WO2015159864A1 - Bulk quality evaluation method and device for semiconductor wafer - Google Patents
Bulk quality evaluation method and device for semiconductor wafer Download PDFInfo
- Publication number
- WO2015159864A1 WO2015159864A1 PCT/JP2015/061387 JP2015061387W WO2015159864A1 WO 2015159864 A1 WO2015159864 A1 WO 2015159864A1 JP 2015061387 W JP2015061387 W JP 2015061387W WO 2015159864 A1 WO2015159864 A1 WO 2015159864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor wafer
- laser beam
- observation
- excitation
- excitation light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
Definitions
- the present invention relates to a bulk quality evaluation method and apparatus for semiconductor wafers for manufacturing electronic devices.
- the evaluation itself is based on the measurement of the reflectance of the laser beam irradiated, if it is attempted to increase the resolution of high-precision measurement, that is, quality judgment, it takes a long time for the measurement of one point of the wafer and the wafer.
- the entire surface scan measurement takes about 20 minutes per sheet. 100% inspection of wafers was practically difficult due to the problem of the measurement principle that stands for the solution to the improvement of the measurement speed.
- Patent Document 1 discloses that a first photon beam is generated, and a wave of charge carriers is generated in the region when the first photon beam is incident on a certain region of the wafer.
- a first source that provides the first photon beam with a first intensity modulated with a sufficiently low frequency so as not to generate a second photon beam, and the second photon beam is said region of the wafer.
- a second beam of energy that is sufficiently lower in energy than the photons of the first beam so that no more than a negligible number of charge carriers are generated in the region.
- a photoelectric element disposed in an optical path of a portion of the second beam reflected by the region and modulated by the frequency after being reflected by the region.
- Patent Document 2 discloses a light irradiation unit that irradiates at least two types of light having different wavelengths to different first and second regions in a semiconductor to be measured, and a predetermined amount for each of the first and second regions.
- a measurement wave irradiating unit for irradiating a measurement wave, and a first reflected wave of the measurement wave reflected by the first region or a first transmitted wave of the measurement wave that has passed through the first region and the reflected by the second region A difference measurement wave that is a difference between the second reflected wave of the measurement wave or the second transmitted wave of the measurement wave transmitted through the second region is used as the first reflected wave or the first transmitted wave and the second reflected wave.
- the detection unit that detects the difference measurement wave generated by the difference measurement wave generation unit, and the detection result detected by the detection unit Find the carrier lifetime in the semiconductor to be measured
- Semiconductor carrier lifetime measuring apparatus having a computation unit is disclosed that.
- Non-Patent Document 1 and Patent Documents 1 and 2 the state of free carriers in the surface layer portion of the semiconductor wafer is evaluated by observing reflected waves. is doing.
- Such a method can be applied to LSI (Large Scale Integration) where the crystal quality of the surface layer portion of the semiconductor wafer is a problem, but for semiconductors such as IGBTs and PiN diodes whose crystal quality is questioned inside the semiconductor wafer. Has poor measurement accuracy and cannot be evaluated correctly. Therefore, the present invention is practical, which measures the carrier life inside all semiconductor wafers when cut out from a semiconductor crystal ingot, and is greatly improved in terms of measurement speed and accuracy, device operation, etc. compared to the conventional method. The objective is to establish an improved wafer evaluation technology.
- a method is realized in which preparation for evaluation is completed if the wafer itself is set in an evaluation apparatus without pre-processing the wafer.
- a method of using a response from the inside of the wafer (using a method reflecting the internal state) is used instead of using a response from only the surface layer of the semiconductor wafer.
- ⁇ -PCD method a new evaluation principle that can significantly reduce the quality evaluation time of one point of the wafer (ingot) is used.
- the principle that accuracy can be obtained by a single measurement is adopted.
- the present invention is a method and apparatus for evaluating the lifetime of free carriers (generic term for free electrons and free holes) inside a semiconductor wafer, and includes photons having energy larger than the energy band gap of the semiconductor to be evaluated. Photons that are smaller than the energy band gap of the substance to be evaluated are generated (excited) by irradiating excitation light on the portion of the wafer where the concentration of the generated free carriers is unevenly distributed. It is characterized by irradiating energy observation light and measuring the angle at which the observation light exits after passing or reflecting through the wafer.
- measurement of the outgoing angle means not only the direct angle measurement but also the arrival point when the observation light is emitted without being influenced by the excitation light and the observation light is affected by the excitation light.
- the distance from the reaching point when the light is emitted is included because the distance and the angle are in a proportional relationship.
- the free carrier life can be calculated and evaluated.
- the excitation light irradiation means can use laser light, particularly YAG laser, as the excitation light.
- the observation light irradiation means may use a laser beam, particularly an infrared laser as the observation light. Further, the observation light irradiation means can be formed of an LED.
- the excitation light irradiating means can irradiate the observation light with the excitation light so that the excitation light is parallel and reverse, or parallel and in the same direction.
- the excitation light irradiation unit can irradiate the observation light so that the excitation light is parallel.
- the said excitation light irradiation means can irradiate the said excitation light so that it may incline with respect to the said observation light.
- the excitation light irradiation means and the observation light irradiation means make the excitation light and the observation light incident on the semiconductor wafer at an incident angle of 45 degrees with respect to the front surface or the back surface of the semiconductor wafer. Can be irradiated.
- At least one of the excitation light irradiation means and the observation light irradiation means is configured so that the excitation light and the observation light are changed from a non-crossing state to a non-crossing state inside the semiconductor wafer.
- the half width of the free carrier can be measured.
- At least one of the excitation light irradiating means or the observation light irradiating means is such that the excitation light and the observation light pass through a state in which the excitation light and the observation light coincide with each other from a state in which they are parallel and separated from each other inside the semiconductor wafer. It is possible to scan so as to be in a state of being parallel and separated from each other.
- the direct effect of the invention is to significantly improve the quality evaluation speed of the semiconductor wafer as compared with the prior art.
- This significant increase in evaluation speed enables the highest level of quality assurance and troubleshooting not possible before, such as:
- the semiconductor wafer crystal ingot
- the quality assurance of the final product is greatly improved.
- a defect or the like occurs in a product, it becomes possible to investigate the test data by going back to the crystal ingot (part), so that the cause of the defect can be investigated quickly and accurately.
- clues for improving the product manufacturing technology itself can be obtained.
- FIG. 5 is a diagram illustrating an example of an arrangement in which laser beams are parallel, and is a diagram illustrating a relationship between an observation laser beam and an excitation laser beam. It is an example of the arrangement in which the laser beams are parallel, and is a diagram showing the refraction of the observation laser beam. It is an example of the arrangement in which the laser beams are parallel, and is a diagram showing the carrier concentration distribution. It shows an example of a three-dimensional intersection beam arrangement, and is a view seen from a cross-sectional direction of a silicon wafer. It shows an example of a three-dimensional intersection beam arrangement, and is a view seen from the front of a silicon wafer.
- MCZ Magnetic field applied Czochralski method
- the observation laser light source 1 is located on a perpendicular line from the point Pc on the silicon wafer 3. From this observation laser light source 1, an infrared observation laser beam R11 having a wavelength of 1550 nm (0.787 eV) is emitted as observation light.
- the observation laser beam R11 is focused to a desired beam diameter by the light adjusting unit 2 such as a condenser lens, a slit or an aperture, and is irradiated onto the silicon wafer 3 to be evaluated.
- This observation laser beam R11 passes through the silicon wafer 3 easily and straight and reaches the laser beam detector 4 functioning as a measuring means.
- the arrival point on the laser beam detector 4 where the observation laser beam R11 has reached is assumed to be a point Pa.
- a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor can be used.
- a laser beam light source for free carrier generation (excitation) that functions as excitation light irradiation means in a state in which the laser beam R12 transmitted through the silicon wafer 3 reaches the point Pa of the laser beam detector 4 straightly.
- 5 wavelength 1064 nm: photon energy 1.165 eV: output 1.3 W
- excitation laser beam R21 emitted as excitation light point Pc at which observation laser beam R11 reaches silicon wafer 3 (see FIG. 1) Is irradiated so as to be inclined with respect to the observation laser beam R11.
- the inclined state indicates a state in which the excitation laser beam R21 is three-dimensionally inclined with respect to the observation laser beam R11 in a direction in which the thickness of the silicon wafer 3 is viewed.
- the free carrier generation (excitation) laser light source 5 is abbreviated as the excitation laser light source 5.
- the portion where the concentration of electrons and holes increases is shown as a portion shaded with a dark color of the silicon wafer 3 (concentration distribution FD).
- concentration distribution FD concentration distribution FD
- the generated electrons and holes recombine during diffusion and disappear (pair annihilation).
- the average time from the generation of electrons and holes to the disappearance of recombination is called the carrier lifetime, and the crystal quality determines this.
- the speed at which free electrons and free holes, that is, free carriers are generated by the irradiation of the excitation laser beam R21 is balanced with the speed of recombination annihilation.
- this distribution concentration FD reflects the quality of the silicon wafer. For example, the better the crystal quality, the larger the spread (half width) of the distribution curve of the distribution concentration FD. Therefore, it is possible to evaluate the quality of the silicon wafer by measuring the spread (half-value width) of the distribution curve of the distribution concentration FD.
- the principle that the observation laser beam R11 is refracted by free carriers generated by light irradiation is used to measure the half width of the distribution concentration FD. That is, as shown in FIG. 1, when the observation laser beam R11 passes through the inclined portion (the portion where the concentration gradient exists) of the distribution concentration FD of the free carrier concentration, it depends on the concentration gradient and concentration of the free carrier. Refract.
- the observation laser beam refracted and transmitted in this manner is indicated by R13 in FIG.
- the magnitude of refraction corresponds to the distance to the point Pb with respect to the refraction angle ⁇ and the point Pa in FIG.
- FIG. 2 shows this state together with the carrier concentration distribution.
- the X axis is the distance (relative position) between the irradiation positions of the observation laser beam R11 and the excitation laser beam R21 on the silicon wafer 3
- the Y axis is the refraction angle ⁇ (point with respect to the point Pa). Pb displacement).
- the X axis is the distance (relative position) between the irradiation positions of the observation laser beam R1 and the excitation laser beam R21 on the silicon wafer 3
- the Y axis is the carrier concentration.
- the origin 0 on the X-axis is a place where the irradiation positions of the excitation laser beam R21 and the observation laser beam R11 are coincident when the irradiation positions of the excitation laser beam R21 and the observation laser beam R11 are translated. It shows that there is.
- the half width of the carrier concentration distribution FD corresponds to the free carrier lifetime, and is observed when the irradiation position of the excitation laser beam R21 for generating free carriers is changed.
- the half-value width of the distribution concentration FD is the interval between the irradiation position where the refraction angle ⁇ is the maximum value and the irradiation position where the refraction angle ⁇ is the minimum value, and is obtained as the angle emitted after passing through the silicon wafer 3.
- the silicon wafer 3 having a wide interval between the irradiation position where the refraction angle ⁇ is the maximum value and the irradiation position where the refraction angle ⁇ is the minimum value indicates that the free carrier has a long lifetime, it can be evaluated that the quality is good.
- the features of the bulk quality evaluation method of the present invention are as follows: (1) performing light irradiation (laser irradiation) to generate free carriers; (2) the observation laser beam is refracted and transmitted by the generated free carrier concentration gradient; (3) A combination of the three elements of detecting the arrival position of the transmitted observation laser beam using a two-dimensional image sensor such as a CCD. Obviously, the laser beam for observation reaches (transmits) the inside of the wafer, so that the object of evaluation is different from the conventional microwave reflection attenuation method (the object of evaluation is free carrier near the surface). Internal crystallinity. In other words, the “bulk lifetime” that is important for power device wafers is measured.
- the evaluation amount in an evaluation method using a light beam such as a laser beam, it is better to treat the evaluation amount as the intensity of light (light absorption method, reflection method, luminescence method) as a change in the direction of the light beam.
- Measurement time is short and accuracy is improved. This is because in the method based on intensity measurement, it is necessary to repeat signal acquisition many times in order to improve s / n (signal to noise ratio).
- a method of measuring the traveling direction of light for example, X-ray diffraction
- the merit of using the CCD as the laser beam detector 4 is very great, and it is possible to improve the evaluation accuracy and shorten the time by combining the two-dimensional image capturing and the image analysis method.
- FIG. 3 shows the arrangement of the semiconductor wafer bulk quality evaluation apparatus used in the preliminary experiment leading to the present invention.
- a bulk quality evaluation apparatus for semiconductor wafers is abbreviated as a bulk quality evaluation apparatus.
- an infrared laser is used as the observation laser light source 1 with a light source lens, and a condensing lens is used as the light control unit 2 (first light control unit).
- a CCD is used as the laser beam detector 4, and a YAG laser is used as the excitation laser light source 5.
- the bulk quality evaluation apparatus includes not only a condensing lens for condensing the observation laser beam but also a light control unit 6 (for condensing the observation laser beams R12 and R13 transmitted through the silicon wafer 3).
- the excitation laser light source 5 is mounted on an XYZ stage 8 which is an example of a scanning device.
- the XYZ stage 8 includes a stage horizontal feed adjustment unit (X-axis direction and Y-axis direction) and a stage height feed adjustment unit (Z-axis direction). With these adjustment units, the excitation laser light source 5 can be translated in the vertical direction, translated in the horizontal direction, or moved in the approaching direction or the separating direction with respect to the silicon wafer. Thus, the irradiation position to the silicon wafer 3 can be adjusted by moving the excitation laser light source 5 with high accuracy.
- the bulk quality evaluation apparatus controls the scanning of the XYZ stage 8 and obtains the angle emitted after passing through the silicon wafer 3 from the position of the observation laser beams R12 and R13 received by the laser beam detector 4,
- a control device that evaluates the quality of the silicon wafer 3 by calculating the half width of the carrier concentration distribution FD for example, a computer (not shown), is provided.
- the excitation laser beam R21 passes through the observation laser beam R11 from the non-crossing state to the non-crossing state. Scan as follows.
- the XYZ stage 8 moves the excitation laser beam light source 5 to scan the excitation laser beam R21, and the laser beam R13 refracted by the observation laser beam R11 is measured by the laser beam detector 4, so that FIG. The characteristics of the silicon wafer 3 shown can be obtained.
- FIG. 4A and FIG. 4B show an example of laser beam irradiation to a silicon wafer that is particularly effective in the evaluation by the bulk quality evaluation apparatus shown in FIG. 4A to 4C, in the orthogonal coordinate system, the silicon wafer 3 is illustrated with the thickness direction (left and right direction) of the silicon wafer 3 as the X axis, the depth direction as the Y axis, and the height direction (up and down direction) as the Z axis. (See FIG. 3).
- the observation laser beam R11 infrared laser beam
- the silicon wafer 3 from the observation laser light source 1 see FIG. 3
- the silicon wafer 3 from the excitation laser light source 5 are irradiated.
- the state with the excitation laser beam R21 is shown.
- the reflection shown by the CD, the straight line DE, and the straight line EF is repeated, and the light path is emitted from the reflection position (for example, the point B, the point D, and the point F) to the outside shown by the straight line BP, the straight line DQ, and the straight line FR.
- the observation laser beam R11 exits the silicon wafer 3 from the point D and becomes a straight line DQ.
- the point coincides with the point C (hereinafter, this point is also referred to as the point C using the same symbol C) and enters the silicon wafer 3 at an incident angle ⁇ ′.
- the straight line UC of the excitation laser beam R21 is incident on a virtual plane (XY plane) formed by the straight line SA and the straight line AB along the optical path of the observation laser beam R11, or on a plane parallel thereto.
- the excitation laser beam R21 incident on the silicon wafer 3 from the point C becomes an optical path indicated by a straight line CB when viewed from the Z-axis direction.
- the virtual plane (XY plane) including the straight lines UC and CB that are the optical paths of the excitation laser beam R21 is the virtual plane (XY plane) including the straight lines SA and the straight lines AB that are the optical paths of the observation laser beam R11.
- scanning is performed from a state of being separated from each other in parallel to a state of being separated from each other in parallel by way of a state in which they are in agreement with each other. This scanning is performed by adjusting the Z-axis direction of the excitation laser light source 5 in the Z-axis direction of the XYZ stage 8.
- the optical path portion indicated by the straight line BC of the observation laser beam R11 is completely parallel to the optical path portion indicated by the straight line CB of the excitation laser beam R21 (the direction is opposite).
- the mutual height (position of the plate surface of the silicon wafer 3) relationship can be changed or matched completely. This is because two laser beams that are non-parallel to each other outside the silicon wafer 3 and part of the optical path of the excitation laser beam R21 and the observation laser beam (in FIG. 4A, the optical path of the section CB) are inside the silicon wafer 3. This shows that an ideal situation can be realized in which they are completely coincident when viewed from the Z-axis direction. In this way, in the bulk quality evaluation apparatus shown in FIG. 3, the observation laser beam R11 and the excitation laser beam R21 can be arranged in parallel.
- the concentration distribution FD of electrons and holes generated when the excitation laser beam R21 is irradiated As shown in the side view (viewed from the Y-axis direction) of the silicon wafer 3 shown in FIG. 4C, the concentration distribution FD of electrons and holes generated when the excitation laser beam R21 is irradiated.
- the optical path indicated by the straight line BC of the observation laser beam R11 is bent downward in FIG. 4C, reflected at the point C, followed by the optical path indicated by the straight line CD, and shown by the straight line DQ that is refracted downward.
- the optical path is emitted to the outside of the silicon wafer 3.
- the values of the incident angle ⁇ and the incident angle ⁇ ′ are angles other than 45 °. There may be.
- an excitation laser beam R21 is provided by arranging a notch filter in front of the laser beam detector 4 on the optical path, the observation laser light source 1 and the front (in the middle of the optical path shown by the straight line SA shown in FIG. 4A). Can be prevented from reaching the laser beam detector 4 and the observation laser light source 1.
- the observation laser light source 1 is fixed, and the excitation laser light source 5 is scanned by the XYZ stage 8.
- the observation laser light source 1 may be scanned by a scanning device such as the XYZ stage 8.
- the non-uniform concentration distribution FD (non-uniform concentration as a function of the position in the wafer) of free carriers generated by irradiation with the excitation laser is constant regardless of time.
- a steady state the evaluation methods using this evaluation principle, which is performed under such controlled conditions (hereinafter referred to as a steady state), it is a relatively simple and simple method.
