WO2015159934A1 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
WO2015159934A1
WO2015159934A1 PCT/JP2015/061654 JP2015061654W WO2015159934A1 WO 2015159934 A1 WO2015159934 A1 WO 2015159934A1 JP 2015061654 W JP2015061654 W JP 2015061654W WO 2015159934 A1 WO2015159934 A1 WO 2015159934A1
Authority
WO
WIPO (PCT)
Prior art keywords
vulcanization
parts
mass
accelerator
amine
Prior art date
Application number
PCT/JP2015/061654
Other languages
French (fr)
Japanese (ja)
Inventor
達 宮崎
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2015159934A1 publication Critical patent/WO2015159934A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/38Thiocarbonic acids; Derivatives thereof, e.g. xanthates ; i.e. compounds containing -X-C(=X)- groups, X being oxygen or sulfur, at least one X being sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/40Thiurams, i.e. compounds containing groups

Definitions

  • the present invention relates to a rubber composition.
  • Retread tires are designed to be reused by attaching new tread rubber to the base tire after removing the worn-out tread part, and for tires for large vehicles such as trucks and buses, and aircraft tires. Many are used.
  • the method of vulcanizing the mold while forming the tread pattern on the base tire with the unvulcanized tread rubber is called the hot method, and as the name of the method indicates, vulcanization at a relatively high temperature is required. Is what you do.
  • the method of adhering precure tread which is tread rubber vulcanized in advance, through cushion rubber is called cold method or precure method, and as the name of the method indicates, vulcanization at a relatively low temperature is performed. And bonding.
  • vulcanization is necessary for the unvulcanized rubber part, but the problem of overvulcanization where the tyre part and the newly attached tread are also affected by heating and the vulcanization proceeds newly. Occurs.
  • the overvulcanization proceeds cumulatively every time the retread is performed, and damage is gradually accumulated in the base tire.
  • the cold method has been developed in response to a demand for vulcanization at a low temperature in a short time. Naturally, improvement in productivity is also desired by shortening the entire vulcanization time.
  • Patent Document 1 refers to the fact that when a xanthate accelerator is used, the overall vulcanization speed is increased and the vulcanization time is shortened.
  • xanthate accelerators are difficult to control, they are one of vulcanization accelerators with excellent potential that realize ideal vulcanization characteristics at low temperatures and in a short time. If the problem of initial vulcanization characteristics can be solved and controlled, it will be particularly suitable for tire retrending by the cold method, and productivity will also be improved. In view of such circumstances, the present invention intends to provide a rubber composition that achieves both vulcanization speed and scorch resistance.
  • the present inventor has realized a rubber composition having both vulcanization speed and scorch resistance by using a xanthate accelerator in combination with a thiuram accelerator and an amine or aldehyde-amine accelerator. It is a thing.
  • the present invention contains 0.1 to 3.0 parts by mass of a xanthate accelerator as a vulcanization accelerator and 0.05 to 3.0 parts by mass of a thiuram accelerator with respect to 100 parts by mass of the rubber component.
  • a rubber composition comprising 0.1 to 4.0 parts by mass of an amine or aldehyde-amine accelerator, and a total of the three types of accelerators of 0.5 parts by mass or more It is.
  • the xanthate accelerator is contained in an amount of 0.2 to 1.5 parts by mass. More preferably, it contains 0.2 to 1.0 parts by mass of a xanthate accelerator and 0.5 to 2.0 parts by mass of an amine or aldehyde-amine accelerator.
  • the torque value F When measuring the vulcanization torque curve using a rheometer based on JIS K6300-2, the torque value F reaches the minimum torque value Fmin + xx (maximum torque value Fmax ⁇ minimum torque value Fmin) at 120 ° C.
  • the rubber composition having both vulcanization speed and scorch resistance According to the rubber composition having both vulcanization speed and scorch resistance according to the present invention, aging deterioration due to overvulcanization of the base tire is prevented by adhesion at low temperature and short time vulcanization. Long life can be achieved. In addition, an increase in production efficiency can also have an excellent effect of being economical overall and contributing to resource and energy savings.
  • the vulcanization torque curve shown in FIG. 1 shows the change in torque with the progress of crosslinking from the start of heating of the vulcanized rubber with a rheometer.
  • the torque value may once decrease due to the uniformity and temperature increase due to the diffusion of heat, and reaches the minimum torque value Fmin. Thereafter, the torque value often increases with the progress of crosslinking.
  • the torque starts to increase immediately without decreasing, and the start of heating may become the minimum torque value Fmin.
  • the behavior when the torque increases may reach the maximum torque value Fmax, reach equilibrium, indicate vulcanization returning to decrease, or continue to increase to a limit torque value that can be measured by the rheometer. .
  • the time required to increase by 0.1 times is T0.1, and similarly the time required to increase by 0.9 times ⁇ F is T0.9.
  • T0.1 is an initial time
  • T0.9 is a time showing vulcanization characteristics at the end.
  • the values of T0.1 and T0.9 are usually represented by a time scale in minutes when measured at 120 ° C.
  • the slope of the vulcanization torque curve is the rate of increase in torque, but since the increase in torque correlates with the degree of progress of vulcanization, this correlates with the vulcanization rate. That is, the slope of the curve at a certain time represents the vulcanization speed, and a large slope represents a fast vulcanization speed, and a small slope represents a slow vulcanization speed.
  • T0.1 and T0.9 described above are vulcanization times, and are expressed as early if the time is short and slow if the time is long.
  • the vulcanization speed usually changes continuously, when the vulcanization speed at a certain time is slow, the time to reach that time is relatively long, that is, slow. On the other hand, if the vulcanization speed is high at a certain time, the time until the time is reached is relatively short, that is, becomes faster.
  • the vulcanization time T0.9 which is an index of the time required for the entire vulcanization process, is shortened.
  • the vulcanization time T0.1 is generally shortened with the vulcanization time T0.9, but this is not preferable from the viewpoint of scorch resistance.
  • the relatively slow vulcanization time T0.1 indicates that the crosslinking does not proceed abruptly from the initial stage and the vulcanization speed is slow, and an appropriate induction time is ensured. This is preferable because it is possible.
  • the vulcanization time T0.1 is 0.9 minutes or longer, practical usefulness is recognized, further 0.9 to 5 minutes is preferable, and 1 to 5 minutes is particularly preferable.
  • the vulcanization time T0.9 is ideally as early as possible, but if it is within 18 minutes, practical usefulness is recognized, more preferably within 15 minutes, and particularly within 8 minutes. preferable.
  • the vulcanization acceleration effect is large.
  • Xanthate-based accelerator blended to shorten the overall vulcanization time while combining with other accelerators to suppress the initial vulcanization rate and ensure sufficient induction time It is conceivable to adjust.
  • Accelerators other than xanthate are mainly nitrogen-containing amine, aldehyde-amine, aldehyde-ammonia, guanidine, thiazole, sulfur-containing sulfenamide, thiourea, thiuram
  • accelerators of various groups of compounds such as dithiocarbamates are known.
  • the combination characterizing the present invention is to use a thiuram accelerator, an amine or an aldehyde-amine accelerator as the accelerator used in combination. Although there are many methods of combination, care must be taken because the characteristics may be impaired.
  • the xanthate accelerator refers to xanthate and derivatives thereof, mainly esters, having a structure of —OC ( ⁇ S) —S— in the molecule.
  • at least one is selected from the compound group consisting of sodium isopropyl xanthate, zinc ethyl xanthate, zinc isopropyl xanthate, zinc butyl xanthate, and butyl xanthogen disulfide.
  • zinc butylxanthate, zinc isopropylxanthate, and the like are preferable, and zinc isopropylxanthate is particularly preferable.
  • the xanthate accelerator needs to be balanced with other accelerators, but is blended in the range of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • the acceleration effect is manifested at 0.1 parts by mass or more, and by setting it to 3.0 parts by mass or less, control can be performed with other accelerators so that the initial vulcanization time T0.1 does not become too early. .
