该收发模块构造简单, 釆用常规半导体工艺, 如生长、 刻蚀和键合即可加工 实现, 便于集成, 容易实现。
如图 9所示, 图 9为本发明实施例提供的单模 VCSEL收发模块的光信号 传播的流程图。
本发明实施例还提供了一种利用上述单模 VCSEL 收发模块的光信号传 播方法, 该方法包括:
步骤 101、 单模光子晶体 VCSEL发射出光信号;
步骤 102、 位于单模光子晶体 VCSEL下方的垂直光栅耦合器将单模光子 晶体 VCSEL发射出的信号耦合到光波导层中传播;
步骤 103、位于探测器下方的垂直光栅耦合器接收到光波导层中传播的光 信号, 并将接收到的光信号耦合到探测器中。
在上述方法中,通过釆用垂直光栅耦合器来改变单模光子晶体 VCSEL发 射出的单模光信号, 可以实现偏振分离, 提高了光偏振敏感器件的工作稳定 性, 并解决了硅基波导偏振敏感的问题。
下面结合上述具体实施例 1和实施 2的结构对本方法进行详细的说明。 如图 10 所示, 图 10 为本发明实施例提供的单一偏振的单模光子晶体 VCSEL的收发模块的流程图; 实施例 1中的光信号传播方法:
步骤 201、 单一偏振的单模光子晶体 VCSEL发出单一偏振态的光信号; 步骤 202、光互连层将发射出的光信号传播到位于单一偏振的单模光子晶 体 VCSEL下方的一维单偏振垂直光栅耦合器中;
步骤 203、 位于单一偏振的单模光子晶体 VCSEL下方的一维单偏振垂直 光栅耦合器将光信号耦合到光波导层中传播, 其中, 光信号传播方向改变 90° ; 步骤 204、位于探测器下方的一维单偏振垂直光栅耦合器将接收到的光信 号耦合到光互连层中传播, 其中, 光信号传播方向改变 90。 ;
步骤 205、 光互连层将改变传播方向的光信号传到探测器处;
步骤 206、 探测器将光信号转换成电信号, 完成光信号的收发。
如图 11所示, 图 11为本发明实施例提供的非偏振模式的单模光子晶体
VCSEL收发模块的流程图。 实施例 2中的光信号传播方法:
步骤 301 :非偏振模式的单模光子晶体 VCSEL发射出偏振无关的光信号; 步骤 302、 光互连层将光信号传到位于非偏振模式的单模光子晶体
VCSEL下方的二维垂直光栅耦合器中;
步骤 303、二维垂直光栅耦合器将光信号进行耦合并分成两路偏振光进入 光波导层中传播;
步骤 304、位于探测器下方的二维垂直光栅耦合器将两路合并并耦合到光 互连层中;
步骤 305、 光互连层将改变传播方向的光信号传到探测器处;
步骤 306、 探测器将光信号转换成电信号, 完成光信号的收发。
通过上述具体的实施例描述可以看出, 本实施例提供的方法中, 通过釆 用垂直光栅耦合器来改变光子晶体 VCSEL发射出的单模光信号,可以实现偏 振分离, 提高光偏振敏感器件的工作稳定性, 解决硅基波导偏振敏感的问题。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种单模垂直腔面发射激光器 VCSEL收发模块, 其特征在于, 包括: 光波导层,设置于所述光波导层上的单模光子晶体 VCSEL以及与所述单模光 子晶体 VCSEL对应设置的探测器; 其中, 所述光波导层中, 位于所述单模光 子晶体 VCSEL 以及与其对应的探测器下方的位置分别设置有垂直光栅耦合 器,所述单模光子晶体 VCSEL发射出的光信号经过所述两个垂直光栅耦合器 改变传播路径后射入到与所述探测器内。
2、 如权利要求 1所述的单模 VCSEL收发模块, 其特征在于, 还包括光 互连层, 所述单模光子晶体 VCSEL 和所述探测器设置于所述光互连层同一 侧, 所述光波导层设置于所述光互连层上背离所述探测器的一侧。
3、 如权利要求 2所述的单模 VCSEL收发模块, 其特征在于, 所述单模 光子晶体 VCSEL和所述探测器分别键合在所述光互连层。
4、 如权利要求 2所述的单模 VCSEL收发模块, 其特征在于, 所述光互 连层为透明介质材料层或二维垂直光子晶体波导。
5、 如权利要求 4所述的单模 VCSEL收发模块, 其特征在于, 所述二维 垂直光子晶体波导中,位于所述单模光子晶体 VCSEL和所述探测器下方的部 位分别设置有多个空气孔。
6、 如权利要求 1~5任一项所述的单模 VCSEL收发模块, 其特征在于, 所述单模光子晶体 VCSEL为单一偏振的单模光子晶体 VCSEL, 所述垂直光 栅耦合器为一维单偏振垂直光栅耦合器, 且所述一维单偏振垂直光栅耦合器 的耦合角度为 90° , 所述一维单偏振垂直光栅耦合器的光偏振模式与所述单 一偏振的单模光子晶体 VCSEL的光偏振模式相匹配。
7、 如权利要求 6所述的单模 VCSEL收发模块, 其特征在于, 所述一维 单偏振垂直光栅耦合器为斜刻光栅、 闪耀光栅、 啁啾光栅或非对称光栅。
8、 如权利要求 6所述的单模 VCSEL收发模块, 其特征在于, 所述单一 偏振的单模光子晶体 VCSEL包括: n型欧姆接触层, 沿远离 n型欧姆接触层 的方向, 依次设置的衬底、 底层分布布拉格反射镜 DBR、 有源层、 氧化物层、 顶层 DBR; 其中, 所述顶层 DBR刻蚀有二维光子晶体 VCSEL以及 p型欧姆 接触层, 所述刻蚀的二维光子晶体 VCSEL包括多个椭圓形孔。
9、 如权利要求 1~5任一项所述的单模 VCSEL收发模块, 其特征在于, 所述单模光子晶体 VCSEL为非偏振模式的单模光子晶体 VCSEL, 所述垂直 光栅耦合器为二维垂直光栅耦合器, 且所述二维垂直光栅耦合器的耦合角度 为 90。 。
10、 如权利要求 9所述的单模 VCSEL收发模块, 其特征在于, 所述非偏 振模式的单模光子晶体 VCSEL包括: n型欧姆接触层, 沿远离 n型欧姆接触 层的方向, 依次设置的衬底、 底层分布布拉格反射镜 DBR、 有源层、 氧化物 层、 顶层 DBR; 其中, 所述顶层 DBR刻蚀有二维光子晶体 VCSEL以及 p型 欧姆接触层, 所述刻蚀的二维光子晶体 VCSEL包括多个圓形孔。
11、 如权利要求 9所述的单模 VCSEL收发模块, 其特征在于, 所述二维 垂直光栅耦合器为二维垂直啁啾光栅耦合器。
12、 一种利用权利要求 1所述的 VCSEL收发模块的光信号传播方法, 其 特征在于, 包括:
单模光子晶体 VCSEL发射出光信号;
位于单模光子晶体 VCSEL 下方的垂直光栅耦合器将单模光子晶体 VCSEL发射出的信号耦合到光波导层中传播;
位于探测器下方的垂直光栅耦合器接收到光波导层中传播的光信号, 并 将接收到的光信号耦合到探测器中。
13、 如权利要求 12所述的光信号传播方法, 其特征在于, 所述单模光子 晶体 VCSEL发射出的光信号在进入到垂直光栅耦合器之前,通过光互连层传 播; 所述经位于探测器下方的垂直光栅耦合器改变传播路径后的光信号通过 光互连层传播至所述探测器。
14、 如权利要求 12或 13所述的光信号传播方法, 其特征在于, 所述光 信号为一维偏振光信号, 所述垂直光栅耦合器为一维单偏振垂直光栅耦合器; 或, 所述光信号为与偏振无关的单模光信号, 所述垂直光栅耦合器为二维垂 直光栅耦合器。
PCT/CN2014/076139 2014-04-24 2014-04-24 单模垂直腔面发射激光器收发模块及光信号传播方法 WO2015161488A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480000637.9A CN105408791B (zh) 2014-04-24 2014-04-24 单模垂直腔面发射激光器收发模块及光信号传播方法
PCT/CN2014/076139 WO2015161488A1 (zh) 2014-04-24 2014-04-24 单模垂直腔面发射激光器收发模块及光信号传播方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076139 WO2015161488A1 (zh) 2014-04-24 2014-04-24 单模垂直腔面发射激光器收发模块及光信号传播方法

Publications (1)

Publication Number Publication Date
WO2015161488A1 true WO2015161488A1 (zh) 2015-10-29

Family

ID=54331623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076139 WO2015161488A1 (zh) 2014-04-24 2014-04-24 单模垂直腔面发射激光器收发模块及光信号传播方法

Country Status (2)

Country Link
CN (1) CN105408791B (zh)
WO (1) WO2015161488A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084285B1 (en) 2017-08-28 2018-09-25 Hewlett Packard Enterprise Development Lp Orthoganolly polarized VCSELs
US10177872B1 (en) 2017-09-25 2019-01-08 Hewlett Packard Enterprise Development Lp Orthogonally polarized VCSELs
CN110945976A (zh) * 2017-05-19 2020-03-31 阿道特公司 基于带有聚合物波导的玻璃基板的光学互连模块

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923254B (zh) * 2018-07-06 2020-06-26 扬州乾照光电有限公司 一种单腔体结构vcsel芯片及其制作方法和激光装置
CN111355127A (zh) * 2020-03-10 2020-06-30 中国科学院半导体研究所 基于倾斜光栅的硅基垂直耦合激光器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855652A (zh) * 2005-04-28 2006-11-01 佳能株式会社 垂直腔面发射激光器
US20080037929A1 (en) * 2006-08-14 2008-02-14 Samsung Electro-Mechanics Co., Ltd. Optical printed circuit board and fabricating method thereof
TW200848816A (en) * 2007-05-14 2008-12-16 Shinko Electric Ind Co Optical/electrical hybrid substrate
JP2009003272A (ja) * 2007-06-22 2009-01-08 Fuji Xerox Co Ltd 光電子回路基板
CN103094834A (zh) * 2013-01-30 2013-05-08 中国科学院长春光学精密机械与物理研究所 一种电泵浦垂直扩展腔面发射半导体激光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521355B (zh) * 2009-04-08 2011-03-16 中国科学院长春光学精密机械与物理研究所 具有外腔偏振控制的垂直腔面发射激光器
CN102684072A (zh) * 2012-05-30 2012-09-19 北京工业大学 混合集成激光器及其制备方法
KR101928436B1 (ko) * 2012-10-10 2019-02-26 삼성전자주식회사 광 집적 회로용 하이브리드 수직 공명 레이저

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855652A (zh) * 2005-04-28 2006-11-01 佳能株式会社 垂直腔面发射激光器
US20080037929A1 (en) * 2006-08-14 2008-02-14 Samsung Electro-Mechanics Co., Ltd. Optical printed circuit board and fabricating method thereof
TW200848816A (en) * 2007-05-14 2008-12-16 Shinko Electric Ind Co Optical/electrical hybrid substrate
JP2009003272A (ja) * 2007-06-22 2009-01-08 Fuji Xerox Co Ltd 光電子回路基板
CN103094834A (zh) * 2013-01-30 2013-05-08 中国科学院长春光学精密机械与物理研究所 一种电泵浦垂直扩展腔面发射半导体激光器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945976A (zh) * 2017-05-19 2020-03-31 阿道特公司 基于带有聚合物波导的玻璃基板的光学互连模块
US10084285B1 (en) 2017-08-28 2018-09-25 Hewlett Packard Enterprise Development Lp Orthoganolly polarized VCSELs
US10177872B1 (en) 2017-09-25 2019-01-08 Hewlett Packard Enterprise Development Lp Orthogonally polarized VCSELs

Also Published As

Publication number Publication date
CN105408791A (zh) 2016-03-16
CN105408791B (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
KR102355831B1 (ko) 자가-테스트 기능성을 가진 수직 입사 광검출기
CN107078462B (zh) 具有可调输出的集成大功率可调谐激光器
US9620931B2 (en) Optical device, optical transmission device, optical reception device, hybrid laser and optical transmission apparatus
US20170207600A1 (en) 3d photonic integration with light coupling elements
US9217836B2 (en) Edge coupling of optical devices
US20140185980A1 (en) Silicon-On-Insulator Platform for Integration of Tunable Laser Arrays
JP2016500451A (ja) 光ファイバカプラアレイ
WO2015161488A1 (zh) 单模垂直腔面发射激光器收发模块及光信号传播方法
US9244227B2 (en) Polarization splitter/combiner based on a one-dimensional grating coupler
KR20110101247A (ko) 점대점 통신을 위한 광학 엔진
US9052449B2 (en) Light emitting device, manufacturing method thereof, and optical transceiver
US20220270986A1 (en) Enhanced bonding between iii-v material and oxide material
WO2018124325A1 (ko) 수직 공진 표면광 레이저와 실리콘 광학소자를 이용한 외부 공진 레이저
Davenport et al. A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors
WO2020213436A1 (ja) 受光装置および光受信器
JP5317198B2 (ja) グレーティング結合器
WO2023214573A1 (ja) 光検出装置及び光レシーバ
Aalto et al. Dense photonics integration on a micron-scale SOI waveguide platform
JP2019186298A (ja) 光導波路型受光素子構造
US11719885B2 (en) Apparatus for optical coupling and system for communication
US11762145B2 (en) Apparatus for optical coupling and system for communication
US20230040355A1 (en) Carrier injector having increased compatibility
Guan Next Generation Silicon Photonic Transceiver: From Device Innovation to System Analysis
Tanaka et al. High-power flip-chip-bonded silicon hybrid laser for temperature-control-free operation with micro-ring resonator-based modulator
Chen et al. Harnessing the Properties of Optical Channel Diversity in a Multi-mode Silicon Nanophotonic Waveguide for High-Speed Data

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000637.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889975

Country of ref document: EP

Kind code of ref document: A1