- FIG. 5 shows a bulk quality evaluation apparatus that calculates and evaluates the free carrier lifetime using this unsteady state.
- the same components as those in FIG. 5 the same components as those in FIG.
- the bulk quality evaluation apparatus shown in FIG. 5 is a shutter device 9 that is a means for making the excitation laser beam R21, which is excitation light, not reach the silicon wafer 3 between the excitation laser light source 5 and the silicon wafer 3. Is arranged.
- the concentration of free carriers generated by the excitation laser beam R21 decreases. Therefore, as shown in FIG. 6, the steady state is changed to the unsteady state, and the refraction angle ⁇ is attenuated and gradually approaches zero. This is measured by the laser beam detector 4, and a free carrier lifetime is calculated and evaluated from a time constant of exponential decay (a decrease in the distance from the point Pa to the point Pb) by a control device (not shown). If the time when the refraction angle ⁇ is 0 is long, it indicates that the free carrier life is long, so that the silicon wafer 3 can be evaluated as having good quality.
- the excitation laser beam R21 is shielded by the shutter device 9 so that it does not reach the silicon wafer 3.
- the excitation laser light source 5 is turned on. It is possible to make the laser beam non-reachable by cutting or preventing the excitation laser beam R21 from being emitted inside the excitation laser light source 5. Further, the direction of emission of the excitation laser beam R21 can be changed to make it non-reachable.
- the laser beam detector 4 is a photodiode having a faster response speed than the CCD.
- a high speed photoelectric device such as an array or a CMOS image sensor is used.
- excitation laser beam R21 a free carrier generation (excitation) laser beam
- excitation laser beam R21 a free carrier generation (excitation) laser beam
- this example is basically the same as the case where the laser beams shown in FIG. 7A are arranged in parallel (hereinafter, the laser beam in such an arrangement is referred to as a parallel beam). Show the effect. That is, the excitation laser beam R21 and the observation laser beam R11 are irradiated as parallel beams that are separated from the surface of the silicon wafer 3 by a distance d. As shown in FIGS.
- a free carrier concentration distribution FD is generated around the optical axis of the excitation laser beam R21, and the vicinity of the optical axis of the excitation laser beam R21 is used for observation.
- the laser beam R11 passes, refraction occurs due to the gradient of the concentration distribution FD.
- the laser beam R13 transmitted through the silicon wafer 3 passes through the silicon wafer 3 at a refraction angle ⁇ corresponding to the gradient of the free carrier concentration distribution, and is detected by the laser beam detector 4.
- the distance d between the observation laser beam R11 and the excitation laser beam R21 is changed from “+” (a state where the arrival point of the observation laser beam R11 is on the right side of the arrival point of the excitation laser beam R21 as shown in FIG.
- Refraction angle while moving relatively to “ ⁇ ” (state where the observation laser beam R11 arrival point is to the left of the arrival point of the excitation laser beam R21) via 0 ”(state where the arrival points of the two beams overlap) Measure ⁇ .
- the distance d when the refraction angle ⁇ is largest on the left side and the distance d when the refraction angle ⁇ is largest on the right side are measured.
- the quality of the silicon wafer 3 can be evaluated from the value of the distance d.
- FIG. 8A and 8B show examples of beam arrangement in a state where the observation light and the excitation light are three-dimensionally crossed.
- the excitation laser beam R21 and the observation laser beam R11 are incident on the silicon wafer 3 from the same front surface side.
- the excitation laser beam R21 is irradiated from the front surface side of the silicon wafer 3
- the observation laser beam is irradiated from the side portion (thickness direction) of the silicon wafer 3. Irradiates R11.
- the excitation laser beam R21 and the observation laser beam R11 are changed from a non-crossing state where the optical axes do not intersect to a non-crossing state, and carriers generated around the optical axis of the excitation laser beam R21.
- the quality is evaluated by the angle ⁇ of the observation laser beam R13 refracted by the concentration distribution.
- the excitation laser beam R21 is not necessarily irradiated perpendicularly to the surface of the silicon wafer 3, and may be irradiated so as to be inclined.
- the laser beam R12 transmitted through the silicon wafer 3 is measured by the laser beam detector 4, but in the bulk quality evaluation apparatus according to another embodiment shown in FIG.
- the laser beam R14 reflected from the silicon wafer 3 can also be measured by the laser beam detector 4.
- the bulk quality evaluation apparatus shown in FIG. 9 will be described.
- the laser beam detector 4 is disposed at a position where the reflected light (laser beam R14) from the silicon wafer 3 is measured.
- the excitation laser beam R 21 from the excitation laser light source 5 is reflected by the silicon wafer 3.
- the irradiation surface 31 of the silicon wafer 3 can receive the excitation laser beam R21 and the observation light laser beam R11, but the back surface opposite to the irradiation surface is mirror-finished so that the laser beam cannot be emitted.
- the mirror finish can be provided with a reflective film on the back surface of the silicon wafer 3.
- a reflective surface 32 is formed on the back surface of the silicon wafer 3 by this reflective film.
- a method for evaluating the silicon wafer 3 with the laser beam R14 reflected by the observation laser beam R11 on the silicon wafer 3 will be described with reference to FIGS. 10A, 10B, 11A, and 11B.
- the silicon wafer 3 is illustrated with the thickness direction (left-right direction) of the silicon wafer 3 as the X-axis, the height direction (up-down direction) as the Y-axis, and the depth direction as the Z-axis.
- the observation laser beam R11 indicated by the straight line SA is incident at the point A, and has the same reflection angle as the incident angle and in the direction indicated by the straight line AT. reflect.
- the observation laser beam R11 incident on the silicon wafer 3 is reflected between the reflecting surface 32 and the irradiation surface 31 while repeating reflection shown by the straight line AB, straight line BC, straight line CD, straight line DE, and straight line EF.
- FIG. 10B when this state is viewed from the Y-axis direction, the incident light, the reflected light, and the emitted light all overlap with one straight line.
- the point C is irradiated with the excitation laser beam R11 parallel to the XY plane.
- the irradiation with the excitation laser beam R11 generates a free carrier concentration distribution FD.
- the incident angle of the excitation laser beam R11 is adjusted, and the laser beam indicated by the straight line BC reflected inside the silicon wafer 3 is one side from the center of the concentration distribution FD (in FIG. 11B, the concentration distribution FD It passes through the upper side from the center.
- the concentration distribution FD When the laser beam reflected at the point B on the reflecting surface 32 by the irradiation of the excitation laser beam R11 passes through the concentration distribution FD, the concentration distribution FD has a high electron / hole concentration as shown by a curve BC ′. The light is refracted to the center side (downward from the center of the concentration distribution FD in FIG. 11B) and reaches a point C ′.
- a part of the laser beam reaching the irradiation surface 31 of the silicon wafer 3 is reflected and emitted in the direction indicated by the straight line C′U.
- the remaining laser beam is reflected by the irradiation surface 31 and returns to the silicon wafer 3 as a laser beam indicated by a straight line C′D. Since the laser beam indicated by the straight line C′U emitted from the irradiation surface 31 of the silicon wafer 3 is refracted due to the influence of the free carrier concentration distribution FD, the laser beam is not emitted perpendicularly from the silicon wafer 3 but the XY plane. Deviate.
- the irradiation position of the excitation laser beam R11 that affects the observation laser beam R11 reflected in the silicon wafer 3 is changed from the non-crossing state to the non-crossing state with the observation laser beam R11.
- Scan as follows. First, when the irradiation position of the excitation laser beam R21 is sufficiently away from the position of the reflected light of the observation laser beam R11, the reflected light of the observation laser beam R11 is not affected by the concentration distribution FD.
- the optical path is the same as in FIGS. 10A and 10B.
- the reflected light is opposite to the direction of refraction shown in FIGS. 11A and 11B. Begin to refract to the side. Further, when the irradiation position of the excitation laser beam R21 is sufficiently separated from the position of the reflected light of the observation laser beam R11 and the influence does not reach the reflected light, the reflected light is emitted from the silicon wafer 3 to the outside. Sometimes it becomes perpendicular to the silicon wafer 3 and returns to its original optical path.
- the excitation laser beam R21 is used to sequentially receive the refraction of the reflected light by the laser beam detector 4, and the half-value width of the distribution density FD is measured from the position, thereby increasing the carrier life of the silicon wafer 3. You can know and evaluate the quality.
- an excitation laser beam having a wavelength of 635 nm and a photon energy of 1.95 eV is used as the excitation laser light source 5 .
- a free carrier generation (excitation) laser light source 5 is used.
- a YAG (Yttrium Aluminum Garnet) laser having a wavelength of 1064 nm capable of generating carriers to the inside of the silicon wafer can be used.
- interband optical transition in silicon does not occur only by excitation of electrons, but lattice vibration (phonon) is involved in the excitation process of electrons. That is, an interband transition may occur with the emission (generation) of phonons simultaneously with the absorption of light.
- excitation of electrons by light can be performed between the highest energy state of the valence band and the lowest energy state of the conduction band, that is, between the band gaps, without being bound by the vertical transition law.
- excitation energy is called an indirect transition absorption edge.
- the energy of the light emitted from the YAG laser which is the laser source 5 for free carrier generation (excitation), enters between the indirect transition absorption edge and the direct transition absorption edge, and can enter the crystal while appropriately exciting electrons. it can.
- the intensity (number of photons) per 0.5 mm light penetration (progress) length decreases to about 50%.
- a YAG laser is used. This purpose can be achieved.
- LED light which is non-coherent light can be used as excitation light and observation light.
- a light source used to excite electrons and / or holes in a silicon wafer is required to have a band gap energy (1.14 eV) or more and a direct transition absorption edge energy (about 2 eV) or less. That is, photons that fall within the range are generated and the emitted light can be collected by a condenser lens or the like.
- coherence like a laser beam is not essential. There are LEDs that satisfy this condition, and more optimal LEDs can be produced with current technology.
- the present invention is practical and significantly improved in terms of measurement speed and accuracy, apparatus operation, etc. compared to conventional methods, as a semiconductor wafer manufacturing technology for electronic device manufacturing and in the technical field of electronic device manufacturing. It can be suitably used.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
In order to establish a wafer evaluation technique for measuring the lifetimes of carriers in all semiconductor wafers when the semiconductor wafers are cut and manufactured from a semiconductor crystal ingot, the wafer evaluation technique being practical and more significantly improved in measurement speed, accuracy, device operation, and the like than conventional methods, the present invention is a method and device for evaluating the lifetime of free carriers (a general term for free electrons and free holes) within a silicon wafer (3). First, free carriers are generated (excited) by irradiating the silicon wafer (3) to be evaluated with a free carrier generation (excitation) laser beam (R21). Next, the silicon wafer (3) in which the concentration of the generated free carriers is non-uniformly distributed is irradiated with an observation laser beam (R11). An angle at which the observation laser beam (R11) is emitted after being transmitted through the silicon wafer (3) is measured. Consequently, the spread (half-value width) of the distribution curve (FD) of electrons and holes can be measured, thereby making it possible to evaluate the quality of the silicon wafer (3).
Description
本発明は、電子デバイス製造用半導体ウェーハのバルク品質評価方法および装置に関する。
The present invention relates to a bulk quality evaluation method and apparatus for semiconductor wafers for manufacturing electronic devices.
急拡大する電力用半導体の需要に対して、その製造に用いられる材料(半導体結晶ウェーハと半導体結晶インゴット)の究極までの品質向上と管理による電力変換器の性能、製造歩留りの向上さらに信頼性の向上が大きな課題となっている。現在3兆円といわれる電力用半導体のうち、高電圧大電流を担う素子、たとえばIGBT(Insulated Gate Bipolar Transistor)やPiNダイオードの分野が、HEV(ハイブリッド電気自動車)の出現やエアコンのインバータ化などから急拡大してきており、まさにこの分野は材料品質およびその管理が電力変換器の性能や信頼性の向上に直結していることが知られている。
In response to the rapidly expanding demand for power semiconductors, power converter performance and manufacturing yields are improved by improving the quality and management of materials used in the manufacturing process (semiconductor crystal wafers and semiconductor crystal ingots). Improvement has become a major issue. Among the power semiconductors that are currently estimated to be 3 trillion yen, the fields of high-voltage, high-current devices such as IGBTs (Insulated Gate Bipolar Transistors) and PiN diodes are the result of the emergence of HEVs (hybrid electric vehicles) and the use of inverters in air conditioners. In this area, it is known that material quality and its management are directly linked to improving the performance and reliability of power converters.
ところが従来は材料品質を高速で高精度に計測する機器がなかったため、材料の抜き取り検査、いわゆるサンプル検査のみが行われ、出荷時、納入時の全数検査は行われてこなかった。すなわち一つの半導体結晶インゴットから作られたすべてのウェーハについて、そのウェーハの取得部位(インゴットにおける部位)まで含めた品質データが完備・保存されているという管理体制での製造方式にはなっていなかった。このため、性能の悪い電力用半導体や故障が発生しても材料品質の点で、結晶インゴット製造までさかのぼって原因究明を行う(結晶起因なのか、あるいはその後の工程に起因するのか)というトレーサビリティーすら確保できない状況であった。
However, since there was no device for measuring material quality at high speed and with high accuracy, only material sampling inspections, so-called sample inspections, were performed, and all inspections at the time of shipment and delivery were not performed. In other words, for all wafers made from a single semiconductor crystal ingot, the production system was not based on a management system in which quality data including the wafer acquisition site (site in the ingot) was complete and stored. . For this reason, traceability to investigate the cause back to crystal ingot production (whether due to crystal or subsequent process) in terms of material quality even if poor performance power semiconductor or failure occurs Even the situation could not be secured.
従来、ウェーハ品質に関する上述のような抜き取り検査に使われる方法として、レーザ光照射によって発生させたフリーキャリアが時間とともに消滅してゆく過程を、ウェーハ表層のフリーキャリアによるマイクロ波反射の時間減衰として捉える方法(μ-PCD法、例えば非特許文献1参照)がある。しかし、この方法では、その測定原理上、半導体ウェーハの内部品質(結晶性)を評価するには、表面再結合センターを消去するための特殊な表面処理が必要となり、そのための時間と手間が全体の評価速度を向上させる上で妨げになっている。また、その表面処理が安定して同一条件で行えないことなどに起因して、品質評価結果が大きくばらつくという欠点は今でも解消されていない。
Conventionally, as a method used for sampling inspection as described above regarding wafer quality, the process in which free carriers generated by laser light annihilation with time are regarded as time decay of microwave reflection by free carriers on the wafer surface. There is a method (μ-PCD method, for example, see Non-Patent Document 1). However, in this method, in order to evaluate the internal quality (crystallinity) of the semiconductor wafer, a special surface treatment for erasing the surface recombination center is required due to the measurement principle. It has become a hindrance in improving the evaluation speed. Further, the problem that the quality evaluation results vary greatly due to the fact that the surface treatment cannot be performed stably under the same conditions has not been solved.
更に、評価自体が照射したレーザ光の反射率の測定によるものであるため、高精度測定、すなわち品質判定の分解能を上げようとすると、ウェーハの一点に対する測定自体に長時間を要し、かつウェーハ全面のスキャン測定には、1枚当たり20分程度の時間を要する。この測定速度向上の解決に立ちはだかる測定原理上の問題のために、ウェーハの全数検査は事実上困難であった。
Further, since the evaluation itself is based on the measurement of the reflectance of the laser beam irradiated, if it is attempted to increase the resolution of high-precision measurement, that is, quality judgment, it takes a long time for the measurement of one point of the wafer and the wafer. The entire surface scan measurement takes about 20 minutes per sheet. 100% inspection of wafers was practically difficult due to the problem of the measurement principle that stands for the solution to the improvement of the measurement speed.
半導体ウェーハを評価する装置として、特許文献1には、第1のフォトンビームを発生し、かつ該第1フォトンビームがウェーハの或る領域に入射したときに、電荷キャリアの波が前記領域に発生しない程度に十分に低い周波数をもって変調された第1の強度を第1フォトンビームに与えるような第1のソースと、第2のフォトンビームを発生し、かつ該第2フォトンビームがウェーハの前記領域に入射したときに、無視し得る数を超えないような電荷キャリアが前記領域に発生する程度に、前記第1ビームのフォトンよりも十分に低いエネルギーを第2ビームのフォトンに与えるような第2のソースと、第2ビームの、前記領域により反射された後に前記周波数にて変調された部分の光路内に配置された光電性素子とを有し、光電性素子が、第1ビームの入射により前記領域内に形成された電荷キャリアの第1の濃度を表す第1の信号を発生する装置が開示されている。
As an apparatus for evaluating a semiconductor wafer, Patent Document 1 discloses that a first photon beam is generated, and a wave of charge carriers is generated in the region when the first photon beam is incident on a certain region of the wafer. A first source that provides the first photon beam with a first intensity modulated with a sufficiently low frequency so as not to generate a second photon beam, and the second photon beam is said region of the wafer. A second beam of energy that is sufficiently lower in energy than the photons of the first beam so that no more than a negligible number of charge carriers are generated in the region. And a photoelectric element disposed in an optical path of a portion of the second beam reflected by the region and modulated by the frequency after being reflected by the region. To generate a first signal representing a first concentration of charge carriers formed in the region by the incidence of the first beam device is disclosed.
また特許文献2には、波長が互いに異なる少なくとも2種類の光を、測定対象の半導体における互いに異なる第1および第2領域に照射する光照射部と、第1および第2領域のそれぞれに所定の測定波を照射する測定波照射部と、第1領域で反射された前記測定波の第1反射波または第1領域を透過した前記測定波の第1透過波と第2領域で反射された前記測定波の第2反射波または第2領域を透過した前記測定波の第2透過波との差である差測定波を、第1反射波または第1透過波のままで用いるとともに第2反射波または第2透過波のままで用いることによって生成する差測定波生成部と、差測定波生成部で生成された差測定波を検出する検出部と、検出部で検出された検出結果に基づいて測定対象の半導体におけるキャリア寿命を求める演算部とを備えた半導体キャリア寿命測定装置が開示されている。
Patent Document 2 discloses a light irradiation unit that irradiates at least two types of light having different wavelengths to different first and second regions in a semiconductor to be measured, and a predetermined amount for each of the first and second regions. A measurement wave irradiating unit for irradiating a measurement wave, and a first reflected wave of the measurement wave reflected by the first region or a first transmitted wave of the measurement wave that has passed through the first region and the reflected by the second region A difference measurement wave that is a difference between the second reflected wave of the measurement wave or the second transmitted wave of the measurement wave transmitted through the second region is used as the first reflected wave or the first transmitted wave and the second reflected wave. Alternatively, based on the difference measurement wave generation unit that is generated by using the second transmitted wave as it is, the detection unit that detects the difference measurement wave generated by the difference measurement wave generation unit, and the detection result detected by the detection unit Find the carrier lifetime in the semiconductor to be measured Semiconductor carrier lifetime measuring apparatus having a computation unit is disclosed that.
前掲の非特許文献1、特許文献1および2に開示された従来の半導体ウェーハの評価方法、装置では、いずれも、半導体ウェーハの表層部におけるフリーキャリアの状況を、反射波を観測することにより評価している。このような方法は、半導体ウェーハの表層部の結晶品質が問題となるLSI(Large Scale Integration)においては適用できるが、半導体ウェーハの内部の結晶品質が問われる半導体、例えばIGBTやPiNダイオードに対しては測定精度が悪く、正しい評価ができない。
そこで本発明は、半導体結晶インゴットから切り出して半導体ウェーハを製造する場合、すべての半導体ウェーハ内部のキャリア寿命を測定する、実用的で従来法に比べて測定速度と精度、装置操作などの点で大幅に改善されたウェーハ評価技術を確立することを目的とする。 In the conventional semiconductor wafer evaluation methods and apparatuses disclosed inNon-Patent Document 1 and Patent Documents 1 and 2 described above, the state of free carriers in the surface layer portion of the semiconductor wafer is evaluated by observing reflected waves. is doing. Such a method can be applied to LSI (Large Scale Integration) where the crystal quality of the surface layer portion of the semiconductor wafer is a problem, but for semiconductors such as IGBTs and PiN diodes whose crystal quality is questioned inside the semiconductor wafer. Has poor measurement accuracy and cannot be evaluated correctly.
Therefore, the present invention is practical, which measures the carrier life inside all semiconductor wafers when cut out from a semiconductor crystal ingot, and is greatly improved in terms of measurement speed and accuracy, device operation, etc. compared to the conventional method. The objective is to establish an improved wafer evaluation technology.
そこで本発明は、半導体結晶インゴットから切り出して半導体ウェーハを製造する場合、すべての半導体ウェーハ内部のキャリア寿命を測定する、実用的で従来法に比べて測定速度と精度、装置操作などの点で大幅に改善されたウェーハ評価技術を確立することを目的とする。 In the conventional semiconductor wafer evaluation methods and apparatuses disclosed in
Therefore, the present invention is practical, which measures the carrier life inside all semiconductor wafers when cut out from a semiconductor crystal ingot, and is greatly improved in terms of measurement speed and accuracy, device operation, etc. compared to the conventional method. The objective is to establish an improved wafer evaluation technology.
本発明においては、バルク品質の評価に先立ち、ウェーハに前処理を施さないで、ウェーハ自身を評価装置にセットすれば評価準備が完了するという方法を実現する。
評価原理として、半導体ウェーハの表層のみからの応答を使うのではなく、ウェーハの内部からの応答を使う(内部の状態を反映する方法を使う)という手段を採用する。
従来のマイクロ波PCD法(μ-PCD法)に比べて、ウェーハ(インゴット)の一点の品質評価時間を格段に短縮できる新規の評価原理を用いる。具体的には、精度向上に繰り返し測定(データ積算)が必要となる従来のシグナル強度測定の代わりに、単発の測定で精度が得られる原理を採用する。 In the present invention, prior to the evaluation of bulk quality, a method is realized in which preparation for evaluation is completed if the wafer itself is set in an evaluation apparatus without pre-processing the wafer.
As an evaluation principle, a method of using a response from the inside of the wafer (using a method reflecting the internal state) is used instead of using a response from only the surface layer of the semiconductor wafer.
Compared with the conventional microwave PCD method (μ-PCD method), a new evaluation principle that can significantly reduce the quality evaluation time of one point of the wafer (ingot) is used. Specifically, instead of the conventional signal intensity measurement that requires repeated measurement (data integration) to improve accuracy, the principle that accuracy can be obtained by a single measurement is adopted.
評価原理として、半導体ウェーハの表層のみからの応答を使うのではなく、ウェーハの内部からの応答を使う(内部の状態を反映する方法を使う)という手段を採用する。
従来のマイクロ波PCD法(μ-PCD法)に比べて、ウェーハ(インゴット)の一点の品質評価時間を格段に短縮できる新規の評価原理を用いる。具体的には、精度向上に繰り返し測定(データ積算)が必要となる従来のシグナル強度測定の代わりに、単発の測定で精度が得られる原理を採用する。 In the present invention, prior to the evaluation of bulk quality, a method is realized in which preparation for evaluation is completed if the wafer itself is set in an evaluation apparatus without pre-processing the wafer.
As an evaluation principle, a method of using a response from the inside of the wafer (using a method reflecting the internal state) is used instead of using a response from only the surface layer of the semiconductor wafer.
Compared with the conventional microwave PCD method (μ-PCD method), a new evaluation principle that can significantly reduce the quality evaluation time of one point of the wafer (ingot) is used. Specifically, instead of the conventional signal intensity measurement that requires repeated measurement (data integration) to improve accuracy, the principle that accuracy can be obtained by a single measurement is adopted.
すなわち本発明は、半導体ウェーハ内部のフリーキャリア(自由電子と自由正孔の総称)の寿命を評価する方法および装置であって、評価対象とする半導体のエネルギーバンドギャップよりも大きなエネルギーのフォトンを含む励起光を照射することによってフリーキャリアを生成(励起)し、生成された当該フリーキャリアの濃度が不均一分布しているウェーハの部分に、評価の対象とする物質のエネルギーバンドギャップよりも小さなフォトンエネルギーの観測光を照射し、当該観測光がウェーハを透過あるいは反射した後に出射する角度を計測することを特徴とするものである。
ここで、「出射する角度を計測する」とは、直接角度を計測する以外に、観測光が励起光の影響を受けずに出射したときの到達点と、観測光が励起光の影響を受けて出射したときの到達点との距離を測定する場合も、この距離と角度とは比例の関係にあることから含まれる。 That is, the present invention is a method and apparatus for evaluating the lifetime of free carriers (generic term for free electrons and free holes) inside a semiconductor wafer, and includes photons having energy larger than the energy band gap of the semiconductor to be evaluated. Photons that are smaller than the energy band gap of the substance to be evaluated are generated (excited) by irradiating excitation light on the portion of the wafer where the concentration of the generated free carriers is unevenly distributed. It is characterized by irradiating energy observation light and measuring the angle at which the observation light exits after passing or reflecting through the wafer.
Here, “measurement of the outgoing angle” means not only the direct angle measurement but also the arrival point when the observation light is emitted without being influenced by the excitation light and the observation light is affected by the excitation light. In this case, the distance from the reaching point when the light is emitted is included because the distance and the angle are in a proportional relationship.
ここで、「出射する角度を計測する」とは、直接角度を計測する以外に、観測光が励起光の影響を受けずに出射したときの到達点と、観測光が励起光の影響を受けて出射したときの到達点との距離を測定する場合も、この距離と角度とは比例の関係にあることから含まれる。 That is, the present invention is a method and apparatus for evaluating the lifetime of free carriers (generic term for free electrons and free holes) inside a semiconductor wafer, and includes photons having energy larger than the energy band gap of the semiconductor to be evaluated. Photons that are smaller than the energy band gap of the substance to be evaluated are generated (excited) by irradiating excitation light on the portion of the wafer where the concentration of the generated free carriers is unevenly distributed. It is characterized by irradiating energy observation light and measuring the angle at which the observation light exits after passing or reflecting through the wafer.
Here, “measurement of the outgoing angle” means not only the direct angle measurement but also the arrival point when the observation light is emitted without being influenced by the excitation light and the observation light is affected by the excitation light. In this case, the distance from the reaching point when the light is emitted is included because the distance and the angle are in a proportional relationship.
前記半導体ウェーハに照射していた前記励起光を不到達にして、前記観測光が、前記半導体ウェーハを透過あるいは反射した後に出射する角度の時間的な変化を計測すると、時間変化する様子の観測結果から、フリーキャリア寿命を算出・評価できる。
When the time-dependent change in the angle of emission after the observation light is transmitted through or reflected by the semiconductor wafer without measuring the excitation light that has been irradiated on the semiconductor wafer is observed From this, the free carrier life can be calculated and evaluated.
前記励起光照射手段は、前記励起光としてレーザ光、特にYAGレーザを用いることができる。
前記観測光照射手段は、前記観測光としてレーザ光、特に赤外光レーザを用いることができる。また、前記観測光照射手段をLEDにより形成することもできる。 The excitation light irradiation means can use laser light, particularly YAG laser, as the excitation light.
The observation light irradiation means may use a laser beam, particularly an infrared laser as the observation light. Further, the observation light irradiation means can be formed of an LED.
前記観測光照射手段は、前記観測光としてレーザ光、特に赤外光レーザを用いることができる。また、前記観測光照射手段をLEDにより形成することもできる。 The excitation light irradiation means can use laser light, particularly YAG laser, as the excitation light.
The observation light irradiation means may use a laser beam, particularly an infrared laser as the observation light. Further, the observation light irradiation means can be formed of an LED.
前記励起光照射手段は、前記観測光に対して、前記励起光を、平行で逆向き、もしくは平行で同じ向きとなるように照射することができる。
前記励起光照射手段は、前記観測光に対して、前記励起光を平行となるように照射することができる。あるいは、前記励起光照射手段は、前記観測光に対して、前記励起光を傾斜するように照射することができる。 The excitation light irradiating means can irradiate the observation light with the excitation light so that the excitation light is parallel and reverse, or parallel and in the same direction.
The excitation light irradiation unit can irradiate the observation light so that the excitation light is parallel. Or the said excitation light irradiation means can irradiate the said excitation light so that it may incline with respect to the said observation light.
前記励起光照射手段は、前記観測光に対して、前記励起光を平行となるように照射することができる。あるいは、前記励起光照射手段は、前記観測光に対して、前記励起光を傾斜するように照射することができる。 The excitation light irradiating means can irradiate the observation light with the excitation light so that the excitation light is parallel and reverse, or parallel and in the same direction.
The excitation light irradiation unit can irradiate the observation light so that the excitation light is parallel. Or the said excitation light irradiation means can irradiate the said excitation light so that it may incline with respect to the said observation light.
前記励起光照射手段と前記観測光照射手段とは、前記励起光と前記観測光とを、前記半導体ウェーハのおもて面もしくは裏面に対して45度の入射角をもって、前記半導体ウェーハに入射するように照射することができる。
The excitation light irradiation means and the observation light irradiation means make the excitation light and the observation light incident on the semiconductor wafer at an incident angle of 45 degrees with respect to the front surface or the back surface of the semiconductor wafer. Can be irradiated.
前記励起光照射手段または前記観測光照射手段の少なくともいずれか一方は、前記励起光と前記観測光とが、前記半導体ウェーハの内部において、非交差状態から交差状態を経て、非交差状態となるように走査すると、フリーキャリアの半値幅を計測することができる。
前記励起光照射手段または前記観測光照射手段の少なくともいずれか一方は、前記励起光と前記観測光とが、前記半導体ウェーハの内部において、互いに平行で隔たった状態から、互いに一致した状態を経て、互いに平行で隔たった状態となるように走査することができる。 At least one of the excitation light irradiation means and the observation light irradiation means is configured so that the excitation light and the observation light are changed from a non-crossing state to a non-crossing state inside the semiconductor wafer. When scanning is performed, the half width of the free carrier can be measured.
At least one of the excitation light irradiating means or the observation light irradiating means is such that the excitation light and the observation light pass through a state in which the excitation light and the observation light coincide with each other from a state in which they are parallel and separated from each other inside the semiconductor wafer. It is possible to scan so as to be in a state of being parallel and separated from each other.
前記励起光照射手段または前記観測光照射手段の少なくともいずれか一方は、前記励起光と前記観測光とが、前記半導体ウェーハの内部において、互いに平行で隔たった状態から、互いに一致した状態を経て、互いに平行で隔たった状態となるように走査することができる。 At least one of the excitation light irradiation means and the observation light irradiation means is configured so that the excitation light and the observation light are changed from a non-crossing state to a non-crossing state inside the semiconductor wafer. When scanning is performed, the half width of the free carrier can be measured.
At least one of the excitation light irradiating means or the observation light irradiating means is such that the excitation light and the observation light pass through a state in which the excitation light and the observation light coincide with each other from a state in which they are parallel and separated from each other inside the semiconductor wafer. It is possible to scan so as to be in a state of being parallel and separated from each other.
発明の直接的な効果は、半導体ウェーハの品質評価速度を従来技術に比べて格段に向上させることである。この評価速度の大幅向上によって、下記のような今までは不可能であった最高水準の品質保証とトラブルシューティングが可能となる。
パワー半導体の製造において、原材料である半導体ウェーハ(結晶インゴット)から最終製品製造までの工程のすべてにおいて良品・不良品の全数管理が可能となり、最終製品の品質保証が格段に向上する、また、最終製品で不良などが発生した場合に、製造工程を結晶インゴット(の部位)までさかのぼってテストデータを調査できるようになるため、不良原因の究明が迅速かつ正確にできるようになる。
さらに、このような製品レベルでごくまれに発生するトラブルの原因究明を通して、製品製造技術そのものを改善してゆく手掛かりが掴める。 The direct effect of the invention is to significantly improve the quality evaluation speed of the semiconductor wafer as compared with the prior art. This significant increase in evaluation speed enables the highest level of quality assurance and troubleshooting not possible before, such as:
In the production of power semiconductors, it is possible to manage the total number of non-defective and defective products in all processes from the semiconductor wafer (crystal ingot) that is the raw material to the final product production, and the quality assurance of the final product is greatly improved. When a defect or the like occurs in a product, it becomes possible to investigate the test data by going back to the crystal ingot (part), so that the cause of the defect can be investigated quickly and accurately.
Furthermore, through the investigation of the cause of troubles that occur very rarely at the product level, clues for improving the product manufacturing technology itself can be obtained.
パワー半導体の製造において、原材料である半導体ウェーハ(結晶インゴット)から最終製品製造までの工程のすべてにおいて良品・不良品の全数管理が可能となり、最終製品の品質保証が格段に向上する、また、最終製品で不良などが発生した場合に、製造工程を結晶インゴット(の部位)までさかのぼってテストデータを調査できるようになるため、不良原因の究明が迅速かつ正確にできるようになる。
さらに、このような製品レベルでごくまれに発生するトラブルの原因究明を通して、製品製造技術そのものを改善してゆく手掛かりが掴める。 The direct effect of the invention is to significantly improve the quality evaluation speed of the semiconductor wafer as compared with the prior art. This significant increase in evaluation speed enables the highest level of quality assurance and troubleshooting not possible before, such as:
In the production of power semiconductors, it is possible to manage the total number of non-defective and defective products in all processes from the semiconductor wafer (crystal ingot) that is the raw material to the final product production, and the quality assurance of the final product is greatly improved. When a defect or the like occurs in a product, it becomes possible to investigate the test data by going back to the crystal ingot (part), so that the cause of the defect can be investigated quickly and accurately.
Furthermore, through the investigation of the cause of troubles that occur very rarely at the product level, clues for improving the product manufacturing technology itself can be obtained.
1 観測用レーザ光光源
2 調光部
3 シリコンウェーハ
31 照射面
32 反射面
4 レーザビーム検出器
5 フリーキャリア生成(励起)用レーザ光源
6 調光部
7 反射部
8 XYZステージ
9 シャッタ装置
FD 濃度分布
R11 観測用レーザビーム
R12 屈折しない場合の透過したレーザビーム
R13 屈折した場合の透過したレーザビーム
R14 反射した場合のレーザビーム
R21 フリーキャリア生成(励起)用レーザビーム(励起用レーザビーム)
θ 屈折角
φ,φ’ 入射角 DESCRIPTION OFSYMBOLS 1 Laser beam source for observation 2 Light control part 3 Silicon wafer 31 Irradiation surface 32 Reflection surface 4 Laser beam detector 5 Laser source for free carrier generation (excitation) 6 Light control part 7 Reflection part 8 XYZ stage 9 Shutter device FD Concentration distribution R11 Observation laser beam R12 Transmitted laser beam when not refracted R13 Transmitted laser beam when refracted R14 Laser beam when reflected R21 Laser beam for free carrier generation (excitation) (excitation laser beam)
θ Refraction angle φ, φ 'Incident angle
2 調光部
3 シリコンウェーハ
31 照射面
32 反射面
4 レーザビーム検出器
5 フリーキャリア生成(励起)用レーザ光源
6 調光部
7 反射部
8 XYZステージ
9 シャッタ装置
FD 濃度分布
R11 観測用レーザビーム
R12 屈折しない場合の透過したレーザビーム
R13 屈折した場合の透過したレーザビーム
R14 反射した場合のレーザビーム
R21 フリーキャリア生成(励起)用レーザビーム(励起用レーザビーム)
θ 屈折角
φ,φ’ 入射角 DESCRIPTION OF
θ Refraction angle φ, φ 'Incident angle
以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。
図1は、本発明の品質評価技術を、もっとも基本的な形でパワーデバイス用のMCZ(Magnetic field applied Czochralski法で製造)シリコンウェーハ(リンドープ、比抵抗=約20±3Ωcm)を評価対象として実施した場合の半導体ウェーハ(以下、単にウェーハと称することがある。)のバルク品質評価装置の構成とその動作説明の模式図である。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
Fig. 1 shows the quality evaluation technique of the present invention in the most basic form for MCZ (Magnetic field applied Czochralski method) silicon wafers for power devices (phosphorus-doped, specific resistance = about 20 ± 3Ωcm) It is a schematic diagram of the structure and operation | movement description of the bulk quality evaluation apparatus of the semiconductor wafer (Hereafter, it may only be called a wafer.) At the time of doing.
図1は、本発明の品質評価技術を、もっとも基本的な形でパワーデバイス用のMCZ(Magnetic field applied Czochralski法で製造)シリコンウェーハ(リンドープ、比抵抗=約20±3Ωcm)を評価対象として実施した場合の半導体ウェーハ(以下、単にウェーハと称することがある。)のバルク品質評価装置の構成とその動作説明の模式図である。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
Fig. 1 shows the quality evaluation technique of the present invention in the most basic form for MCZ (Magnetic field applied Czochralski method) silicon wafers for power devices (phosphorus-doped, specific resistance = about 20 ± 3Ωcm) It is a schematic diagram of the structure and operation | movement description of the bulk quality evaluation apparatus of the semiconductor wafer (Hereafter, it may only be called a wafer.) At the time of doing.
図1に示すように、観測用レーザ光光源1は、シリコンウェーハ3上の点Pcからの垂線上に位置している。この観測用レーザ光光源1から波長が1550nm(0.787eV)の赤外光の観測用レーザビームR11が観測光として出射される。観測用レーザビームR11は、集光レンズ、スリットないしアパーチャなどの調光部2で所望のビーム径に絞られ、評価対象のシリコンウェーハ3に照射される。
この観測用レーザビームR11はシリコンウェーハ3を容易にかつ真直ぐに透過し、計測手段として機能するレーザビーム検出器4に到達する。この観測用レーザビームR11が到達したレーザビーム検出器4上の到達点を点Paとする。レーザビーム検出器4としては、CCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサを用いることができる。 As shown in FIG. 1, the observationlaser light source 1 is located on a perpendicular line from the point Pc on the silicon wafer 3. From this observation laser light source 1, an infrared observation laser beam R11 having a wavelength of 1550 nm (0.787 eV) is emitted as observation light. The observation laser beam R11 is focused to a desired beam diameter by the light adjusting unit 2 such as a condenser lens, a slit or an aperture, and is irradiated onto the silicon wafer 3 to be evaluated.
This observation laser beam R11 passes through thesilicon wafer 3 easily and straight and reaches the laser beam detector 4 functioning as a measuring means. The arrival point on the laser beam detector 4 where the observation laser beam R11 has reached is assumed to be a point Pa. As the laser beam detector 4, a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor can be used.
この観測用レーザビームR11はシリコンウェーハ3を容易にかつ真直ぐに透過し、計測手段として機能するレーザビーム検出器4に到達する。この観測用レーザビームR11が到達したレーザビーム検出器4上の到達点を点Paとする。レーザビーム検出器4としては、CCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサを用いることができる。 As shown in FIG. 1, the observation
This observation laser beam R11 passes through the
図1においては、シリコンウェーハ3を透過したレーザビームR12が、レーザビーム検出器4の点Paに真っ直ぐ到達している状態において、励起光照射手段として機能するフリーキャリア生成(励起)用レーザ光光源5(波長1064nm:フォトンエネルギー1.165eV:出力1.3W)から、励起光として出射される励起用レーザビームR21を、観測用レーザビームR11がシリコンウェーハ3に到達する点Pc(図1参照)の近傍に、観測用レーザビームR11に対して傾斜した状態となるように照射する。
ここで、傾斜した状態とは、シリコンウェーハ3の厚みを見るような方向で、観測用レーザビームR11に対して、励起用レーザビームR21が三次元的に傾いている状態を示す。
このレーザ照射によって、シリコンウェーハ3上の点Pc近傍に自由電子と自由正孔(フリーキャリア)が生成され、このフリーキャリアがシリコンウェーハ3内部と周囲に向かって拡散する。以下、フリーキャリア生成(励起)用レーザ光光源5を、励起用レーザ光光源5と略す。 In FIG. 1, a laser beam light source for free carrier generation (excitation) that functions as excitation light irradiation means in a state in which the laser beam R12 transmitted through thesilicon wafer 3 reaches the point Pa of the laser beam detector 4 straightly. 5 (wavelength 1064 nm: photon energy 1.165 eV: output 1.3 W), excitation laser beam R21 emitted as excitation light, point Pc at which observation laser beam R11 reaches silicon wafer 3 (see FIG. 1) Is irradiated so as to be inclined with respect to the observation laser beam R11.
Here, the inclined state indicates a state in which the excitation laser beam R21 is three-dimensionally inclined with respect to the observation laser beam R11 in a direction in which the thickness of thesilicon wafer 3 is viewed.
By this laser irradiation, free electrons and free holes (free carriers) are generated in the vicinity of the point Pc on thesilicon wafer 3, and the free carriers are diffused toward and around the silicon wafer 3. Hereinafter, the free carrier generation (excitation) laser light source 5 is abbreviated as the excitation laser light source 5.
ここで、傾斜した状態とは、シリコンウェーハ3の厚みを見るような方向で、観測用レーザビームR11に対して、励起用レーザビームR21が三次元的に傾いている状態を示す。
このレーザ照射によって、シリコンウェーハ3上の点Pc近傍に自由電子と自由正孔(フリーキャリア)が生成され、このフリーキャリアがシリコンウェーハ3内部と周囲に向かって拡散する。以下、フリーキャリア生成(励起)用レーザ光光源5を、励起用レーザ光光源5と略す。 In FIG. 1, a laser beam light source for free carrier generation (excitation) that functions as excitation light irradiation means in a state in which the laser beam R12 transmitted through the
Here, the inclined state indicates a state in which the excitation laser beam R21 is three-dimensionally inclined with respect to the observation laser beam R11 in a direction in which the thickness of the
By this laser irradiation, free electrons and free holes (free carriers) are generated in the vicinity of the point Pc on the
電子と正孔の濃度が大きくなる部分は、図1では、シリコンウェーハ3の濃い色で影付けをした部分(濃度分布FD)として示してある。この生成された電子と正孔は、拡散の最中に再結合を起こし消滅(対消滅)する。電子と正孔が生成されてから再結合消滅するまでの平均時間をキャリアの寿命と呼ぶが、これを決めているのが結晶品質である。
励起用レーザ光光源5からの励起用レーザ照射の定常状態においては、励起用レーザビームR21の照射によって自由電子と自由正孔、すなわちフリーキャリアが作られる速度と、再結合消滅の速度が釣り合って、図1のシリコンウェーハ3の中に描かれたような、時間に依存しないフリーキャリア濃度の分布が生じる。
この分布濃度FDの形状がシリコンウェーハの品質を反映する。例えば、結晶品質が良いほど分布濃度FDの分布曲線の広がり(半値幅)が大きくなる。そこで、分布濃度FDの分布曲線の広がり(半値幅)を測定することでシリコンウェーハの品質評価が可能となる。 In FIG. 1, the portion where the concentration of electrons and holes increases is shown as a portion shaded with a dark color of the silicon wafer 3 (concentration distribution FD). The generated electrons and holes recombine during diffusion and disappear (pair annihilation). The average time from the generation of electrons and holes to the disappearance of recombination is called the carrier lifetime, and the crystal quality determines this.
In the steady state of excitation laser irradiation from the excitationlaser light source 5, the speed at which free electrons and free holes, that is, free carriers are generated by the irradiation of the excitation laser beam R21 is balanced with the speed of recombination annihilation. As shown in the silicon wafer 3 of FIG. 1, a time-independent distribution of free carrier concentration occurs.
The shape of this distribution concentration FD reflects the quality of the silicon wafer. For example, the better the crystal quality, the larger the spread (half width) of the distribution curve of the distribution concentration FD. Therefore, it is possible to evaluate the quality of the silicon wafer by measuring the spread (half-value width) of the distribution curve of the distribution concentration FD.
励起用レーザ光光源5からの励起用レーザ照射の定常状態においては、励起用レーザビームR21の照射によって自由電子と自由正孔、すなわちフリーキャリアが作られる速度と、再結合消滅の速度が釣り合って、図1のシリコンウェーハ3の中に描かれたような、時間に依存しないフリーキャリア濃度の分布が生じる。
この分布濃度FDの形状がシリコンウェーハの品質を反映する。例えば、結晶品質が良いほど分布濃度FDの分布曲線の広がり(半値幅)が大きくなる。そこで、分布濃度FDの分布曲線の広がり(半値幅)を測定することでシリコンウェーハの品質評価が可能となる。 In FIG. 1, the portion where the concentration of electrons and holes increases is shown as a portion shaded with a dark color of the silicon wafer 3 (concentration distribution FD). The generated electrons and holes recombine during diffusion and disappear (pair annihilation). The average time from the generation of electrons and holes to the disappearance of recombination is called the carrier lifetime, and the crystal quality determines this.
In the steady state of excitation laser irradiation from the excitation
The shape of this distribution concentration FD reflects the quality of the silicon wafer. For example, the better the crystal quality, the larger the spread (half width) of the distribution curve of the distribution concentration FD. Therefore, it is possible to evaluate the quality of the silicon wafer by measuring the spread (half-value width) of the distribution curve of the distribution concentration FD.
この分布濃度FDの半値幅を測定するのには、光照射(レーザ照射)で生成されたフリーキャリアによって観測用レーザビームR11が屈折を受けるという原理を用いる。つまり、図1に示したように、観測用レーザビームR11がフリーキャリア濃度の分布濃度FDの傾斜部分(濃度勾配が存在する部分)を透過する際には、フリーキャリアの濃度勾配と濃度に応じて屈折する。このように、屈折して透過した観測用レーザビームを図1のR13で示している。屈折の大きさは、屈折角θや図1の点Paを基準にした時の点Pbまでの距離に対応する。
The principle that the observation laser beam R11 is refracted by free carriers generated by light irradiation (laser irradiation) is used to measure the half width of the distribution concentration FD. That is, as shown in FIG. 1, when the observation laser beam R11 passes through the inclined portion (the portion where the concentration gradient exists) of the distribution concentration FD of the free carrier concentration, it depends on the concentration gradient and concentration of the free carrier. Refract. The observation laser beam refracted and transmitted in this manner is indicated by R13 in FIG. The magnitude of refraction corresponds to the distance to the point Pb with respect to the refraction angle θ and the point Pa in FIG.
そこで、図1の、励起用レーザ光光源5以外の装置部分は固定しておいて、励起用レーザ光光源5の位置を、点Pcを基準に左から右(あるいはその逆)に移動させてゆくと、移動距離の関数として、点Paと点Pbの距離(言い換えれば屈折角θ)が変化する。この様子を、キャリア濃度の分布とともに描いたのが図2である。
図2の上のグラフは、X軸を、シリコンウェーハ3における観測用レーザビームR11と励起用レーザビームR21との照射位置の距離(相対位置)とし、Y軸を屈折角θ(点Paに対する点Pbの変位)としている。
図2の下のグラフは、X軸を、シリコンウェーハ3における観測用レーザビームR1と励起用レーザビームR21との照射位置の距離(相対位置)とし、Y軸をキャリア濃度としている。そして、X軸上の原点0は、励起用レーザビームR21か、または観測用レーザビームR11のいずれか一方の照射位置を平行移動させて、走査したときに、それぞれの照射位置が一致した場所であることを示している。 1 is fixed, and the position of the excitation laser beamlight source 5 is moved from the left to the right (or vice versa) with respect to the point Pc. Eventually, the distance between the points Pa and Pb (in other words, the refraction angle θ) changes as a function of the movement distance. FIG. 2 shows this state together with the carrier concentration distribution.
In the upper graph of FIG. 2, the X axis is the distance (relative position) between the irradiation positions of the observation laser beam R11 and the excitation laser beam R21 on thesilicon wafer 3, and the Y axis is the refraction angle θ (point with respect to the point Pa). Pb displacement).
In the lower graph of FIG. 2, the X axis is the distance (relative position) between the irradiation positions of the observation laser beam R1 and the excitation laser beam R21 on thesilicon wafer 3, and the Y axis is the carrier concentration. The origin 0 on the X-axis is a place where the irradiation positions of the excitation laser beam R21 and the observation laser beam R11 are coincident when the irradiation positions of the excitation laser beam R21 and the observation laser beam R11 are translated. It shows that there is.
図2の上のグラフは、X軸を、シリコンウェーハ3における観測用レーザビームR11と励起用レーザビームR21との照射位置の距離(相対位置)とし、Y軸を屈折角θ(点Paに対する点Pbの変位)としている。
図2の下のグラフは、X軸を、シリコンウェーハ3における観測用レーザビームR1と励起用レーザビームR21との照射位置の距離(相対位置)とし、Y軸をキャリア濃度としている。そして、X軸上の原点0は、励起用レーザビームR21か、または観測用レーザビームR11のいずれか一方の照射位置を平行移動させて、走査したときに、それぞれの照射位置が一致した場所であることを示している。 1 is fixed, and the position of the excitation laser beam
In the upper graph of FIG. 2, the X axis is the distance (relative position) between the irradiation positions of the observation laser beam R11 and the excitation laser beam R21 on the
In the lower graph of FIG. 2, the X axis is the distance (relative position) between the irradiation positions of the observation laser beam R1 and the excitation laser beam R21 on the
図2に示したように、キャリア濃度の分布濃度FDの半値幅は、フリーキャリアの寿命に対応しており、フリーキャリアを生成するための励起用レーザビームR21の照射位置を変えた時に観測される点Paと点Pbの距離である。言い換えれば、分布濃度FDの半値幅は、屈折角θが最大値となる照射位置と最小値となる照射位置の間の間隔であり、シリコンウェーハ3を透過した後に出射する角度として求められる。
この屈折角θが最大値となる照射位置と最小値となる照射位置の間の間隔が広いシリコンウェーハ3が、フリーキャリアの寿命が長いことを示しているため、品質が良いと評価できる。 As shown in FIG. 2, the half width of the carrier concentration distribution FD corresponds to the free carrier lifetime, and is observed when the irradiation position of the excitation laser beam R21 for generating free carriers is changed. The distance between the point Pa and the point Pb. In other words, the half-value width of the distribution concentration FD is the interval between the irradiation position where the refraction angle θ is the maximum value and the irradiation position where the refraction angle θ is the minimum value, and is obtained as the angle emitted after passing through thesilicon wafer 3.
Since thesilicon wafer 3 having a wide interval between the irradiation position where the refraction angle θ is the maximum value and the irradiation position where the refraction angle θ is the minimum value indicates that the free carrier has a long lifetime, it can be evaluated that the quality is good.
この屈折角θが最大値となる照射位置と最小値となる照射位置の間の間隔が広いシリコンウェーハ3が、フリーキャリアの寿命が長いことを示しているため、品質が良いと評価できる。 As shown in FIG. 2, the half width of the carrier concentration distribution FD corresponds to the free carrier lifetime, and is observed when the irradiation position of the excitation laser beam R21 for generating free carriers is changed. The distance between the point Pa and the point Pb. In other words, the half-value width of the distribution concentration FD is the interval between the irradiation position where the refraction angle θ is the maximum value and the irradiation position where the refraction angle θ is the minimum value, and is obtained as the angle emitted after passing through the
Since the
本発明のバルク品質評価方法の特徴は、
(1)フリーキャリア生成のために光照射(レーザ照射)を行うことと、
(2)生成されたフリーキャリア濃度の勾配によって観測用レーザビームが屈折透過することと、
(3)透過した観測用レーザビームの到達位置などをCCDのような二次元撮像素子を使って検知すること
の三つの要素を組み合わせていることである。
観測用レーザビームは、当然、ウェーハの内部に到達する(透過する)ため、評価対象となっているのは従来のマイクロ波反射減衰法(評価対象は表面近傍のフリーキャリア)と違って、ウェーハ内部の結晶性である。つまり、パワーデバイス用ウェーハで重要となる「バルクライフタイム」が計測されている。 The features of the bulk quality evaluation method of the present invention are as follows:
(1) performing light irradiation (laser irradiation) to generate free carriers;
(2) the observation laser beam is refracted and transmitted by the generated free carrier concentration gradient;
(3) A combination of the three elements of detecting the arrival position of the transmitted observation laser beam using a two-dimensional image sensor such as a CCD.
Obviously, the laser beam for observation reaches (transmits) the inside of the wafer, so that the object of evaluation is different from the conventional microwave reflection attenuation method (the object of evaluation is free carrier near the surface). Internal crystallinity. In other words, the “bulk lifetime” that is important for power device wafers is measured.
(1)フリーキャリア生成のために光照射(レーザ照射)を行うことと、
(2)生成されたフリーキャリア濃度の勾配によって観測用レーザビームが屈折透過することと、
(3)透過した観測用レーザビームの到達位置などをCCDのような二次元撮像素子を使って検知すること
の三つの要素を組み合わせていることである。
観測用レーザビームは、当然、ウェーハの内部に到達する(透過する)ため、評価対象となっているのは従来のマイクロ波反射減衰法(評価対象は表面近傍のフリーキャリア)と違って、ウェーハ内部の結晶性である。つまり、パワーデバイス用ウェーハで重要となる「バルクライフタイム」が計測されている。 The features of the bulk quality evaluation method of the present invention are as follows:
(1) performing light irradiation (laser irradiation) to generate free carriers;
(2) the observation laser beam is refracted and transmitted by the generated free carrier concentration gradient;
(3) A combination of the three elements of detecting the arrival position of the transmitted observation laser beam using a two-dimensional image sensor such as a CCD.
Obviously, the laser beam for observation reaches (transmits) the inside of the wafer, so that the object of evaluation is different from the conventional microwave reflection attenuation method (the object of evaluation is free carrier near the surface). Internal crystallinity. In other words, the “bulk lifetime” that is important for power device wafers is measured.
一般にレーザビームなどの光ビームを使った評価方法では、評価量を光の強度として計量する方法(光吸収法、反射法、ルミネッセンス法)よりも、光線(ビーム)の方向変化としてとらえる方が、測定時間も短く、精度も上がる。それは、強度測定にたよる方法では、s/n(信号雑音比)向上などのために、シグナルの取得を多数回繰り返す必要があるためである。これに比べ、光線の進行方向を測定する方法(例えばX線回折など)では、短時間で測定を完了することができる。
In general, in an evaluation method using a light beam such as a laser beam, it is better to treat the evaluation amount as the intensity of light (light absorption method, reflection method, luminescence method) as a change in the direction of the light beam. Measurement time is short and accuracy is improved. This is because in the method based on intensity measurement, it is necessary to repeat signal acquisition many times in order to improve s / n (signal to noise ratio). In contrast, in a method of measuring the traveling direction of light (for example, X-ray diffraction), measurement can be completed in a short time.
更に、CCDをレーザビーム検出器4として用いることのメリットは非常に大きく、二次元画像の撮像とその画像解析の手法を組み合わせることで、評価精度の向上と時間短縮が可能となる。
Furthermore, the merit of using the CCD as the laser beam detector 4 is very great, and it is possible to improve the evaluation accuracy and shorten the time by combining the two-dimensional image capturing and the image analysis method.
ここで、この発明に至る予備実験で用いた半導体ウェーハのバルク品質評価装置の配置を図3に示す。以下、半導体ウェーハのバルク品質評価装置を、バルク品質評価装置と略す。
図3に示すバルク品質評価装置では、光源レンズ付きの観測用レーザ光光源1として赤外レーザを用いており、調光部2(第1の調光部)として集光レンズを用いている。また、バルク品質評価装置では、レーザビーム検出器4としてCCDを用いており、励起用レーザ光光源5として、YAGレーザを用いている。
更に、バルク品質評価装置には、観測用レーザビームを集光するための集光レンズだけでなく、シリコンウェーハ3を透過した観測用レーザビームR12,R13を集光するための調光部6(第2の調光部)としての集光レンズと、レーザビーム検出器4へ導光するための反射部7としてのシリコンウェーハとを備えている。また、励起用レーザ光光源5は、走査装置の一例であるXYZステージ8に搭載されている。 Here, FIG. 3 shows the arrangement of the semiconductor wafer bulk quality evaluation apparatus used in the preliminary experiment leading to the present invention. Hereinafter, a bulk quality evaluation apparatus for semiconductor wafers is abbreviated as a bulk quality evaluation apparatus.
In the bulk quality evaluation apparatus shown in FIG. 3, an infrared laser is used as the observationlaser light source 1 with a light source lens, and a condensing lens is used as the light control unit 2 (first light control unit). In the bulk quality evaluation apparatus, a CCD is used as the laser beam detector 4, and a YAG laser is used as the excitation laser light source 5.
Further, the bulk quality evaluation apparatus includes not only a condensing lens for condensing the observation laser beam but also a light control unit 6 (for condensing the observation laser beams R12 and R13 transmitted through the silicon wafer 3). A condensing lens as a second light control unit) and a silicon wafer as a reflection unit 7 for guiding light to the laser beam detector 4. The excitationlaser light source 5 is mounted on an XYZ stage 8 which is an example of a scanning device.
図3に示すバルク品質評価装置では、光源レンズ付きの観測用レーザ光光源1として赤外レーザを用いており、調光部2(第1の調光部)として集光レンズを用いている。また、バルク品質評価装置では、レーザビーム検出器4としてCCDを用いており、励起用レーザ光光源5として、YAGレーザを用いている。
更に、バルク品質評価装置には、観測用レーザビームを集光するための集光レンズだけでなく、シリコンウェーハ3を透過した観測用レーザビームR12,R13を集光するための調光部6(第2の調光部)としての集光レンズと、レーザビーム検出器4へ導光するための反射部7としてのシリコンウェーハとを備えている。また、励起用レーザ光光源5は、走査装置の一例であるXYZステージ8に搭載されている。 Here, FIG. 3 shows the arrangement of the semiconductor wafer bulk quality evaluation apparatus used in the preliminary experiment leading to the present invention. Hereinafter, a bulk quality evaluation apparatus for semiconductor wafers is abbreviated as a bulk quality evaluation apparatus.
In the bulk quality evaluation apparatus shown in FIG. 3, an infrared laser is used as the observation
Further, the bulk quality evaluation apparatus includes not only a condensing lens for condensing the observation laser beam but also a light control unit 6 (for condensing the observation laser beams R12 and R13 transmitted through the silicon wafer 3). A condensing lens as a second light control unit) and a silicon wafer as a reflection unit 7 for guiding light to the laser beam detector 4. The excitation
このXYZステージ8は、ステージ水平送り調整部(X軸方向,Y軸方向)と、ステージ高さ送り調整部(Z軸方向)とを備えている。これらの調整部により、励起用レーザ光光源5を、シリコンウェーハに対して、上下方向に平行移動したり、左右方向に平行移動したり、接近方向または離間方向に移動したりすることができる。このように励起用レーザ光光源5を精度よく移動させることで、シリコンウェーハ3への照射位置を調整することができる。
そして、バルク品質評価装置は、XYZステージ8の走査を制御すると共に、レーザビーム検出器4にて受光した観測用レーザビームR12,R13の位置からシリコンウェーハ3を透過した後に出射する角度として求め、キャリア濃度の分布濃度FDの半値幅を算出することで、シリコンウェーハ3の品質を評価する制御装置、例えば、コンピュータ(図示せず)を備えている。 The XYZ stage 8 includes a stage horizontal feed adjustment unit (X-axis direction and Y-axis direction) and a stage height feed adjustment unit (Z-axis direction). With these adjustment units, the excitationlaser light source 5 can be translated in the vertical direction, translated in the horizontal direction, or moved in the approaching direction or the separating direction with respect to the silicon wafer. Thus, the irradiation position to the silicon wafer 3 can be adjusted by moving the excitation laser light source 5 with high accuracy.
Then, the bulk quality evaluation apparatus controls the scanning of the XYZ stage 8 and obtains the angle emitted after passing through thesilicon wafer 3 from the position of the observation laser beams R12 and R13 received by the laser beam detector 4, A control device that evaluates the quality of the silicon wafer 3 by calculating the half width of the carrier concentration distribution FD, for example, a computer (not shown), is provided.
そして、バルク品質評価装置は、XYZステージ8の走査を制御すると共に、レーザビーム検出器4にて受光した観測用レーザビームR12,R13の位置からシリコンウェーハ3を透過した後に出射する角度として求め、キャリア濃度の分布濃度FDの半値幅を算出することで、シリコンウェーハ3の品質を評価する制御装置、例えば、コンピュータ(図示せず)を備えている。 The XYZ stage 8 includes a stage horizontal feed adjustment unit (X-axis direction and Y-axis direction) and a stage height feed adjustment unit (Z-axis direction). With these adjustment units, the excitation
Then, the bulk quality evaluation apparatus controls the scanning of the XYZ stage 8 and obtains the angle emitted after passing through the
制御装置により制御されるXYZステージ8により、励起用レーザ光光源5を移動させることで、励起用レーザビームR21が、観測用レーザビームR11に、非交差状態から交差状態を経て、非交差状態となるように走査する。
XYZステージ8により励起用レーザ光光源5を移動させて励起用レーザビームR21を走査して、観測用レーザビームR11が屈折したレーザビームR13をレーザビーム検出器4により測定することで、図2に示すシリコンウェーハ3の特性を得ることができる。 By moving the excitationlaser light source 5 by the XYZ stage 8 controlled by the control device, the excitation laser beam R21 passes through the observation laser beam R11 from the non-crossing state to the non-crossing state. Scan as follows.
The XYZ stage 8 moves the excitation laser beamlight source 5 to scan the excitation laser beam R21, and the laser beam R13 refracted by the observation laser beam R11 is measured by the laser beam detector 4, so that FIG. The characteristics of the silicon wafer 3 shown can be obtained.
XYZステージ8により励起用レーザ光光源5を移動させて励起用レーザビームR21を走査して、観測用レーザビームR11が屈折したレーザビームR13をレーザビーム検出器4により測定することで、図2に示すシリコンウェーハ3の特性を得ることができる。 By moving the excitation
The XYZ stage 8 moves the excitation laser beam
図3に示すバルク品質評価装置による評価のうちで特に有効であるシリコンウェーハへのレーザビームの照射例を、図4Aと図4Bとに示す。
図4Aから図4Cでは、直交座標系において、シリコンウェーハ3の厚み方向(左右方向)をX軸、奥行き方向をY軸、高さ方向(上下方向)をZ軸として、シリコンウェーハ3を図示している(図3参照)。 FIG. 4A and FIG. 4B show an example of laser beam irradiation to a silicon wafer that is particularly effective in the evaluation by the bulk quality evaluation apparatus shown in FIG.
4A to 4C, in the orthogonal coordinate system, thesilicon wafer 3 is illustrated with the thickness direction (left and right direction) of the silicon wafer 3 as the X axis, the depth direction as the Y axis, and the height direction (up and down direction) as the Z axis. (See FIG. 3).
図4Aから図4Cでは、直交座標系において、シリコンウェーハ3の厚み方向(左右方向)をX軸、奥行き方向をY軸、高さ方向(上下方向)をZ軸として、シリコンウェーハ3を図示している(図3参照)。 FIG. 4A and FIG. 4B show an example of laser beam irradiation to a silicon wafer that is particularly effective in the evaluation by the bulk quality evaluation apparatus shown in FIG.
4A to 4C, in the orthogonal coordinate system, the
図4Aでは、観測用レーザ光光源1(図3参照)から、シリコンウェーハ3に照射される観測用レーザビームR11(赤外レーザ光)と、励起用レーザ光源5からシリコンウェーハ3に照射される励起用レーザビームR21との様子を示している。
In FIG. 4A, the observation laser beam R11 (infrared laser beam) irradiated to the silicon wafer 3 from the observation laser light source 1 (see FIG. 3) and the silicon wafer 3 from the excitation laser light source 5 are irradiated. The state with the excitation laser beam R21 is shown.
観測用レーザビームR11は、例えば、シリコンウェーハ3のおもて面上の点Aに入射角φ=45°もって入射すると、その後、シリコンウェーハ3内部で、点Aから直線AB,直線BC、直線CD,直線DEおよび直線EFにて示される反射を繰り返すと共に、反射位置(例えば、点B,点D,点F)から、直線BP,直線DQおよび直線FRに示される外部へ出射する光路となる。
このような光路の中で、観測用レーザビームR11が点Dからシリコンウェーハ3を出射して直線DQとなる光路がある。
この場合において、励起用レーザビームR21をZ軸方向から見れば点Cと一致する点(以後、この点も同じ記号Cを使って点Cと表す)から入射角φ′でシリコンウェーハ3内部に入射させる。但し、励起用レーザビームR21の直線UCは、観測用レーザビームR11の光路に沿う直線SAと直線ABでつくられる仮想平面(XY平面)、もしくはそれと平行な平面に乗っている状態で入射させ、入射角φ′は観測用レーザビームR11の入射角φ=45°と同じになるようにする。点Cからシリコンウェーハ3に入射した励起用レーザビームR21は、Z軸方向から見れば、直線CBに示される光路となる。 For example, when the observation laser beam R11 is incident on a point A on the front surface of thesilicon wafer 3 with an incident angle φ = 45 °, the straight line AB, the straight line BC, and the straight line from the point A in the silicon wafer 3 thereafter. The reflection shown by the CD, the straight line DE, and the straight line EF is repeated, and the light path is emitted from the reflection position (for example, the point B, the point D, and the point F) to the outside shown by the straight line BP, the straight line DQ, and the straight line FR. .
Among such optical paths, there is an optical path in which the observation laser beam R11 exits thesilicon wafer 3 from the point D and becomes a straight line DQ.
In this case, when the excitation laser beam R21 is viewed from the Z-axis direction, the point coincides with the point C (hereinafter, this point is also referred to as the point C using the same symbol C) and enters thesilicon wafer 3 at an incident angle φ ′. Make it incident. However, the straight line UC of the excitation laser beam R21 is incident on a virtual plane (XY plane) formed by the straight line SA and the straight line AB along the optical path of the observation laser beam R11, or on a plane parallel thereto. The incident angle φ ′ is set to be the same as the incident angle φ = 45 ° of the observation laser beam R11. The excitation laser beam R21 incident on the silicon wafer 3 from the point C becomes an optical path indicated by a straight line CB when viewed from the Z-axis direction.
このような光路の中で、観測用レーザビームR11が点Dからシリコンウェーハ3を出射して直線DQとなる光路がある。
この場合において、励起用レーザビームR21をZ軸方向から見れば点Cと一致する点(以後、この点も同じ記号Cを使って点Cと表す)から入射角φ′でシリコンウェーハ3内部に入射させる。但し、励起用レーザビームR21の直線UCは、観測用レーザビームR11の光路に沿う直線SAと直線ABでつくられる仮想平面(XY平面)、もしくはそれと平行な平面に乗っている状態で入射させ、入射角φ′は観測用レーザビームR11の入射角φ=45°と同じになるようにする。点Cからシリコンウェーハ3に入射した励起用レーザビームR21は、Z軸方向から見れば、直線CBに示される光路となる。 For example, when the observation laser beam R11 is incident on a point A on the front surface of the
Among such optical paths, there is an optical path in which the observation laser beam R11 exits the
In this case, when the excitation laser beam R21 is viewed from the Z-axis direction, the point coincides with the point C (hereinafter, this point is also referred to as the point C using the same symbol C) and enters the
つまり、励起用レーザビームR21の光路である直線UC,直線CBが含まれる仮想平面(XY平面)は、観測用レーザビームR11の光路である直線SA,直線ABが含まれる仮想平面(XY平面)と、互いに平行で隔たった状態から、互いに一致した状態を経て、互いに平行で隔たった状態となるように走査される。この走査は、励起用レーザ光光源5のZ軸方向をXYZステージ8のZ軸の調節によって行う。
That is, the virtual plane (XY plane) including the straight lines UC and CB that are the optical paths of the excitation laser beam R21 is the virtual plane (XY plane) including the straight lines SA and the straight lines AB that are the optical paths of the observation laser beam R11. Then, scanning is performed from a state of being separated from each other in parallel to a state of being separated from each other in parallel by way of a state in which they are in agreement with each other. This scanning is performed by adjusting the Z-axis direction of the excitation laser light source 5 in the Z-axis direction of the XYZ stage 8.
このような配置では、観測用レーザビームR11の直線BCにて示される光路部分が、励起用レーザビームR21の直線CBで示される光路部分と、完全に平行(向きは逆向き)になるようにすることができ、かつXYZステージ8のZ軸方向を調整することによって、相互の高さ(シリコンウェーハ3の板面の位置)関係を変えたり、完全に一致するようにしたりすることができる。
これは、シリコンウェーハ3の外側では互いに非平行な二つのレーザビームが、シリコンウェーハ3内部では、励起用レーザビームR21と観測用レーザビームの光路の一部(図4Aでは区間CBの光路)がZ軸方向から見れば完全に一致するという理想的な状況を実現することができるということを示している。このようにして、図3に示すバルク品質評価装置では、観測用レーザビームR11と励起用レーザビームR21とを平行ビーム配置することが可能である。 In such an arrangement, the optical path portion indicated by the straight line BC of the observation laser beam R11 is completely parallel to the optical path portion indicated by the straight line CB of the excitation laser beam R21 (the direction is opposite). In addition, by adjusting the Z-axis direction of the XYZ stage 8, the mutual height (position of the plate surface of the silicon wafer 3) relationship can be changed or matched completely.
This is because two laser beams that are non-parallel to each other outside thesilicon wafer 3 and part of the optical path of the excitation laser beam R21 and the observation laser beam (in FIG. 4A, the optical path of the section CB) are inside the silicon wafer 3. This shows that an ideal situation can be realized in which they are completely coincident when viewed from the Z-axis direction. In this way, in the bulk quality evaluation apparatus shown in FIG. 3, the observation laser beam R11 and the excitation laser beam R21 can be arranged in parallel.
これは、シリコンウェーハ3の外側では互いに非平行な二つのレーザビームが、シリコンウェーハ3内部では、励起用レーザビームR21と観測用レーザビームの光路の一部(図4Aでは区間CBの光路)がZ軸方向から見れば完全に一致するという理想的な状況を実現することができるということを示している。このようにして、図3に示すバルク品質評価装置では、観測用レーザビームR11と励起用レーザビームR21とを平行ビーム配置することが可能である。 In such an arrangement, the optical path portion indicated by the straight line BC of the observation laser beam R11 is completely parallel to the optical path portion indicated by the straight line CB of the excitation laser beam R21 (the direction is opposite). In addition, by adjusting the Z-axis direction of the XYZ stage 8, the mutual height (position of the plate surface of the silicon wafer 3) relationship can be changed or matched completely.
This is because two laser beams that are non-parallel to each other outside the
この場合には、図4Cに示すシリコンウェーハ3の側面図(Y軸方向から見た図)に示した通り、励起用レーザビームR21を照射した際に生成される電子・正孔の濃度分布FDによって、観測用レーザビームR11の直線BCで示される光路は、図4Cにおける下方に曲げられ、点Cで反射したのち、直線CDで示される光路を辿り、下方に屈折を受けた直線DQに示される光路となってシリコンウェーハ3の外部に出射する。
In this case, as shown in the side view (viewed from the Y-axis direction) of the silicon wafer 3 shown in FIG. 4C, the concentration distribution FD of electrons and holes generated when the excitation laser beam R21 is irradiated. Thus, the optical path indicated by the straight line BC of the observation laser beam R11 is bent downward in FIG. 4C, reflected at the point C, followed by the optical path indicated by the straight line CD, and shown by the straight line DQ that is refracted downward. The optical path is emitted to the outside of the silicon wafer 3.
もちろん、図4Aにおいては、観測用レーザビームR11の入射角φ’=励起用レーザビームR21の入射角φの条件を満たせば、その入射角φおよび入射角φ’値が45°以外の角度であってもよい。
Of course, in FIG. 4A, if the condition of the incident angle φ ′ of the observation laser beam R11 = the incident angle φ of the excitation laser beam R21 is satisfied, the values of the incident angle φ and the incident angle φ ′ are angles other than 45 °. There may be.
なお、本実施の形態では、励起用レーザ光光源5は、XYZステージ8により、励起用レーザビームR21の出射方向を決定しているが、市販の装置により励起用レーザ光光源5の出射方向を設定するようにしてもよい。しかし、市販の装置では、光学定盤のように対称性の良い角度、例えば、45度ごとしか設定できないものが多い。そのため、シリコンウェーハ3への入射角度に関しては、高い精度を保ちながら、安価な装置(定盤)加工で実現できるという点で、入射角φ’=入射角φ=45°の配置が有利である。
In the present embodiment, the excitation laser light source 5 determines the emission direction of the excitation laser beam R21 by the XYZ stage 8, but the emission direction of the excitation laser light source 5 is determined by a commercially available device. You may make it set. However, many commercially available devices can be set only at an angle with good symmetry, for example, every 45 degrees, like an optical surface plate. Therefore, with respect to the incident angle to the silicon wafer 3, the arrangement of the incident angle φ ′ = incident angle φ = 45 ° is advantageous in that it can be realized by inexpensive apparatus (surface plate) processing while maintaining high accuracy. .
また、図4Aに示すように、入射角φ’=入射角φの条件を満たすビーム配置では、シリコンウェーハ3内での様々な反射の結果、励起用レーザビームR21の反射が観測用レーザビームR11と同じ(平行な)光路を辿り、屈折量計測用レーザビーム検出器4のCCDや、赤外レーザ光を照射する観測用レーザ光光源1に到達して、測定を阻害することがある。この対策として、光路上のレーザビーム検出器4と、観測用レーザ光光源1と前方(図4Aに示す直線SAに示すの光路の途中)にノッチフィルタを配置することで、励起用レーザビームR21がレーザビーム検出器4や観測用レーザ光光源1に到達するのを防止することができる。
As shown in FIG. 4A, in the beam arrangement satisfying the condition that the incident angle φ ′ = the incident angle φ, the reflection of the excitation laser beam R21 is reflected by the observation laser beam R11 as a result of various reflections in the silicon wafer 3. The same (parallel) optical path may be traced, reaching the CCD of the laser beam detector 4 for measuring the amount of refraction or the observation laser light source 1 for irradiating the infrared laser light, thereby obstructing the measurement. As a countermeasure, an excitation laser beam R21 is provided by arranging a notch filter in front of the laser beam detector 4 on the optical path, the observation laser light source 1 and the front (in the middle of the optical path shown by the straight line SA shown in FIG. 4A). Can be prevented from reaching the laser beam detector 4 and the observation laser light source 1.
図3に示すバルク品質評価装置では、観測用レーザ光光源1が固定で、励起用レーザ光光源5がXYZステージ8により走査される。しかし、観測用レーザ光光源1をXYZステージ8などの走査装置により走査するようにしてもよい。
In the bulk quality evaluation apparatus shown in FIG. 3, the observation laser light source 1 is fixed, and the excitation laser light source 5 is scanned by the XYZ stage 8. However, the observation laser light source 1 may be scanned by a scanning device such as the XYZ stage 8.
上に挙げた実施の形態では、励起用レーザの照射によって生成されたフリーキャリアの不均一な濃度分布FD(ウェーハ内の位置の関数としての濃度の不均一)が時間によらず、一定になるように制御された条件下(以下、定常状態と呼ぶ)で行われるという、本評価原理を用いた評価法のうちでも、比較的単純かつ簡単な方法である。
In the embodiment described above, the non-uniform concentration distribution FD (non-uniform concentration as a function of the position in the wafer) of free carriers generated by irradiation with the excitation laser is constant regardless of time. Among the evaluation methods using this evaluation principle, which is performed under such controlled conditions (hereinafter referred to as a steady state), it is a relatively simple and simple method.
この他にも、同じ原理に基づく以下のような有効な品質評価法の実施例を挙げることができる。
例えば、屈折ビーム(屈折したレーザビームR13)の時間変化を観測する評価法である。
励起用レーザビームR21の照射によって生成されたフリーキャリアの不均一な濃度分布FD(ウェーハ内の位置の関数としての濃度の不均一)が時間とともに変化(減衰)するという状態(以下、非定常状態と呼ぶ)を利用して、観測用レーザビームの到達点(図1の点Pb)が時間変化する様子の観測結果から、フリーキャリア寿命を算出・評価する。この非定常状態を使ってフリーキャリア寿命を算出・評価するバルク品質評価装置を図5に示す。なお、図5においては、図3と同じ構成のものは同符号を付して説明を省略する。 In addition, examples of the following effective quality evaluation methods based on the same principle can be given.
For example, there is an evaluation method for observing a temporal change of a refracted beam (refracted laser beam R13).
A state in which the non-uniform concentration distribution FD (non-uniform concentration as a function of the position in the wafer) generated by irradiation of the excitation laser beam R21 changes (decays) with time (hereinafter referred to as an unsteady state). Is used to calculate / evaluate the free carrier lifetime from the observation result that the arrival point of the observation laser beam (point Pb in FIG. 1) changes with time. FIG. 5 shows a bulk quality evaluation apparatus that calculates and evaluates the free carrier lifetime using this unsteady state. In FIG. 5, the same components as those in FIG.
例えば、屈折ビーム(屈折したレーザビームR13)の時間変化を観測する評価法である。
励起用レーザビームR21の照射によって生成されたフリーキャリアの不均一な濃度分布FD(ウェーハ内の位置の関数としての濃度の不均一)が時間とともに変化(減衰)するという状態(以下、非定常状態と呼ぶ)を利用して、観測用レーザビームの到達点(図1の点Pb)が時間変化する様子の観測結果から、フリーキャリア寿命を算出・評価する。この非定常状態を使ってフリーキャリア寿命を算出・評価するバルク品質評価装置を図5に示す。なお、図5においては、図3と同じ構成のものは同符号を付して説明を省略する。 In addition, examples of the following effective quality evaluation methods based on the same principle can be given.
For example, there is an evaluation method for observing a temporal change of a refracted beam (refracted laser beam R13).
A state in which the non-uniform concentration distribution FD (non-uniform concentration as a function of the position in the wafer) generated by irradiation of the excitation laser beam R21 changes (decays) with time (hereinafter referred to as an unsteady state). Is used to calculate / evaluate the free carrier lifetime from the observation result that the arrival point of the observation laser beam (point Pb in FIG. 1) changes with time. FIG. 5 shows a bulk quality evaluation apparatus that calculates and evaluates the free carrier lifetime using this unsteady state. In FIG. 5, the same components as those in FIG.
図5に示すバルク品質評価装置は、励起用レーザ光光源5と、シリコンウェーハ3との間に、励起光である励起用レーザビームR21をシリコンウェーハ3へ不到達とする手段であるシャッタ装置9が配置されている。
このシャッタ装置9により励起用レーザビームR21を遮蔽すると、励起用レーザビームR21により生成されていたフリーキャリアの濃度が低下する。従って、図6に示すように定常状態から非定常状態となり、屈折角θが減衰して徐々に0に近づく。これをレーザビーム検出器4により測定して、図示しない制御装置にて、指数関数的な減衰(点Paから点Pbまでの距離の減少)の時定数からフリーキャリア寿命を算出・評価する。屈折角θが0になる時間が長いと、フリーキャリア寿命が長いことを示すので、シリコンウェーハ3が品質良いと評価できる。 The bulk quality evaluation apparatus shown in FIG. 5 is a shutter device 9 that is a means for making the excitation laser beam R21, which is excitation light, not reach thesilicon wafer 3 between the excitation laser light source 5 and the silicon wafer 3. Is arranged.
When the excitation laser beam R21 is shielded by the shutter device 9, the concentration of free carriers generated by the excitation laser beam R21 decreases. Therefore, as shown in FIG. 6, the steady state is changed to the unsteady state, and the refraction angle θ is attenuated and gradually approaches zero. This is measured by the laser beam detector 4, and a free carrier lifetime is calculated and evaluated from a time constant of exponential decay (a decrease in the distance from the point Pa to the point Pb) by a control device (not shown). If the time when the refraction angle θ is 0 is long, it indicates that the free carrier life is long, so that thesilicon wafer 3 can be evaluated as having good quality.
このシャッタ装置9により励起用レーザビームR21を遮蔽すると、励起用レーザビームR21により生成されていたフリーキャリアの濃度が低下する。従って、図6に示すように定常状態から非定常状態となり、屈折角θが減衰して徐々に0に近づく。これをレーザビーム検出器4により測定して、図示しない制御装置にて、指数関数的な減衰(点Paから点Pbまでの距離の減少)の時定数からフリーキャリア寿命を算出・評価する。屈折角θが0になる時間が長いと、フリーキャリア寿命が長いことを示すので、シリコンウェーハ3が品質良いと評価できる。 The bulk quality evaluation apparatus shown in FIG. 5 is a shutter device 9 that is a means for making the excitation laser beam R21, which is excitation light, not reach the
When the excitation laser beam R21 is shielded by the shutter device 9, the concentration of free carriers generated by the excitation laser beam R21 decreases. Therefore, as shown in FIG. 6, the steady state is changed to the unsteady state, and the refraction angle θ is attenuated and gradually approaches zero. This is measured by the laser beam detector 4, and a free carrier lifetime is calculated and evaluated from a time constant of exponential decay (a decrease in the distance from the point Pa to the point Pb) by a control device (not shown). If the time when the refraction angle θ is 0 is long, it indicates that the free carrier life is long, so that the
なお、図5に示すバルク品質評価装置では、シャッタ装置9により励起用レーザビームR21を遮蔽して、シリコンウェーハ3へ不到達となるようにしていたが、励起用レーザ光源5の電源を投入・切断したり、励起用レーザ光源5の内部で励起用レーザビームR21が出射しないようにしたりして不到達とすることができる。また、励起用レーザビームR21の出射方向を変更して不到達とすることもできる。
In the bulk quality evaluation apparatus shown in FIG. 5, the excitation laser beam R21 is shielded by the shutter device 9 so that it does not reach the silicon wafer 3. However, the excitation laser light source 5 is turned on. It is possible to make the laser beam non-reachable by cutting or preventing the excitation laser beam R21 from being emitted inside the excitation laser light source 5. Further, the direction of emission of the excitation laser beam R21 can be changed to make it non-reachable.
この場合、到達点の時間変化はマイクロ秒の時間スケールで起こる場合を想定する必要があるため、その様子を観測するためには、レーザビーム検出器4は、CCDよりも応答速度の速いフォトダイオードアレイやCMOSイメージセンサなどの高速度光電デバイスを用いる。
In this case, since it is necessary to assume a case where the time change of the arrival point occurs on a time scale of microseconds, in order to observe the state, the laser beam detector 4 is a photodiode having a faster response speed than the CCD. A high speed photoelectric device such as an array or a CMOS image sensor is used.
上述した図3および図5に示す実施の形態では、シリコンウェーハ3の表面に対してフリーキャリア生成(励起)用レーザビーム(以下、励起用レーザビームR21と称す。)を斜めから照射した例を示したが、この例は、基本的には、図7Aに示すレーザビームが平行となるように配置した場合(以下、このような配置でのレーザビームを平行ビームと称する。)と同様の作用効果を示す。すなわち、励起用レーザビームR21と観測用レーザビームR11をシリコンウェーハ3の表面に対して距離dだけ離れた平行ビームとして照射する。図7B,図7Cに示すように、シリコンウェーハ3の内部では、励起用レーザビームR21の光軸の回りにフリーキャリアの濃度分布FDが生じ、励起用レーザビームR21の光軸の近傍を観測用レーザビームR11が通過する際、濃度分布FDの傾きにより屈折が起こる。シリコンウェーハ3を透過したレーザビームR13は、フリーキャリアの濃度分布の傾きに応じた屈折角θでシリコンウェーハ3を透過し、レーザビーム検出器4で検知される。観測用レーザビームR11と励起用レーザビームR21の距離dを“+”(図7Cのように、観測用レーザビームR11の到達点が励起用レーザビームR21の到達点の右側となる状態)から“0”(二つのビームの到達点が重なる状態)を経て“-”(観測用レーザビームR11到達点が励起用レーザビームR21の到達点の左側となる状態)まで相対的に移動させつつ屈折角θを計測する。屈折角θが左側に最も大きくなる場合の距離dと、右側に最も大きくなる場合の距離dとを測定する。これらの距離dの値からシリコンウェーハ3の品質を評価することができる。
In the embodiment shown in FIGS. 3 and 5 described above, an example in which the surface of the silicon wafer 3 is irradiated with a free carrier generation (excitation) laser beam (hereinafter referred to as excitation laser beam R21) from an oblique direction. Although shown, this example is basically the same as the case where the laser beams shown in FIG. 7A are arranged in parallel (hereinafter, the laser beam in such an arrangement is referred to as a parallel beam). Show the effect. That is, the excitation laser beam R21 and the observation laser beam R11 are irradiated as parallel beams that are separated from the surface of the silicon wafer 3 by a distance d. As shown in FIGS. 7B and 7C, inside the silicon wafer 3, a free carrier concentration distribution FD is generated around the optical axis of the excitation laser beam R21, and the vicinity of the optical axis of the excitation laser beam R21 is used for observation. When the laser beam R11 passes, refraction occurs due to the gradient of the concentration distribution FD. The laser beam R13 transmitted through the silicon wafer 3 passes through the silicon wafer 3 at a refraction angle θ corresponding to the gradient of the free carrier concentration distribution, and is detected by the laser beam detector 4. The distance d between the observation laser beam R11 and the excitation laser beam R21 is changed from “+” (a state where the arrival point of the observation laser beam R11 is on the right side of the arrival point of the excitation laser beam R21 as shown in FIG. 7C). Refraction angle while moving relatively to “−” (state where the observation laser beam R11 arrival point is to the left of the arrival point of the excitation laser beam R21) via 0 ”(state where the arrival points of the two beams overlap) Measure θ. The distance d when the refraction angle θ is largest on the left side and the distance d when the refraction angle θ is largest on the right side are measured. The quality of the silicon wafer 3 can be evaluated from the value of the distance d.
図8A,図8Bは、観測光と励起光とが立体交差した状態のビーム配置の例を示す。図5に示すバルク品質評価装置での平行ビーム配置では、励起用レーザビームR21と観測用レーザビームR11とが、シリコンウェーハ3に対して同じおもて面側から入射される。図9に示すバルク品質評価装置での立体交差ビーム配置では、シリコンウェーハ3のおもて面側から励起用レーザビームR21を照射し、シリコンウェーハ3の側部(厚み方向)から観測用レーザビームR11を照射するものである。
8A and 8B show examples of beam arrangement in a state where the observation light and the excitation light are three-dimensionally crossed. In the parallel beam arrangement in the bulk quality evaluation apparatus shown in FIG. 5, the excitation laser beam R21 and the observation laser beam R11 are incident on the silicon wafer 3 from the same front surface side. In the three-dimensional cross beam arrangement in the bulk quality evaluation apparatus shown in FIG. 9, the excitation laser beam R21 is irradiated from the front surface side of the silicon wafer 3, and the observation laser beam is irradiated from the side portion (thickness direction) of the silicon wafer 3. Irradiates R11.
励起用レーザビームR21と観測用レーザビームR11とは、光軸が交わらない非交差状態から交差状態を経て、非交差状態となるようにし、励起用レーザビームR21の光軸の回りに生じたキャリア濃度分布によって屈折した観測用レーザビームR13の角度θで品質を評価するようにする。
この立体交差ビーム配置の例においても、励起用レーザビームR21と観測用レーザビームR11との光軸同士が非交差状態から交差状態に遷移し、そして非交差状態となるようにすれば、励起用レーザビームR21をシリコンウェーハ3の表面に対して必ずしも垂直に照射する必要はなく、傾斜するように照射してもよい。 The excitation laser beam R21 and the observation laser beam R11 are changed from a non-crossing state where the optical axes do not intersect to a non-crossing state, and carriers generated around the optical axis of the excitation laser beam R21. The quality is evaluated by the angle θ of the observation laser beam R13 refracted by the concentration distribution.
Also in this example of the three-dimensional crossed beam arrangement, if the optical axes of the excitation laser beam R21 and the observation laser beam R11 are changed from the non-crossing state to the crossing state and become the non-crossing state, the excitation laser beam R21 The laser beam R21 is not necessarily irradiated perpendicularly to the surface of thesilicon wafer 3, and may be irradiated so as to be inclined.
この立体交差ビーム配置の例においても、励起用レーザビームR21と観測用レーザビームR11との光軸同士が非交差状態から交差状態に遷移し、そして非交差状態となるようにすれば、励起用レーザビームR21をシリコンウェーハ3の表面に対して必ずしも垂直に照射する必要はなく、傾斜するように照射してもよい。 The excitation laser beam R21 and the observation laser beam R11 are changed from a non-crossing state where the optical axes do not intersect to a non-crossing state, and carriers generated around the optical axis of the excitation laser beam R21. The quality is evaluated by the angle θ of the observation laser beam R13 refracted by the concentration distribution.
Also in this example of the three-dimensional crossed beam arrangement, if the optical axes of the excitation laser beam R21 and the observation laser beam R11 are changed from the non-crossing state to the crossing state and become the non-crossing state, the excitation laser beam R21 The laser beam R21 is not necessarily irradiated perpendicularly to the surface of the
図3に示すバルク品質評価装置では、観測用レーザビームR11に対してシリコンウェーハ3が直角になっていなくても、シリコンウェーハ3の高い面平行度のために、シリコンウェーハ3を透過してきたレーザビームR12は入射光ビームからわずかに平行移動するが、その進行方向は入射光の進行方向からずれることはない。つまり評価に当たり、観測用レーザビームR11の方向に対してシリコンウェーハ3の面の角度を正確にセットするという点に特別な注意を払う必要性がなく、ウェーハセッティングに手間や熟練を要する必要性は生じない。この点も、評価操作の簡単化による評価速度向上に寄与する。
In the bulk quality evaluation apparatus shown in FIG. 3, even if the silicon wafer 3 is not perpendicular to the observation laser beam R11, the laser transmitted through the silicon wafer 3 due to the high parallelism of the silicon wafer 3. The beam R12 is slightly translated from the incident light beam, but its traveling direction does not deviate from the traveling direction of the incident light. In other words, in the evaluation, it is not necessary to pay special attention to accurately setting the angle of the surface of the silicon wafer 3 with respect to the direction of the observation laser beam R11. Does not occur. This point also contributes to an improvement in evaluation speed by simplifying the evaluation operation.
図3におけるバルク品質評価装置では、シリコンウェーハ3を透過してきたレーザビームR12をレーザビーム検出器4にて計測していたが、図9に示す他の実施の形態に係るバルク品質評価装置では、シリコンウェーハ3を反射したレーザビームR14をレーザビーム検出器4にて計測することもできる。
In the bulk quality evaluation apparatus in FIG. 3, the laser beam R12 transmitted through the silicon wafer 3 is measured by the laser beam detector 4, but in the bulk quality evaluation apparatus according to another embodiment shown in FIG. The laser beam R14 reflected from the silicon wafer 3 can also be measured by the laser beam detector 4.
ここで、図9に示すバルク品質評価装置を説明する。なお、図9においては、図3と同じ構成のものは同符号を付して説明を省略する。
図9に示すバルク品質評価装置は、レーザビーム検出器4が、シリコンウェーハ3からの反射光(レーザビームR14)を計測する位置に配置されている。
このバルク品質評価装置においては、励起用レーザ光源5からの励起用レーザビームR21をシリコンウェーハ3にて反射させる。シリコンウェーハ3の照射面31は、励起用レーザビームR21や観測光レーザビームR11が入射できるが、照射面と反対側となる裏面は、レーザビームが出射できないように、鏡面加工が施されているため。鏡面加工は、例えば、シリコンウェーハ3の裏面に反射膜を設けるなどすることができる。この反射膜により反射面32が、シリコンウェーハ3の裏面に形成される。
観測用レーザビームR11がシリコンウェーハ3にて反射したレーザビームR14によりシリコンウェーハ3を評価する方法を図10A,図10Bおよび図11A,図11Bに基づいて説明する。 Here, the bulk quality evaluation apparatus shown in FIG. 9 will be described. In FIG. 9, the same components as those in FIG.
In the bulk quality evaluation apparatus shown in FIG. 9, the laser beam detector 4 is disposed at a position where the reflected light (laser beam R14) from thesilicon wafer 3 is measured.
In this bulk quality evaluation apparatus, the excitation laser beam R 21 from the excitationlaser light source 5 is reflected by the silicon wafer 3. The irradiation surface 31 of the silicon wafer 3 can receive the excitation laser beam R21 and the observation light laser beam R11, but the back surface opposite to the irradiation surface is mirror-finished so that the laser beam cannot be emitted. For. For example, the mirror finish can be provided with a reflective film on the back surface of the silicon wafer 3. A reflective surface 32 is formed on the back surface of the silicon wafer 3 by this reflective film.
A method for evaluating thesilicon wafer 3 with the laser beam R14 reflected by the observation laser beam R11 on the silicon wafer 3 will be described with reference to FIGS. 10A, 10B, 11A, and 11B.
図9に示すバルク品質評価装置は、レーザビーム検出器4が、シリコンウェーハ3からの反射光(レーザビームR14)を計測する位置に配置されている。
このバルク品質評価装置においては、励起用レーザ光源5からの励起用レーザビームR21をシリコンウェーハ3にて反射させる。シリコンウェーハ3の照射面31は、励起用レーザビームR21や観測光レーザビームR11が入射できるが、照射面と反対側となる裏面は、レーザビームが出射できないように、鏡面加工が施されているため。鏡面加工は、例えば、シリコンウェーハ3の裏面に反射膜を設けるなどすることができる。この反射膜により反射面32が、シリコンウェーハ3の裏面に形成される。
観測用レーザビームR11がシリコンウェーハ3にて反射したレーザビームR14によりシリコンウェーハ3を評価する方法を図10A,図10Bおよび図11A,図11Bに基づいて説明する。 Here, the bulk quality evaluation apparatus shown in FIG. 9 will be described. In FIG. 9, the same components as those in FIG.
In the bulk quality evaluation apparatus shown in FIG. 9, the laser beam detector 4 is disposed at a position where the reflected light (laser beam R14) from the
In this bulk quality evaluation apparatus, the excitation laser beam R 21 from the excitation
A method for evaluating the
図10Aおよび図10Bでは、シリコンウェーハ3の厚み方向(左右方向)をX軸、高さ方向(上下方向)をY軸、奥行き方向をZ軸として、シリコンウェーハ3を図示している。
図9Aに示すように、Z軸方向から見ると、直線SAにて示される観測用レーザビームR11は、点Aにて入射すると共に、入射角と同じ反射角で、直線ATで示される方向へ反射する。シリコンウェーハ3内へ入射した観測用レーザビームR11は、反射面32と照射面31との間で、直線AB、直線BC、直線CD、直線DEおよび直線EFで示される反射を繰り返しながら、反射光として進行する。この状態を図10Bに示すように、Y軸方向から見ると、入射光、反射光および出射光は全て一つの直線に重なる。 10A and 10B, thesilicon wafer 3 is illustrated with the thickness direction (left-right direction) of the silicon wafer 3 as the X-axis, the height direction (up-down direction) as the Y-axis, and the depth direction as the Z-axis.
As shown in FIG. 9A, when viewed from the Z-axis direction, the observation laser beam R11 indicated by the straight line SA is incident at the point A, and has the same reflection angle as the incident angle and in the direction indicated by the straight line AT. reflect. The observation laser beam R11 incident on thesilicon wafer 3 is reflected between the reflecting surface 32 and the irradiation surface 31 while repeating reflection shown by the straight line AB, straight line BC, straight line CD, straight line DE, and straight line EF. Progress as. As shown in FIG. 10B, when this state is viewed from the Y-axis direction, the incident light, the reflected light, and the emitted light all overlap with one straight line.
図9Aに示すように、Z軸方向から見ると、直線SAにて示される観測用レーザビームR11は、点Aにて入射すると共に、入射角と同じ反射角で、直線ATで示される方向へ反射する。シリコンウェーハ3内へ入射した観測用レーザビームR11は、反射面32と照射面31との間で、直線AB、直線BC、直線CD、直線DEおよび直線EFで示される反射を繰り返しながら、反射光として進行する。この状態を図10Bに示すように、Y軸方向から見ると、入射光、反射光および出射光は全て一つの直線に重なる。 10A and 10B, the
As shown in FIG. 9A, when viewed from the Z-axis direction, the observation laser beam R11 indicated by the straight line SA is incident at the point A, and has the same reflection angle as the incident angle and in the direction indicated by the straight line AT. reflect. The observation laser beam R11 incident on the
この状態で、図11A,図11Bに示すように、点Cに励起用レーザビームR11を、XY平面に平行に照射する。
この励起用レーザビームR11の照射によって、フリーキャリアの濃度分布FDが生じる。このとき、励起用レーザビームR11の入射角を調整して、シリコンウェーハ3内部で反射した直線BCにて示されるレーザビームが、濃度分布FDの中心から一側(図11Bにおいては濃度分布FDの中心から上側)を通過するようにする。
この励起用レーザビームR11の照射により、反射面32の点Bで反射したレーザビームは、濃度分布FDを通過する際に、曲線BC’で示すように電子・正孔濃度が高い濃度分布FDの中心側(図11Bにおいては濃度分布FDの中心から下側)に屈折させられ、点C’に到達する。 In this state, as shown in FIGS. 11A and 11B, the point C is irradiated with the excitation laser beam R11 parallel to the XY plane.
The irradiation with the excitation laser beam R11 generates a free carrier concentration distribution FD. At this time, the incident angle of the excitation laser beam R11 is adjusted, and the laser beam indicated by the straight line BC reflected inside thesilicon wafer 3 is one side from the center of the concentration distribution FD (in FIG. 11B, the concentration distribution FD It passes through the upper side from the center.
When the laser beam reflected at the point B on the reflectingsurface 32 by the irradiation of the excitation laser beam R11 passes through the concentration distribution FD, the concentration distribution FD has a high electron / hole concentration as shown by a curve BC ′. The light is refracted to the center side (downward from the center of the concentration distribution FD in FIG. 11B) and reaches a point C ′.
この励起用レーザビームR11の照射によって、フリーキャリアの濃度分布FDが生じる。このとき、励起用レーザビームR11の入射角を調整して、シリコンウェーハ3内部で反射した直線BCにて示されるレーザビームが、濃度分布FDの中心から一側(図11Bにおいては濃度分布FDの中心から上側)を通過するようにする。
この励起用レーザビームR11の照射により、反射面32の点Bで反射したレーザビームは、濃度分布FDを通過する際に、曲線BC’で示すように電子・正孔濃度が高い濃度分布FDの中心側(図11Bにおいては濃度分布FDの中心から下側)に屈折させられ、点C’に到達する。 In this state, as shown in FIGS. 11A and 11B, the point C is irradiated with the excitation laser beam R11 parallel to the XY plane.
The irradiation with the excitation laser beam R11 generates a free carrier concentration distribution FD. At this time, the incident angle of the excitation laser beam R11 is adjusted, and the laser beam indicated by the straight line BC reflected inside the
When the laser beam reflected at the point B on the reflecting
シリコンウェーハ3の照射面31に到達したレーザビームは、一部が直線C’Uで示される方向に反射して出射する。残余のレーザビームは、照射面31にて反射して、直線C’Dで示されるレーザビームとなってシリコンウェーハ3に戻る。
シリコンウェーハ3の照射面31から出射した直線C’Uで示されるレーザビームは、フリーキャリアの濃度分布FDの影響を受け屈折しているため、シリコンウェーハ3から垂直に出射せずに、XY平面からずれる。 A part of the laser beam reaching theirradiation surface 31 of the silicon wafer 3 is reflected and emitted in the direction indicated by the straight line C′U. The remaining laser beam is reflected by the irradiation surface 31 and returns to the silicon wafer 3 as a laser beam indicated by a straight line C′D.
Since the laser beam indicated by the straight line C′U emitted from theirradiation surface 31 of the silicon wafer 3 is refracted due to the influence of the free carrier concentration distribution FD, the laser beam is not emitted perpendicularly from the silicon wafer 3 but the XY plane. Deviate.
シリコンウェーハ3の照射面31から出射した直線C’Uで示されるレーザビームは、フリーキャリアの濃度分布FDの影響を受け屈折しているため、シリコンウェーハ3から垂直に出射せずに、XY平面からずれる。 A part of the laser beam reaching the
Since the laser beam indicated by the straight line C′U emitted from the
このように、シリコンウェーハ3内で反射した観測用レーザビームR11に影響を与える励起用レーザビームR11の照射位置を、観測用レーザビームR11と、非交差状態から交差状態を経て、非交差状態となるように走査する。
まず、励起用レーザビームR21の照射位置が、観測用レーザビームR11の反射光の位置と十分に離れている場合には、観測用レーザビームR11の反射光が濃度分布FDの影響を受けないため、図10A,図10Bと同様な光路となる。 In this way, the irradiation position of the excitation laser beam R11 that affects the observation laser beam R11 reflected in thesilicon wafer 3 is changed from the non-crossing state to the non-crossing state with the observation laser beam R11. Scan as follows.
First, when the irradiation position of the excitation laser beam R21 is sufficiently away from the position of the reflected light of the observation laser beam R11, the reflected light of the observation laser beam R11 is not affected by the concentration distribution FD. The optical path is the same as in FIGS. 10A and 10B.
まず、励起用レーザビームR21の照射位置が、観測用レーザビームR11の反射光の位置と十分に離れている場合には、観測用レーザビームR11の反射光が濃度分布FDの影響を受けないため、図10A,図10Bと同様な光路となる。 In this way, the irradiation position of the excitation laser beam R11 that affects the observation laser beam R11 reflected in the
First, when the irradiation position of the excitation laser beam R21 is sufficiently away from the position of the reflected light of the observation laser beam R11, the reflected light of the observation laser beam R11 is not affected by the concentration distribution FD. The optical path is the same as in FIGS. 10A and 10B.
次に、励起用レーザビームR21を走査して、観測用レーザビームR11の反射光が濃度分布FDの影響範囲(濃度分布FDの中心から一側)に入ると、図11A,図11Bに示すように濃度分布FDの影響を受け屈折し始める。
次に、励起用レーザビームR21が観測用レーザビームR11の反射光と交差する位置、すなわち、観測用レーザビームR11の反射光が濃度分布のピークの位置と一致する状態では、濃度勾配がゼロであるため屈折は起こらないため、図10A,図10Bと同様な光路となる。
次に、励起用レーザビームR21を走査して、観測用レーザビームR11の反射光が濃度分布FDの中心から他側に移ると、反射光は図11A,図11Bに示す屈折の方向とは反対側に屈折し始める。
更に、励起用レーザビームR21の照射位置が、観測用レーザビームR11の反射光の位置と十分に離れ、その影響が反射光に及ばない状態になると、反射光はシリコンウェーハ3から外部に出射するときに、シリコンウェーハ3に直角になり、元々の光路に戻る。 Next, when the excitation laser beam R21 is scanned and the reflected light of the observation laser beam R11 enters the range of influence of the concentration distribution FD (one side from the center of the concentration distribution FD), as shown in FIGS. 11A and 11B. Refracts under the influence of the density distribution FD.
Next, when the excitation laser beam R21 intersects with the reflected light of the observation laser beam R11, that is, when the reflected light of the observation laser beam R11 coincides with the peak position of the concentration distribution, the concentration gradient is zero. Since there is no refraction, the optical path is the same as in FIGS. 10A and 10B.
Next, when the excitation laser beam R21 is scanned and the reflected light of the observation laser beam R11 moves from the center of the concentration distribution FD to the other side, the reflected light is opposite to the direction of refraction shown in FIGS. 11A and 11B. Begin to refract to the side.
Further, when the irradiation position of the excitation laser beam R21 is sufficiently separated from the position of the reflected light of the observation laser beam R11 and the influence does not reach the reflected light, the reflected light is emitted from thesilicon wafer 3 to the outside. Sometimes it becomes perpendicular to the silicon wafer 3 and returns to its original optical path.
次に、励起用レーザビームR21が観測用レーザビームR11の反射光と交差する位置、すなわち、観測用レーザビームR11の反射光が濃度分布のピークの位置と一致する状態では、濃度勾配がゼロであるため屈折は起こらないため、図10A,図10Bと同様な光路となる。
次に、励起用レーザビームR21を走査して、観測用レーザビームR11の反射光が濃度分布FDの中心から他側に移ると、反射光は図11A,図11Bに示す屈折の方向とは反対側に屈折し始める。
更に、励起用レーザビームR21の照射位置が、観測用レーザビームR11の反射光の位置と十分に離れ、その影響が反射光に及ばない状態になると、反射光はシリコンウェーハ3から外部に出射するときに、シリコンウェーハ3に直角になり、元々の光路に戻る。 Next, when the excitation laser beam R21 is scanned and the reflected light of the observation laser beam R11 enters the range of influence of the concentration distribution FD (one side from the center of the concentration distribution FD), as shown in FIGS. 11A and 11B. Refracts under the influence of the density distribution FD.
Next, when the excitation laser beam R21 intersects with the reflected light of the observation laser beam R11, that is, when the reflected light of the observation laser beam R11 coincides with the peak position of the concentration distribution, the concentration gradient is zero. Since there is no refraction, the optical path is the same as in FIGS. 10A and 10B.
Next, when the excitation laser beam R21 is scanned and the reflected light of the observation laser beam R11 moves from the center of the concentration distribution FD to the other side, the reflected light is opposite to the direction of refraction shown in FIGS. 11A and 11B. Begin to refract to the side.
Further, when the irradiation position of the excitation laser beam R21 is sufficiently separated from the position of the reflected light of the observation laser beam R11 and the influence does not reach the reflected light, the reflected light is emitted from the
このように励起用レーザビームR21して、反射光の屈折をレーザビーム検出器4にて順次、受光し、その位置から分布濃度FDの半値幅を計測することで、シリコンウェーハ3のキャリア寿命を知ることができ、品質を評価することができる。
Thus, the excitation laser beam R21 is used to sequentially receive the refraction of the reflected light by the laser beam detector 4, and the half-value width of the distribution density FD is measured from the position, thereby increasing the carrier life of the silicon wafer 3. You can know and evaluate the quality.
上述した本発明の実施の形態においては、励起用レーザ光源5として、波長635nm:フォトンエネルギー1.95eVの励起用レーザビームを用いた例を示したが、フリーキャリア生成(励起)用レーザ光源5としては、シリコンウェーハの内部までキャリア生成が可能な、例えば、波長1064nmのYAG(Yttrium Aluminum Garnet)レーザを用いることができる。
In the embodiment of the present invention described above, an example in which an excitation laser beam having a wavelength of 635 nm and a photon energy of 1.95 eV is used as the excitation laser light source 5 has been described. However, a free carrier generation (excitation) laser light source 5 is used. For example, a YAG (Yttrium Aluminum Garnet) laser having a wavelength of 1064 nm capable of generating carriers to the inside of the silicon wafer can be used.
半導体や絶縁体に光を照射すると、価電子バンドの電子が電導バンドに励起されるために光の吸収が起こる。多くの結晶固体では、このような電子の励起のみによっておこる光の吸収は、価電子バンドにいた(始状態の)電子の波数ベクトルと励起された後の電導バンドにいる(終状態の)電子の波数ベクトルが等しい場合に限られる(これを垂直遷移則と呼ぶ)。
この規則をシリコンにおける光吸収の場合に当てはめてみると、価電子バンドの最高エネルギー状態にいる電子が同じ波数ベクトルの電導バンドに励起されることによって強い光吸収が起こる。この励起エネルギーを直接遷移吸収端と呼ぶ。
しかし、実際のシリコンの光吸収は、この直接遷移吸収端よりも低いところから起こる。これは、シリコンにおけるバンド間光遷移が、電子の励起のみによっておこるのではなく、格子振動(フォノン)が電子の励起過程に関与するためである。
つまり、光の吸収と同時にフォノンを発射(生成)をともなってバンド間遷移が起こり得る。このような場合の光による電子の励起は、垂直遷移則にとらわれず、価電子バンドの最高エネルギー状態と電導バンドの最低エネルギー状態の間、すなわちバンドギャップの間で起こることが可能になる。このような励起のエネルギーを間接遷移吸収端という。 When light is applied to a semiconductor or an insulator, light is absorbed because electrons in the valence band are excited to the conduction band. In many crystalline solids, the absorption of light caused only by the excitation of electrons is the electron wave number vector in the valence band (initial state) and the electron in the conduction band after excitation (final state). Only when the wave vector is equal (this is called the vertical transition rule).
When this rule is applied to the case of light absorption in silicon, strong light absorption occurs when electrons in the highest energy state of the valence band are excited to the conduction band of the same wave vector. This excitation energy is called the direct transition absorption edge.
However, the actual light absorption of silicon occurs from a position lower than the direct transition absorption edge. This is because interband optical transition in silicon does not occur only by excitation of electrons, but lattice vibration (phonon) is involved in the excitation process of electrons.
That is, an interband transition may occur with the emission (generation) of phonons simultaneously with the absorption of light. In such a case, excitation of electrons by light can be performed between the highest energy state of the valence band and the lowest energy state of the conduction band, that is, between the band gaps, without being bound by the vertical transition law. Such excitation energy is called an indirect transition absorption edge.
この規則をシリコンにおける光吸収の場合に当てはめてみると、価電子バンドの最高エネルギー状態にいる電子が同じ波数ベクトルの電導バンドに励起されることによって強い光吸収が起こる。この励起エネルギーを直接遷移吸収端と呼ぶ。
しかし、実際のシリコンの光吸収は、この直接遷移吸収端よりも低いところから起こる。これは、シリコンにおけるバンド間光遷移が、電子の励起のみによっておこるのではなく、格子振動(フォノン)が電子の励起過程に関与するためである。
つまり、光の吸収と同時にフォノンを発射(生成)をともなってバンド間遷移が起こり得る。このような場合の光による電子の励起は、垂直遷移則にとらわれず、価電子バンドの最高エネルギー状態と電導バンドの最低エネルギー状態の間、すなわちバンドギャップの間で起こることが可能になる。このような励起のエネルギーを間接遷移吸収端という。 When light is applied to a semiconductor or an insulator, light is absorbed because electrons in the valence band are excited to the conduction band. In many crystalline solids, the absorption of light caused only by the excitation of electrons is the electron wave number vector in the valence band (initial state) and the electron in the conduction band after excitation (final state). Only when the wave vector is equal (this is called the vertical transition rule).
When this rule is applied to the case of light absorption in silicon, strong light absorption occurs when electrons in the highest energy state of the valence band are excited to the conduction band of the same wave vector. This excitation energy is called the direct transition absorption edge.
However, the actual light absorption of silicon occurs from a position lower than the direct transition absorption edge. This is because interband optical transition in silicon does not occur only by excitation of electrons, but lattice vibration (phonon) is involved in the excitation process of electrons.
That is, an interband transition may occur with the emission (generation) of phonons simultaneously with the absorption of light. In such a case, excitation of electrons by light can be performed between the highest energy state of the valence band and the lowest energy state of the conduction band, that is, between the band gaps, without being bound by the vertical transition law. Such excitation energy is called an indirect transition absorption edge.
従って、エネルギーを増加させながらシリコンのバンド間光遷移(による光吸収)を考えると、まずバンドギャップエネルギー(1.14eV)に対応する間接遷移吸収端から弱い吸収が始まり、直接遷移吸収端に達すると急激に強い吸収が始まるという振る舞いを示す。従って、光吸収の強度の観点からは、間接遷移吸収端と直接遷移吸収端の間では吸収(よって電子の励起)は起こるが非常に弱い。直接遷移吸収端以上のエネルギーの光に対しては、金属と同様な光学物性を示し、光はほとんど反射されて、結晶内部には到達しない。
Therefore, when considering the interband optical transition (by light absorption) of silicon while increasing the energy, first, weak absorption starts from the indirect transition absorption edge corresponding to the band gap energy (1.14 eV) and reaches the direct transition absorption edge. Then, it shows the behavior that strong absorption starts suddenly. Therefore, from the viewpoint of light absorption intensity, absorption (and hence excitation of electrons) occurs between the indirect transition absorption edge and the direct transition absorption edge, but is very weak. For light with energy higher than the direct transition absorption edge, optical properties similar to those of metal are exhibited, and the light is almost reflected and does not reach the inside of the crystal.
フリーキャリア生成(励起)用レーザ光源5であるYAGレーザが発する光のエネルギーは、ちょうど間接遷移吸収端と直接遷移吸収端の間に入り、適度に電子を励起しながら結晶内部に侵入することができる。定量的には、シリコン結晶の中では、0.5mmの光の侵入(進行)長さ当たり強度(フォトン数)は約50%に低下する。
本発明ではバルクライフタイムの評価を目的としているため、評価対象になっているシリコンウェーハの内部まで電子(よって正孔も)を励起(生成)することが必要とされるが、YAGレーザを用いることによってこの目的を達成することができる。 The energy of the light emitted from the YAG laser, which is thelaser source 5 for free carrier generation (excitation), enters between the indirect transition absorption edge and the direct transition absorption edge, and can enter the crystal while appropriately exciting electrons. it can. Quantitatively, in a silicon crystal, the intensity (number of photons) per 0.5 mm light penetration (progress) length decreases to about 50%.
In the present invention, since the purpose is to evaluate the bulk lifetime, it is necessary to excite (generate) electrons (and thus holes) to the inside of the silicon wafer to be evaluated, but a YAG laser is used. This purpose can be achieved.
本発明ではバルクライフタイムの評価を目的としているため、評価対象になっているシリコンウェーハの内部まで電子(よって正孔も)を励起(生成)することが必要とされるが、YAGレーザを用いることによってこの目的を達成することができる。 The energy of the light emitted from the YAG laser, which is the
In the present invention, since the purpose is to evaluate the bulk lifetime, it is necessary to excite (generate) electrons (and thus holes) to the inside of the silicon wafer to be evaluated, but a YAG laser is used. This purpose can be achieved.
さらに、レーザ光以外にも、エネルギー、波長によっては、非コヒーレント光であるLED光を励起光、観測光とすることもできる。シリコンウェーハの中に電子および\または正孔を励起するために使われる光源に要求されるのは、バンドギャップエネルギー(1.14eV)以上で、直接遷移吸収端のエネルギー(約2eV)以下というエネルギー範囲に入るフォトンを発生することと、発する光を集光レンズなどで集光できることである。特に、レーザビームのような可干渉性(コヒーレント性)は必須ではない。LEDとして、この条件を満たすものは存在するし、更に最適なものを現在の技術で作り出すこともできる。
Furthermore, in addition to laser light, depending on energy and wavelength, LED light which is non-coherent light can be used as excitation light and observation light. A light source used to excite electrons and / or holes in a silicon wafer is required to have a band gap energy (1.14 eV) or more and a direct transition absorption edge energy (about 2 eV) or less. That is, photons that fall within the range are generated and the emitted light can be collected by a condenser lens or the like. In particular, coherence like a laser beam is not essential. There are LEDs that satisfy this condition, and more optimal LEDs can be produced with current technology.
本発明は、実用的で従来法に比べて測定速度と精度、装置操作などの点で大幅に改善されたウェーハ評価技術として、電子デバイス製造用半導体ウェーハの製造および、電子デバイス製造の技術分野に好適に利用することができる。
The present invention is practical and significantly improved in terms of measurement speed and accuracy, apparatus operation, etc. compared to conventional methods, as a semiconductor wafer manufacturing technology for electronic device manufacturing and in the technical field of electronic device manufacturing. It can be suitably used.
Claims (13)
- 評価対象とする半導体ウェーハのエネルギーバンドギャップよりも大きなエネルギーのフォトンを含む励起光を前記半導体ウェーハに照射することによって当該半導体ウェーハの内部にフリーキャリアを生成する工程と、
生成された当該フリーキャリアの濃度が不均一分布している前記半導体ウェーハの部分に、評価の対象とする物質のエネルギーバンドギャップよりも小さなフォトンエネルギーをもつ観測光を照射する工程と、
当該観測光が前記半導体ウェーハを透過あるいは反射した後に出射する角度を計測する工程と
を有する半導体ウェーハのバルク品質評価方法。 A step of generating free carriers in the semiconductor wafer by irradiating the semiconductor wafer with excitation light containing photons having energy larger than the energy band gap of the semiconductor wafer to be evaluated;
Irradiating the portion of the semiconductor wafer where the concentration of the generated free carriers is unevenly distributed with observation light having a photon energy smaller than the energy band gap of the substance to be evaluated;
And a step of measuring an angle at which the observation light is emitted after being transmitted or reflected through the semiconductor wafer. - 前記半導体ウェーハに照射していた前記励起光を不到達にする工程と、
前記観測光が、前記半導体ウェーハを透過あるいは反射した後に出射する角度の時間的な変化を計測する工程と
を有する請求項1記載の半導体ウェーハのバルク品質評価方法。 Non-reaching the excitation light that has been irradiated to the semiconductor wafer;
The method for evaluating a bulk quality of a semiconductor wafer according to claim 1, further comprising a step of measuring a temporal change in an angle at which the observation light is emitted after being transmitted or reflected through the semiconductor wafer. - 評価対象とする半導体ウェーハのエネルギーバンドギャップよりも大きなエネルギーのフォトンを含む励起光を前記半導体ウェーハに照射することによって当該半導体ウェーハの内部にフリーキャリアを生成する励起光照射手段と、
生成された当該フリーキャリアの濃度が不均一分布している前記半導体ウェーハの部分に、評価の対象とする物質のエネルギーバンドギャップよりも小さなフォトンエネルギーをもつ観測光を照射する観測光照射手段と、
当該観測光が前記半導体ウェーハを透過あるいは反射した後に出射する角度を計測する計測手段と
を有する半導体ウェーハのバルク品質評価装置。 Excitation light irradiation means for generating free carriers in the semiconductor wafer by irradiating the semiconductor wafer with excitation light containing photons having energy larger than the energy band gap of the semiconductor wafer to be evaluated,
Observation light irradiation means for irradiating the portion of the semiconductor wafer in which the concentration of the generated free carriers is unevenly distributed with observation light having a photon energy smaller than the energy band gap of the substance to be evaluated;
A bulk quality evaluation apparatus for a semiconductor wafer, comprising: measuring means for measuring an angle at which the observation light is emitted after being transmitted or reflected by the semiconductor wafer. - 前記励起光照射手段からの前記半導体ウェーハに対する励起光を不到達にする手段と、
前記観測光が、前記半導体ウェーハを透過あるいは反射した後に出射する角度の時間的な変化を計測する手段とを備えた請求項3記載の半導体ウェーハのバルク品質評価装置。 Means for making excitation light from the excitation light irradiation means non-reachable to the semiconductor wafer;
4. The semiconductor wafer bulk quality evaluation apparatus according to claim 3, further comprising means for measuring a temporal change in an angle at which the observation light is emitted after being transmitted or reflected by the semiconductor wafer. - 前記励起光照射手段は、前記励起光として、レーザ光を照射する請求項3記載の半導体ウェーハのバルク品質評価装置。 4. The semiconductor wafer bulk quality evaluation apparatus according to claim 3, wherein the excitation light irradiation means irradiates a laser beam as the excitation light.
- 前記レーザ光はYAGレーザである請求項5記載の半導体ウェーハのバルク品質評価装置。 6. The semiconductor wafer bulk quality evaluation apparatus according to claim 5, wherein the laser beam is a YAG laser.
- 前記観測光照射手段は、前記観測光として、レーザ光を照射する請求項3記載の半導体ウェーハの品質評価装置。 4. The semiconductor wafer quality evaluation apparatus according to claim 3, wherein the observation light irradiation means irradiates a laser beam as the observation light.
- 前記励起光照射手段は、前記観測光に対して、前記励起光を平行で逆向き、もしくは平行で同じ向きとなるように照射する請求項3記載の半導体ウェーハのバルク品質評価装置。 4. The semiconductor wafer bulk quality evaluation apparatus according to claim 3, wherein the excitation light irradiation means irradiates the observation light so that the excitation light is parallel and reverse, or parallel and in the same direction.
- 前記励起光照射手段および前記観測光照射手段は、前記励起光と前記観測光とを、前記半導体ウェーハの外部では互いに非平行であり、前記半導体ウェーハの内部では、平行で逆向き、または平行で同じ向き、となるように照射する請求項3記載の半導体ウェーハのバルク品質評価装置。 The excitation light irradiation means and the observation light irradiation means are configured such that the excitation light and the observation light are not parallel to each other outside the semiconductor wafer, and are parallel, opposite, or parallel inside the semiconductor wafer. 4. The semiconductor wafer bulk quality evaluation apparatus according to claim 3, wherein the irradiation is performed so as to be in the same direction.
- 前記励起光照射手段と前記観測光照射手段とは、前記励起光と前記観測光とを、前記半導体ウェーハのおもて面もしくは裏面に対して45度の入射角をもって、前記半導体ウェーハに入射するように照射する請求項9記載の半導体ウェーハのバルク品質評価装置。 The excitation light irradiation means and the observation light irradiation means make the excitation light and the observation light incident on the semiconductor wafer at an incident angle of 45 degrees with respect to the front surface or the back surface of the semiconductor wafer. The apparatus for bulk quality evaluation of a semiconductor wafer according to claim 9, wherein irradiation is performed as described above.
- 前記励起光照射手段は、前記観測光に対して、前記励起光を傾斜するように照射する請求項3記載の半導体ウェーハの品質評価装置 The quality evaluation apparatus for a semiconductor wafer according to claim 3, wherein the excitation light irradiation means irradiates the excitation light so as to be inclined with respect to the observation light.
- 前記励起光照射手段または前記観測光照射手段の少なくともいずれか一方は、前記励起光と前記観測光とが、前記半導体ウェーハの内部において、非交差状態から交差状態を経て、非交差状態となるように走査する請求項3から9のいずれかの項に記載の半導体ウェーハのバルク品質評価装置。 At least one of the excitation light irradiation means and the observation light irradiation means is configured so that the excitation light and the observation light are changed from a non-crossing state to a non-crossing state inside the semiconductor wafer. The apparatus for bulk quality evaluation of a semiconductor wafer according to any one of claims 3 to 9,
- 前記励起光照射手段または前記観測光照射手段の少なくともいずれか一方は、前記励起光と前記観測光とが、前記半導体ウェーハの内部において、互いに平行で隔たった状態から、互いに一致した状態を経て、互いに平行で隔たった状態となるように走査する請求項12記載の半導体ウェーハのバルク品質評価装置。 At least one of the excitation light irradiating means or the observation light irradiating means is such that the excitation light and the observation light pass through a state in which the excitation light and the observation light coincide with each other from a state in which they are parallel and separated from each other inside the semiconductor wafer. 13. The semiconductor wafer bulk quality evaluation apparatus according to claim 12, wherein scanning is performed so as to be in a state of being parallel and separated from each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016513780A JP6490671B2 (en) | 2014-04-18 | 2015-04-13 | Semiconductor wafer bulk quality evaluation method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-086522 | 2014-04-18 | ||
JP2014086522 | 2014-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015159864A1 true WO2015159864A1 (en) | 2015-10-22 |
Family
ID=54324070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/061387 WO2015159864A1 (en) | 2014-04-18 | 2015-04-13 | Bulk quality evaluation method and device for semiconductor wafer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6490671B2 (en) |
WO (1) | WO2015159864A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109844966A (en) * | 2016-09-08 | 2019-06-04 | 法国原子能及替代能源委员会 | Method for sorting silicon wafer according to the body life time of silicon wafer |
CN117388664A (en) * | 2023-12-11 | 2024-01-12 | 大连创锐光谱科技有限公司 | Semiconductor wafer minority carrier lifetime imaging system and method |
TWI836120B (en) * | 2019-09-03 | 2024-03-21 | 日商信越半導體股份有限公司 | Evaluation methods for semiconductor substrates |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519892A (en) * | 1996-04-26 | 2001-10-23 | ブラウン ユニバーシティー リサーチ ファウンデーション | Optical method for determining mechanical properties of materials |
JP2008523634A (en) * | 2004-12-14 | 2008-07-03 | アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ | Method and apparatus for independently extracting carrier concentration level and electrical junction depth of semiconductor substrate |
-
2015
- 2015-04-13 JP JP2016513780A patent/JP6490671B2/en active Active
- 2015-04-13 WO PCT/JP2015/061387 patent/WO2015159864A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519892A (en) * | 1996-04-26 | 2001-10-23 | ブラウン ユニバーシティー リサーチ ファウンデーション | Optical method for determining mechanical properties of materials |
JP2008523634A (en) * | 2004-12-14 | 2008-07-03 | アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ | Method and apparatus for independently extracting carrier concentration level and electrical junction depth of semiconductor substrate |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109844966A (en) * | 2016-09-08 | 2019-06-04 | 法国原子能及替代能源委员会 | Method for sorting silicon wafer according to the body life time of silicon wafer |
CN109844966B (en) * | 2016-09-08 | 2023-02-17 | 法国原子能及替代能源委员会 | Method for sorting silicon wafers according to their bulk lifetime |
TWI836120B (en) * | 2019-09-03 | 2024-03-21 | 日商信越半導體股份有限公司 | Evaluation methods for semiconductor substrates |
CN117388664A (en) * | 2023-12-11 | 2024-01-12 | 大连创锐光谱科技有限公司 | Semiconductor wafer minority carrier lifetime imaging system and method |
CN117388664B (en) * | 2023-12-11 | 2024-03-08 | 大连创锐光谱科技有限公司 | Semiconductor wafer minority carrier lifetime imaging system and method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015159864A1 (en) | 2017-04-13 |
JP6490671B2 (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6552513B2 (en) | Apparatus and method combining bright field inspection, dark field inspection, and photothermal inspection | |
TWI606233B (en) | Optical metrology system for spectral imaging of a sample | |
JP2004531735A (en) | System and method for a wafer inspection system using multi-angle and multi-wavelength illumination | |
US10852246B2 (en) | Pattern structure inspection device and inspection method | |
JP5916023B2 (en) | Semiconductor nondestructive inspection apparatus and semiconductor nondestructive inspection method | |
TWI661192B (en) | Using multiple sources/detectors for high-throughput x-ray topography measurement | |
JPH0424541A (en) | Method and apparatus for measuring internal defect | |
JP2011059123A (en) | Method and apparatus for determining surface layer thickness using continuous multi-wavelength surface scanning | |
US20210285898A1 (en) | Small-angle x-ray scatterometry | |
JP5918009B2 (en) | Defect inspection method and defect inspection apparatus | |
JP6490671B2 (en) | Semiconductor wafer bulk quality evaluation method and apparatus | |
TW201205062A (en) | Sample inspection device and sample inspection method | |
JPH11101624A (en) | Flaw evaluating device, its method, and manufacture of semiconductor | |
JP2006147848A (en) | Method and device for evaluating defect of semiconductor sample | |
US11703464B2 (en) | Small-angle x-ray scatterometry | |
JP2009168562A (en) | Stress evaluating method using raman spectroscopy, and method of manufacturing semiconductor device | |
CN111474182B (en) | Method and device for identifying laser damage of optical film based on polarization parameters | |
KR20150004147A (en) | Detecting apparatus using terahertz | |
KR101242470B1 (en) | Apparatus and Method for measuring viahole of silicon wafer | |
TWI830859B (en) | Check device | |
JP2008170236A (en) | Measuring method for reflectivity curve of x ray and of neutron radiation and measuring instrument | |
WO2011108518A1 (en) | Electromagnetic wave wavefront shaping element and electromagnetic wave imaging device using the same, and method of electromagnetic wave imaging | |
JP2010092984A (en) | Surface inspecting method | |
Dong et al. | Development of a confocal line-scan laser scattering probe for dark-field surface defects detection of transmissive optics | |
JP2000208577A (en) | Semiconductor evaluating method and defect position specifying device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15779187 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2016513780 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15779187 Country of ref document: EP Kind code of ref document: A1 |