  • Thiuram accelerators are a series of accelerators that have been used for a long time as vulcanization accelerators.
  • thiuram compounds having a bulky hydrocarbon group having 4 to 10 carbon atoms are used.
  • a compound group consisting of dithio ⁇ -hexane, and at least one is selected.
  • the thiuram accelerator needs to be balanced with other accelerators, but is blended in the range of 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component. A promoting effect is exhibited at 0.05 parts by mass or more, and a sufficient effect is obtained at 3.0 parts by mass or less.
  • Aldehyde-amine accelerators are those obtained by reacting aldehydes with amines, such as n-butyraldehyde-aniline condensate, butyraldehyde-butylamine condensate, heptylaldehyde-aniline condensate, ⁇ -ethyl- ⁇ -propyl.
  • amines such as n-butyraldehyde-aniline condensate, butyraldehyde-butylamine condensate, heptylaldehyde-aniline condensate, ⁇ -ethyl- ⁇ -propyl.
  • Examples include compounds composed of acrolein-aniline condensate, butyraldehyde-butylidene aniline reactant, butyraldehyde-acetaldehyde-butylidene aniline reactant.
  • At least one selected from the above group of amine compounds or group of aldehyde-amine compounds is used in combination with the xanthate compound and thiuram compound.
  • Condensates can be used particularly preferably.
  • the aldehyde-amine is aldimine because the main component is derived from imine, which is a condensate, in particular aldehyde, but it is an unreacted amine, aldehyde, or aldimine of condensate that is further reacted with amine.
  • imine which is a condensate, in particular aldehyde, but it is an unreacted amine, aldehyde, or aldimine of condensate that is further reacted with amine.
  • Some aminals and compounds obtained by further reacting aldehyde with the condensate aldimine are included, and these are used as aldehyde-amine accelerators.
  • an amine when used as an accelerator, it is referred to as an amine or aldehyde-amine accelerator as a vulcanization accelerator system in the present application.
  • the amine or aldehyde-amine accelerator needs to be balanced with other accelerators, but is added in the range of 0.1 to 4.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • An acceleration effect is manifested at 0.1 parts by mass or more, and a sufficient effect is obtained at 4.0 parts by mass or less.
  • 0.1 to 2.0 parts by mass is a preferred range.
  • the xanthate accelerator is 0.1 to 3.0 parts by weight
  • the thiuram accelerator is 0.05 to 3.0 parts by weight
  • the amine or aldehyde-amine accelerator is 0.1 to 3.0 parts by weight.
  • the blending is carried out in the range of 4.0 parts by weight, and it is particularly necessary to blend 0.5 parts by weight or more as the lower limit of the total of the above three types of system promoters.
  • the upper limit is preferably 6.0 parts by mass or less.
  • various diene rubbers can be used, natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), styrene.
  • NR natural rubber
  • IR polyisoprene rubber
  • BR polybutadiene rubber
  • IIR butyl rubber
  • natural rubber is preferably used in an amount of 50 parts by mass or more based on 100 parts by mass of all rubber components, and when combining other rubber components, it is preferable to select SBR or IR.
  • Sulfur used for vulcanization can be appropriately selected from ordinary sulfur, insoluble sulfur, sulfur white, deoxidized sulfur, powdered sulfur, precipitated sulfur, colloidal sulfur, rubbery sulfur and the like.
  • sulfur or insoluble sulfur is used, and it can be used at 0.5 to 12 parts by weight, preferably 1 to 8 parts by weight, and more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the rubber component.
  • a filler usually used in a rubber composition can be used.
  • three types of vulcanization accelerators are used, and in balancing the blending, it becomes difficult to adjust when using a filler that will adsorb components. From such a point, the use of carbon black is preferable. It can be used in an amount of 20 to 60 parts by weight, preferably 25 to 45 parts by weight, particularly preferably 25 to 40 parts by weight with respect to 100 parts by weight of the rubber component.
  • the carbon black can be appropriately selected according to the purpose, but it is preferable that the specific surface area is small and adsorption is suppressed.
  • a nitrogen adsorption specific surface area N 2 SA is preferably about 20 to 100 m 2 / g, and grades include HAF, FEF and GPF, and HAF and FEF are preferred.
  • inorganic fillers for example, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, carbonate At least one can be selected from calcium, magnesium oxide, titanium oxide, potassium titanate, barium sulfate, and the like.
  • silane coupling agents as appropriate, not only improving affinity with rubber components, but also controlling surface activity to adsorb It is necessary to devise measures to control the above.
  • the effects of the present invention include aroma oils, zinc oxide, vulcanization aids, anti-aging agents, antioxidants, ultraviolet absorbers, antistatic agents, etc., usually blended in the rubber composition as necessary. It can mix
  • Amine-based compounds are often used as anti-aging agents, and the effects of some of the three types of vulcanization accelerators of the present invention are similar to those of amine-based or aldehyde-amine-based accelerators. Consideration of balance is necessary.
  • a tackifier when used as a cushion rubber, a tackifier can be blended in order to improve adhesion between layers.
  • the above-mentioned zinc oxide particularly works with a sulfur-based vulcanization accelerator and has a function of controlling vulcanization, so that it relates to vulcanization characteristics. Therefore, the blending needs to be performed based on the balance with the vulcanization accelerator. For example, it is necessary to adjust appropriately when using a zinc salt as a xanthate type
  • a retreaded tire can be obtained by performing retreading using the rubber composition of the present invention. That is, the tire tires that have reached the end of their service life and have the tread portion shaved are covered with the rubber composition of the present invention as a cushion rubber and further covered with a vulcanized or semi-vulcanized tread rubber. Then, they are placed in a vulcanizing can and vulcanized at a temperature of 80 to 130 ° C. Compared to conventional cushion rubber using a vulcanization system, the vulcanization speed is high and vulcanization is possible for a short time and low temperature vulcanization. The ability to suppress the deterioration of the base tire and improve the durability is also advantageous in that the number of rehabilitation can be increased.
  • Example / Comparative Example In addition to the blending components common to all Examples / Comparative Examples shown in Table 1, individual blending was carried out in each Example / Comparative Example according to Table 2 to obtain an unvulcanized rubber composition.
  • Each rubber composition was measured for a vulcanization torque curve using a rheometer based on JIS K6300-2 under the condition of 120 ° C., and vulcanization times T0.1 and T0.9 were determined.
  • the breaking elastic modulus Tb was measured according to JIS K 6301, the value of Example 1 was set to 100, and the value of each Example and Comparative Example was indexed. A larger value indicates better fracture resistance.
  • the evaluation results are shown together with the formulation specific to each Example / Comparative Example in Table 2.
  • Antigen 6C * 7: Insoluble sulfur (Shikoku Kasei Kogyo Co., Ltd., Mucron OT-20-SO) * 8: Zinc isopropyl xanthate (Ouchi Emerging Chemicals, Noxeller ZIX) * 9: Tetra (2-ethylhexyl) thiuram disulfide (TOT, Ouchi Shinsei Chemical, Noxeller TOT-N (TOT: 67%, silica: 33% supported product) is used.
  • the vulcanization time T0.1 which is an index of scorch resistance, is 0.9 minutes or more, the vulcanization time T0.9 is an index of the time required for the entire vulcanization process, within 18 minutes, and the fracture resistance Tb index is If it is 80 or more, it can be said that the balance between vulcanization characteristics and fracture resistance is excellent. In Examples 1 to 3, in which the blending amounts of the three vulcanization accelerators are not so different, the balance between the vulcanization characteristics and the fracture resistance is very excellent.
  • the rubber composition having both vulcanization speed and scorch resistance according to the present invention can be used as a cushion rubber that can withstand the repeated retreading and has excellent puncture resistance and can be produced with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a rubber composition for retread tires, which is characterized by containing, as vulcanization accelerators, 0.1 to 3.0 parts by mass of a xanthate-type accelerator, 0.05 to 3.0 parts by mass of a thiuram-type accelerator and 0.1 to 4.0 parts by mass of an amine-type or aldehyde-amine-type accelerator relative to 100 parts by mass of a rubber component, wherein the total amount of the three types of accelerators is 0.5 part by mass or more. The rubber composition for retread tires is one which has both a vulcanization rate and scorch resistance, i.e., one which has a relatively slow vulcanization time (T0.1) and a rapid vulcanization time (T0.9).

Description

ゴム組成物Rubber composition
 本発明はゴム組成物に関する。 The present invention relates to a rubber composition.
 摩耗して寿命を終えたトレッド部分を除去した、台タイヤに新たなトレッドゴムを装着して、再利用を図るのがリトレッドタイヤであり、トラックやバスなどの大型車両、また、航空機用タイヤで多く用いられている。そのトレッド部分の更新に関して未加硫トレッドゴムを台タイヤ上にトレッドパターンを形成しながら、モールド加硫する方法はホット方式と呼ばれ、その方式名称が示すとおり、比較的高温での加硫を行うものである。一方で、あらかじめ加硫したトレッドゴムであるプレキュアトレッドを、クッションゴムを介して接着する方法は、コールド方式又はプレキュア方式と呼ばれ、その方式名称が示す通り、比較的低温での加硫を行い、接着を行うものである。 Retread tires are designed to be reused by attaching new tread rubber to the base tire after removing the worn-out tread part, and for tires for large vehicles such as trucks and buses, and aircraft tires. Many are used. Regarding the renewal of the tread part, the method of vulcanizing the mold while forming the tread pattern on the base tire with the unvulcanized tread rubber is called the hot method, and as the name of the method indicates, vulcanization at a relatively high temperature is required. Is what you do. On the other hand, the method of adhering precure tread, which is tread rubber vulcanized in advance, through cushion rubber is called cold method or precure method, and as the name of the method indicates, vulcanization at a relatively low temperature is performed. And bonding.
 いずれの場合においても未加硫のゴム部分について加硫が必要であるが、台タイヤ部分や、新たに貼られたトレッドも加熱の影響を受け、新たに加硫が進行する過加硫の問題が生じる。そして、過加硫はリトレッドのたびに累積的に進行することになり、台タイヤには徐々にダメージが蓄積される。特に過加硫を防止して、台タイヤへのダメージをおさえる為、加硫を低温かつ短時間で行う要請から、発展してきたのがコールド方式である。当然ではあるが、加硫全体の時間を短くすることで、生産性の向上も望まれる。 In any case, vulcanization is necessary for the unvulcanized rubber part, but the problem of overvulcanization where the tyre part and the newly attached tread are also affected by heating and the vulcanization proceeds newly. Occurs. The overvulcanization proceeds cumulatively every time the retread is performed, and damage is gradually accumulated in the base tire. In particular, in order to prevent overvulcanization and reduce damage to the base tire, the cold method has been developed in response to a demand for vulcanization at a low temperature in a short time. Naturally, improvement in productivity is also desired by shortening the entire vulcanization time.
 クッションゴムをシート状に加工する際、あるいはクッションゴムを押出し機によって台タイヤに巻きつける際にも、クッションゴムには熱履歴が加えられる。この際に、所謂、ゴムヤケが生じることも好ましくないので避けなければならず、この点から耐スコーチ性も要求される。また、クッションゴムが調製されてから実際にタイヤリトレッドに供されるまでの間の、放置安定性も考慮される必要がある。このような、加硫特性を満たすために、加硫促進剤の種類の選択や組み合わせでコントロールすることが検討されてきた。キサンテート系促進剤を用いると、全体的に加硫速度が速くなり、加硫時間が短くてすむことが例えば、特許文献1から参照される。しかしながら全過程に渡る加硫特性は、さらに改善が望まれる。特に加硫速度が速い分、誘導期間を十分に確保するのは難しいので、スコーチが起こりやすく、コントロールが難しい加硫促進剤でもある。 When the cushion rubber is processed into a sheet shape, or when the cushion rubber is wound around the base tire by an extruder, a thermal history is added to the cushion rubber. In this case, so-called rubber burns are not preferable and must be avoided. From this point, scorch resistance is also required. In addition, it is necessary to consider the standing stability after the cushion rubber is prepared until it is actually used for tire retreading. In order to satisfy such vulcanization characteristics, it has been studied to control by selecting and combining the types of vulcanization accelerators. For example, Patent Document 1 refers to the fact that when a xanthate accelerator is used, the overall vulcanization speed is increased and the vulcanization time is shortened. However, further improvement is desired in the vulcanization characteristics over the entire process. In particular, since the vulcanization rate is fast, it is difficult to secure a sufficient induction period, so that it is also a vulcanization accelerator that is easily scorched and difficult to control.
特開2013-039818号 公報JP2013-039818A
 しかしながら、キサンテート系促進剤は、コントロールが難しいものの、低温・短時間の理想的な加硫特性を実現する、潜在性に優れた加硫促進剤の1つである。初期加硫特性の問題を解決してコントロールができれば、特にコールド方式によるタイヤリトレッディングに適したものとなり、生産性も向上する。
 本発明は、斯かる実情に鑑み、加硫速度、耐スコーチ性を両立するゴム組成物を提供しようとするものである。
However, although xanthate accelerators are difficult to control, they are one of vulcanization accelerators with excellent potential that realize ideal vulcanization characteristics at low temperatures and in a short time. If the problem of initial vulcanization characteristics can be solved and controlled, it will be particularly suitable for tire retrending by the cold method, and productivity will also be improved.
In view of such circumstances, the present invention intends to provide a rubber composition that achieves both vulcanization speed and scorch resistance.
 そこで、本発明者はキサンテート系促進剤に、チウラム系、及びアミンまたはアルデヒド-アミン系促進剤を組合せて使用することにより、加硫速度、耐スコーチ性を両立するゴム組成物を実現するに至ったものである。 Therefore, the present inventor has realized a rubber composition having both vulcanization speed and scorch resistance by using a xanthate accelerator in combination with a thiuram accelerator and an amine or aldehyde-amine accelerator. It is a thing.
 すなわち本発明は、ゴム成分100質量部に対し、加硫促進剤として、キサンテート系促進剤を0.1~3.0質量部含み、かつチウラム系促進剤を0.05~3.0質量部含み、かつアミン又はアルデヒド-アミン系促進剤を0.1~4.0質量部含み、かつ前記3系統種の促進剤の合計が0.5質量部以上であることを特徴とするゴム組成物である。好ましくは、キサンテート系促進剤を、0.2~1.5質量部含むことを特徴とする。さらに好ましくは、キサンテート系促進剤を、0.2~1.0質量部かつアミンまたはアルデヒド-アミン系促進剤を0.5~2.0質量部含むことを特徴とする。また、JIS K6300-2に基づきレオメーターを用いて、加硫トルク曲線を測定する時、120℃において、トルク値Fが最小トルク値Fmin+x×(最大トルク値Fmax-最小トルク値Fmin)に達するまでの時間をTx(0≦x≦1)として、x=0.1に達する時間T0.1が0.9分以上であり、さらにx=0.9に達する時間T0.9が18分以内であることを特徴とする。 That is, the present invention contains 0.1 to 3.0 parts by mass of a xanthate accelerator as a vulcanization accelerator and 0.05 to 3.0 parts by mass of a thiuram accelerator with respect to 100 parts by mass of the rubber component. A rubber composition comprising 0.1 to 4.0 parts by mass of an amine or aldehyde-amine accelerator, and a total of the three types of accelerators of 0.5 parts by mass or more It is. Preferably, the xanthate accelerator is contained in an amount of 0.2 to 1.5 parts by mass. More preferably, it contains 0.2 to 1.0 parts by mass of a xanthate accelerator and 0.5 to 2.0 parts by mass of an amine or aldehyde-amine accelerator. When measuring the vulcanization torque curve using a rheometer based on JIS K6300-2, the torque value F reaches the minimum torque value Fmin + xx (maximum torque value Fmax−minimum torque value Fmin) at 120 ° C. The time T0.1 for reaching x = 0.1 is 0.9 minutes or longer, and the time T0.9 for reaching x = 0.9 is within 18 minutes. It is characterized by being.
 本発明の加硫速度、耐スコーチ性を両立するゴム組成物によれば、低温・短時間の加硫での接着により、台タイヤの過加硫に由来する老化劣化が防止され、台タイヤの長寿命化を図ることができる。また、生産効率が上がることによっても、総じて、経済的であり、省資源・省エネルギー化に寄与するという優れた効果を奏し得る。 According to the rubber composition having both vulcanization speed and scorch resistance according to the present invention, aging deterioration due to overvulcanization of the base tire is prevented by adhesion at low temperature and short time vulcanization. Long life can be achieved. In addition, an increase in production efficiency can also have an excellent effect of being economical overall and contributing to resource and energy savings.
加硫トルクカーブとその特性にかかるパラメータとの関係を模式的に表したものである。The relationship between the vulcanization torque curve and the parameters related to the characteristics is schematically shown.
 以下、本発明を添付図を参照して説明する。
 図1に示した加硫トルクカーブは、レオメーターにて加硫ゴムの加熱開始から架橋の進行に伴うトルクの変化を示すものである。加熱開始後しばらくは、熱の拡散による均一化と温度上昇のため、いったんはトルク値が下がる場合があり、最小トルク値Fminに達する。その後、架橋の進行とともにトルク値が上昇していくことが多い。ただし、加硫特性によっては、下降することなく、直ちにトルクの上昇が始まり、加熱の開始時が最小トルク値Fminとなる場合もある。一方、トルクが上昇する際の挙動も、最大トルク値Fmaxに至り平衡に達する場合や、下降に転じる加硫戻りを示す場合や、レオメーターが測定可能な限界トルク値まで上昇が続く場合もある。ここでは、上昇し続けることはない場合を前提とする。すなわち、下降に転じるかどうかにかかわらず、最大トルク値Fmaxをとる場合において、トルク値の上昇幅ΔFを最大トルク値Fmax-最小トルク値Fminとする時、最小トルク値Fminから前記上昇幅ΔFの0.1倍分上昇するまでに要する時間がT0.1であり、同様にΔFの0.9倍分上昇する時間がT0.9である。T0.1は初期の、T0.9は終端での加硫特性を示す時間である。本願のようなゴム組成物の場合、120℃での測定にて、通常T0.1やT0.9の値は分単位でのタイムスケールで表される。
Hereinafter, the present invention will be described with reference to the accompanying drawings.
The vulcanization torque curve shown in FIG. 1 shows the change in torque with the progress of crosslinking from the start of heating of the vulcanized rubber with a rheometer. For a while after the start of heating, the torque value may once decrease due to the uniformity and temperature increase due to the diffusion of heat, and reaches the minimum torque value Fmin. Thereafter, the torque value often increases with the progress of crosslinking. However, depending on the vulcanization characteristics, the torque starts to increase immediately without decreasing, and the start of heating may become the minimum torque value Fmin. On the other hand, the behavior when the torque increases may reach the maximum torque value Fmax, reach equilibrium, indicate vulcanization returning to decrease, or continue to increase to a limit torque value that can be measured by the rheometer. . Here, it is assumed that it will not continue to rise. That is, when the maximum torque value Fmax is taken regardless of whether or not it starts to decrease, when the increase range ΔF of the torque value is the maximum torque value Fmax−the minimum torque value Fmin, the increase range ΔF is calculated from the minimum torque value Fmin. The time required to increase by 0.1 times is T0.1, and similarly the time required to increase by 0.9 times ΔF is T0.9. T0.1 is an initial time, and T0.9 is a time showing vulcanization characteristics at the end. In the case of the rubber composition as in the present application, the values of T0.1 and T0.9 are usually represented by a time scale in minutes when measured at 120 ° C.
 ここで、加硫トルクカーブの傾きは、トルクの増加の速度であるが、トルクの増加が加硫の進行の度合いと相関するため、これは加硫速度と相関する。すなわち、ある時間におけるカーブの傾きが加硫速度を表し、傾きが大きいと加硫速度は速いことを表し、傾きが小さいと加硫速度が遅いことを示す。一方で、上記で述べた、T0.1やT0.9は加硫時間であり、その時間が短ければ早い、長ければ遅いと表現されるものである。 Here, the slope of the vulcanization torque curve is the rate of increase in torque, but since the increase in torque correlates with the degree of progress of vulcanization, this correlates with the vulcanization rate. That is, the slope of the curve at a certain time represents the vulcanization speed, and a large slope represents a fast vulcanization speed, and a small slope represents a slow vulcanization speed. On the other hand, T0.1 and T0.9 described above are vulcanization times, and are expressed as early if the time is short and slow if the time is long.
 加硫速度は通常、連続的に変化するものであるから、ある時間における加硫速度が遅いと、その時間に至るまでの時間は相対的に長く、すなわち遅くなる。一方、ある時間において加硫速度が速いと、その時間に至るまでの時間が相対的に短く、すなわち早くなる。 Since the vulcanization speed usually changes continuously, when the vulcanization speed at a certain time is slow, the time to reach that time is relatively long, that is, slow. On the other hand, if the vulcanization speed is high at a certain time, the time until the time is reached is relatively short, that is, becomes faster.
 短時間での加硫という点においては、加硫の全工程に要する時間の指標となる、加硫時間T0.9が早くなることが好ましい。そのような場合、単純には加硫時間T0.9に伴い、概して加硫時間T0.1も短時間化することになるが、それでは耐スコーチ性という点からは好ましくない。耐スコーチ性からの要請では、加硫時間T0.1は比較的遅い方が、初期の段階から急激に架橋が進行せず、加硫速度が遅いことを示しており、適度な誘導時間が確保できるので、好ましい。加硫時間T0.1は0.9分以上であれば実用的な有用性が認められ、さらに0.9分以上5分以内が好ましく、1分以上5分以内が特に好ましい。一方、加硫時間T0.9は、可能であれば早い方が理想的であるが、18分以内であれば実用的な有用性が認められ、さらに15分以内が好ましく、8分以内が特に好ましい。 In terms of vulcanization in a short time, it is preferable that the vulcanization time T0.9, which is an index of the time required for the entire vulcanization process, is shortened. In such a case, the vulcanization time T0.1 is generally shortened with the vulcanization time T0.9, but this is not preferable from the viewpoint of scorch resistance. According to the request from the scorch resistance, the relatively slow vulcanization time T0.1 indicates that the crosslinking does not proceed abruptly from the initial stage and the vulcanization speed is slow, and an appropriate induction time is ensured. This is preferable because it is possible. When the vulcanization time T0.1 is 0.9 minutes or longer, practical usefulness is recognized, further 0.9 to 5 minutes is preferable, and 1 to 5 minutes is particularly preferable. On the other hand, the vulcanization time T0.9 is ideally as early as possible, but if it is within 18 minutes, practical usefulness is recognized, more preferably within 15 minutes, and particularly within 8 minutes. preferable.
 上記のように、加硫の過程において、加硫速度が適切に変化し、加硫時間T0.1は比較的遅く、T0.9は早くなる様にするためには、加硫促進効果の大きい、キサンテート系促進剤で、加硫時間全体を短くなるように早めつつ、他の促進剤との組合せで、初期の加硫速度を抑制して、誘導時間が十分に確保されるように、配合を調節することが考えられる。 As described above, in order to change the vulcanization rate appropriately in the vulcanization process so that the vulcanization time T0.1 is relatively slow and T0.9 is fast, the vulcanization acceleration effect is large. , Xanthate-based accelerator, blended to shorten the overall vulcanization time while combining with other accelerators to suppress the initial vulcanization rate and ensure sufficient induction time It is conceivable to adjust.
 キサンテート系以外の促進剤として、主に含窒素系であるアミン系、アルデヒド-アミン系、アルデヒド-アンモニア系、グアニジン系、チアゾール系、含硫黄系であるスルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系など、様々な系統の化合物群の促進剤が知られているが、上記のように、主要な促進剤としてのキサンテート系促進剤に加えて、加硫特性をコントロールするために、組合せて用いる促進剤として、チウラム系促進剤、アミンまたはアルデヒド-アミン系促進剤を用いるのが、本願発明を特徴づける配合である。組合せの方法は多数存在するが、特性が損なわれる場合もあり注意を要する。 Accelerators other than xanthate are mainly nitrogen-containing amine, aldehyde-amine, aldehyde-ammonia, guanidine, thiazole, sulfur-containing sulfenamide, thiourea, thiuram In addition to the xanthate accelerators as the main accelerators as described above, accelerators of various groups of compounds such as dithiocarbamates are known. The combination characterizing the present invention is to use a thiuram accelerator, an amine or an aldehyde-amine accelerator as the accelerator used in combination. Although there are many methods of combination, care must be taken because the characteristics may be impaired.
 キサンテート系促進剤とは、分子内に-OC(=S)-S-の構造を持つ、キサントゲン酸塩やその誘導体、主としてエステルを指す。具体的な化合物としては、イソプロピルキサントゲン酸ナトリウム、エチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛、ブチルキサントゲンジスルフィドからなる化合物群から少なくとも一つが選ばれる。促進効果の点や促進剤の貯蔵安定性からはブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛などが好ましく、イソプロピルキサントゲン酸亜鉛が特に好ましい。 The xanthate accelerator refers to xanthate and derivatives thereof, mainly esters, having a structure of —OC (═S) —S— in the molecule. As a specific compound, at least one is selected from the compound group consisting of sodium isopropyl xanthate, zinc ethyl xanthate, zinc isopropyl xanthate, zinc butyl xanthate, and butyl xanthogen disulfide. From the viewpoint of the promoting effect and the storage stability of the accelerator, zinc butylxanthate, zinc isopropylxanthate, and the like are preferable, and zinc isopropylxanthate is particularly preferable.
 キサンテート系促進剤は、他の促進剤とのバランスを考慮する必要があるが、ゴム成分100質量部に対して、0.1~3.0質量部の範囲で配合する。0.1質量部以上で促進効果が発現し、3.0質量部以下にしておくことで、初期の加硫時間T0.1が早くなりすぎないよう、他の促進剤によってコントロールが可能である。 The xanthate accelerator needs to be balanced with other accelerators, but is blended in the range of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component. The acceleration effect is manifested at 0.1 parts by mass or more, and by setting it to 3.0 parts by mass or less, control can be performed with other accelerators so that the initial vulcanization time T0.1 does not become too early. .
 チウラム系促進剤は加硫促進剤として古くから用いられてきた促進剤の系統であるが、特に本願発明では、炭素数が4~10の嵩高い炭化水素基を有するチウラム化合物が用いられる。例えば、テトラ(2-エチルヘキシル)チウラムジスルフィド、1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)-ヘキサン、1,6-ビス{N,N’-ジ(2-エチルヘキシル)チオカルバモイルジチオ}-ヘキサンからなる化合物群が挙げられ、少なくとも1つが選ばれる。 Thiuram accelerators are a series of accelerators that have been used for a long time as vulcanization accelerators. In the present invention, in particular, thiuram compounds having a bulky hydrocarbon group having 4 to 10 carbon atoms are used. For example, tetra (2-ethylhexyl) thiuram disulfide, 1,6-bis (N, N'-dibenzylthiocarbamoyldithio) -hexane, 1,6-bis {N, N'-di (2-ethylhexyl) thiocarbamoyl And a compound group consisting of dithio} -hexane, and at least one is selected.
 チウラム系促進剤は、他の促進剤とのバランスも考慮する必要があるが、ゴム成分100質量部に対して、0.05~3.0質量部の範囲で配合する。0.05質量部以上で促進効果が発現し、3.0質量部以下で十分な効果が得られる。 The thiuram accelerator needs to be balanced with other accelerators, but is blended in the range of 0.05 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component. A promoting effect is exhibited at 0.05 parts by mass or more, and a sufficient effect is obtained at 3.0 parts by mass or less.
 アルデヒド-アミン系促進剤とは、アルデヒドとアミンを反応させたものであり、n-ブチルアルデヒド-アニリン縮合物、ブチルアルデヒド-ブチルアミン縮合物、ヘプチルアルデヒド-アニリン縮合物、α-エチル-β-プロピルアクロレイン-アニリン縮合物、ブチルアルデヒド-ブチリデンアニリン反応物、ブチルアルデヒド-アセトアルデヒド-ブチリデンアニリン反応物からなる化合物群が挙げられる。上記、アミン系化合物群、またはアルデヒド-アミン系化合物群から少なくとも1つが選ばれ、前記キサンテート系化合物およびチウラム系化合物と組合せて用いられる。促進効果の点や、促進剤の貯蔵安定性の点から、ブチルアルデヒド-ブチルアミン縮合物、n-ブチルアルデヒド-アニリン縮合物やヘプチルアルデヒド-アニリン縮合物、の使用が好ましく、n-ブチルアルデヒド-アニリン縮合物が特に好適に使用できる。なお、アルデヒド-アミンとは上記のように主成分は縮合物であるイミン、特にアルデヒドから誘導されるのでアルジミンであるが、未反応アミンやアルデヒド、縮合物のアルジミンにさらにアミンが反応したものであるアミナールや、縮合物のアルジミンにさらにアルデヒドが反応した化合物も含まれ、これらを含めて、アルデヒド-アミン系促進剤としている。さらにアミンを促進剤として使う場合もあわせて、加硫促進剤の系統としてアミンまたはアルデヒド-アミン系促進剤と本願では呼び表している。 Aldehyde-amine accelerators are those obtained by reacting aldehydes with amines, such as n-butyraldehyde-aniline condensate, butyraldehyde-butylamine condensate, heptylaldehyde-aniline condensate, α-ethyl-β-propyl. Examples include compounds composed of acrolein-aniline condensate, butyraldehyde-butylidene aniline reactant, butyraldehyde-acetaldehyde-butylidene aniline reactant. At least one selected from the above group of amine compounds or group of aldehyde-amine compounds is used in combination with the xanthate compound and thiuram compound. From the viewpoint of the acceleration effect and the storage stability of the accelerator, it is preferable to use butyraldehyde-butylamine condensate, n-butyraldehyde-aniline condensate or heptylaldehyde-aniline condensate, and n-butyraldehyde-aniline. Condensates can be used particularly preferably. As mentioned above, the aldehyde-amine is aldimine because the main component is derived from imine, which is a condensate, in particular aldehyde, but it is an unreacted amine, aldehyde, or aldimine of condensate that is further reacted with amine. Some aminals and compounds obtained by further reacting aldehyde with the condensate aldimine are included, and these are used as aldehyde-amine accelerators. In addition, when an amine is used as an accelerator, it is referred to as an amine or aldehyde-amine accelerator as a vulcanization accelerator system in the present application.
 アミンまたはアルデヒド-アミン系促進剤は、他の促進剤とのバランスも考慮する必要があるが、ゴム成分100質量部に対して、0.1~4.0質量部の範囲で配合する。0.1質量部以上で促進効果が発現し、4.0質量部以下で十分な効果が得られる。キサンテート系促進剤とのバランスによっては0.1~2.0質量部が好適な範囲となる。 The amine or aldehyde-amine accelerator needs to be balanced with other accelerators, but is added in the range of 0.1 to 4.0 parts by mass with respect to 100 parts by mass of the rubber component. An acceleration effect is manifested at 0.1 parts by mass or more, and a sufficient effect is obtained at 4.0 parts by mass or less. Depending on the balance with the xanthate accelerator, 0.1 to 2.0 parts by mass is a preferred range.
 上記に示したように、キサンテート系促進剤は0.1~3.0質量部、チウラム系促進剤は0.05~3.0質量部、アミンまたはアルデヒド-アミン系促進剤は0.1~4.0質量部の範囲で配合を行うが、特に上記3種の系統の促進剤の合計の下限として0.5質量部以上を配合することが必要である。上限としては、6.0質量部以下にとどめるのが好ましい。 As indicated above, the xanthate accelerator is 0.1 to 3.0 parts by weight, the thiuram accelerator is 0.05 to 3.0 parts by weight, and the amine or aldehyde-amine accelerator is 0.1 to 3.0 parts by weight. The blending is carried out in the range of 4.0 parts by weight, and it is particularly necessary to blend 0.5 parts by weight or more as the lower limit of the total of the above three types of system promoters. The upper limit is preferably 6.0 parts by mass or less.
 上記3種の系統の促進剤を併用して配合するゴム成分としては、種々のジエン系ゴムを用いることができ、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、ブチルゴム(IIR)などから選択される、少なくとも1つのゴム成分を用いることができる。特に天然ゴムを、全ゴム成分を100質量部として、50質量部以上用いるのが好ましく、さらに他のゴム成分を組み合わせる場合はSBRやIRを選択するのが好ましい。 As the rubber component to be compounded in combination with the above three types of accelerators, various diene rubbers can be used, natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), styrene. -At least one rubber component selected from butadiene rubber (SBR), butyl rubber (IIR) and the like can be used. In particular, natural rubber is preferably used in an amount of 50 parts by mass or more based on 100 parts by mass of all rubber components, and when combining other rubber components, it is preferable to select SBR or IR.
 加硫に用いる硫黄は、普通硫黄、不溶性硫黄、硫黄華、脱酸硫黄、粉末硫黄、沈降硫黄、コロイド硫黄、ゴム状硫黄等、適宜選んで用いることができる。通常は普通硫黄や不溶性硫黄が用いられ、ゴム成分100質量部に対して、0.5~12質量部で用いることができ、1~8質量部が好ましく、1~5質量部がより好ましい。 Sulfur used for vulcanization can be appropriately selected from ordinary sulfur, insoluble sulfur, sulfur white, deoxidized sulfur, powdered sulfur, precipitated sulfur, colloidal sulfur, rubbery sulfur and the like. Usually, sulfur or insoluble sulfur is used, and it can be used at 0.5 to 12 parts by weight, preferably 1 to 8 parts by weight, and more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the rubber component.
 クッションゴムとしての強度を確保するための、補強用充填材としては通常ゴム組成物に用いられる充填剤を用いることができる。但し、上記のように、3種の系統の加硫促進剤を用いており、その配合をバランスさせる上で、成分が吸着されてしまうような、充填材を用いると調節が困難となる。そのような点から、カーボンブラックの使用が好ましい。ゴム成分100質量部に対して、20~60質量部で用いることができ、25~45質量部が好ましく、25~40質量部が特に好ましい。 As the reinforcing filler for securing the strength as a cushion rubber, a filler usually used in a rubber composition can be used. However, as described above, three types of vulcanization accelerators are used, and in balancing the blending, it becomes difficult to adjust when using a filler that will adsorb components. From such a point, the use of carbon black is preferable. It can be used in an amount of 20 to 60 parts by weight, preferably 25 to 45 parts by weight, particularly preferably 25 to 40 parts by weight with respect to 100 parts by weight of the rubber component.
 上記、カーボンブラックとしては、目的に応じて適宜選択できるが、比表面積が小さく吸着が抑えられている方が好ましい。目安としては窒素吸着比表面積NSAが20~100m/g程度のものが好ましく、グレードとしてはHAF、FEF、GPFが該当し、HAFやFEFが好ましい。 The carbon black can be appropriately selected according to the purpose, but it is preferable that the specific surface area is small and adsorption is suppressed. As a standard, a nitrogen adsorption specific surface area N 2 SA is preferably about 20 to 100 m 2 / g, and grades include HAF, FEF and GPF, and HAF and FEF are preferred.
 その他の補強材として、無機系充填材を用いる場合は、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などから少なくとも1つを選択することができる。但し、上記述べたように、成分の吸着などの問題が生じやすいので、適宜、シランカップリング剤を使用して、ゴム成分との親和性の改善だけでなく、表面活性をコントロールして、吸着の抑制を図るような工夫が求められる。 When inorganic fillers are used as other reinforcing materials, for example, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, carbonate At least one can be selected from calcium, magnesium oxide, titanium oxide, potassium titanate, barium sulfate, and the like. However, as mentioned above, problems such as adsorption of components are likely to occur. Therefore, using silane coupling agents as appropriate, not only improving affinity with rubber components, but also controlling surface activity to adsorb It is necessary to devise measures to control the above.
 その他、必要に応じて、通常、ゴム組成物に配合される、アロマオイル、酸化亜鉛、加硫助剤、老化防止剤、酸化防止剤、紫外線吸収剤、帯電防止剤などを、本願発明の効果を損なわない程度の範囲内にて、配合することができる。老化防止剤にはアミン系の化合物が使われることが多く、本願発明の加硫促進剤の3種の系統の、アミン系またはアルデヒド-アミン系促進剤と一部効果が類似するので、配合のバランスに考慮が必要である。また、特に本願発明においては、クッションゴムとして用いるにあたり、層間で付着を改善するために、粘着付与剤を配合することもできる。 In addition, the effects of the present invention include aroma oils, zinc oxide, vulcanization aids, anti-aging agents, antioxidants, ultraviolet absorbers, antistatic agents, etc., usually blended in the rubber composition as necessary. It can mix | blend in the range which is not impaired. Amine-based compounds are often used as anti-aging agents, and the effects of some of the three types of vulcanization accelerators of the present invention are similar to those of amine-based or aldehyde-amine-based accelerators. Consideration of balance is necessary. In particular, in the present invention, when used as a cushion rubber, a tackifier can be blended in order to improve adhesion between layers.
 上記、酸化亜鉛は特に硫黄系の加硫促進剤と共に作用し、加硫をコントロールする働きがあるので加硫特性と関連する。よって、その配合は加硫促進剤とのバランスに基づいて行う必要がある。例えば本願発明の特徴である、キサンテート系促進剤として、亜鉛塩を用いるときなど適切に調節する必要がある。ゴム成分100質量部に対して1~10質量部で配合することができ、2~5質量部が好ましい。 The above-mentioned zinc oxide particularly works with a sulfur-based vulcanization accelerator and has a function of controlling vulcanization, so that it relates to vulcanization characteristics. Therefore, the blending needs to be performed based on the balance with the vulcanization accelerator. For example, it is necessary to adjust appropriately when using a zinc salt as a xanthate type | system | group accelerator which is the characteristics of this invention. 1 to 10 parts by mass can be blended with 100 parts by mass of the rubber component, and 2 to 5 parts by mass is preferable.
 上記本願発明の、ゴム組成物を用いてリトレッドを行うことで更生タイヤが得られる。すなわち、摩耗して寿命を迎えた、トレッド部を削り取った台タイヤに対し、本願発明のゴム組成物を、クッションゴムとして被せ、さらに加硫済みまたは半加硫済みのトレッドゴムを被せたものを、加硫缶中に並べて、温度80~130℃で加硫を行う。従来の加硫系を適用したクッションゴムに比べて加硫速度が速く短時間加硫、低温加硫が可能なため、生産性と台タイヤの劣化抑制を両立できる。台タイヤの劣化を抑制でき、耐久性を改善できることは、更生の回数を増やせるという点でも有利である。 A retreaded tire can be obtained by performing retreading using the rubber composition of the present invention. That is, the tire tires that have reached the end of their service life and have the tread portion shaved are covered with the rubber composition of the present invention as a cushion rubber and further covered with a vulcanized or semi-vulcanized tread rubber. Then, they are placed in a vulcanizing can and vulcanized at a temperature of 80 to 130 ° C. Compared to conventional cushion rubber using a vulcanization system, the vulcanization speed is high and vulcanization is possible for a short time and low temperature vulcanization. The ability to suppress the deterioration of the base tire and improve the durability is also advantageous in that the number of rehabilitation can be increased.
 以下に本発明を、実施例・比較例を用いて説明するが、本発明の構成は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described using examples and comparative examples, but the configuration of the present invention is not limited to the following examples.
 表1に示した、全実施例・比較例に共通な配合成分に加え、各実施例・比較例に個々の配合を表2に従って行い、未加硫ゴム組成物を得た。各々のゴム組成物を、120℃の条件でJIS K6300-2に基づきレオメーターを用いて加硫トルク曲線を測定し、加硫時間T0.1とT0.9を決定した。更にJIS K 6301に準拠して破断弾性率Tbを測定し、実施例1の値を100として、各実施例と比較例の値を指数化した。値が大きいほど、耐破壊特性に優れていることを示すものである。前記評価結果は、表2の各実施例・比較例に固有の配合と共に示した。 In addition to the blending components common to all Examples / Comparative Examples shown in Table 1, individual blending was carried out in each Example / Comparative Example according to Table 2 to obtain an unvulcanized rubber composition. Each rubber composition was measured for a vulcanization torque curve using a rheometer based on JIS K6300-2 under the condition of 120 ° C., and vulcanization times T0.1 and T0.9 were determined. Furthermore, the breaking elastic modulus Tb was measured according to JIS K 6301, the value of Example 1 was set to 100, and the value of each Example and Comparative Example was indexed. A larger value indicates better fracture resistance. The evaluation results are shown together with the formulation specific to each Example / Comparative Example in Table 2.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1と2に示した、配合成分の名称等ならびに製造・供給元等は以下に示すとおりである。
*1:天然ゴム(RSS#3)
*2:カーボンブラックN550(東海カーボン、シーストF)
*3:プロセスオイル(出光興産株式会社、ダイアナプロセスNH-70S)
*4:亜鉛華(ハクスイテック株式会社、酸化亜鉛2種)
*5:ステアリン酸(ミヨシ油脂株式会社、MXST)
*6:老化防止剤(住友化学株式会社、アンチゲン6C)
*7:不溶性硫黄(四国化成工業株式会社、ミュークロンOT-20-SO)
*8:イソプロピルキサントゲン酸亜鉛(大内新興化学、ノクセラーZIX)
*9:テトラ(2-エチルヘキシル)チウラムジスルフィド(TOT、大内新興化学、ノクセラーTOT-N(TOT:67%、シリカ:33%の担持品)を使用。表2の配合量はシリカを除いた正味重量による。)
*10:ブチルアルデヒド-アニリン縮合物(大内新興化学、ノクセラー8)
*11:2-メルカプトベンゾチアゾール(大内新興化学、ノクセラーM-P)
*12:1,3-ジフェニルグアニジン(大内新興化学、ノクセラーD)
The names of the ingredients and the manufacturers / suppliers shown in Tables 1 and 2 are as shown below.
* 1: Natural rubber (RSS # 3)
* 2: Carbon black N550 (Tokai Carbon, Seast F)
* 3: Process oil (Idemitsu Kosan Co., Ltd., Diana Process NH-70S)
* 4: Zinc flower (Hakusuitec Co., Ltd., 2 types of zinc oxide)
* 5: Stearic acid (Miyoshi Oil Co., Ltd., MXST)
* 6: Anti-aging agent (Sumitomo Chemical Co., Ltd. Antigen 6C)
* 7: Insoluble sulfur (Shikoku Kasei Kogyo Co., Ltd., Mucron OT-20-SO)
* 8: Zinc isopropyl xanthate (Ouchi Emerging Chemicals, Noxeller ZIX)
* 9: Tetra (2-ethylhexyl) thiuram disulfide (TOT, Ouchi Shinsei Chemical, Noxeller TOT-N (TOT: 67%, silica: 33% supported product) is used. The compounding amount in Table 2 excludes silica. (Depends on net weight.)
* 10: Butyraldehyde-aniline condensate (Ouchi Shinsei Chemical, Noxeller 8)
* 11: 2-Mercaptobenzothiazole (Ouchi Emerging Chemicals, Noxeller MP)
* 12: 1,3-Diphenylguanidine (Ouchi Shinsei Chemical, Noxeller D)
 耐スコーチ性の指標である加硫時間T0.1は0.9分以上、加硫の全工程に要する時間の指標である、加硫時間T0.9は18分以内、耐破壊特性Tb指数が80以上であれば加硫特性と耐破壊性のバランスが優れたものと言える。加硫促進剤3種について、配合量にそれほど差がない実施例1~3は、加硫特性と耐破壊性のバランスが非常に優れたものとなっている。特にバランスの良い、ゴム成分100質量部に対して、3種の成分とも1質量部の実施例2から、1種の成分を減量した場合の比較例1と2、実施例4を見ると、チウラム系を減らした場合のみ、加硫時間がバランスを崩さず、適度な時間に留まる。逆に何れか1成分を増量した場合の実施例5と比較例3、4を見ると、アミンまたはアルデヒド-アミン系促進剤を増量した実施例5のみ加硫時間T0.1が早まることなく耐スコーチ性に加え耐破壊性も良好に保たれる。3成分とも配合量が少ない実施例1から1つの成分を減量した比較例5~7では、耐破壊性には優れるが加硫時間T0.1とT0.9とも遅くなりすぎる。またチウラム系やアミンまたはアルデヒド-アミン系促進剤に替えてチアゾール系やグアニジン系を用いた比較例8~11では加硫時間T0.9が遅くなりすぎた。 The vulcanization time T0.1, which is an index of scorch resistance, is 0.9 minutes or more, the vulcanization time T0.9 is an index of the time required for the entire vulcanization process, within 18 minutes, and the fracture resistance Tb index is If it is 80 or more, it can be said that the balance between vulcanization characteristics and fracture resistance is excellent. In Examples 1 to 3, in which the blending amounts of the three vulcanization accelerators are not so different, the balance between the vulcanization characteristics and the fracture resistance is very excellent. When comparing Comparative Examples 1 and 2 and Example 4 in which one component is reduced from Example 2 in which all three components are 1 part by mass with respect to 100 parts by mass of the rubber component in particular, Only when the thiuram system is reduced, the vulcanization time does not break the balance and stays at an appropriate time. On the contrary, when Example 5 and Comparative Examples 3 and 4 in which any one component is increased are observed, only Example 5 in which the amount of amine or aldehyde-amine accelerator is increased does not accelerate the vulcanization time T0.1. In addition to scorch, the fracture resistance is also kept good. In Comparative Examples 5 to 7 in which one component is reduced from Example 1 in which the amount of all three components is small, the fracture resistance is excellent, but both the vulcanization times T0.1 and T0.9 are too slow. In Comparative Examples 8 to 11 using thiazole type or guanidine type instead of thiuram type or amine or aldehyde-amine type accelerator, the vulcanization time T0.9 was too slow.
 本発明の加硫速度、耐スコーチ性を両立するゴム組成物は、更生の繰り返しに耐え、耐破壊性に優れた更生タイヤを、生産性効率よく製造可能なクッションゴムとして利用することができる。 The rubber composition having both vulcanization speed and scorch resistance according to the present invention can be used as a cushion rubber that can withstand the repeated retreading and has excellent puncture resistance and can be produced with high productivity.

Claims (6)

  1.  ゴム成分100質量部に対し、加硫促進剤として、キサンテート系促進剤を0.1~3.0質量部含み、かつチウラム系促進剤を0.05~3.0質量部含み、かつアミンまたはアルデヒド-アミン系促進剤を0.1~4.0質量部含み、かつ前記3系統種の促進剤の合計が0.5質量部以上であることを特徴とするゴム組成物。 As a vulcanization accelerator, 0.1 to 3.0 parts by mass of a xanthate accelerator and 0.05 to 3.0 parts by mass of a thiuram accelerator as a vulcanization accelerator, and an amine or A rubber composition comprising 0.1 to 4.0 parts by mass of an aldehyde-amine accelerator, and the total of the three types of accelerators is 0.5 parts by mass or more.
  2.  120℃における、JIS K6300-2に基づきレオメーターを用いて加硫トルク曲線を測定した時、トルク値Fが最小トルク値Fmin+0.1×(最大トルク値Fmax-最小トルク値Fmin)に達するまでの時間(分)であるT0.1が、0.9分以上であることを特徴とする請求項1に記載のゴム組成物。 When a vulcanization torque curve is measured using a rheometer at 120 ° C. according to JIS K6300-2, the torque value F reaches the minimum torque value Fmin + 0.1 × (maximum torque value Fmax−minimum torque value Fmin). The rubber composition according to claim 1, wherein T0.1 which is time (minutes) is 0.9 minutes or more.
  3.  120℃における、JIS K6300-2に基づきレオメーターを用いて加硫トルク曲線を測定した時、トルク値Fが最小トルク値Fmin+0.9×(最大トルク値Fmax-最小トルク値Fmin)に達するまでの時間(分)であるT0.9が、18分以下であることを特徴とする請求項1または2に記載のゴム組成物。 When the vulcanization torque curve is measured using a rheometer at 120 ° C. according to JIS K6300-2, the torque value F reaches the minimum torque value Fmin + 0.9 × (maximum torque value Fmax−minimum torque value Fmin). The rubber composition according to claim 1 or 2, wherein T0.9 which is time (minutes) is 18 minutes or less.
  4.  キサンテート系促進剤を0.2~1.5質量部含むことを特徴とする請求項1~3の何れか1つに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, comprising 0.2 to 1.5 parts by mass of a xanthate accelerator.
  5.  キサンテート系促進剤を0.2~1.0質量部、アミンまたはアルデヒド-アミン系促進剤を0.5~2.0質量部含むことを特徴とする請求項1~3の何れか1つに記載のゴム組成物。 The xanthate accelerator is contained in an amount of 0.2 to 1.0 parts by mass, and the amine or aldehyde-amine accelerator is contained in an amount of 0.5 to 2.0 parts by mass. The rubber composition as described.
  6.  請求項1~5の何れか1つに記載のゴム組成物をクッションゴムに用いることを特徴とする更生タイヤ。 A retread tire characterized by using the rubber composition according to any one of claims 1 to 5 as a cushion rubber.
PCT/JP2015/061654 2014-04-16 2015-04-16 Rubber composition WO2015159934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-084745 2014-04-16
JP2014084745 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159934A1 true WO2015159934A1 (en) 2015-10-22

Family

ID=54324136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061654 WO2015159934A1 (en) 2014-04-16 2015-04-16 Rubber composition

Country Status (1)

Country Link
WO (1) WO2015159934A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009071A (en) * 2016-07-12 2018-01-18 株式会社ブリヂストン Rubber composition used in cushion rubber for retreaded tire and retreaded tire
CN112512770A (en) * 2017-12-13 2021-03-16 阿利吉安斯公司 Vulcanization compositions for reducing allergenic potential and elastomeric articles formed therefrom
WO2024063027A1 (en) * 2022-09-21 2024-03-28 株式会社ブリヂストン Crosslinked rubber and tire using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124942A (en) * 1982-12-30 1984-07-19 Bando Chem Ind Ltd Rubber composition
JPS61118445A (en) * 1984-10-25 1986-06-05 ロビンソン・ブラザーズ・リミテツド Rubber product and vulcanization system
JPH06256572A (en) * 1993-03-09 1994-09-13 Oouchi Shinko Kagaku Kogyo Kk Nbr composition
JPH06256603A (en) * 1993-03-09 1994-09-13 Oouchi Shinko Kagaku Kogyo Kk Rubber composition
JPH0859898A (en) * 1994-08-03 1996-03-05 Michelin & Cie Rubber composition freed from carcinogenic nitrosoamine precursor and functioning as bonding rubber
JP2005519144A (en) * 2002-02-27 2005-06-30 アンセル・ヘルスケア・プロダクツ・インコーポレーテッド Polyisoprene condom
WO2013018838A1 (en) * 2011-08-02 2013-02-07 株式会社ブリヂストン Rubber composition
JP2013039818A (en) * 2011-08-19 2013-02-28 Bridgestone Corp Tire, method for manufacturing the same, and repairing rubber member used in the method for manufacturing the tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124942A (en) * 1982-12-30 1984-07-19 Bando Chem Ind Ltd Rubber composition
JPS61118445A (en) * 1984-10-25 1986-06-05 ロビンソン・ブラザーズ・リミテツド Rubber product and vulcanization system
JPH06256572A (en) * 1993-03-09 1994-09-13 Oouchi Shinko Kagaku Kogyo Kk Nbr composition
JPH06256603A (en) * 1993-03-09 1994-09-13 Oouchi Shinko Kagaku Kogyo Kk Rubber composition
JPH0859898A (en) * 1994-08-03 1996-03-05 Michelin & Cie Rubber composition freed from carcinogenic nitrosoamine precursor and functioning as bonding rubber
JP2005519144A (en) * 2002-02-27 2005-06-30 アンセル・ヘルスケア・プロダクツ・インコーポレーテッド Polyisoprene condom
WO2013018838A1 (en) * 2011-08-02 2013-02-07 株式会社ブリヂストン Rubber composition
JP2013039818A (en) * 2011-08-19 2013-02-28 Bridgestone Corp Tire, method for manufacturing the same, and repairing rubber member used in the method for manufacturing the tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009071A (en) * 2016-07-12 2018-01-18 株式会社ブリヂストン Rubber composition used in cushion rubber for retreaded tire and retreaded tire
CN112512770A (en) * 2017-12-13 2021-03-16 阿利吉安斯公司 Vulcanization compositions for reducing allergenic potential and elastomeric articles formed therefrom
CN112512770B (en) * 2017-12-13 2023-02-21 阿利吉安斯公司 Vulcanization compositions for reducing allergenic potential and elastomeric articles formed therefrom
US11780972B2 (en) 2017-12-13 2023-10-10 Allegiance Corporation Vulcanization composition for reducing allergenic potential and elastomeric articles formed therewith
WO2024063027A1 (en) * 2022-09-21 2024-03-28 株式会社ブリヂストン Crosslinked rubber and tire using same

Similar Documents

Publication Publication Date Title
JP5745490B2 (en) Rubber composition for inner liner and pneumatic tire
JP7006211B2 (en) Pneumatic tires
JP5727988B2 (en) Bead apex, sidewall packing, base tread or breaker cushion rubber composition and pneumatic tire
EP3348600B1 (en) Method for producing rubber composition for tires, and method for producing tire
JP6008479B2 (en) Tire, manufacturing method thereof, and rubber member for repair used in manufacturing method of tire
JP2016210937A (en) Rubber composition and tire
JP2007145292A (en) Run flat tire
WO2015159934A1 (en) Rubber composition
US9181417B2 (en) Rubber composition
JP2005067279A (en) Tire
JP5631761B2 (en) Method for producing rubber composition for tire
JP2003147124A (en) Rubber composition for tire, method for manufacturing the same and tire obtained from the same
BR102012003785A2 (en) TIRE RUBBER COMPOSITION, TIRE PRODUCTION METHOD AND TIRE USING TIRE RUBBER COMPOSITION
JP2012153758A (en) Production method for rubber composition for tire
WO2014129509A1 (en) Rubber composition, method for producing tire using said rubber composition, and rubbery member for tires which is produced using said rubber composition
JP2002069237A (en) Rubber composition
JP5074649B2 (en) tire
JP5437695B2 (en) Rubber composition for tire and pneumatic tire
JP2011038058A (en) Rubber composition for base tread and studless tire
JP2009242577A (en) Diene-based rubber composition
JP2007169429A (en) Rubber composition for chafer and tire having chafer comprising the same
JP2016150970A (en) Rubber composition and high-performance tire
JP2018199833A (en) High performance tire
JP7434305B2 (en) Rubber composition, rubber composition for tires, and tires
JP2024040886A (en) Heavy load tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP