WO2015160040A1 - 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템 - Google Patents

2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템 Download PDF

Info

Publication number
WO2015160040A1
WO2015160040A1 PCT/KR2014/006804 KR2014006804W WO2015160040A1 WO 2015160040 A1 WO2015160040 A1 WO 2015160040A1 KR 2014006804 W KR2014006804 W KR 2014006804W WO 2015160040 A1 WO2015160040 A1 WO 2015160040A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
condenser
heat
evaporator
heat pump
Prior art date
Application number
PCT/KR2014/006804
Other languages
English (en)
French (fr)
Inventor
김경천
Original Assignee
주식회사 부성엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 부성엔지니어링 filed Critical 주식회사 부성엔지니어링
Priority to EP14887710.3A priority Critical patent/EP3133357B1/en
Priority to JP2016513887A priority patent/JP6163257B2/ja
Publication of WO2015160040A1 publication Critical patent/WO2015160040A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a heat pump system having a waste heat recovery structure by a secondary evaporator, and more particularly, after the waste heat discharged to the outside in a heat pump cycle is recovered using a primary evaporator, the superheated steam is recovered by the recovered heat.
  • Refrigerant that has been in a state of heat passes through the secondary evaporator to provide the function of supplying the first introduced air to the condenser in the preheated state, thereby saving the compressor overload and operating energy in proportion to the thermal energy reused by the condenser.
  • a heat pump system having a waste heat recovery structure by a secondary evaporator.
  • a heat pump is a cooling and heating device that transmits a low temperature heat source to a high temperature or a high temperature heat source to a low temperature by using heat of a refrigerant or condensation heat, and is classified into an electric type and an engine type according to a driving method. It has a structure that combines heating.
  • the heat pump has a compressor in which the refrigerant is compressed to a high temperature and a high pressure, and a refrigerant circulation configuration connected to the compressor and inducing a flow of the refrigerant along a predetermined path to perform an air conditioning function.
  • the configuration includes a condenser, an evaporator, It consists of an expansion valve.
  • Patent Document-Republic of Korea Patent Publication No. 10-1353185 (Registration Date: 2014.01.13)
  • the present invention relates to a heat pump capable of increasing cooling or heating ability by increasing a refrigerant circulation amount by sending.
  • An outdoor heat exchanger used in a heat pump capable of cooling and heating includes an inner tube through which the first refrigerant flows and a temperature and pressure than the first refrigerant.
  • An internal heat exchanger including an outer tube through which the low second refrigerant flows, and an expansion valve installed in a pipe connected to the inner tube of the internal heat exchanger, and a pipe in which an expansion valve is installed, and when the first refrigerant flows from the pipe, the evaporator Furnace and an outdoor refrigerant flow tube which operates as a condenser when a third refrigerant of high temperature and high pressure flows from the compressor.
  • the pump is presented.
  • a limit on a temperature and a pressure of a refrigerant input to the compressor is conventionally defined. Due to these limitations, high-temperature and high-pressure heat such as hot water, heating, and drying are limited. In constructing the pump, it is necessary to have a high pressure refrigerant and a heat pump system, which requires the continuous development due to the high cost and maintenance cost of constructing the system.
  • the present invention is to solve the above problems, by configuring the secondary evaporator to dissipate heat by the superheated steam refrigerant supplied from the primary evaporator in the heat pump cycle to act as a preheating for the first introduced air, It has a waste heat recovery structure by the secondary evaporator which allows the condenser that provides the heating air in the heat pump cycle to save the overload and operating energy of the compressor in proportion to the heat energy reused by the condenser as it heats with preheated air.
  • the purpose is to provide a heat pump system.
  • a heat pump cycle comprising: a compressor for supplying a low pressure gas refrigerant to a condenser in a state in which a low pressure gas refrigerant is compressed into a high temperature and high pressure gas;
  • a condenser connected to the compressor to supply a high-temperature, high-pressure gas refrigerant, and liquefy it by a heat radiation action and then supply the liquefied refrigerant to an expansion valve;
  • An expansion valve connected to the condenser and supplied with a liquefied refrigerant to reduce the pressure to a pressure capable of causing evaporation by a throttling action to produce a saturated steam of low temperature and low pressure, and supply the saturated steam refrigerant to the primary evaporator;
  • the heat exchanger absorbs heat from the surroundings by evaporating it, and recovers the waste heat generated from the condenser to make the
  • a primary evaporator for supplying a superheated steam refrigerant to the furnace;
  • the secondary evaporator is configured to include a secondary evaporator which circulates the refrigerant made by the superheated steam refrigerant to a low temperature, low pressure saturated steam state, and is circulated to the compressor.
  • the condenser serves to provide heating air
  • the secondary evaporator provides a heat pump system having a waste heat recovery structure by the secondary evaporator, wherein the secondary evaporator serves to preheat the first introduced air.
  • the temperature of the air sucked from the outside through the secondary evaporator in the heat pump cycle is radiated as it passes through the secondary evaporator to increase the temperature of the air to reduce the load of the condenser to save operating energy
  • the production cost is reduced, and the pressure and temperature of the refrigerant flowing into the compressor are lowered by heat dissipation of the secondary evaporator, thereby preventing overload of the compressor, thereby improving durability.
  • FIG. 1 is a block diagram of a heat pump system having a waste heat recovery structure by a secondary evaporator according to the present invention.
  • FIG. 2 is a view schematically showing a drying means to which a heat pump system having a waste heat recovery structure is applied by a secondary evaporator according to the present invention.
  • FIG. 3 is a block diagram of a heat pump system having a waste heat recovery structure by a secondary evaporator according to another embodiment.
  • FIG. 1 is a view illustrating a heat pump system having a waste heat recovery structure by a secondary evaporator according to an embodiment of the present invention.
  • Compressor 110 for supplying the low-pressure gas refrigerant to the condenser 120 in a compressed state of high-temperature, high-pressure gas;
  • a condenser 120 connected to the compressor 110 to supply a high-temperature, high-pressure gas refrigerant, and liquefy it by a heat radiation action and then supply the liquefied refrigerant to the expansion valve 130;
  • the refrigerant is decompressed to a pressure capable of causing evaporation by a throttling action to make saturated steam at low temperature and low pressure, and then saturated steam refrigerant is formed in the primary evaporator 140.
  • An expansion valve 130 for supplying; When the low-temperature, low-pressure saturated steam refrigerant is supplied in connection with the expansion valve 130, the heat exchanger absorbs heat from the surroundings by evaporating it, and recovers the waste heat generated from the condenser 120 to superheat the refrigerant.
  • Has a heat pump 100 configured to include 150,
  • the condenser 120 serves to provide heating air by the heat pump 100, and the secondary evaporator serves to preheat the first introduced air.
  • the compressor 110 is for supplying a low-pressure gas refrigerant to the condenser 120 in a state in which the high-pressure, high-pressure gas is compressed.
  • the compressor 110 is to inhale and compress the refrigerant to discharge the refrigerant in a gas state of high temperature, high pressure
  • the compressor is preferably configured as a scroll compressor.
  • the condenser 120 When the condenser 120 is connected to the compressor 110 and supplied with a high-temperature, high-pressure gas refrigerant, the condenser 120 liquefies the gas refrigerant by a heat radiation action and then supplies the liquefied refrigerant to the expansion valve 130 to be described later. .
  • the condenser 120 connects an inlet header and an outlet header and the inlet / outlet headers so that they communicate with each other, and a plurality of tubes forming a predetermined flow path, and a plurality of heat transfer fins stacked between the tubes. It consists of.
  • the condenser 120 is connected to the compressor 110 and the inlet side is supplied with a high-temperature, high-pressure gas refrigerant, the discharge side of the condenser 120 is connected to the expansion valve 130 to be described later heat dissipation To supply the liquefied refrigerant.
  • the air introduced by the separate blower is introduced into the condenser 120 to pass through the heat transfer fins between the tubes.
  • the high-temperature, high-pressure gas refrigerant flowing into the condenser 120 is The air is heated by heat dissipation by heat exchange with the blown air, and the high-temperature, high-pressure gas refrigerant is supplied to the expansion valve 130 by the condensation by heat exchange with the blown air.
  • the condenser 120 serves to provide heating air by the heat pump 100 by the heat radiation action.
  • the expansion valve 130 When the expansion valve 130 is connected to the condenser 120 and the liquefied refrigerant is supplied, the expansion valve 130 is decompressed to a pressure capable of causing evaporation by a throttling action to make a saturated steam of low temperature and low pressure, which will be described later It is for supplying a saturated steam refrigerant to the primary evaporator 140.
  • the expansion valve 130 is a device to facilitate the heat absorption action by the evaporation of the refrigerant, which can cause the evaporation of the high-temperature, high-pressure refrigerant supplied from the condenser 120 by the throttling action
  • the pressure is reduced to an appropriate temperature to absorb enough heat while reducing the pressure to make the refrigerant saturated steam.
  • the expansion valve 130 has a structure of various expansion valves such as electric expansion valves (EEV), thermostatic expansion valves (TEV), constant pressure expansion valves (AXV: Automatic Expansion Valve). Can be used by application.
  • EEV electric expansion valves
  • TSV thermostatic expansion valves
  • AXV constant pressure expansion valves
  • the primary evaporator 140 when the primary evaporator 140 is connected to the expansion valve 130 and a saturated steam refrigerant having a low temperature and low pressure is supplied, the primary evaporator 140 performs heat exchange to absorb heat from the surroundings by evaporating it, and is generated in the condenser 120. After recovering the waste heat to make the refrigerant in the superheated steam state to supply the superheated steam refrigerant to the secondary evaporator (150).
  • the primary evaporator 140 connects an inlet header, an outlet header, and an inlet / outlet header so that they communicate with each other, and a plurality of tubes forming a predetermined flow path, and a plurality of layers stacked between the tubes. Consists of heat transfer fins.
  • the primary evaporator 140 is preferably installed on the side of the waste heat air discharged to the outside, the primary evaporator 140
  • the inlet side is connected to the expansion valve 130 is supplied with a saturated steam refrigerant of low temperature, low pressure, the discharge side of the primary evaporator 140 is connected to the secondary evaporator 150 to be described later.
  • the waste heat of the heating air generated from the condenser 120 is introduced into the primary evaporator 140 during the blowing process and passes between the heat transfer fins between the tubes.
  • the primary evaporator 140 The low-temperature, low-pressure saturated steam refrigerant flowing along the flow path of the tube to recover the waste heat passing through the heat transfer fins to make the refrigerant into a superheated steam state and then supply it to the secondary evaporator 150.
  • the secondary evaporator 150 when the secondary evaporator 150 is connected to the primary evaporator 140 and the superheated steam refrigerant is supplied, the secondary evaporator 150 generates a refrigerant made in a low temperature, low pressure saturated steam state while radiating by the superheated steam refrigerant. To the supply loop.
  • the secondary evaporator 150 connects an inlet header, an outlet header, and an inlet / outlet header so that they communicate with each other, and a plurality of tubes forming a predetermined flow path, and a plurality of tubes stacked between the tubes. Consists of heat transfer fins.
  • the secondary evaporator 150 is a portion to which the first external air is introduced is preferably installed in a position adjacent to the condenser 120, the inlet side of the secondary evaporator 150 is the primary evaporator 140 Superheated steam refrigerant is supplied in connection with, and the discharge side of the secondary evaporator 150 is connected to the compressor (110).
  • the first outside air is introduced into the secondary evaporator 150 during the blowing process and passes between the heat transfer fins between the tubes. Therefore, the flowing superheated steam refrigerant heats the outside air as the heat is radiated by the heat exchange with the outside air passing through the heat transfer fins, and makes the refrigerant to be supplied to the compressor 110 after being made into a saturated steam of low temperature and low pressure. do.
  • the secondary evaporator 150 serves to preheat the first introduced air as it dissipates by the superheated steam refrigerant supplied from the primary evaporator 140, and the secondary evaporator 150 Air preheated by) is introduced into the condenser 120 located adjacent to the secondary evaporator 150, through which it is reused in the condenser 120 as it radiates heat using the preheated air in the condenser 120. It is possible to save overload and operating energy of the compressor 110 in proportion to the thermal energy.
  • the heat pump 100 is connected between the secondary evaporator 150 and the compressor 110, the filter 160 that serves as a filter for removing impurities of the refrigerant returning to the compressor 110 It includes more.
  • the filter 160 is manufactured so as to pass only the refrigerant after absorbing the foreign matter or moisture remaining in each component of the tube or the heat pump 100 in the process of the fluid refrigerant flows along the tube, Accordingly, the freezing of the flow tube and the flow of the refrigerant are prevented from being blocked by the filtering action.
  • the heat pump 100 is supplemented / stored for the refrigerant circulating in the heat pump 100 in the inlet / discharge line is connected to the subsequent side of the condenser 120 and the secondary evaporator 150, respectively. It further comprises a refrigerant tank (210).
  • the coolant tank 210 is a structure in which a receiving space for accommodating the coolant is provided in the state in which the refrigerant flows into and out of the coolant tank 210 by a pipe connection, the heat pump 100 It will act as a quantitative control for the refrigerant circulating in.
  • FIG. 2 is a view schematically showing a drying means to which a heat pump system having a waste heat recovery structure is applied by a secondary evaporator according to the present invention.
  • FIG. 2 schematically illustrates a drying means 300 to which the above-described heat pump system is applied.
  • the heating means further comprises a drying means 300 for circulating to the drying unit 320 and then discharged.
  • the drying means 300 is made in the form of a pipe or case through which the air flows, if the heat pump system is applied, the outside air is introduced into the heat pump system / circulation / discharge air heating To induce action.
  • the drying means 300 the external air is first introduced by the suction fan 311, and further includes an inlet 310, the secondary evaporator 150 and the condenser 120 is installed inwards. do.
  • the inlet 310 is installed on the side where the secondary evaporator 150 is introduced into the air, the condenser 120 is installed to the rear side of the secondary evaporator 150, the inlet ( Outside the 310, the compressor 110 is connected between the secondary evaporator 150 and the responder 120 is coupled.
  • a suction fan 311 is provided at the front side of the secondary evaporator 150 to allow the outside air to flow.
  • the drying means 300 is in communication with the inlet 310, the heating air generated from the condenser 120 is introduced, and further comprises a drying unit 320 for providing a hot air drying space for the object. Include.
  • the drying unit 320 is a space in which the object for drying using the heating air generated by using the heat pump system is accommodated.
  • the drying means 300 is.
  • the discharge unit 330 is in communication with the drying unit 320 and the heating air is introduced, the heating air is discharged to the outside via the primary evaporator 140 in a state in which the primary evaporator 140 is installed inward. It further includes.
  • the waste heat air passes through the heating air (dry heat waste air of which drying is completed) generated from the condenser 120 toward the primary evaporator 140. After the recovery by the primary evaporator 140 is to be discharged to the outside.
  • Figure 3 is a view showing the configuration of a heat pump system having a waste heat recovery structure by the secondary evaporator according to another embodiment.
  • FIG. 3 schematically illustrates another embodiment of the heat pump 100 having the above-described structure, and the heat pump 100 uses the high pressure sensor valve 220 and the low pressure sensor valve 230 to heat the pump.
  • Refrigerant circulating in the cycle is configured to further include a refrigerant control means for measuring the excess and decrease at any pressure to replenish / discharge the refrigerant.
  • the refrigerant control means 200 in the state connected to the refrigerant tank 210, when a predetermined high pressure is exceeded, the refrigerant circulating in the heat pump 100 is introduced into the refrigerant tank 210 to increase the pressure It further includes a high pressure sensor valve 220 to descend.
  • the high pressure sensor valve 220 is manufactured in the form of a solenoid valve having a sensor for measuring the pressure therein, it is possible to arbitrarily set the high pressure for measuring, one side of the high pressure sensor valve 220 is The refrigerant tank 210 is connected to the pipe, the other side of the heat pump 100 has a structure that is connected between the condenser 120 and the expansion valve 130.
  • the refrigerant control means 200 in a state connected to the refrigerant tank 210, the pressure is increased by supplying the high pressure refrigerant stored in the refrigerant tank 210 to the heat pump 100 at a predetermined low pressure or less. Further comprising a low pressure sensor valve 230 to.
  • the low pressure sensor valve 230 is made in the form of a solenoid valve having a sensor for measuring the pressure therein can be arbitrarily set the low pressure for measuring, one side of the low pressure sensor valve 230 will be described later
  • the refrigerant tank 210 is connected to the pipe through the check valve 240, and the other side of the heat pump 100 has a structure that is connected between the secondary evaporator 150 and the compressor 110.
  • the refrigerant control means 200 when the low pressure sensor valve 230 is opened in a state connected between the high pressure sensor valve 220 and the low pressure sensor valve 230, the refrigerant to the high pressure sensor valve 220. It further includes a check valve 240 for preventing the refrigerant contained in the tank 210 to flow back.

Abstract

본 발명은 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템에 관한 것으로, 더욱 상세하게는 히트펌프 사이클에서 외부로 배출되는 폐열을 1차증발기를 이용해 회수한 후, 그 회수된 열에 의해 과열증기 상태가 된 냉매는 2차증발기를 거치며 방열하여 최초 유입된 공기를 예열한 상태에서 응축기로 공급하는 기능을 제공함에 따라 응축기에서 재사용하는 열 에너지에 비례하여 압축기의 과부하 및 작동 에너지를 절약하기 위한 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템에 관한 것이다. 이와 같은 목적을 해결하기 위해 본 발명은; 히트펌프 시스템에 있어서, 저압의 기체 냉매를 고온,고압의 기체로 압축한 상태에서 응축기(120)로 공급하는 압축기(110)와; 상기 압축기(110)와 연결되어 고온,고압의 기체 냉매가 공급되면, 이를 방열작용에 의해 액화한 후 팽창밸브(130)로 액화된 냉매를 공급하는 응축기(120)와; 상기 응축기(120)와 연결되어 액화된 냉매가 공급되면, 이를 교축 작용에 의해 증발을 일으킬 수 있는 압력까지 감압하여 저온,저압의 포화증기 상태로 만든 후 1차증발기(140)에 포화증기 냉매를 공급하는 팽창밸브(130)와; 상기 팽창밸브(130)와 연결되어 저온,저압의 포화증기 냉매가 공급되면, 이를 증발시켜 주위로부터 열을 흡수하는 열교환을 하되, 상기 응축기(120)에서 발생하는 폐열을 회수하여 냉매를 과열증기 상태로 만든 후 2차증발기(150)로 과열증기 냉매를 공급하는 1차증발기(140)와; 상기 1차증발기(140)와 연결되어 과열증기 냉매가 공급되면, 과열증기 냉매에 의해 방열작용을 하면서 저온, 저압의 포화 증기 상태로 만든 냉매를 상기 압축기(110)로 공급 순환되게 하는 2차증발기(150)를 포함하여 구성되며, 상기 응축기(120)는 가열 공기를 제공하는 역할을 하고, 상기 2차증발기(150)는 응축기(120)의 전단에 위치하여 최초 유입되는 공기에 대하여 예열하는 역할을 하는 구조를 갖는다.

Description

2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템
본 발명은 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템에 관한 것으로, 더욱 상세하게는 히트펌프 사이클에서 외부로 배출되는 폐열을 1차증발기를 이용해 회수한 후, 그 회수된 열에 의해 과열증기 상태가 된 냉매는 2차증발기를 거치며 방열하여 최초 유입된 공기를 예열한 상태에서 응축기로 공급하는 기능을 제공함에 따라 응축기에서 재사용하는 열 에너지에 비례하여 압축기의 과부하 및 작동 에너지를 절약하기 위한 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템에 관한 것이다.
일반적으로, 히트펌프는 냉매의 발열 또는 응축열을 이용해 저온의 열원을 고온으로 전달하거나 고온의 열원을 저온으로 전달하는 냉난방장치로, 구동 방식에 따라 전기식과 엔진식으로 구분되는데, 현재 대부분이 냉방과 난방을 겸용하는 구조를 갖는다.
이와 같은, 히트펌프는 냉매가 고온, 고압으로 압축되는 압축기와, 압축기와 연결되고 정해진 경로를 따른 냉매의 유동을 유도하여 공기조화 기능을 수행하는 냉매순환 구성을 갖는데, 이의 구성은 응축기, 증발기, 팽창밸브로 이루어진다.
한편, 본 발명의 배경이 되는 종래기술로 " 특허문헌-대한민국 등록특허공보 제10-1353185호(등록일:2014.01.13)"가 개시되었는데, 이는 증발기에서 완전 증발되지 못한 냉매를 완전히 증발시켜 어큐뮬레이터로 보냄으로서 냉매 순환량 증가에 따른 냉방 또는 난방 능력을 증가시킬 수 있는 히트펌프에 관한 것으로, 냉난방이 가능한 히트펌프에 사용되는 실외 열교환기는, 제1냉매가 유동하는 내부관과 제1냉매보다 온도와 압력이 낮은 제2냉매가 유동하는 외부 관을 포함하는 내부열교환기와, 내부열교환기의 내부 관과 연결되는 배관에 설치되는 팽창밸브 및 팽창밸브가 설치된 배관과 연결되며 배관으로부터 제1냉매가 유입되는 경우 증발기로 작동하고 압축기로부터 고온 고압의 제3냉매가 유입되는 경우 응축기로 작동하는 실외냉매유동관을 포함하는 히트펌프가 제시되어 있다.
*이와 같이, 종래에는 압축기의 경우 고압용 압축기를 제외하고는 압축기로 입력되는 냉매의 온도와 압력에 대한 한계가 규정되어 있는바, 이러한 한계로 인해 온수, 난방, 건조 등의 고온,고압의 히트펌프를 구성하는데 있어서, 고압용 냉매와 히트펌프 시스템을 구비해야 하는바, 그 시스템을 구성하는데 소요되는 비용과 유지관리 비용이 고가임으로 지속적인 개발을 요구하는 실정이다.
따라서, 종래에는 냉난방을 병행하는 시스템으로, 고온의 공급에 많은 문제점을 갖으며, 즉, 온도를 고온으로 높이기 위해서는 고온,고압용 압축기를 구비하거나, 일반 압축기를 장시간 가동하여야 하기 때문에 효율적인 측면과 더불어, 압축기에 과부하가 발생함에 따라 압축기에 대한 작동 불능 상태를 야기하거나, 압축기와 1차증발기 사이의 배관에 성에가 끼는 결빙 현상이 발생하는 등 고온의 열을 공급하기 위해서는 별도의 히터 장치를 설치하는 등 비용 및 구조적인 측면에서 많은 문제점이 있었다.
본 발명은 상기와 같은 문제점들을 해결하기 위한 것으로서, 히트펌프 사이클에서 1차증발기로부터 공급되는 과열증기 냉매에 의해 2차증발기가 방열작용하여 최초 유입되는 공기에 대한 예열하는 역할을 하도록 구성함으로써, 이를 통해 히트펌프 사이클에서 가열 공기를 제공하는 응축기가 예열 공기를 이용해 방열함에 따라 응축기에서 재사용하는 열 에너지에 비례하여 압축기의 과부하 및 작동 에너지를 절약할 수 있도록 하는 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템을 제공하는데 그 목적이 있다.
이와 같은 목적을 해결하기 위해 본 발명은; 히트펌프 사이클에 있어서, 저압의 기체 냉매를 고온,고압의 기체로 압축한 상태에서 응축기로 공급하는 압축기와; 상기 압축기와 연결되어 고온,고압의 기체 냉매가 공급되면, 이를 방열작용에 의해 액화한 후 팽창밸브로 액화된 냉매를 공급하는 응축기와; 상기 응축기와 연결되어 액화된 냉매가 공급되면, 이를 교축 작용에 의해 증발을 일으킬 수 있는 압력까지 감압하여 저온,저압의 포화증기 상태로 만든 후 1차증발기에 포화증기 냉매를 공급하는 팽창밸브와; 상기 팽창밸브와 연결되어 저온,저압의 포화증기 냉매가 공급되면, 이를 증발시켜 주위로부터 열을 흡수하는 열교환을 하되, 상기 응축기에서 발생하는 폐열을 회수하여 냉매를 과열증기 상태로 만든 후 2차증발기로 과열증기 냉매를 공급하는 1차증발기와; 상기 1차증발기와 연결되어 과열증기 냉매가 공급되면, 과열증기 냉매에 의해 방열작용을 하면서 저온, 저압의 포화 증기 상태로 만든 냉매를 상기 압축기로 공급 순환되게 하는 2차증발기를 포함하여 구성되며, 상기 응축기는 가열 공기를 제공하는 역할을 하고, 상기 2차증발기는 최초 유입되는 공기에 대하여 예열하는 역할을 하는 것을 특징으로 하는 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템을 제공한다.
이러한 본 발명에 따르면, 히트펌프 사이클에서 2차증발기를 통해 외부에서 흡이되는 공기의 온도가 2차증발기를 통과함에 따라 방열됨으로서 공기의 온도가 상승하여 응축기의 부하를 경감시켜 작동에너지를 절약하여 생산원가를 절감시키고, 2차증발기의 방열로 압축기로 인입되는 냉매의 압력과 온도를 하강시켜 압축기의 과부하를 방지하여 내구성을 향상시키는 효과가 있다.
도 1은 본 발명에 따른 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템의 구성도.
도 2는 본 발명에 따른 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템이 적용된 건조수단을 개략적으로 도시한 도면.
도 3은 다른 실시 예에 따른 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템의 구성도.
본 발명에 따른 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템를 첨부된 도면을 참고로 하여 이하 상세히 기술되는 실시 예들에 의해 그 특징들을 이해할 수 있을 것이다.
한편, 실시 예를 설명함에 있어서 본 발명이 속하거나 속하지 아니한 기술분야에서 광범위하게 널리 알려져 사용되고 있는 구성요소에 대해서는 이에 대한 상세한 설명은 생략하도록 하며, 이는 불필요한 설명을 생략함과 더불어 이에 따른 본 발명의 요지를 더욱 명확하게 전달하기 위함이다.
도 1은 본 발명의 실시 예에 따른 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템을 설명하기 위해 도시한 도면들이다.
이에 따른, 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템을 개략적으로 설명하면, 저압의 기체 냉매를 고온,고압의 기체로 압축한 상태에서 응축기(120)로 공급하는 압축기(110)와; 상기 압축기(110)와 연결되어 고온,고압의 기체 냉매가 공급되면, 이를 방열작용에 의해 액화한 후 팽창밸브(130)로 액화된 냉매를 공급하는 응축기(120)와; 상기 응축기(120)와 연결되어 액화된 냉매가 공급되면, 이를 교축 작용에 의해 증발을 일으킬 수 있는 압력까지 감압하여 저온,저압의 포화증기 상태로 만든 후 1차증발기(140)에 포화증기 냉매를 공급하는 팽창밸브(130)와; 상기 팽창밸브(130)와 연결되어 저온,저압의 포화증기 냉매가 공급되면, 이를 증발시켜 주위로부터 열을 흡수하는 열교환을 하되, 상기 응축기(120)에서 발생하는 폐열을 회수하여 냉매를 과열증기 상태로 만든 후 2차증발기(150)로 과열증기 냉매를 공급하는 1차증발기(140)와; 상기 1차증발기(140)와 연결되어 과열증기 냉매가 공급되면, 과열증기 냉매에 의해 방열작용을 하면서 저온, 저압의 포화 증기 상태로 만든 냉매를 상기 압축기(110)로 공급 순환되게 하는 2차증발기(150)를 포함하여 구성된 히트펌프(100)을 갖으며,
상기 응축기(120)는 히트펌프(100)에 의한 가열 공기를 제공하는 역할을 하고, 상기 2차증발기는 최초 유입되는 공기에 대하여 예열하는 역할을 한다.
이하, 본 발명의 각부 구성을 구체적으로 설명한다.
먼저, 상기 압축기(110)는 저압의 기체 냉매를 고온,고압의 기체로 압축한 상태에서 응축기(120)로 공급하기 위한 것이다.
한편, 상기 압축기(110)는 냉매를 흡입한 후 압축하여 고온, 고압의 기체상태로 냉매를 토출하기 위한 것이며, 상기 압축기는 스크롤 압축기로 구성함이 바람직한 것이다.
그리고, 상기 응축기(120)는 상기 압축기(110)와 연결되어 고온, 고압의 기체 냉매가 공급되면, 이를 방열작용에 의해 액화한 후 후술하는 팽창밸브(130)로 액화된 냉매를 공급하기 위한 것이다.
한편, 상기 응축기(120)는 인입 헤더 및 배출 헤더, 상기 인입/배출 헤더들을 연결하여 이들이 서로 통하도록 함에 따라 소정의 유로를 형성하는 다수의 튜브와, 상기 튜브들 사이에 적층되는 다수의 전열 핀으로 구성된다.
이때, 상기 응축기(120)는 인입 측이 상기 압축기(110)와 관 연결되어 고온, 고압의 기체 냉매가 공급되며, 상기 응축기(120)의 배출 측은 후술하는 팽창밸브(130)와 연결되어 방열 작용에 의해 액화된 냉매가 공급되게 한다.
이에 따라, 별도 송풍 기기에 의해 유입된 공기는 상기 응축기(120) 측으로 유입되어 튜브들 사이의 전열 핀 사이를 거치게 되고, 이 과정에서 상기 응축기(120) 내부로 유동하는 고온, 고압의 기체 냉매가 송풍하는 공기와 열교환 함으로 방열작용에 의해 공기를 가열함과 더불어, 송풍 공기와의 열교환에 의한 응축작용으로 고온, 고압의 기체 냉매가 액화된 상태로 팽창밸브(130)에 공급되게 된다.
따라서, 상기와 같이 응축기(120)는 방열작용에 의해 히트펌프(100)에 의한 가열 공기를 제공하는 역할을 하게 된다.
그리고, 상기 팽창밸브(130)는 상기 응축기(120)와 연결되어 액화된 냉매가 공급되면, 이를 교축 작용에 의해 증발을 일으킬 수 있는 압력까지 감압하여 저온, 저압의 포화증기 상태로 만든 후 후술하는 1차증발기(140)에 포화증기 냉매를 공급하기 위한 것이다.
한편, 상기 팽창밸브(130)는 냉매의 증발에 의한 열 흡수작용이 용이하게 일어나도록 하기 위한 기기이며, 상기 응축기(120)로부터 공급되는 고온, 고압의 냉매를 교축 작용에 의해 증발을 일으킬 수 있는 압력까지 감압하면서 충분한 열을 흡수할 수 있는 적정한 온도로 낮춰 냉매를 포화증기 상태로 만드는 것이다.
이때, 상기 팽창밸브(130)는 전자식 팽창밸브(EEV : Electric Expansion Valves), 감온식 팽창밸브(TEV : Thermostatic Expansion Valves), 정압식 팽창밸브 (AXV : Automatic Expansion Valve) 등 다양한 팽창밸브의 구조를 적용하여 사용할 수 있다.
그리고, 상기 1차증발기(140)는 상기 팽창밸브(130)와 연결되어 저온, 저압의 포화증기 냉매가 공급되면, 이를 증발시켜 주위로부터 열을 흡수하는 열교환을 하되, 상기 응축기(120)에서 발생하는 폐열을 회수하여 냉매를 과열증기 상태로 만든 후 2차증발기(150)로 과열증기 냉매를 공급하기 위한 것이다.
한편, 상기 1차증발기(140)는 인입 헤더 및 배출 헤더, 상기 인입/배출 헤더들을 연결하여 이들이 서로 통하도록 함에 따라 소정의 유로를 형성하는 다수의 튜브와, 상기 튜브들 사이에 적층되는 다수의 전열 핀으로 구성된다.
이때, 상기 1차증발기(140)는 응축기(120)로부터 발생하는 가열 공기의 사용이 완료되면, 이에 대한 폐열 공기가 외부로 배출되는 측에 위치되어 설치됨이 바람직한 것이며, 상기 1차증발기(140)는 인입 측이 상기 팽창밸브(130)와 연결되어 저온, 저압의 포화증기 냉매가 공급되고, 상기 1차증발기(140)의 배출 측은 후술하는 2차증발기(150)와 연결된다.
이에 따라, 상기 응축기(120)로부터 발생한 가열 공기의 폐열은 송풍과정에서 상기 1차증발기(140) 측으로 유입되어 튜브들 사이의 전열 핀 사이를 거치게 되고, 이 과정에서 상기 1차증발기(140)의 내부로 튜브의 유로를 따라서 유동하는 저온, 저압의 포화증기 냉매가 전열 핀 사이를 거치는 폐열을 회수하여 냉매를 과열증기 상태로 만든 후 2차증발기(150)로 공급하게 된다
그리고, 상기 2차증발기(150)는 상기 1차증발기(140)와 연결되어 과열증기 냉매가 공급되면, 과열증기 냉매에 의해 방열작용을 하면서 저온, 저압의 포화 증기 상태로 만든 냉매를 상기 압축기(110)로 공급 순환되게 하는 것이다.
한편, 상기 2차증발기(150)는 인입 헤더 및 배출 헤더, 상기 인입/배출 헤더들을 연결하여 이들이 서로 통하도록 함에 따라 소정의 유로를 형성하는 다수의 튜브와, 상기 튜브들 사이에 적층되는 다수의 전열 핀으로 구성된다.
이때, 상기 2차증발기(150)는 최초 외부 공기가 유입되는 부분으로 상기 응축기(120)와 인접한 위치에 설치됨이 바람직한 것이며, 상기 2차증발기(150)의 인입 측이 상기 1차증발기(140)와 연결되어 과열증기 냉매가 공급되고, 상기 2차증발기(150)의 배출 측은 상기 압축기(110)와 연결된다.
이에 따라, 최초 유입되는 외부 공기는 송풍과정에서 상기 2차증발기(150) 측으로 유입되어 튜브들 사이의 전열 핀 사이를 거치게 되고, 이 과정에서 상기 2차증발기(150)의 내부로 튜브의 유로를 따라서 유동하는 과열증기 냉매가 전열 핀 사이를 거치는 외부 공기와 열교환에 의한 방열작용을 함에 따라 외부 공기를 가열하면서, 냉매를 저온, 저압의 포화 증기 상태로 만든 후 상기 압축기(110)로 공급 순환되게 한다.
따라서, 상기와 같이 2차증발기(150)는 1차증발기(140)로부터 공급되는 과열증기 냉매에 의해 방열작용을 함에 따라 최초 유입되는 공기에 대하여 예열하는 역할을 하게 되며, 상기 2차증발기(150)에 의해 예열된 공기는 상기 2차증발기(150)와 인접하게 위치된 응축기(120)로 유입됨으로, 이를 통해 상기 응축기(120)에서 예열된 공기를 이용해 방열함에 따라 응축기(120)에서 재사용하는 열 에너지에 비례하여 압축기(110)의 과부하 및 작동 에너지를 절약할 수 있게 된다.
또한, 히트펌프(100)은 상기 2차증발기(150)와 압축기(110) 사이에 연결되며, 상기 압축기(110)로 복귀하는 냉매의 불순물의 제거를 위한 필터링 역할을 하는 필터기(160)를 더 포함한다.
이때, 상기 필터기(160)는 유체 냉매가 관을 따라 유동하는 과정에서 관 또는 히트펌프(100)의 각 구성요소 내부에 잔류한 이물질 또는 수분을 흡수한 후 냉매만 통과할 수 있도록 제작되며, 이에 따른 필터링 작용에 의해 유동 관의 동결 및 냉매의 흐름이 막히는 것을 방지하게 된다.
또한, 히트펌프(100)은 상기 응축기(120)의 후속 및 2차증발기(150)의 후속 측으로 인입/배출 라인이 각각 관 연결된 상태에서 히트펌프(100)에서 순환하는 냉매에 대하여 보충/저장하는 냉매탱크(210)를 더 포함한다.
이때, 상기 냉매탱크(210)는 내부에 냉매를 수용할 수 있는 수용공간이 마련된 구조로 제작된 상태에서 관 연결에 의해 냉매가 냉매탱크(210)의 내,외부로 유동하며, 히트펌프(100)에서 순환하는 냉매에 대한 정량조절 역할을 하게 된다.
그리고, 도 2는 본 발명에 따른 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템이 적용된 건조수단을 개략적으로 도시한 도면이다.
이에 따르면, 도 2의 경우 전술한 히트펌프 시스템이 적용된 건조수단(300)을 개략적으로 설명한 것으로, 상기 히트펌프 시스템은, 외부로부터 공기가 유입되며, 상기 히트펌프 시스템이 적용되어 가열 공기가 제공되면, 상기 가열 공기를 건조부(320) 측으로 순환되게 한 후 배출시키는 건조수단(300)을 더 포함한다.
한편,, 상기 건조수단(300)은 전체적인 구조가 공기가 유동할 수 있는 관로 또는 케이스 형태로 제작되어 히트펌프 시스템이 적용되면, 상기 히트펌프 시스템에 외부공기를 유입/순환/배출되게 하여 공기 가열작용을 유도하기 위한 것이다.
또한, 상기 건조수단(300)은, 흡입팬(311)에 의해 외부 공기가 최초 유입되며, 내측으로 2차증발기(150) 및 응축기(120)가 순차적으로 설치되는 유입부(310)를 더 포함한다.
이때, 상기 유입부(310)는 내측에 상기 2차증발기(150)가 공기가 유입되는 측에 설치되면, 상기 2차증발기(150) 후측으로 상기 응축기(120)가 설치되며, 상기 유입부(310)의 외측에는 상기 2차증발기(150)과 응측기(120) 사이로 연결되는 압축기(110)가 결합된다.
이때, 상기 유입부(310)의 내부로, 상기 2차증발기(150)의 전측에는 외부 공기를 유입되게 하는 흡입팬(311)이 설치된다.
또한, 상기 건조수단(300)은, 상기 유입부(310)와 연통되어 상기 응축기(120)로부터 발생하는 가열 공기가 유입되며, 피대상물에 대한 열풍 건조 공간을 제공하는 건조부(320)를 더 포함한다.
이때, 상기 건조부(320)는 히트펌프 시스템을 이용해 발생하는 가열공기를 이용해 건조하기 위한 대상물이 수용되는 공간이다.
또한, 상기 건조수단(300)은. 상기 건조부(320)와 연통되어 상기 가열 공기가 유입되며, 내측으로 1차증발기(140)가 설치된 상태에서 가열 공기가 상기 1차증발기(140)를 거쳐 외부로 배출되게 하는 배출부(330)를 더 포함한다.
이때, 상기 배출부(330)는 내측에 1차증발기(140)가 설치되면, 상기 1차증발기(140) 측으로 응축기(120)로부터 발생하는 가열 공기(건조가 완료된 폐열공기)가 거쳐 폐열 공기를 상기 1차증발기(140)에 의해 회수한 후 외부로 배출시키는 것이다.
그리고, 도 3은 다른 실시 예에 따른 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템의 구성을 나타낸 도면이다.
이에 따르면, 도 3의 경우 전술한 구조의 히트펌프(100)의 다른 실시 상태를 개략적으로 설명한 것으로, 상기 히트펌프(100)은 고압센서밸브(220)와 저압센서밸브(230)를 이용해 히트펌프 사이클에서 순환하는 냉매가 임의 압력에서 초과 및 저하되는 것을 측정하여 냉매를 보충/배출하게 하는 냉매조절수단(200)을 더 포함하여 구성된다.
또한, 상기 냉매조절수단(200)은, 냉매탱크(210)와 연결된 상태에서, 임의로 설정된 고압을 초과하였을 경우 히트펌프(100)에서 순환하는 냉매를 상기 냉매탱크(210)로 유입되게 하여 압력을 하강시키는 고압센서밸브(220)를 더 포함한다.
이때, 상기 고압센서밸브(220)는 내부에 압력을 측정하기 위한 센서가 구비된 솔레노이드 밸브 형태로 제작되어, 측정하기 위한 고압을 임의로 설정이 가능하며, 상기 고압센서밸브(220)의 일측은 상기 냉매탱크(210)가 관 연결되며, 타측은 히트펌프(100) 중 응축기(120)와 팽창밸브(130) 사이에 관 연결되는 구조를 갖는다.
또한, 상기 냉매조절수단(200)은, 냉매탱크(210)와 연결된 상태에서, 임의로 설정된 저압 이하의 경우 상기 냉매탱크(210)에 저장된 고압의 냉매를 히트펌프(100)에 공급하여 압력을 상승시키는 저압센서밸브(230)를 더 포함한다.
이때, 상기 저압센서밸브(230)는 내부에 압력을 측정하기 위한 센서가 구비된 솔레노이드 밸브 형태로 제작되어 측정하기 위한 저압을 임의로 설정이 가능하며, 상기 저압센서밸브(230)의 일측은 후술하는 체크밸브(240)를 통해 냉매탱크(210)가 관 연결되며, 타측은 히트펌프(100) 중 2차증발기(150)와 압축기(110) 사이에 관 연결되는 구조를 갖는다.
또한, 상기 냉매조절수단(200)은, 상기 고압센서밸브(220)와 저압센서밸브(230) 사이에 연결된 상태에서 상기 저압센서밸브(230)가 개방되면, 상기 고압센서밸브(220)로 냉매탱크(210)에 수용된 냉매가 역류하는 것을 방지하는 체크밸브(240)를 더 포함한다.
이상 설명한 바와 같이. 본 발명은 특정의 바람직한 실시 예를 예시한 설명과 도면으로 표현하였으나, 본 발명은 상기한 실시 예에 따른 특허청구범위에 의해 나타난 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경 및 개조, 수정 등이 가능할 수 있음을 누구나 쉽게 알 수 있을 것이다.

Claims (4)

  1. 히트펌프 시스템에 있어서,
    저압의 기체 냉매를 고온,고압의 기체로 압축한 상태에서 응축기(120)로 공급하는 압축기(110)와;
    상기 압축기(110)와 연결되어 고온,고압의 기체 냉매가 공급되면, 이를 방열작용에 의해 액화한 후 팽창밸브(130)로 액화된 냉매를 공급하는 응축기(120)와;
    상기 응축기(120)와 연결되어 액화된 냉매가 공급되면, 이를 교축 작용에 의해 증발을 일으킬 수 있는 압력까지 감압하여 저온,저압의 포화증기 상태로 만든 후 1차증발기(140)에 포화증기 냉매를 공급하는 팽창밸브(130)와;
    상기 팽창밸브(130)와 연결되어 저온,저압의 포화증기 냉매가 공급되면, 이를 증발시켜 주위로부터 열을 흡수하는 열교환을 하되, 상기 응축기(120)에서 발생하는 폐열을 회수하여 냉매를 과열증기 상태로 만든 후 2차증발기(150)로 과열증기 냉매를 공급하는 1차증발기(140)와;
    상기 1차증발기(140)와 연결되어 과열증기 냉매가 공급되면, 과열증기 냉매에 의해 방열작용을 하면서 저온, 저압의 포화 증기 상태로 만든 냉매를 상기 압축기(110)로 공급 순환되게 하는 2차증발기(150)를 포함하여 구성되며,
    상기 응축기(120)는 가열 공기를 제공하는 역할을 하고, 상기 2차증발기(150)는 응축기(120)의 전단에 위치하여 최초 유입되는 공기에 대하여 예열 및 냉매의 압력과 온도를 낮추는 역할을 하는 것을 특징으로 하는 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템.
  2. 제1항에 있어서,
    상기 응축기(120)의 후속 및 2차증발기(150)의 후속 측으로 인입/배출 라인이 각각 관 연결된 상태에서 히트펌프 사이클에서 순환하는 냉매에 대하여 보충/저장하는 냉매탱크(210)를 더 포함하는 것을 특징으로 하는 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템.
  3. 제1항에 있어서,
    상기 히트펌프 시스템은, 외부로부터 공기가 유입되며, 상기 히트펌프 시스템이 적용되어 가열 공기가 제공되면, 상기 가열 공기를 건조부(320) 측으로 순환되게 한 후 배출시키는 건조수단(300)을 더 포함하는 것을 특징으로 하는 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템.
  4. 제3항에 있어서,
    상기 건조수단(300)은,
    흡입팬(311)에 의해 외부 공기가 최초 유입되며, 내측으로 2차증발기(150) 및 응축기(120)가 순차적으로 설치되는 유입부(310)와;
    상기 유입부(310)와 연통되어 상기 응축기(120)로부터 발생하는 가열 공기가 유입되며, 피대상물에 대한 열풍 건조 공간을 제공하는 건조부(320)와;
    상기 건조부(320)와 연통되어 상기 가열 공기가 유입되며, 내측으로 1차증발기(140)가 설치된 상태에서 가열 공기가 상기 1차증발기(140)를 거쳐 외부로 배출되게 하는 배출부(330)를 더 포함하여 구성된 것을 특징으로 하는 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템.
PCT/KR2014/006804 2014-04-18 2014-07-25 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템 WO2015160040A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14887710.3A EP3133357B1 (en) 2014-04-18 2014-07-25 Heat pump system having structure for recovering waste heat by means of secondary evaporator
JP2016513887A JP6163257B2 (ja) 2014-04-18 2014-07-25 2段階構成を含む廃熱回収構造を有するヒートポンプシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0046467 2014-04-18
KR1020140046467A KR101413707B1 (ko) 2014-04-18 2014-04-18 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템

Publications (1)

Publication Number Publication Date
WO2015160040A1 true WO2015160040A1 (ko) 2015-10-22

Family

ID=51740806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006804 WO2015160040A1 (ko) 2014-04-18 2014-07-25 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템

Country Status (5)

Country Link
EP (1) EP3133357B1 (ko)
JP (1) JP6163257B2 (ko)
KR (1) KR101413707B1 (ko)
CN (1) CN104457004B (ko)
WO (1) WO2015160040A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442804A (zh) * 2018-12-17 2019-03-08 上海新奥新能源技术有限公司 一种深度冷凝乏汽的双级压缩热泵循环系统
CN110686502A (zh) * 2019-09-30 2020-01-14 江苏大学 一种以热泵为热源并进行热回收的热风干燥系统及干燥方法
CN113375135A (zh) * 2021-06-25 2021-09-10 贵州大学 一种基于空气源热泵的电磁感应式蒸汽发生器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783485A (zh) * 2016-04-12 2016-07-20 南京师范大学 一种内燃机驱动热泵干燥装置
CN106075947A (zh) * 2016-06-03 2016-11-09 天津大学 甲醇四塔双效热泵节能设备及方法
KR102521569B1 (ko) * 2017-12-26 2023-04-12 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN108800772A (zh) * 2018-07-06 2018-11-13 中山市碧朗节能设备有限公司 一种冷热双用烘干房
CN109350983B (zh) * 2018-12-17 2024-03-19 上海新奥新能源技术有限公司 一种双级压缩式热泵双效蒸发浓缩系统
DE102019126850A1 (de) * 2019-10-07 2021-04-08 Audi Ag Kälteanlage mit Wärmepumpen- und Reheatfunktion
CN110887310A (zh) * 2019-10-17 2020-03-17 安徽普利仪器仪表科技有限公司 一种超低温一体机
JP7146224B1 (ja) * 2020-12-08 2022-10-04 誠 安田 冷却装置
CN112694145B (zh) * 2020-12-15 2023-02-28 苏州翔云节能科技有限公司 一种节能型工业废水浓缩装置及工业废水浓缩方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118191A (ja) * 1997-10-13 1999-04-30 Tabai Espec Corp 空気調和装置及び空気調和方法
JP2007240066A (ja) * 2006-03-08 2007-09-20 Shibamura Netsuriyo Kaihatsu:Kk 冷水機及び冷水式除湿装置並びに乾燥機
JP2010196948A (ja) * 2009-02-24 2010-09-09 Toshiba Corp 冷蔵庫
KR101353185B1 (ko) 2012-03-02 2014-01-20 한국교통대학교산학협력단 히트펌프

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383853B1 (ko) 2000-08-10 2003-05-14 진금수 히트 펌프 시스템
JP2002295927A (ja) * 2001-03-29 2002-10-09 Mitsubishi Electric Corp アキュムレシーバ、冷凍装置及びアキュムレシーバの製造方法
JP2004060954A (ja) * 2002-07-26 2004-02-26 Daikin Ind Ltd 調湿装置
JP2005016917A (ja) * 2003-06-30 2005-01-20 Fuji Electric Retail Systems Co Ltd 冷蔵・空調統合装置
KR100677934B1 (ko) 2006-05-09 2007-02-06 (주)뉴그린테크 수축열 히트 펌프의 고온수 생산 장치
JP2008142101A (ja) * 2006-12-06 2008-06-26 Matsushita Electric Ind Co Ltd ヒートポンプ式乾燥機とその運転方法
CN201081401Y (zh) * 2007-01-28 2008-07-02 扬州日利达有限公司 一种低品位余热回收热泵热水装置
JP5005122B2 (ja) * 2010-04-23 2012-08-22 パナソニック株式会社 車両用空調装置
CN201811496U (zh) * 2010-09-08 2011-04-27 唐际秋 储热式多级污水废热回收热泵系统
CN102213471B (zh) * 2011-04-07 2013-01-16 南京师范大学 一种冷凝热分段利用热湿独立处理空气的方法
KR101271355B1 (ko) * 2011-11-21 2013-06-07 심우천 중고온수 복합 생산 히트펌프 시스템
JP5390039B1 (ja) * 2012-07-23 2014-01-15 三浦工業株式会社 ヒートポンプ
JP5831423B2 (ja) * 2012-10-08 2015-12-09 株式会社デンソー 冷凍サイクル装置
CN102889705A (zh) * 2012-10-25 2013-01-23 南通华信中央空调有限公司 全新风工况下的除湿、节能型控制系统
CN203525333U (zh) * 2013-10-14 2014-04-09 山东伯仲真空设备股份有限公司 Mvr蒸发器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118191A (ja) * 1997-10-13 1999-04-30 Tabai Espec Corp 空気調和装置及び空気調和方法
JP2007240066A (ja) * 2006-03-08 2007-09-20 Shibamura Netsuriyo Kaihatsu:Kk 冷水機及び冷水式除湿装置並びに乾燥機
JP2010196948A (ja) * 2009-02-24 2010-09-09 Toshiba Corp 冷蔵庫
KR101353185B1 (ko) 2012-03-02 2014-01-20 한국교통대학교산학협력단 히트펌프

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442804A (zh) * 2018-12-17 2019-03-08 上海新奥新能源技术有限公司 一种深度冷凝乏汽的双级压缩热泵循环系统
CN109442804B (zh) * 2018-12-17 2024-01-30 上海新奥新能源技术有限公司 一种深度冷凝乏汽的双级压缩热泵循环系统
CN110686502A (zh) * 2019-09-30 2020-01-14 江苏大学 一种以热泵为热源并进行热回收的热风干燥系统及干燥方法
CN110686502B (zh) * 2019-09-30 2023-06-09 江苏大学 一种以热泵为热源并进行热回收的热风干燥系统及干燥方法
CN113375135A (zh) * 2021-06-25 2021-09-10 贵州大学 一种基于空气源热泵的电磁感应式蒸汽发生器

Also Published As

Publication number Publication date
EP3133357B1 (en) 2018-09-05
JP6163257B2 (ja) 2017-07-12
EP3133357A1 (en) 2017-02-22
CN104457004B (zh) 2016-05-04
JP2016517503A (ja) 2016-06-16
CN104457004A (zh) 2015-03-25
KR101413707B1 (ko) 2014-07-01
EP3133357A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
WO2015160040A1 (ko) 2차 증발기에 의해 폐열 회수 구조를 갖는 히트펌프 시스템
CN105258332B (zh) 数据机房余热回收系统
KR101383244B1 (ko) 핫가스 제상식 히트펌프장치
EP2159510B1 (en) Air conditioning system
CN109564037B (zh) 一种具有节能装置的空调热泵塔机
JP6818198B2 (ja) エネルギ効率が良いセントラル空調及びヒートポンプシステム
KR101280211B1 (ko) 착상 방지 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
EP2159511B1 (en) Air conditioning system
KR101331618B1 (ko) 멀티모드 전환형 공기열 히트펌프 시스템
KR100945452B1 (ko) 히트펌프장치
KR101320189B1 (ko) 보일러와 공조기 일체형 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
CN109458687A (zh) 空调系统及应用其的空调器
KR20130055790A (ko) 고효율 히터펌프식 냉난방장치
CN106440453A (zh) 一种分体式空气源采暖系统及其控制方法
KR20100097827A (ko) 히트펌프식 냉난방장치
KR101560825B1 (ko) 공기조화시스템
KR20140133375A (ko) 공기열 이원 사이클 히트펌프 냉난방 장치
CN109237832A (zh) 热水系统及热水系统的控制方法
KR101103439B1 (ko) 히트펌프 시스템
KR200385279Y1 (ko) 스팀 히터를 갖는 절전형 공기조화기
KR100642989B1 (ko) 히트펌프의 보조 가열 장치
KR20120077718A (ko) 이원 방식의 급탕용 히트펌프 시스템
KR100505750B1 (ko) 온수 히터를 갖는 절전형 공기조화기
KR200385443Y1 (ko) 온수 히터를 갖는 절전형 공기조화기
KR100499076B1 (ko) 히트 펌프 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016513887

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014887710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887710

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE