WO2015159825A1 - Structure having protrusion formed on surface thereof - Google Patents

Structure having protrusion formed on surface thereof Download PDF

Info

Publication number
WO2015159825A1
WO2015159825A1 PCT/JP2015/061263 JP2015061263W WO2015159825A1 WO 2015159825 A1 WO2015159825 A1 WO 2015159825A1 JP 2015061263 W JP2015061263 W JP 2015061263W WO 2015159825 A1 WO2015159825 A1 WO 2015159825A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
protrusions
protrusion
mold
cross
Prior art date
Application number
PCT/JP2015/061263
Other languages
French (fr)
Japanese (ja)
Inventor
和田惠太
箕浦潔
森岡聡子
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015523736A priority Critical patent/JP6493206B2/en
Publication of WO2015159825A1 publication Critical patent/WO2015159825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C59/025Fibrous surfaces with piles or similar fibres substantially perpendicular to the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/005Producing membranes

Definitions

  • the present invention relates to a structure that exhibits a liquid repellent effect by having a fine structure on the surface.
  • Patent Document 4 As a fine structure that exhibits a liquid repellent effect, a protrusion having anisotropy that is oriented in a direction other than the direction perpendicular to the surface of the structure has been proposed (Patent Document 4).
  • Patent Document 4 has a problem that stable liquid repellency cannot be obtained or liquid repellency is low.
  • the present invention has the following configuration.
  • the protrusion forms an air layer between the droplet and the protrusion when the droplet adheres, so that the contact area between the droplet and the air increases, and the liquid repellency function is remarkably increased due to the surface tension of the droplet.
  • An improved structure can be obtained.
  • the protrusion is inclined with respect to the vertical direction of the surface of the structure, the droplet on the surface is supported in an unstable manner, and the droplet easily moves.
  • the surface of the structure is slightly tilted from the horizontal or in a horizontal state, droplets can be easily moved to suppress adhesion and remaining on the surface of the structure, making it more stable and effective.
  • a structure having high liquid repellency and antifouling effect can be obtained.
  • the superhydrophilic effect may be obtained depending on the characteristics such as surface free energy and viscosity.
  • protrusion. 2 is a surface photograph of a film produced according to the present invention described in Example 1 by a scanning electron microscope.
  • FIG. 2 is a cross-sectional photograph of a film produced according to the present invention described in Example 1 by a scanning electron microscope.
  • 2 is a surface photograph of a film produced according to the present invention described in Example 2 by a scanning electron microscope.
  • 2 is a cross-sectional photograph taken by a scanning electron microscope of a film manufactured according to the present invention described in Example 2.
  • FIG. 4 is a surface photograph of a film produced according to the present invention described in Example 3 by a scanning electron microscope. 4 is a cross-sectional photograph taken by a scanning electron microscope of a film manufactured according to the present invention described in Example 3.
  • FIG. 2 is a surface photograph of a film after production described in Comparative Example 1 by a scanning electron microscope.
  • FIG. 2 is a cross-sectional photograph of the film after production described in Comparative Example 1 using a scanning electron microscope.
  • 4 is a surface photograph of a film after production described in Comparative Example 2 by a scanning electron microscope.
  • 4 is a cross-sectional photograph of a film after production described in Comparative Example 2 using a scanning electron microscope. It is a surface photograph by the scanning electron microscope of the film after manufacture as described in Comparative Example 3. It is a cross-sectional photograph by the scanning electron microscope of the film after manufacture as described in Comparative Example 3.
  • the present invention is a structure having protrusions on the surface, and more than 70% of the protrusions, the straight line drawn from the center of the root to the center of the tip is inclined with respect to the direction perpendicular to the surface of the structure
  • the number of the protrusions on the surface of the structure is 10 or more and 4 ⁇ 10 5 or less at 10000 ⁇ m 2
  • the average diameter D of the protrusions is 100 nm or more and 10 ⁇ m or less.
  • the ratio (H / D) between the average height H and the average diameter D is preferably 1 or more and 50 or less.
  • FIG. 1 and 2 are a schematic sectional view (FIG. 1) and a schematic perspective view (FIG. 2) of a film which is a structure of the present invention.
  • the protrusions 13 present on the surface 12 of the film are preferably present independently and discretely.
  • the protrusion is a portion having a convex shape with respect to the surface 12 of the film which is the structure shown in the schematic cross-sectional view of FIG.
  • the shape of the protrusion may be any shape, but is preferably a pyramidal shape.
  • a straight line 16 connecting the center 15 of the base of the protrusion and the center 14 of the tip of the protrusion is inclined from a direction 17 perpendicular to the surface 12 of the film.
  • the center 15 of the base of the protrusion is the midpoint of the width of the protrusion bottom in the cross section.
  • “Inclined” means that the angle formed between the straight line 16 and the direction 17 perpendicular to the surface of the structure is 5 ° or more.
  • the cross-sectional inclination angle to be described next is measured as an angle formed by the straight line 16 and the direction 17 perpendicular to the surface of the structure, and is judged accordingly.
  • the presence or absence of inclination is determined based on the direction 17 perpendicular to the contact surface of the center 15 at the base of the protrusion.
  • the protrusions on the surface of the structure are inclined, the droplets on the surface of the film are supported by the inclined protrusions when the droplets are attached, so that the droplets are retained on the surface of the structure.
  • the state becomes unstable and the droplets easily move on the surface of the structure.
  • Droplets move from places that are inherently difficult to wet to places that are easily wetted, so the formation of tilted protrusions around the droplets causes anisotropy and non-uniformity in the wetting and promotes the movement of the droplets. Effect.
  • the droplets on the surface of the structure move and fall off the edge, eliminating droplet adhesion and antifouling effects. Further increase is possible.
  • the liquid repellency is improved by increasing the contact area between the droplet and air, and more preferably 1000 or more and 4 ⁇ 10 5 or less.
  • the number of protrusions in 10000 ⁇ m 2 is more than 4 ⁇ 10 5 , there is not enough space between the protrusions when the droplets are attached, and the contact area with air is reduced, so the liquid repellent effect is insufficient. It may become.
  • the number of protrusions can be read from an image obtained by obtaining an observation photograph of the surface using a scanning electron microscope and binarizing the photograph.
  • the method of binarizing a photograph is to first average the acquired surface observation photograph using an image processing filter, remove the noise, and then clarify the boundary between the projection and the film surface as a structure. Therefore, binarization processing is performed on the surface observation photograph that has been subjected to averaging processing.
  • the binarization is binarized with an appropriate threshold value from 0 to 256 gradations to make the protrusion clear.
  • the threshold value for binarization is preferably set between 80 and 140. If the threshold value is smaller than 80, the region of the protrusion becomes large, and if it is larger than 140, the region of the protrusion becomes small. Therefore, the boundary between the protrusion and the surface of the structure may not be determined.
  • binarization is first performed at 80 as a threshold value for binarization, and the area ratio of white and black is calculated. After that, change the threshold value by 1 up to 140, calculate the area ratio at each threshold, and calculate the center point of the 5 points with the smallest difference in the area ratio at both ends of the 5 consecutive points. Binarization is performed as a threshold value. (For example, when the difference in the area ratio of 101 to 105 is the smallest, the threshold value is set to 103.) Also, binarization here refers to a gray-scaled image to two gradations of white and black. This is a process of conversion. A certain threshold value is determined, and if the value of each pixel exceeds the threshold value, it is converted to white, and if it is lower, it is converted to black.
  • the average diameter D of the protrusions on the surface of the structure of the present invention is preferably 100 nm or more and 10 ⁇ m or less.
  • the average diameter D is obtained by obtaining a surface observation photograph using a scanning electron microscope, and the diameter of an equal area circle of protrusions in an image obtained by binarizing the photograph (hereinafter referred to as an equivalent diameter) is the maximum.
  • the top 10 projections and the lowest 10 projections are selected and the average of their 20 equivalent diameters is taken.
  • the protrusions to be measured at this time are completely independent protrusions, and those connecting two or more protrusions are excluded at the time of the surface observation photograph.
  • the lower 10 protrusions whose equivalent diameter is less than 50 nm are not treated as protrusions.
  • the method for binarizing a photograph is binarized by the same method as described above.
  • the specific measuring method for equivalent diameter is described below.
  • the diameter is the equivalent diameter
  • the diameter when the projection is replaced with a circle of equal area is the equivalent diameter. If the average diameter D is smaller than 100 nm, it takes time to obtain such protrusions uniformly and in some cases, making it extremely difficult to use industrially. If it is larger than 10 ⁇ m, it becomes difficult to form an air layer between the protrusions when the droplet is attached, and the liquid repellent effect may not be obtained.
  • the ratio of the total protrusion area is It is preferably 10% or more and 30% or less.
  • the ratio of the total protrusion area is larger than 30%, there is not enough space between the droplet and the protrusion when the droplet is attached, and the contact area with the air is reduced. There is a case. If it is smaller than 10%, the interval between the projections becomes large, so that the droplets enter between the projections, the flat portion other than the projections contacts the droplets, and the liquid repellency may be lowered.
  • the ratio of the total protrusion area (A / S) is obtained, for example, as follows (explained as an example of the case where the above-mentioned arbitrary range is a square having a side of 100 ⁇ m).
  • the base area S is 10,000 ⁇ m 2
  • the total protrusion area A in this square region is obtained by observing a surface observation photograph using a scanning electron microscope, The photograph is obtained from the binarized image, and the ratio (A / S) of the total protrusion area is calculated from them.
  • the method for binarizing a photograph is performed in the same manner as described above.
  • the film surface mold may be taken with liquid silicone rubber or the like and read from the mold surface image.
  • the surface of the liquid silicone rubber becomes a surface having many holes corresponding to the bottom surfaces of the protrusions. A scanning electron micrograph of this surface is obtained and the area occupied by the holes is replaced with the area occupied by the protrusions.
  • the ratio (H / D) between the average height H and the average diameter D of the protrusions is preferably 1 or more and 50 or less.
  • the ratio of the average height H to the average diameter D (H / D) is smaller than 1, it becomes difficult to form an air layer between the protrusions when the water droplets adhere, and the liquid repellent effect cannot be obtained. There is a case.
  • it is larger than 50 it may take time to obtain such protrusions.
  • durability may fall, such as a protrusion breaking or becoming easy to deform
  • the average height H is obtained by selecting projections having an upper maximum height of 10 and a lower minimum height of 10 from an observation photograph of a cross section using a scanning electron microscope, and averaging those 20 projection heights. It is.
  • the height is the distance from the surface of the structure to the top of the protrusion.
  • 10 lower minimum heights those having a height of 50 nm or more are assumed to be protrusions, and those lower than that are not treated as protrusions.
  • the average height H of the protrusions is preferably 500 nm to 100 ⁇ m.
  • the average height H is smaller than 500 nm, the droplets are likely to come into contact with the base and the liquid repellency may be lowered.
  • the thickness is larger than 100 ⁇ m, the distance between the protrusions often spreads in proportion to the height. In this case, the liquid spreads between the protrusions and the liquid repellency may be lowered.
  • durability may fall, such as a protrusion breaking or becoming easy to deform
  • the structure of the present invention is not limited to a film and may have any shape as long as the surface can be thermoformed. From the viewpoint of productivity and cost, a film is preferable.
  • any material can be used as long as it can form the protrusions, and a fluororesin, silicone resin, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polyester resin such as polybutylene terephthalate, polyethylene, polystyrene, Polyolefin resins such as polypropylene, polyisobutylene, polybutene, polymethylpentene, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins Or a polyvinyl chloride resin or the like is preferably used.
  • fluororesins and silicone resins having a low surface energy are particularly preferred, and polyolefin resins such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene.
  • a main component means the component which occupies 50 mass% or more when the whole resin which comprises a structure is 100 mass%.
  • 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable.
  • additives can be added to the material applied to the present invention at the time of polymerization or after polymerization.
  • additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners, Examples include plasticizers, pH adjusters, and salts.
  • a releasing agent low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and derivatives thereof, and low surface tension alcohols such as long chain alcohols and derivatives thereof, and modified silicone oils. It is preferable to add a small amount of a compound or the like during polymerization.
  • the structure may have a laminated structure, and the above material may be used only for the surface layer on which the protrusion is formed.
  • the above material may be used only for the surface layer on which the protrusion is formed.
  • the structure may be a continuous body or a single wafer.
  • the thickness of the structure is not particularly limited.
  • a preferred embodiment of the present invention is an embodiment in which the direction of a straight line drawn from the center of the protrusion to the center of the tip (hereinafter sometimes abbreviated as “projection direction”) is indefinite.
  • the direction of the protrusion is indefinite means that the direction of each protrusion is random in the space on the surface of the structure, and more specifically, the direction of each protrusion is (i) the structure. It is random in at least one of the direction in which the protrusions incline in the plane parallel to the surface of (ii) and the angle incline with respect to the direction perpendicular to the surface of the structure.
  • the reference angle refers to an angle at which ten protrusions are selected from a cross-sectional observation photograph and are inclined with respect to a direction perpendicular to the surface of the structure on the cross-section observation photograph (hereinafter referred to as “cross-section inclination angle”). Is the average angle measured. In these determinations, a scanning electron microscope may be used. Since the direction of the straight line drawn from the center of the root to the center of the tip is indefinite, nonuniformity occurs in wetting around the droplet, and the movement of the droplet can be promoted. As a result, droplets on the film are eliminated even when the film is tilted slightly or when it is horizontal, and the effect of preventing droplet adhesion can be further enhanced.
  • Another preferred embodiment of the present invention is an embodiment in which the direction of the protrusion is constant.
  • the direction of the protrusions being constant means that the direction of each protrusion is substantially one direction in the space on the surface of the structure, and more specifically, the direction of each protrusion is (i) It means that it is the same in both the direction in which the protrusions incline in the plane parallel to the surface of the structure and the angle (ii) the angle incline with respect to the direction perpendicular to the surface of the structure.
  • FIG. 3 is a schematic cross-sectional view of a resin film that is a structure of the present invention in which the direction of the protrusion is constant, and (i) a cross-section parallel to the direction in which the protrusion inclines in a plane parallel to the surface of the structure. .
  • the reference angle of the protrusion in the cross section is the largest. It is defined as being inclined in a range of ⁇ 20 ° with respect to the angle.
  • the reference angle refers to an angle at which ten protrusions are selected from a cross-sectional observation photograph and are inclined with respect to a direction perpendicular to the surface of the structure on the cross-section observation photograph (hereinafter referred to as “cross-section inclination angle”). Is the average angle measured. In these determinations, a scanning electron microscope may be used.
  • 70% or more of the straight line drawn from the center of the root to the center of the tip is inclined in a range of 25 ° or more and 50 ° or less with respect to a direction perpendicular to the surface of the structure.
  • the inclination in the range of 25 ° or more and 50 ° or less means that 70% or more of the protrusions in the cross section when the cross section is observed by cutting in a direction perpendicular to the surface of the film. Is inclined at an angle of 25 ° or more and 50 ° or less. If the inclination of the projection of 70% or more is smaller than 25 °, the non-uniformity of wetting around the droplet may not be sufficiently exhibited.
  • the droplets are difficult to move and may remain on the surface of the film.
  • the inclination of the protrusion of 70% or more is larger than 50 °, the contact area between the protrusion and the droplet is increased, and the liquid repellency may be impaired.
  • the height of the protrusion is preferably indefinite.
  • the average height H of the protrusions is 100%
  • the number of protrusions whose height is less than 80% or 120% or more is 70 as the number of protrusions in the cross section. % Or more.
  • FIG. 4 is a schematic cross-sectional view of a resin film that is a structure having protrusions on the surface of the present invention in which the height of the protrusions is indefinite. Since the height of the protrusion around the droplet is indefinite, wetting around the droplet becomes non-uniform, and the droplet easily moves. As a result, the remaining of droplets on the surface of the film is suppressed. When the film is slightly tilted in a specific direction, or even when the film is kept horizontal, droplets on the film are eliminated, and the effect of preventing droplet adhesion can be enhanced.
  • the film which is a structure having protrusions on the surface of the present invention can be manufactured by a process through an apparatus as shown in FIGS.
  • FIG. 5 and 7 are schematic cross-sectional views of manufacturing apparatuses 50 and 70 for manufacturing a film having protrusions on the surface of the film.
  • FIG. 6 is a schematic cross-sectional view showing the operation of peeling the film from the mold in the manufacturing apparatus 50.
  • the film in the unwinding unit 52, the film is pulled out from the unwinding roll 51 in advance, and then, in the press unit 54, the heated mold 53 having a projection structure formed on the surface is intermittently fed.
  • a predetermined protrusion is formed on the surface of the film by pressing and pressurizing the resulting film, followed by cooling while maintaining the contact state.
  • the molding part is composed of a press unit 54 that forms predetermined protrusions, and a peeling means 55 that peels the film attached to the mold 53 under pressure from the mold 53.
  • the peeling means 55 comprises a pair of peeling rolls 55A and a peeling auxiliary roll 55B arranged in parallel to hold the film so as to hold it in an S shape.
  • One surface of the film sent intermittently is thermoformed by the mold 53 in the press unit 54, and after the thermoforming, the peeling means 55 is moved toward the upstream side as shown in FIG.
  • the film attached to the mold 53 is peeled off from the mold 53 sequentially. Thereafter, the film is wound around a winding roll 56.
  • 57 and 58 indicate pressure plates
  • 59 and 60 indicate buffer means provided to smoothly perform intermittent conveyance in the mold 53 portion of the film.
  • the direction of the formed projection can be made indefinite or constant.
  • the inclination direction is Protrusions that are constant are formed.
  • the film is tensioned in a direction inclined from a direction perpendicular to the mold surface, and a projection is formed that is deformed to incline in a certain direction.
  • protrusions with indefinite inclination directions are formed. This is because in peeling, the film is peeled off by applying a tension in a direction substantially perpendicular to the mold surface. Therefore, a protrusion perpendicular to the surface of the film is once formed, and then a peeling assist roll with a constant pressure. This is because the protrusions that are not sufficiently cooled are deformed by being pressed by 55B and deflected in random directions.
  • the film is pulled out from the unwinding roll 73 and supplied by the heating roll 75 onto an endless belt-shaped mold 76 having a projection structure formed on the heated surface.
  • the outer surface of the mold 76 is formed with discrete microscopic recesses that are discretely arranged, and is heated by the heating roll 75 immediately before coming into contact with the film.
  • the continuously supplied film is pressed against the surface of the mold 76 where the concave structure is processed by the nip roll 77, and projections are formed on the surface of the film.
  • the film is conveyed to the outer surface position of the cooling roll 78 in a state of being in close contact with the surface of the mold 76.
  • the film is cooled by heat conduction through the mold 76 by the cooling roll 78, peeled off from the mold 76 by the peeling roll 79, and taken up by the winding roll 81.
  • Such a process makes it possible to thermoform a film on which protrusions are formed continuously with high productivity.
  • the direction of the formed protrusion can be made indefinite or constant.
  • the direction of the protrusion is constant. A structure is formed.
  • the separation distance 79H is made as small as possible and the mold temperature at the time of peeling is set in the vicinity of the glass transition temperature of the resin constituting the film molding surface, a structure with an indefinite protrusion direction is formed.
  • the film is peeled off by applying a tension in a direction substantially perpendicular to the mold surface, so that a protrusion perpendicular to the surface of the film is once formed and then formed with the subsequent transport roll 80.
  • the protrusions that are pressed with a certain pressure at the time of contact with the surface and are not sufficiently cooled are deformed and deflected in a random direction.
  • the manufacturing method of each mold having a dent structure on the surface is a method of applying cutting, laser processing or electron beam processing directly on the metal surface, or applying cutting, laser processing or electron beam processing directly on the plating film formed on the metal surface. And a method of producing a concave shape by electroforming after producing these inverted protrusion shapes. Also, after applying the resist on the substrate, after forming the resist with a predetermined patterning by photolithography technique, the substrate is etched to form protrusions, and after removing the resist, a concave structure is formed by its inverted pattern by electroforming And the like.
  • the mold material may be silicon wafer, various metal materials, glass, ceramics, plastics, carbon materials, etc., as long as they have strength and workability with the required accuracy. Specifically, Si, SiC, SiN Polycrystalline Si, glass, Ni, Cr, Cu, Al, Fe, Ti, C and further one or more of these may be included. Alternatively, it may be produced by etching the surface of a mold having an amorphous structure mainly composed of these with a strongly acidic liquid such as nitric acid.
  • a functional group having a low surface energy in particular, on the surface of the projection obtained as described above, It is desirable to coat the fluorine group.
  • Such a coating treatment method is not particularly limited as long as the structure of the protrusion is not filled with a coating material.
  • LB method Langmuir Blodget method
  • PVD method physical vapor deposition method
  • CVD Chemical vapor deposition
  • self-organization sputtering
  • sputtering a method in which a single molecule diluted with a solvent is applied.
  • the structure of the present invention is suitable for building materials such as biodevices such as cell culture sheets and biochips, optical devices such as optical films and anisotropic films, liquid repellent sheets, and antifouling sheets, taking advantage of its surface characteristics. Can be used.
  • the method of binarizing the photos was as follows. First, the obtained surface observation photograph was averaged using an image processing filter to remove noise. Thereafter, in order to clarify the boundary between the protrusion and the surface of the structure, a binarization process was performed on the surface observation photograph subjected to the averaging process. The binarization was binarized with an appropriate threshold value from 0 to 256 gradations, and the boundary between the protrusion and the film surface was clarified. In the surface image acquired this time, the threshold value for binarization was first set to 125, but when the binarized image was not obtained well, the threshold value was adjusted between 80 and 140. A photograph binarized after the averaging process is shown in FIG.
  • the top 10 projections with the maximum equivalent diameter of the projections and the bottom 10 projections with the minimum were selected, and the average of the 20 equivalent diameters was taken as the average diameter D.
  • the diameter was the equivalent diameter, and when it was not a circle, the diameter when the protrusion was replaced with a circle of equal area was taken as the equivalent diameter.
  • the film was cut in a direction perpendicular to the film surface, and the cross section was observed at a magnification of 5000 using a scanning electron microscope (Keyence VE-7800, Inc.).
  • the image size at this time was 24.3 um ⁇ 18.2 um.
  • the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 19.0 nm ⁇ 19.0 nm. From the observation photograph, ten upper maximum heights and ten lower minimum height protrusions were selected, and the average of these 20 protrusion heights was defined as an average height H.
  • the height is the distance from the film surface to the top of the protrusion.
  • the film was cut along four perpendicular planes of 45 ° with respect to the surface of the film, and the cross section of each was observed with a scanning electron microscope (Keyence VE-7800) at a magnification of 5000 times. .
  • the observation target range was 24.3 um ⁇ 18.2 um, the number of pixels was 1280 pixels ⁇ 960 pixels, and the size of one pixel was 19.0 nm ⁇ 19.0 nm.
  • Select 10 protrusions for each of the four observation photographs (a) a line connecting the center of the protrusion and the center of the tip of the protrusion, and (b) a direction perpendicular to the surface of the structure.
  • the average value was calculated as a reference angle.
  • the cross section in which the reference angle of the protrusion in the cross section obtained in this way is inclined most greatly is the object of evaluation, and the line connecting the center of (a) the base of the ten protrusions and the center of the tip of the protrusion in the cross section.
  • the state of the protrusion was determined using the individual value of the angle formed with the direction perpendicular to the surface of the structure as the cross-sectional inclination angle.
  • the photograph of the cross section shown in each Example and a comparative example is a photograph of the cross section in which the reference
  • Example 1 Film A film having a thickness of 100 ⁇ m containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
  • the press unit is a mechanism that is pressurized by a hydraulic pump.
  • Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature at the time of molding was set to 150 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 110 ° C.
  • the separation distance between the peeling roll and the film was 0.1 mm.
  • the peeled film was sent out to the downstream winding device side and wound up.
  • FIG. 10 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800).
  • protrusions having an average diameter D of 300 nm, an average height H of 1.0 ⁇ m, and a ratio of the average height H to the average diameter D (H / D) of 3.3 are formed on the entire surface. It was.
  • the number of protrusions formed at 10,000 ⁇ m 2 was 21595.
  • the direction in which the protrusions incline was indefinite.
  • 70% or more of the protrusions in the cross section were inclined by 5 ° or more with respect to the direction perpendicular to the film surface.
  • FIG. 11 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was indefinite.
  • Liquid repellency / droplet transfer effect 1.41 ⁇ L of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. When a water droplet is dropped, the water droplet rolls on the surface of the film and cannot be kept in one place, so that the contact angle cannot be measured.
  • Example 2 Film A film having a thickness of 100 ⁇ m containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
  • the press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • die is installed in the press unit.
  • the mold temperature at the time of molding was set to 150 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 80 ° C.
  • the separation distance between the peeling roll and the film was 0.3 mm.
  • the peeled film was sent out to the downstream winding device side and wound up.
  • FIG. 12 shows a photograph taken by a scanning electron microscope (Keyence VE-780) of the projection-formed surface of the molded film.
  • Protrusions having an average diameter D of 350 nm, an average height H of 1.2 ⁇ m, and a ratio of the average height H to the average diameter D (H / D) of 3.4 were formed on the entire surface.
  • the number of protrusions formed at 10,000 ⁇ m 2 was 14345.
  • the range of the inclination angle of the protrusions in the cross section obtained by cutting the film in the direction perpendicular to the film surface is 20 ° to more than 70% of the protrusions in the cross section perpendicular to the film surface. The range was 45 °.
  • FIG. 13 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was constant.
  • Liquid repellency / droplet transfer effect 1.41 ⁇ L of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured.
  • a contact angle meter Kelvana Interface Science Co., Ltd., CA-D type.
  • the corner was measured.
  • the water droplet rolls on the surface of the film and cannot be kept in one place, so that the contact angle cannot be measured.
  • the direction in which the water droplets roll was prioritized and rolled in the same direction.
  • Example 3 Film A film having a thickness of 100 ⁇ m containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
  • the press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature during molding was 150 ° C., and the pressure was 7 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 80 ° C.
  • the separation distance between the peeling roll and the film was 0.3 mm.
  • the peeled film was sent out to the downstream winding device side and wound up.
  • FIG. 14 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800). Protrusions having an average diameter D of 410 nm, an average height H of 700 nm, and a ratio of the average height H of the protrusions to the average diameter D (H / D) of 1.7 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 ⁇ m 2 was 3200. Further, the range of the inclination angle of the protrusions in the cross section obtained by cutting the film in the direction perpendicular to the film surface is 20 ° to more than 70% of the protrusions in the cross section perpendicular to the film surface. The range was 45 °.
  • FIG. 15 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was constant.
  • Liquid repellency / droplet transfer effect 1.41 ⁇ L of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured.
  • a contact angle meter Kelvana Interface Science Co., Ltd., CA-D type.
  • the corner was measured.
  • the water droplet rolls on the surface of the film and cannot be kept in one place, so that the contact angle cannot be measured.
  • the direction in which the water droplets roll was prioritized and rolled in the same direction.
  • the press unit is a mechanism that is pressurized by a hydraulic pump.
  • Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature at the time of molding was 150 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 110 ° C.
  • the separation distance between the peeling roll and the film was 0.1 mm.
  • the peeled film was sent out to the downstream winding device side and wound up.
  • FIG. 16 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800). Protrusions having an average diameter of 3.0 ⁇ m, an average height of 2.5 ⁇ m, and a ratio of the average height H to the average diameter D (H / D) of 0.8 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 ⁇ m 2 was 720. Moreover, the inclination of the protrusion was not seen.
  • FIG. 17 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface, taken with a scanning electron microscope.
  • Liquid repellency / droplet transfer effect 1.41 ⁇ L of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. The contact angle at this time was 105 °, and the 10 ° contact angle was higher than that of the film before molding. The contact angle before molding was 95 °. At this time, the behavior of water droplets rolling as in Example 1 or 2 was not observed.
  • the press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature at the time of molding was set to 150 ° C., and a pressure of 10 MPa was applied over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 80 ° C.
  • the separation distance between the peeling roll and the film was 0.3 mm.
  • the peeled film was sent out to the downstream winding device side and wound up.
  • FIG. 18 shows a photograph taken by a scanning electron microscope (Keyence VE-780) of the projection-formed surface of the molded film.
  • Protrusions having an average diameter D of 550 nm, an average height H of 500 nm, and a ratio of the average height H of the protrusions to the average diameter D (H / D) of 0.91 were formed on the entire surface.
  • the number of protrusions formed at 10,000 ⁇ m 2 was 4500, and the total area ratio of protrusions to the base area was 7.8%.
  • FIG. 19 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was constant.
  • Liquid repellency / droplet transfer effect 1.41 ⁇ L of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. The contact angle at this time was 131 °, and the contact angle at 36 ° was higher than that of the film before molding. The contact angle before molding was 95 °. At this time, the behavior of water droplets rolling as in Example 1 or 2 was not observed.
  • the press unit is a mechanism that is pressurized by a hydraulic pump.
  • Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively.
  • the mold is placed on the upper surface of the lower pressure plate.
  • a peeling means for peeling the film attached to the mold is installed in the press unit.
  • the mold temperature at the time of molding was set to 150 ° C., and the pressure was 5 MPa over the entire surface.
  • the pressurization time was 30 seconds.
  • the mold temperature at the time of peeling was 70 ° C.
  • the separation distance between the peeling roll and the film was 0.1 mm.
  • the peeled film was sent out to the downstream winding device side and wound up.
  • FIG. 20 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800). Protrusions having an average diameter of 350 nm, an average height of 1.2 ⁇ m, and a ratio of the average height H to the average diameter D (H / D) of 3.3 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 ⁇ m 2 was 14900. Moreover, the inclination of the protrusion was not seen.
  • FIG. 21 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface, taken with a scanning electron microscope.
  • Liquid repellency / droplet transfer effect 1.41 ⁇ L of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. The contact angle at this time was 158 °, and the contact angle of 63 ° was higher than that of the film before molding. The contact angle before molding was 95 °. At this time, the behavior of water droplets rolling as in Example 1 or 2 was not observed, but when the film was tilted by 10 °, the water droplets rolled in the tilted direction.
  • Structures having protrusions on the surface of the present invention include microchannels, cell culture sheets, packaging materials, antifouling or waterproof sheets, recording materials, screens, separators, ion exchange membranes, battery membrane materials, displays, optical materials, etc. It is suitably used for products and members that require liquid repellency on the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a structure having protrusions formed on the surface thereof, which can be used suitably in technical fields of micro flow paths, cell culture sheets, packaging materials, stain-proof or water-proof sheets, recording materials, screens, separators, ion exchange membranes, battery separator membrane materials, displays, optical materials and the like in which liquid repellency is required for surfaces thereof.

Description

表面に突起を有する構造体Structure having protrusions on the surface
 本発明は、表面に微細構造を有することで撥液効果を発現する構造体に関するものである。 The present invention relates to a structure that exhibits a liquid repellent effect by having a fine structure on the surface.
 従来、構造体の表面で撥液効果を発現させる手段として、フッ素系ポリマーなどの表面エネルギーの低い樹脂をコーティングする手法を適用することが多かった。しかし、コーティングだけでは撥液性能に限界があり、期待どおりの撥液性を得られないことがあった。そこで表面に微細構造を付加することによってコーティング以上の撥液性を得る方法が提案されている(特許文献1~3)。 Conventionally, as a means for expressing the liquid repellency effect on the surface of the structure, a technique of coating a resin having a low surface energy such as a fluoropolymer has been often applied. However, there is a limit to the liquid repellency by coating alone, and the liquid repellency as expected may not be obtained. Therefore, a method has been proposed in which a fine structure is added to the surface to obtain liquid repellency higher than that of coating (Patent Documents 1 to 3).
 また撥液効果を発現させる微細構造として、構造体の表面の垂直な方向以外に指向され、異方性を有している突起が提案されている(特許文献4)。 Further, as a fine structure that exhibits a liquid repellent effect, a protrusion having anisotropy that is oriented in a direction other than the direction perpendicular to the surface of the structure has been proposed (Patent Document 4).
特開2004-170935号公報JP 2004-170935 A 特開2009-187025号公報JP 2009-187025 A 特開2009-42714号公報JP 2009-42714 A 国際公開第2004/048064号パンフレットInternational Publication No. 2004/048064 Pamphlet
 しかしながら、上記した特許文献1~3に記載された技術では、構造体であるフィルムに撥液状態で液が付着した後、付着した液を移動させ除去するためには、フィルムを一定角度傾ける必要がある。フィルムの傾きが小さい場合や、フィルムが水平に置かれた場合は、液滴が構造体であるフィルム上に付着したまま残ることが多く、期待した撥液性効果が得られないという問題があった。 However, in the techniques described in Patent Documents 1 to 3 described above, after the liquid adheres to the structural film in a liquid repellent state, the film needs to be tilted at a certain angle in order to move and remove the adhered liquid. There is. When the tilt of the film is small or when the film is placed horizontally, the droplets often remain on the structural film, and the expected liquid repellency effect cannot be obtained. It was.
 また、特許文献4に記載の技術では、安定した撥液性が得られなかったり、撥液性能が低かったりするという問題があった。 Further, the technique described in Patent Document 4 has a problem that stable liquid repellency cannot be obtained or liquid repellency is low.
上記の課題を解決するために、本発明は以下構成を有する。
(1)表面に突起を有する構造体であって、
 (i)前記突起のうち70%以上が、根元の中心から先端の中心に引いた直線が、構造体の表面に垂直な方向に対して傾斜した突起であり、
 (ii)前記構造体の表面における前記突起の個数は、10000μm中に10個以上、4×10個以下であり、
 (iii)前記突起の平均直径Dが100nm以上、10μm以下であり、
 (iv)前記突起の平均高さHと平均直径Dとの比(H/D)が1以上、50以下である構造体。
(2)前記突起の根元の中心から先端の中心に引いた直線の方向が不定である前記(1)に記載の構造体。
(3)前記突起の根元の中心から先端の中心に引いた直線の方向が一定である前記(1)に記載の構造体。
(4)前記突起の根元の中心から先端の中心に引いた直線のうち70%以上が、構造体の表面に垂直な方向に対して、25°以上、50°以下の角度をなす前記(1)~(3)のいずれかに記載の構造体。
(5)前記突起の高さが不定である前記(1)~(4)のいずれかに記載の構造体。
In order to solve the above problems, the present invention has the following configuration.
(1) A structure having protrusions on the surface,
(I) 70% or more of the protrusions are protrusions in which a straight line drawn from the center of the root to the center of the tip is inclined with respect to a direction perpendicular to the surface of the structure,
(Ii) The number of the protrusions on the surface of the structure is 10 or more and 4 × 10 5 or less in 10,000 μm 2 ;
(Iii) The average diameter D of the protrusions is 100 nm or more and 10 μm or less,
(Iv) A structure in which the ratio (H / D) of the average height H to the average diameter D of the protrusions is 1 or more and 50 or less.
(2) The structure according to (1), wherein a direction of a straight line drawn from the center of the base of the protrusion to the center of the tip is indefinite.
(3) The structure according to (1), wherein a direction of a straight line drawn from the center of the base of the protrusion to the center of the tip is constant.
(4) 70% or more of the straight line drawn from the center of the protrusion to the center of the tip forms an angle of 25 ° or more and 50 ° or less with respect to a direction perpendicular to the surface of the structure (1) ) To (3).
(5) The structure according to any one of (1) to (4), wherein a height of the protrusion is indefinite.
 本発明によれば、突起によって、液滴付着時に液滴と突起との間に空気の層を形成させるため液滴と空気との接触面積が増え、液滴の表面張力により撥液機能が著しく向上した構造体を得ることができる。 According to the present invention, the protrusion forms an air layer between the droplet and the protrusion when the droplet adheres, so that the contact area between the droplet and the air increases, and the liquid repellency function is remarkably increased due to the surface tension of the droplet. An improved structure can be obtained.
 さらに、突起が構造体の表面の垂直方向に対して傾斜しているため、表面に乗った液滴が不安定に支持された状態となり、液滴が容易に移動する。その結果、構造体の表面を水平からわずかに傾けた状態、あるいは、水平な状態においても、液滴を容易に移動させて構造体の表面への付着や残存を抑制でき、より安定的で効果の高い撥液性能や防汚効果を有する構造体を得ることができる。また、液体や突起を構成する材料の種類によってはその表面自由エネルギーや粘度などの特性により、超親水効果を得られる場合もある。 Furthermore, since the protrusion is inclined with respect to the vertical direction of the surface of the structure, the droplet on the surface is supported in an unstable manner, and the droplet easily moves. As a result, even when the surface of the structure is slightly tilted from the horizontal or in a horizontal state, droplets can be easily moved to suppress adhesion and remaining on the surface of the structure, making it more stable and effective. A structure having high liquid repellency and antifouling effect can be obtained. In addition, depending on the type of material constituting the liquid or the protrusion, the superhydrophilic effect may be obtained depending on the characteristics such as surface free energy and viscosity.
本発明の構造体であるフィルムの概略断面図である。It is a schematic sectional drawing of the film which is a structure of this invention. 本発明の構造体であるフィルムの概略斜視図である。It is a schematic perspective view of the film which is a structure of the present invention. 本発明の一態様である突起の根元の中心から先端の中心に引いた直線の方向が一定である構造体である樹脂フィルムの概略断面図である。It is a schematic sectional drawing of the resin film which is a structure where the direction of the straight line pulled from the center of the base of the projection which is one mode of the present invention to the center of the tip is constant. 本発明の一態様である突起の高さが不定である構造体である樹脂フィルムの概略断面図である。It is a schematic sectional drawing of the resin film which is a structure with which the height of the processus | protrusion which is 1 aspect of this invention is indefinite. 本発明の構造体であるフィルムを製造する装置の一例を示す断面概略図である。It is a section schematic diagram showing an example of an apparatus which manufactures a film which is a structure of the present invention. 本発明の構造体であるフィルムを製造する装置における剥離手段をフィルム幅方向から見た概略平面図である。It is the schematic plan view which looked at the peeling means in the apparatus which manufactures the film which is the structure of this invention from the film width direction. 本発明の構造体であるフィルムを製造する装置の一例を示す断面概略図である。It is a section schematic diagram showing an example of an apparatus which manufactures a film which is a structure of the present invention. 突起個数の測定に用いた本発明の構造体の走査型電子顕微鏡による表面写真を二値化した画像の一例である。It is an example of the image which binarized the surface photograph by the scanning electron microscope of the structure of this invention used for the measurement of the number of protrusions. 突起の平均直径Dの測定に用いた本発明の構造体の走査型電子顕微鏡による表面写真を二値化した画像の一例である。It is an example of the image which binarized the surface photograph by the scanning electron microscope of the structure of this invention used for the measurement of the average diameter D of a processus | protrusion. 実施例1に記載の本発明により製造したフィルムの走査型電子顕微鏡による表面写真である。2 is a surface photograph of a film produced according to the present invention described in Example 1 by a scanning electron microscope. 実施例1に記載の本発明により製造したフィルムの走査型電子顕微鏡による断面写真である。2 is a cross-sectional photograph of a film produced according to the present invention described in Example 1 by a scanning electron microscope. 実施例2に記載の本発明により製造したフィルムの走査型電子顕微鏡による表面写真である。2 is a surface photograph of a film produced according to the present invention described in Example 2 by a scanning electron microscope. 実施例2に記載の本発明により製造したフィルムの走査型電子顕微鏡による断面写真である。2 is a cross-sectional photograph taken by a scanning electron microscope of a film manufactured according to the present invention described in Example 2. FIG. 実施例3に記載の本発明により製造したフィルムの走査型電子顕微鏡による表面写真である。4 is a surface photograph of a film produced according to the present invention described in Example 3 by a scanning electron microscope. 実施例3に記載の本発明により製造したフィルムの走査型電子顕微鏡による断面写真である。4 is a cross-sectional photograph taken by a scanning electron microscope of a film manufactured according to the present invention described in Example 3. FIG. 比較例1に記載の製造後のフィルムの走査型電子顕微鏡による表面写真である。2 is a surface photograph of a film after production described in Comparative Example 1 by a scanning electron microscope. 比較例1に記載の製造後のフィルムの走査型電子顕微鏡による断面写真である。2 is a cross-sectional photograph of the film after production described in Comparative Example 1 using a scanning electron microscope. 比較例2に記載の製造後のフィルムの走査型電子顕微鏡による表面写真である。4 is a surface photograph of a film after production described in Comparative Example 2 by a scanning electron microscope. 比較例2に記載の製造後のフィルムの走査型電子顕微鏡による断面写真である。4 is a cross-sectional photograph of a film after production described in Comparative Example 2 using a scanning electron microscope. 比較例3に記載の製造後のフィルムの走査型電子顕微鏡による表面写真である。It is a surface photograph by the scanning electron microscope of the film after manufacture as described in Comparative Example 3. 比較例3に記載の製造後のフィルムの走査型電子顕微鏡による断面写真である。It is a cross-sectional photograph by the scanning electron microscope of the film after manufacture as described in Comparative Example 3.
 本発明は、表面に突起を有する構造体であって、前記突起のうち70%以上が、根元の中心から先端の中心に引いた直線が、構造体の表面に垂直な方向に対して傾斜した突起であり、前記構造体の表面における前記突起の個数は、10000μmにおいて10個以上、4×10個以下であり、前記突起の平均直径Dが100nm以上、10μm以下であり、前記突起の平均高さHと平均直径Dとの比(H/D)が1以上、50以下であることが好ましい。 The present invention is a structure having protrusions on the surface, and more than 70% of the protrusions, the straight line drawn from the center of the root to the center of the tip is inclined with respect to the direction perpendicular to the surface of the structure The number of the protrusions on the surface of the structure is 10 or more and 4 × 10 5 or less at 10000 μm 2 , and the average diameter D of the protrusions is 100 nm or more and 10 μm or less. The ratio (H / D) between the average height H and the average diameter D is preferably 1 or more and 50 or less.
 本発明の突起を有する構造体の実施形態を図面を用いて説明する。図1、図2は本発明の構造体であるフィルムの概略断面図(図1)と概略斜視図(図2)である。 Embodiments of a structure having protrusions according to the present invention will be described with reference to the drawings. 1 and 2 are a schematic sectional view (FIG. 1) and a schematic perspective view (FIG. 2) of a film which is a structure of the present invention.
 フィルムの表面12に存在する突起13は、独立して離散的に存在することが好ましい。ここで突起とは、概略断面図1に示した構造体であるフィルムの表面12に対し、凸の形状をとる部分のことである。突起の形状はどのような形状であってもよいが、錘状の形状であることが好ましい。また、突起の根元の中心15と突起の先端の中心14とを結んだ直線16がフィルムの表面12に垂直な方向17から傾斜していることが好ましい。なお、突起の根元の中心15とは、断面における突起底部の幅の中点である。このとき傾斜しているとは、直線16と構造体の表面に垂直な方向17とのなす角度が5°以上であることをいう。具体的な確認方法としては、次に求め方を記す断面傾斜角度を、直線16と構造体の表面に垂直な方向17とのなす角度として、測定し、それにより判断することとする。
(断面傾斜角度の求め方)
 構造体(上記の場合、フィルム)の表面に対して45°ごとの4方向の垂直な断面で構造体を切断した4つの断面について、それぞれ10個の突起を選び、それらの突起の(a)根元の中心と突起の先端の中心とを結んだ線と、(b)構造体の表面に垂直な方向とのなす角度の平均値(以降、基準角度と記すこともある)を求め、基準角度が最も大きい断面を特定する。その断面における突起の(a)根元の中心と突起の先端の中心とを結んだ線と、(b)構造体の表面に垂直な方向とのなす角度を断面傾斜角度とする。
構造体の表面が曲面である場合には突起の根元の中心15の接面に対して垂直な方向17を基準に傾斜の有無を判断することとする。本発明においては、上述した断面傾斜角度を測定する断面における突起のうち、70%以上が傾斜していることが好ましく、90%以上が傾斜していることがより好ましく、100%が傾斜していることが最も好ましい。
The protrusions 13 present on the surface 12 of the film are preferably present independently and discretely. Here, the protrusion is a portion having a convex shape with respect to the surface 12 of the film which is the structure shown in the schematic cross-sectional view of FIG. The shape of the protrusion may be any shape, but is preferably a pyramidal shape. Further, it is preferable that a straight line 16 connecting the center 15 of the base of the protrusion and the center 14 of the tip of the protrusion is inclined from a direction 17 perpendicular to the surface 12 of the film. The center 15 of the base of the protrusion is the midpoint of the width of the protrusion bottom in the cross section. “Inclined” means that the angle formed between the straight line 16 and the direction 17 perpendicular to the surface of the structure is 5 ° or more. As a specific confirmation method, the cross-sectional inclination angle to be described next is measured as an angle formed by the straight line 16 and the direction 17 perpendicular to the surface of the structure, and is judged accordingly.
(How to find the cross-sectional inclination angle)
10 projections are selected for each of four cross sections obtained by cutting the structure in four directions perpendicular to the surface of the structure (in the above case, a film) at 45 °, and (a) Obtain the average value (hereinafter also referred to as the reference angle) between the line connecting the center of the base and the center of the tip of the protrusion and (b) the direction perpendicular to the surface of the structure. Identify the cross section with the largest. An angle formed by (a) a line connecting the center of the protrusion and the center of the tip of the protrusion in the cross section and (b) a direction perpendicular to the surface of the structure is defined as a cross-sectional inclination angle.
When the surface of the structure is a curved surface, the presence or absence of inclination is determined based on the direction 17 perpendicular to the contact surface of the center 15 at the base of the protrusion. In the present invention, it is preferable that 70% or more of the protrusions in the cross section for measuring the cross section inclination angle described above are inclined, more preferably 90% or more are inclined, and 100% are inclined. Most preferably.
 構造体の表面の突起が傾斜していることにより、液滴が付着した際フィルムの表面での液滴が、傾斜した突起に支持されることとなるので、液滴の構造体の表面における保持状態が不安定となり、液滴が構造体の表面を移動しやすくなる。液滴は本来濡れ難い場所から濡れ易い場所に移動するので、液滴周辺において傾いた突起が形成されていることにより、濡れに異方性や不均一性を生じさせて液滴の移動を促進させる効果が生じる。その結果、フィルムをわずかに傾けた場合、あるいは水平のままでも構造体の表面上の液滴は、移動して端部から落下することで排除され、液滴付着防止や、防汚の効果をさらに高めることが可能となる。 Since the protrusions on the surface of the structure are inclined, the droplets on the surface of the film are supported by the inclined protrusions when the droplets are attached, so that the droplets are retained on the surface of the structure. The state becomes unstable and the droplets easily move on the surface of the structure. Droplets move from places that are inherently difficult to wet to places that are easily wetted, so the formation of tilted protrusions around the droplets causes anisotropy and non-uniformity in the wetting and promotes the movement of the droplets. Effect. As a result, even if the film is tilted slightly or even when it is horizontal, the droplets on the surface of the structure move and fall off the edge, eliminating droplet adhesion and antifouling effects. Further increase is possible.
 本発明の構造体の表面において、突起の個数は、10000μm中に10個以上、4×10個以下であると、構造体の表面にある液滴が突起の頂点で支持されやすくなり、液滴と空気との接触面積が大きくなることにより、撥液性が高まるため好ましく、1000個以上、4×10個以下であることがより好ましい。10000μm中の突起の個数が4×10個より多い場合は、液滴付着時に突起の間に十分な空間が存在しなくなり、空気との接触面積が少なくなるため、撥液効果が不十分となる場合がある。また、10個より少ない場合は、突起の間隔が大きくなるため、液滴が突起の間に入り、突起以外の平坦部と液滴が接触し、撥液性が低下する場合がある。さらに、10000μm中の突起の個数が1000個以上であれば、突起の間隔が大きくかつ、液滴が突起の間に入ることが少なくなるため、より撥液性が高まる場合がある。ここで突起の個数は、走査型電子顕微鏡を用いた表面の観察写真を取得し、その写真を二値化した画像から読み取ることができる。写真を二値化する方法は、まず画像処理フィルターを用いて、取得した表面観察写真へ平均化処理を行い、ノイズを除去した後、突起と構造体であるフィルムの表面の境界を明瞭にするため、平均化処理を行った表面観察写真へ二値化処理を行う。二値化は0~256階調のうち、適切なしきい値で二値化し、突起部を明瞭にする。なお、二値化するしきい値は、80~140の間で設定することが好ましい。しきい値が80より小さいと突起の領域が大きくなり、140より大きいと突起の領域が小さくなるため、突起と構造体の表面との境界を定めることができない場合がある。具体的には、二値化するしきい値としてまず80で二値化を行い、白と黒の面積率を算出する。その後、しきい値を140まで1ずつ値を変更して、それぞれのしきい値における面積率を算出し、連続する5点の両端の面積率の差が最も小さい5点の中央の点をしきい値として二値化を行う。(例えば、101~105の面積率の差が一番小さい場合は、しきい値を103とする。)また、ここでいう二値化とは濃淡のある画像を白と黒の2階調へ変換する処理であり、あるしきい値を定めて、各画素の値がしきい値を上回っていれば白、下回っていれば黒と変換する。 On the surface of the structure of the present invention, when the number of protrusions is 10 to 4 × 10 5 in 10000 μm 2 , droplets on the surface of the structure are easily supported at the apexes of the protrusions, It is preferable because the liquid repellency is improved by increasing the contact area between the droplet and air, and more preferably 1000 or more and 4 × 10 5 or less. When the number of protrusions in 10000 μm 2 is more than 4 × 10 5 , there is not enough space between the protrusions when the droplets are attached, and the contact area with air is reduced, so the liquid repellent effect is insufficient. It may become. If the number is less than 10, the distance between the protrusions becomes large, so that the liquid droplets may enter between the protrusions, and the flat part other than the protrusions may come into contact with the liquid droplets, resulting in a decrease in liquid repellency. Further, if the number of protrusions in 10000 μm 2 is 1000 or more, the interval between the protrusions is large and the liquid droplets are less likely to enter between the protrusions, so that the liquid repellency may be further improved. Here, the number of protrusions can be read from an image obtained by obtaining an observation photograph of the surface using a scanning electron microscope and binarizing the photograph. The method of binarizing a photograph is to first average the acquired surface observation photograph using an image processing filter, remove the noise, and then clarify the boundary between the projection and the film surface as a structure. Therefore, binarization processing is performed on the surface observation photograph that has been subjected to averaging processing. The binarization is binarized with an appropriate threshold value from 0 to 256 gradations to make the protrusion clear. The threshold value for binarization is preferably set between 80 and 140. If the threshold value is smaller than 80, the region of the protrusion becomes large, and if it is larger than 140, the region of the protrusion becomes small. Therefore, the boundary between the protrusion and the surface of the structure may not be determined. Specifically, binarization is first performed at 80 as a threshold value for binarization, and the area ratio of white and black is calculated. After that, change the threshold value by 1 up to 140, calculate the area ratio at each threshold, and calculate the center point of the 5 points with the smallest difference in the area ratio at both ends of the 5 consecutive points. Binarization is performed as a threshold value. (For example, when the difference in the area ratio of 101 to 105 is the smallest, the threshold value is set to 103.) Also, binarization here refers to a gray-scaled image to two gradations of white and black. This is a process of conversion. A certain threshold value is determined, and if the value of each pixel exceeds the threshold value, it is converted to white, and if it is lower, it is converted to black.
 本発明の構造体の表面の突起の平均直径Dは100nm以上、10μm以下であることが好ましい。ここで、平均直径Dとは、走査型電子顕微鏡を用いた表面の観察写真を取得し、その写真を二値化した画像における突起の等面積円の直径(以下、相当直径と記す)が最大となる上位10個と、最小となる下位10個の突起を選び、それら20個の相当直径の平均を取ったものである。ただし、このとき測定する突起は完全に独立した突起であり、2つ以上の突起が繋がったものは表面の観察写真の時点で除外する。また、下位10個の突起については相当直径が、50nmに満たないものは突起とは扱わないものとする。写真を二値化する方法は、上述の方法と同様の方法で二値化を行う。 The average diameter D of the protrusions on the surface of the structure of the present invention is preferably 100 nm or more and 10 μm or less. Here, the average diameter D is obtained by obtaining a surface observation photograph using a scanning electron microscope, and the diameter of an equal area circle of protrusions in an image obtained by binarizing the photograph (hereinafter referred to as an equivalent diameter) is the maximum. The top 10 projections and the lowest 10 projections are selected and the average of their 20 equivalent diameters is taken. However, the protrusions to be measured at this time are completely independent protrusions, and those connecting two or more protrusions are excluded at the time of the surface observation photograph. Also, the lower 10 protrusions whose equivalent diameter is less than 50 nm are not treated as protrusions. The method for binarizing a photograph is binarized by the same method as described above.
 相当直径の具体的な測定方法について以下に記す。走査型電子顕微鏡を用いた表面の観察写真において、突起が円と観察される場合はその直径が相当直径であり、円でない場合は等面積の円に置き換えたときの直径が相当直径である。平均直径Dが100nmより小さい場合、このような突起を均一かつ得るのに時間がかかり、工業的に利用することが極めて困難となる場合がある。10μmより大きい場合、液滴付着時に突起との間に空気の層を形成させることが難しくなり、撥液効果が得られない場合がある。 The specific measuring method for equivalent diameter is described below. In the observation photograph of the surface using a scanning electron microscope, when the protrusion is observed as a circle, the diameter is the equivalent diameter, and when it is not a circle, the diameter when the projection is replaced with a circle of equal area is the equivalent diameter. If the average diameter D is smaller than 100 nm, it takes time to obtain such protrusions uniformly and in some cases, making it extremely difficult to use industrially. If it is larger than 10 μm, it becomes difficult to form an air layer between the protrusions when the droplet is attached, and the liquid repellent effect may not be obtained.
 本発明の構造体の表面における任意の範囲の面積を下地面積Sとし、当該範囲において突起の底面が占める面積の合計を突起総面積Aとしたとき、突起総面積の割合(A/S)が10%以上、30%以下であることが好ましい。上記突起総面積の割合が30%より大きい場合は、液滴付着時に液滴と突起との間に十分な空間が存在しなくなり空気との接触面積が少なくなるため、撥液効果が不十分となる場合がある。また、10%より小さい場合は、突起の間隔が大きくなるため、液滴が突起の間に入り、突起以外の平坦部と液滴が接触し、撥液性が低下する場合がある。 When the area of an arbitrary range on the surface of the structure of the present invention is a base area S and the total area occupied by the bottom surfaces of the protrusions in the range is the total protrusion area A, the ratio of the total protrusion area (A / S) is It is preferably 10% or more and 30% or less. When the ratio of the total protrusion area is larger than 30%, there is not enough space between the droplet and the protrusion when the droplet is attached, and the contact area with the air is reduced. There is a case. If it is smaller than 10%, the interval between the projections becomes large, so that the droplets enter between the projections, the flat portion other than the projections contacts the droplets, and the liquid repellency may be lowered.
 突起総面積の割合(A/S)は、例えば次のようにして求める(上記任意の範囲として1辺が100μmの正方形の範囲を取る場合を例として説明する)。1辺が100μmの正方形の範囲を設定したとき、下地面積Sは、10000μmであり、この正方形の領域における突起総面積Aは、走査型電子顕微鏡を用いた表面の観察写真を取得し、その写真を二値化した画像から得るものとし、それらから、突起総面積の割合(A/S)を算出する。写真を二値化する方法は、上述の方法と同様の方法で行う。 The ratio of the total protrusion area (A / S) is obtained, for example, as follows (explained as an example of the case where the above-mentioned arbitrary range is a square having a side of 100 μm). When a square range with one side of 100 μm is set, the base area S is 10,000 μm 2 , and the total protrusion area A in this square region is obtained by observing a surface observation photograph using a scanning electron microscope, The photograph is obtained from the binarized image, and the ratio (A / S) of the total protrusion area is calculated from them. The method for binarizing a photograph is performed in the same manner as described above.
 また、突起が傾斜し、突起が占める面積を表面の観察写真から読み取ることが難しい場合は、液状シリコーンゴムなどでフィルムの表面の型を取り、その型の表面画像から読み取ってもよい。硬化した液状シリコーンゴムからフィルムを剥ぎ取った時、液状シリコーンゴムの表面は、突起の底面に対応する孔が多数開いた表面となる。この表面の走査型電子顕微鏡写真を取得し、孔が占める面積を突起の占める面積に置き換える。 If the projections are inclined and the area occupied by the projections is difficult to read from the surface observation photograph, the film surface mold may be taken with liquid silicone rubber or the like and read from the mold surface image. When the film is peeled off from the cured liquid silicone rubber, the surface of the liquid silicone rubber becomes a surface having many holes corresponding to the bottom surfaces of the protrusions. A scanning electron micrograph of this surface is obtained and the area occupied by the holes is replaced with the area occupied by the protrusions.
 また、前記突起の平均高さHと平均直径Dとの比(H/D)は1以上、50以下であることが好ましい。平均高さHと平均直径Dとの比(H/D)が1より小さい場合には、水滴付着時に突起との間に空気の層を形成させることが難しくなり、撥液効果が得られない場合がある。一方、50より大きい場合には、このような突起を得ることに時間がかかる場合がある。また、突起が折れたり、変形しやすくなったりするなど、耐久性が低下する場合がある。 Further, the ratio (H / D) between the average height H and the average diameter D of the protrusions is preferably 1 or more and 50 or less. When the ratio of the average height H to the average diameter D (H / D) is smaller than 1, it becomes difficult to form an air layer between the protrusions when the water droplets adhere, and the liquid repellent effect cannot be obtained. There is a case. On the other hand, if it is larger than 50, it may take time to obtain such protrusions. Moreover, durability may fall, such as a protrusion breaking or becoming easy to deform | transform.
 ここで平均高さHとは、走査型電子顕微鏡を用いた断面の観察写真から上位最大高さ10個と下位最小高さ10個の突起を選び、それら20個の突起高さを平均したものである。また、高さとは構造体の表面から突起の頂部までの距離である。ここで、下位最小高さ10個を選択する際に、高さが50nm以上のものを突起とし、それ未満のものは突起としては扱わないものとする。 Here, the average height H is obtained by selecting projections having an upper maximum height of 10 and a lower minimum height of 10 from an observation photograph of a cross section using a scanning electron microscope, and averaging those 20 projection heights. It is. The height is the distance from the surface of the structure to the top of the protrusion. Here, when 10 lower minimum heights are selected, those having a height of 50 nm or more are assumed to be protrusions, and those lower than that are not treated as protrusions.
 さらに、突起の平均高さHは500nm~100μmであることが好ましい。平均高さHが500nmより小さい場合、液滴が下地に接触しやすく、撥液性が低下する場合がある。また、100μmより大きい場合は、突起間距離も高さに比例して広がることが多く、その場合、突起間に液体が濡れ広がり、撥液性が低下する場合がある。また、突起が折れたり、変形しやすくなったりするなど、耐久性が低下する場合がある。 Furthermore, the average height H of the protrusions is preferably 500 nm to 100 μm. When the average height H is smaller than 500 nm, the droplets are likely to come into contact with the base and the liquid repellency may be lowered. On the other hand, when the thickness is larger than 100 μm, the distance between the protrusions often spreads in proportion to the height. In this case, the liquid spreads between the protrusions and the liquid repellency may be lowered. Moreover, durability may fall, such as a protrusion breaking or becoming easy to deform | transform.
 また、本発明の構造体は、フィルムに限定されることはなく、表面の熱成形が可能なものであればいかなる形状でもよいが、生産性やコストの観点から、フィルムが好ましい。 Further, the structure of the present invention is not limited to a film and may have any shape as long as the surface can be thermoformed. From the viewpoint of productivity and cost, a film is preferable.
 さらに、上記突起を形成できる材料であればいかなるものでもよく、フッ素樹脂やシリコーン系樹脂、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂ポリエーテル系樹脂、ポリエステルアミド系樹脂、ポリエーテルエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、またはポリ塩化ビニル系樹脂などが好ましく用いられる。特に、表面エネルギーの低いフッ素系樹脂やシリコーン系樹脂、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂などが好ましく用いられる。構造体の材料としてはこれらの樹脂を主たる成分として含むことが好ましい。なお、主たる成分とは構造体を構成する樹脂全体を100質量%としたときに50質量%以上を占める成分をいう。なお、主たる成分は50質量%以上が好ましく、80質量%以上がより好ましい。 Further, any material can be used as long as it can form the protrusions, and a fluororesin, silicone resin, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polyester resin such as polybutylene terephthalate, polyethylene, polystyrene, Polyolefin resins such as polypropylene, polyisobutylene, polybutene, polymethylpentene, polyamide resins, polyimide resins, polyether resins, polyesteramide resins, polyetherester resins, acrylic resins, polyurethane resins, polycarbonate resins Or a polyvinyl chloride resin or the like is preferably used. Particularly preferred are fluororesins and silicone resins having a low surface energy, and polyolefin resins such as polyethylene, polystyrene, polypropylene, polyisobutylene, polybutene, and polymethylpentene. As a material of the structure, it is preferable to include these resins as main components. In addition, a main component means the component which occupies 50 mass% or more when the whole resin which comprises a structure is 100 mass%. In addition, 50 mass% or more is preferable and, as for the main component, 80 mass% or more is more preferable.
 さらに、本発明に適用する材料には、重合時または重合後に各種の添加剤を加えることができる。添加配合することができる添加剤の例としては、例えば、有機微粒子、無機微粒子、分散剤、染料、蛍光増白剤、酸化防止剤、耐候剤、帯電防止剤、離型剤、増粘剤、可塑剤、pH調整剤および塩などが挙げられる。特に、離型剤として、長鎖カルボン酸、もしくは長鎖カルボン酸塩、などの低表面張力のカルボン酸やその誘導体、および、長鎖アルコールやその誘導体、変性シリコーンオイルなどの低表面張力のアルコール化合物等を重合時に少量添加することが好ましく行われる。 Furthermore, various additives can be added to the material applied to the present invention at the time of polymerization or after polymerization. Examples of additives that can be added and blended include, for example, organic fine particles, inorganic fine particles, dispersants, dyes, fluorescent brighteners, antioxidants, weathering agents, antistatic agents, mold release agents, thickeners, Examples include plasticizers, pH adjusters, and salts. In particular, as a releasing agent, low surface tension carboxylic acids such as long chain carboxylic acids or long chain carboxylates and derivatives thereof, and low surface tension alcohols such as long chain alcohols and derivatives thereof, and modified silicone oils. It is preferable to add a small amount of a compound or the like during polymerization.
 また、構造体は積層構成とし、突起が成形される表層のみに上記の材料を使用してもよい。表層以外の層として、表層よりも強度や耐熱性の高い材料を設定することにより、成形時における平面性を高めて、構造体の変形やしわを抑制することも可能である。 Further, the structure may have a laminated structure, and the above material may be used only for the surface layer on which the protrusion is formed. By setting a material having higher strength and heat resistance than the surface layer as a layer other than the surface layer, it is possible to improve the flatness during molding and suppress deformation and wrinkling of the structure.
 さらに、構造体は連続体であっても枚葉体であってもよい。構造体の厚みは特に制限されるものではない。 Furthermore, the structure may be a continuous body or a single wafer. The thickness of the structure is not particularly limited.
 本発明の好ましい態様として、突起の根元の中心から先端の中心に引いた直線の方向(以降「突起の方向」と略記することもある)が不定である態様が挙げられる。ここで、突起の方向が不定であるとは各々の突起の方向が構造体の表面上の空間においてランダムであることをいい、より具体的には各々の突起の方向が、(i)構造体の表面に平行な面内における突起の傾斜する方向、及び、(ii)構造体の表面に垂直な方向に対して傾斜する角度、の少なくとも一方において、ランダムであることをいう。なお、前記(i)及び(ii)のそれぞれにおいて各々の突起の方向または角度を測定することは、(i)に関して各々の突起の方向が同一である場合を除いて困難であることから、突起の方向が不定であることの確認は、上記(i)(ii)を分離することなく以下のように判断することとする。すなわち、構造体の表面に対して45°ごとの4方向の垂直な面で構造体を切断し、断面を観察したとき、断面における突起の基準角度が最も大きく傾斜している断面において、突起の70%以上が基準角度に対して±20°を超えていれば、突起の方向が不定であると判断する。ここで基準角度とは、断面の観察写真から10個の突起を選び、それらが、断面の観察写真上で構造体の表面に垂直な方向に対して傾斜する角度(以降、「断面傾斜角度」と記す)を測定し、平均した角度のことをいう。これらの判断においては走査型電子顕微鏡を用いればよい。根元の中心から先端の中心に引いた直線の方向が不定であることにより、液滴周辺において、濡れに不均一性が生じて、液滴の移動を促進させることができる。その結果、フィルムをわずかに傾けた場合、あるいは水平のままでもフィルム上の液滴が排除され、液滴付着防止の効果をさらに高めることが可能となる。 A preferred embodiment of the present invention is an embodiment in which the direction of a straight line drawn from the center of the protrusion to the center of the tip (hereinafter sometimes abbreviated as “projection direction”) is indefinite. Here, the direction of the protrusion is indefinite means that the direction of each protrusion is random in the space on the surface of the structure, and more specifically, the direction of each protrusion is (i) the structure. It is random in at least one of the direction in which the protrusions incline in the plane parallel to the surface of (ii) and the angle incline with respect to the direction perpendicular to the surface of the structure. In addition, since it is difficult to measure the direction or angle of each protrusion in each of (i) and (ii) except for the case where the direction of each protrusion is the same with respect to (i), Confirmation that the direction of is indefinite is made as follows without separating the above (i) and (ii). That is, when the structure is cut in four directions perpendicular to the surface of the structure in 45 ° directions and the cross section is observed, the cross section of the protrusion has the largest reference angle in the cross section. If 70% or more exceeds ± 20 ° with respect to the reference angle, it is determined that the direction of the protrusion is indefinite. Here, the reference angle refers to an angle at which ten protrusions are selected from a cross-sectional observation photograph and are inclined with respect to a direction perpendicular to the surface of the structure on the cross-section observation photograph (hereinafter referred to as “cross-section inclination angle”). Is the average angle measured. In these determinations, a scanning electron microscope may be used. Since the direction of the straight line drawn from the center of the root to the center of the tip is indefinite, nonuniformity occurs in wetting around the droplet, and the movement of the droplet can be promoted. As a result, droplets on the film are eliminated even when the film is tilted slightly or when it is horizontal, and the effect of preventing droplet adhesion can be further enhanced.
 本発明の別の好ましい態様として、突起の方向が一定である態様が挙げられる。ここで、突起の方向が一定であるとは各々の突起の方向が構造体の表面上の空間において略一方向であることをいい、より具体的には各々の突起の方向が、(i)構造体の表面に平行な面内における突起の傾斜する方向、及び、(ii)構造体の表面に垂直な方向に対して傾斜する角度、の両方において、同じであることをいう。図3に突起の方向が一定である本発明の構造体である樹脂フィルムの断面概略図であり、(i)構造体の表面に平行な面内における突起の傾斜する方向と平行な断面である。図3に示すとおり、各々の突起が(ii)構造体の表面に垂直な方向に対して傾斜する角度θがほぼ一定であることが断面から判断できる。このような突起の方向が一定であることの確認は、次のように行う。フィルム表面に対して45°ごとの4方向の垂直な面で切断し、断面を観察したとき、断面における突起の基準角度が最も大きく傾斜している断面において、突起の70%以上の突起が基準角度に対して±20°の範囲で揃って傾斜していると定義する。ここで基準角度とは、断面の観察写真から10個の突起を選び、それらが、断面の観察写真上で構造体の表面に垂直な方向に対して傾斜する角度(以降、「断面傾斜角度」と記す)を測定し、平均した角度のことをいう。これらの判断においては走査型電子顕微鏡を用いればよい。断面における突起の根元の中心から突起の先端の中心に引いた直線の方向が一定であることにより、液滴周辺において濡れの異方性が生じて、特定の方向に液滴の移動を促進させることができる。その結果、フィルムをわずかに特定の方向に傾けた場合、あるいは水平のままでもフィルム上の液滴が排除され、液滴付着防止の効果を高めることが可能となる。 Another preferred embodiment of the present invention is an embodiment in which the direction of the protrusion is constant. Here, the direction of the protrusions being constant means that the direction of each protrusion is substantially one direction in the space on the surface of the structure, and more specifically, the direction of each protrusion is (i) It means that it is the same in both the direction in which the protrusions incline in the plane parallel to the surface of the structure and the angle (ii) the angle incline with respect to the direction perpendicular to the surface of the structure. FIG. 3 is a schematic cross-sectional view of a resin film that is a structure of the present invention in which the direction of the protrusion is constant, and (i) a cross-section parallel to the direction in which the protrusion inclines in a plane parallel to the surface of the structure. . As shown in FIG. 3, it can be determined from the cross section that the angle θ at which each protrusion is inclined (ii) with respect to the direction perpendicular to the surface of the structure is substantially constant. Confirmation that the direction of such protrusions is constant is performed as follows. When the cross section is observed by cutting the surface of the film in four directions at 45 ° intervals of 45 °, 70% or more of the protrusions are the reference in the cross section where the reference angle of the protrusion in the cross section is the largest. It is defined as being inclined in a range of ± 20 ° with respect to the angle. Here, the reference angle refers to an angle at which ten protrusions are selected from a cross-sectional observation photograph and are inclined with respect to a direction perpendicular to the surface of the structure on the cross-section observation photograph (hereinafter referred to as “cross-section inclination angle”). Is the average angle measured. In these determinations, a scanning electron microscope may be used. Since the direction of the straight line drawn from the center of the projection root to the center of the tip of the projection in the cross section is constant, wetting anisotropy occurs around the droplet and promotes the movement of the droplet in a specific direction be able to. As a result, when the film is slightly tilted in a specific direction, or even when the film is kept horizontal, droplets on the film are eliminated, and the effect of preventing droplet adhesion can be enhanced.
 突起は、根元の中心から先端の中心に引いた直線のうち70%以上が構造体の表面に垂直な方向に対して、25°以上、50°以下の範囲で傾斜していることが好ましい。ここで、25°以上、50°以下の範囲で傾斜しているとは、フィルムの表面に対して垂直な方向で切断し、断面を観察したとき、断面における突起のうち、70%以上の突起が25°以上、50°以下の角度で傾斜していることをいう。70%以上の突起の傾斜が25°より小さい場合は、液滴周辺の濡れの不均一性を十分に発現しない場合がある。そのため、液滴が移動しにくくなり、フィルムの表面に残存する場合がある。一方、70%以上の突起の傾斜が50°より大きい場合は、突起と液滴との接触面積が大きくなり、撥液性が損なわれる場合がある。 It is preferable that 70% or more of the straight line drawn from the center of the root to the center of the tip is inclined in a range of 25 ° or more and 50 ° or less with respect to a direction perpendicular to the surface of the structure. Here, the inclination in the range of 25 ° or more and 50 ° or less means that 70% or more of the protrusions in the cross section when the cross section is observed by cutting in a direction perpendicular to the surface of the film. Is inclined at an angle of 25 ° or more and 50 ° or less. If the inclination of the projection of 70% or more is smaller than 25 °, the non-uniformity of wetting around the droplet may not be sufficiently exhibited. Therefore, the droplets are difficult to move and may remain on the surface of the film. On the other hand, when the inclination of the protrusion of 70% or more is larger than 50 °, the contact area between the protrusion and the droplet is increased, and the liquid repellency may be impaired.
 前記突起の高さは不定であることが好ましい。ここで、突起の高さが不定であるとは、前記突起の平均高さHを100%としたとき、高さが80%未満または120%以上となる突起の個数が断面における突起個数の70%以上であることをいう。図4は、突起の高さが不定である本発明の表面に突起を有する構造体である樹脂フィルムの断面概略図である。液滴周辺の突起の高さが不定であることにより、液滴周辺の濡れが不均一な状態となり、液滴が移動しやすくなる。その結果、フィルムの表面での液滴の残存が抑えられる。フィルムをわずかに特定の方向に傾けた場合、あるいは水平のままでもフィルム上の液滴が排除され、液滴付着防止の効果を高めることが可能となる。 The height of the protrusion is preferably indefinite. Here, when the average height H of the protrusions is 100%, the number of protrusions whose height is less than 80% or 120% or more is 70 as the number of protrusions in the cross section. % Or more. FIG. 4 is a schematic cross-sectional view of a resin film that is a structure having protrusions on the surface of the present invention in which the height of the protrusions is indefinite. Since the height of the protrusion around the droplet is indefinite, wetting around the droplet becomes non-uniform, and the droplet easily moves. As a result, the remaining of droplets on the surface of the film is suppressed. When the film is slightly tilted in a specific direction, or even when the film is kept horizontal, droplets on the film are eliminated, and the effect of preventing droplet adhesion can be enhanced.
 本発明の表面に突起を有する構造体であるフィルムは、例えば図5、図6、図7に示すような装置を介したプロセスによって製造することが可能である。 The film which is a structure having protrusions on the surface of the present invention can be manufactured by a process through an apparatus as shown in FIGS.
 図5、図7は、フィルムの表面に突起を有するフィルムを製造するための製造装置50、70の断面概略図を示している。また、図6は製造装置50において、フィルムを金型から剥離する動作を示した断面概略図である。 5 and 7 are schematic cross-sectional views of manufacturing apparatuses 50 and 70 for manufacturing a film having protrusions on the surface of the film. FIG. 6 is a schematic cross-sectional view showing the operation of peeling the film from the mold in the manufacturing apparatus 50.
 図5に示す例では、巻出ユニット52において、あらかじめフィルムを巻出ロール51から引き出し、次に、プレスユニット54において、表面に突起構造が形成され加熱された金型53を、間欠的に送られてくるフィルムに押し付けて加圧し、その後、接触状態を保持したまま冷却することにより、フィルムの表面に所定の突起を形成する。 In the example shown in FIG. 5, in the unwinding unit 52, the film is pulled out from the unwinding roll 51 in advance, and then, in the press unit 54, the heated mold 53 having a projection structure formed on the surface is intermittently fed. A predetermined protrusion is formed on the surface of the film by pressing and pressurizing the resulting film, followed by cooling while maintaining the contact state.
 成形部は所定の突起を形成するプレスユニット54と、加圧により金型53に貼り付いたフィルムを金型53から剥離する剥離手段55から構成される。剥離手段55は、フィルムをS字状に抱き付かせるように把持する一対の平行に配置された剥離ロール55Aと剥離補助ロール55Bからなる。間欠的に送られてきたフィルムの一面がプレスユニット54内で金型53によって熱成形され、熱成形後に、図6に示すように上記剥離手段55が上流側に向けて移動されることにより、金型53に貼り付いていたフィルムが金型53から順次剥離されるようになっている。その後、巻取ロール56に巻き取られる。 The molding part is composed of a press unit 54 that forms predetermined protrusions, and a peeling means 55 that peels the film attached to the mold 53 under pressure from the mold 53. The peeling means 55 comprises a pair of peeling rolls 55A and a peeling auxiliary roll 55B arranged in parallel to hold the film so as to hold it in an S shape. One surface of the film sent intermittently is thermoformed by the mold 53 in the press unit 54, and after the thermoforming, the peeling means 55 is moved toward the upstream side as shown in FIG. The film attached to the mold 53 is peeled off from the mold 53 sequentially. Thereafter, the film is wound around a winding roll 56.
 なお、図5において、57、58は加圧プレート、59、60はフィルムの金型53部分における間欠搬送を円滑に行わせるために設けられたバッファ手段を示している。 In FIG. 5, 57 and 58 indicate pressure plates, and 59 and 60 indicate buffer means provided to smoothly perform intermittent conveyance in the mold 53 portion of the film.
 剥離ロール55Aと金型との離間距離55Hや、剥離時の金型53の温度を調整することにより、成形された突起の方向を不定にしたり、一定にしたりすることが可能となる。 By adjusting the separation distance 55H between the peeling roll 55A and the mold and the temperature of the mold 53 at the time of peeling, the direction of the formed projection can be made indefinite or constant.
 また、例えば、剥離ロール55Aと金型との離間距離55Hを一定距離確保し、剥離時の金型の温度をフィルム成形面を構成する樹脂のガラス転移温度よりも低く設定した場合、傾斜方向が一定である突起が形成される。剥離時にフィルムは金型表面に垂直な方向から傾いた方向に張力が加えられ、一定方向に傾斜するように変形した突起が形成される。なお、剥離後のフィルムは十分に冷却されているため、剥離補助ロール55Bとの接触圧を受けても、傾斜状態が変化しにくい。 In addition, for example, when a separation distance 55H between the peeling roll 55A and the mold is secured, and the mold temperature at the time of peeling is set lower than the glass transition temperature of the resin constituting the film molding surface, the inclination direction is Protrusions that are constant are formed. At the time of peeling, the film is tensioned in a direction inclined from a direction perpendicular to the mold surface, and a projection is formed that is deformed to incline in a certain direction. In addition, since the film after peeling is fully cooled, even if it receives contact pressure with the peeling auxiliary roll 55B, an inclination state does not change easily.
 また、例えば、離間距離55Hを極力小さくして、剥離時の金型の温度をフィルム成形面を構成する樹脂のガラス転移温度近傍に設定した場合、傾斜方向が不定な突起が形成される。これは、剥離では、金型表面に対してほぼ垂直な方向に張力を加えてフィルムを剥離するため、フィルムの表面に対して垂直な突起が一旦形成された後、一定の圧力で剥離補助ロール55Bに押圧されることにより、十分に冷却しきれていない突起が変形して、ランダムな方向に偏向するためである。 Further, for example, when the separation distance 55H is made as small as possible and the mold temperature at the time of peeling is set in the vicinity of the glass transition temperature of the resin constituting the film molding surface, protrusions with indefinite inclination directions are formed. This is because in peeling, the film is peeled off by applying a tension in a direction substantially perpendicular to the mold surface. Therefore, a protrusion perpendicular to the surface of the film is once formed, and then a peeling assist roll with a constant pressure. This is because the protrusions that are not sufficiently cooled are deformed by being pressed by 55B and deflected in random directions.
 図7に示す例では、フィルムが巻出ロール73から引き出され、加熱ロール75により、加熱された表面に突起構造が形成されたエンドレスベルト状の金型76上に供給される。 In the example shown in FIG. 7, the film is pulled out from the unwinding roll 73 and supplied by the heating roll 75 onto an endless belt-shaped mold 76 having a projection structure formed on the heated surface.
 金型76の外表面には独立して離散的に配置された微細凹みが形成されて、フィルムと接触する直前に加熱ロール75によって加熱される。連続的に供給されるフィルムはニップロール77により金型76の凹み構造が加工された表面に押し付けられ、フィルムの表面に突起が形成される。 The outer surface of the mold 76 is formed with discrete microscopic recesses that are discretely arranged, and is heated by the heating roll 75 immediately before coming into contact with the film. The continuously supplied film is pressed against the surface of the mold 76 where the concave structure is processed by the nip roll 77, and projections are formed on the surface of the film.
 その後、フィルムは、金型76の表面と密着された状態で冷却ロール78の外表面位置まで搬送される。フィルムは、冷却ロール78によって金型76を介して熱伝導により冷却された後、剥離ロール79によって金型76から剥離され、巻取ロール81に巻き取られる。このようなプロセスにより、突起が形成されたフィルムを連続的に高い生産性をもって熱成形していくことが可能になる。 Thereafter, the film is conveyed to the outer surface position of the cooling roll 78 in a state of being in close contact with the surface of the mold 76. The film is cooled by heat conduction through the mold 76 by the cooling roll 78, peeled off from the mold 76 by the peeling roll 79, and taken up by the winding roll 81. Such a process makes it possible to thermoform a film on which protrusions are formed continuously with high productivity.
 剥離ロール79と金型との離間距離79Hや、冷却ロール78の温度を調整することにより、成形された突起の方向を不定にしたり、一定にしたりすることが可能となる。 By adjusting the separation distance 79H between the peeling roll 79 and the mold and the temperature of the cooling roll 78, the direction of the formed protrusion can be made indefinite or constant.
 例えば、剥離ロール79と冷却ロール78との離間距離79Hを大きくして、剥離時の金型の温度をフィルム成形面を構成する樹脂のガラス転移温度よりも低く設定した場合、突起の方向が一定である構造体が形成される。 For example, when the separation distance 79H between the peeling roll 79 and the cooling roll 78 is increased and the temperature of the mold at the time of peeling is set lower than the glass transition temperature of the resin constituting the film forming surface, the direction of the protrusion is constant. A structure is formed.
 また、例えば、離間距離79Hを極力小さくして、剥離時の金型の温度をフィルム成形面を構成する樹脂のガラス転移温度近傍に設定した場合、突起の方向が不定である構造体が形成される。これは、剥離では、金型表面に対してほぼ垂直な方向に張力を加えてフィルムを剥離するため、フィルムの表面に対して垂直な突起が一旦形成された後、その後の搬送ロール80と成形面との接触時に一定の圧力で押圧され、十分に冷却しきれていない突起が変形して、ランダムな方向に偏向するためである。 Further, for example, when the separation distance 79H is made as small as possible and the mold temperature at the time of peeling is set in the vicinity of the glass transition temperature of the resin constituting the film molding surface, a structure with an indefinite protrusion direction is formed. The This is because in peeling, the film is peeled off by applying a tension in a direction substantially perpendicular to the mold surface, so that a protrusion perpendicular to the surface of the film is once formed and then formed with the subsequent transport roll 80. This is because the protrusions that are pressed with a certain pressure at the time of contact with the surface and are not sufficiently cooled are deformed and deflected in a random direction.
 表面に凹み構造を有する各金型の作製方法は、金属表面に直接切削やレーザー加工や電子線加工を施工する方法、金属表面に形成した鍍金皮膜に直接切削やレーザー加工や電子線加工を施工する方法、これらの反転した突起形状を作製した後、電気鋳造により凹み形状を作製する方法が挙げられる。また、レジストを基板の上に塗布した後、フォトリソグラフィー手法によって所定のパターンニングでレジストを形成した後、基板をエッチング処理して突起を形成し、レジスト除去後に電気鋳造でその反転パターンにより凹み構造を得る方法などが挙げられる。 The manufacturing method of each mold having a dent structure on the surface is a method of applying cutting, laser processing or electron beam processing directly on the metal surface, or applying cutting, laser processing or electron beam processing directly on the plating film formed on the metal surface. And a method of producing a concave shape by electroforming after producing these inverted protrusion shapes. Also, after applying the resist on the substrate, after forming the resist with a predetermined patterning by photolithography technique, the substrate is etched to form protrusions, and after removing the resist, a concave structure is formed by its inverted pattern by electroforming And the like.
 また、金型表面にエッチングを施すことにより、凹み構造を表面に有した金型を作製することも可能である。金型の材料としてはシリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック、炭素材料等、強度と要求される精度の加工性を有するものであればよく、具体的には、Si、SiC、SiN、多結晶Si、ガラス、Ni、Cr、Cu、Al、Fe、Ti、Cさらにはこれらを1種以上含むものでよい。また、これらを主成分としたアモルファス構造を表面に有する金型の表面に硝酸等の強酸性の液体によりエッチングすることにより作製してもよい。 It is also possible to produce a mold having a concave structure on the surface by etching the mold surface. The mold material may be silicon wafer, various metal materials, glass, ceramics, plastics, carbon materials, etc., as long as they have strength and workability with the required accuracy. Specifically, Si, SiC, SiN Polycrystalline Si, glass, Ni, Cr, Cu, Al, Fe, Ti, C and further one or more of these may be included. Alternatively, it may be produced by etching the surface of a mold having an amorphous structure mainly composed of these with a strongly acidic liquid such as nitric acid.
 本発明においては、水との接触角をさらに大きくして撥液性をより向上させようとする場合には、上記のようにして得られた突起の表面に、表面エネルギーの低い官能基、特にフッ素基を被覆することが望ましい。 In the present invention, when the contact angle with water is further increased to improve the liquid repellency, a functional group having a low surface energy, in particular, on the surface of the projection obtained as described above, It is desirable to coat the fluorine group.
 このような被覆処理方法としては、突起の構造を被覆材料によって埋めてしまうことのない方法であれば特に限定されないが、例えば、ラングミュアーブロジェット法(LB法)、物理蒸着法(PVD法)、化学蒸着法(CVD法)、自己組織化法、スパッタ法、単分子を溶剤で希釈したものを塗布する方法などが挙げられる。 Such a coating treatment method is not particularly limited as long as the structure of the protrusion is not filled with a coating material. For example, the Langmuir Blodget method (LB method), physical vapor deposition method (PVD method) , Chemical vapor deposition (CVD), self-organization, sputtering, and a method in which a single molecule diluted with a solvent is applied.
 なお、突起を形成する平板に、上記のような材料による任意の厚さの撥液処理を施したのち、上記した方法によって突起を形成するようにすることも可能である。 In addition, it is also possible to form the protrusions by the above-described method after performing a liquid repellent treatment with an arbitrary thickness on the flat plate on which the protrusions are formed.
 本発明の構造体はその表面特性を活かして、例えば細胞培養シートやバイオチップ等のバイオデバイス、光学フィルムや異方性フィルム等の光学デバイス、撥液シート、防汚シート等の建築資材に好適に用いることができる。 The structure of the present invention is suitable for building materials such as biodevices such as cell culture sheets and biochips, optical devices such as optical films and anisotropic films, liquid repellent sheets, and antifouling sheets, taking advantage of its surface characteristics. Can be used.
 [測定方法]
 (突起の個数の測定)
 フィルムを10mm×10mmに切り出し、走査型電子顕微鏡((株)キーエンス VE-7800)にて、倍率5000倍にて表面を反射電子像で観察した。このときの画像サイズは13.3um×13.3um、画素数は375画素×375画素であり、1画素の大きさは35nm×35nmであった。この画像へ平均化処理を行い、ノイズを除去した。その後、二値化処理を行い突起とフィルムの表面の境界を明瞭にした。
[Measuring method]
(Measurement of the number of protrusions)
The film was cut into 10 mm × 10 mm, and the surface was observed with a reflected electron image at a magnification of 5000 with a scanning electron microscope (Keyence VE-7800, Inc.). The image size at this time was 13.3 um × 13.3 um, the number of pixels was 375 × 375 pixels, and the size of one pixel was 35 nm × 35 nm. This image was averaged to remove noise. Thereafter, binarization was performed to clarify the boundary between the protrusion and the surface of the film.
 写真を二値化する方法は、次のように行った。まず画像処理フィルターを用いて、取得した表面観察写真へ平均化処理を行い、ノイズを除去した。その後、突起と構造体の表面との境界を明瞭にするため、平均化処理を行った表面観察写真へ二値化処理を行った。二値化は0~256階調のうち、適切なしきい値で二値化し、突起部とフィルムの表面の境界を明瞭にした。今回取得した表面画像では、二値化するしきい値はまず125で行ったが、うまく二値化画像が得られなかった場合には、しきい値を80~140の間で調整した。平均化処理を行った後に二値化した写真を図8に示す。 The method of binarizing the photos was as follows. First, the obtained surface observation photograph was averaged using an image processing filter to remove noise. Thereafter, in order to clarify the boundary between the protrusion and the surface of the structure, a binarization process was performed on the surface observation photograph subjected to the averaging process. The binarization was binarized with an appropriate threshold value from 0 to 256 gradations, and the boundary between the protrusion and the film surface was clarified. In the surface image acquired this time, the threshold value for binarization was first set to 125, but when the binarized image was not obtained well, the threshold value was adjusted between 80 and 140. A photograph binarized after the averaging process is shown in FIG.
 突起の個数測定時にはSnipping Toolを用いて突起に目印を付けながら測定を行った。この方法で得られた突起個数を10000μm中の突起個数に換算した。 At the time of measuring the number of protrusions, measurement was performed while marking the protrusions using a Snipping Tool. The number of protrusions obtained by this method was converted to the number of protrusions in 10,000 μm 2 .
 (突起の平均直径Dの測定)
 フィルムを10mm×10mmに切り出し、走査型電子顕微鏡((株)キーエンス VE-7800)にて、倍率10000倍にて表面を反射電子像で観察した。このときの画像サイズは12.1um×9.1umであった。なお、画素数は1280画素×960画素であり、1画素の大きさは9.4nm×9.5nmであった。この画像へ平均化処理を行い、ノイズを除去した。その後、二値化処理を行い突起とフィルムの表面の境界を明瞭にした。写真を二値化する方法は、(突起個数の測定)の際と同様に行った。平均化処理を行った後に二値化した写真を図9に示す。
(Measurement of average diameter D of protrusions)
The film was cut into 10 mm × 10 mm, and the surface was observed with a reflected electron image at a magnification of 10,000 with a scanning electron microscope (Keyence VE-7800, Inc.). The image size at this time was 12.1 μm × 9.1 μm. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 9.4 nm × 9.5 nm. This image was averaged to remove noise. Thereafter, binarization was performed to clarify the boundary between the protrusion and the surface of the film. The method of binarizing the photograph was performed in the same manner as in (measurement of the number of protrusions). A photograph binarized after the averaging process is shown in FIG.
 観察写真から、突起の相当直径が最大となる上位10個と、最小となる下位10個の突起を選び、それら20個の相当直径の平均を取り、平均直径Dとした。なお、観察写真において、突起が円と観察される場合はその直径を相当直径とし、円でない場合は等面積の円に置き換えたときの直径を相当直径とした。 From the observation photograph, the top 10 projections with the maximum equivalent diameter of the projections and the bottom 10 projections with the minimum were selected, and the average of the 20 equivalent diameters was taken as the average diameter D. In the observation photograph, when the protrusion was observed as a circle, the diameter was the equivalent diameter, and when it was not a circle, the diameter when the protrusion was replaced with a circle of equal area was taken as the equivalent diameter.
 (突起の平均高さHの測定)
 フィルムをフィルムの表面に対して垂直な方向で切断し、その断面を走査型電子顕微鏡((株)キーエンス VE-7800)を用いて倍率5000倍にて観察した。このときの画像サイズは24.3um×18.2umであった。なお、画素数は1280画素×960画素であり、1画素の大きさは19.0nm×19.0nmであった。観察写真から、上位最大高さ10個と下位最小高さ10個の突起を選び、それら20個の突起高さを平均したものを平均高さHとした。また、高さとはフィルムの表面から突起の頂部までの距離である。
(Measurement of average height H of protrusions)
The film was cut in a direction perpendicular to the film surface, and the cross section was observed at a magnification of 5000 using a scanning electron microscope (Keyence VE-7800, Inc.). The image size at this time was 24.3 um × 18.2 um. The number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 19.0 nm × 19.0 nm. From the observation photograph, ten upper maximum heights and ten lower minimum height protrusions were selected, and the average of these 20 protrusion heights was defined as an average height H. The height is the distance from the film surface to the top of the protrusion.
 (突起の断面傾斜角度の測定)
 フィルムをフィルムの表面に対して45°ごとの4方向の垂直な面で切断し、それぞれについてその断面を走査型電子顕微鏡((株)キーエンス VE-7800)を用いて倍率5000倍にて観察した。観察対象範囲は24.3um×18.2um、画素数は1280画素×960画素であり、1画素の大きさは19.0nm×19.0nmであった。4枚の観察写真について、それぞれ10個の突起を選び、それらの突起の(a)根元の中心と突起の先端の中心とを結んだ線と、(b)構造体の表面に垂直な方向とのなす角度を測定すると共に、平均値を計算し基準角度とした。この様にして得た断面における突起の基準角度が最も大きく傾斜している断面を評価対象とし、その断面における10個の突起の(a)根元の中心と突起の先端の中心とを結んだ線と、(b)構造体の表面に垂直な方向とのなす角度の個別値を断面傾斜角度として、突起の状況(傾斜の有無、突起の方向)の判定を行った。なお、各実施例、比較例において示される断面の写真は、突起の基準角度が最も大きく傾斜している断面の写真である。
(Measurement of cross-sectional inclination angle of protrusions)
The film was cut along four perpendicular planes of 45 ° with respect to the surface of the film, and the cross section of each was observed with a scanning electron microscope (Keyence VE-7800) at a magnification of 5000 times. . The observation target range was 24.3 um × 18.2 um, the number of pixels was 1280 pixels × 960 pixels, and the size of one pixel was 19.0 nm × 19.0 nm. Select 10 protrusions for each of the four observation photographs, (a) a line connecting the center of the protrusion and the center of the tip of the protrusion, and (b) a direction perpendicular to the surface of the structure. And the average value was calculated as a reference angle. The cross section in which the reference angle of the protrusion in the cross section obtained in this way is inclined most greatly is the object of evaluation, and the line connecting the center of (a) the base of the ten protrusions and the center of the tip of the protrusion in the cross section. And (b) the state of the protrusion (the presence or absence of inclination, the direction of the protrusion) was determined using the individual value of the angle formed with the direction perpendicular to the surface of the structure as the cross-sectional inclination angle. In addition, the photograph of the cross section shown in each Example and a comparative example is a photograph of the cross section in which the reference | standard angle of protrusion was inclined most.
 (実施例1)
 (1)フィルム
 ポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み100μmのフィルムを用いた。
Example 1
(1) Film A film having a thickness of 100 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が300nmから800nm程度の凹み構造が全面に形成された金型を作製した。凹みが形成された領域は表面に対して、20%であった。
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Then, the metal mold | die with which the dent structure about 300 nm to 800 nm in diameter was formed in the whole surface with the laser processing with respect to the metal mold | die surface was produced. The area where the dent was formed was 20% with respect to the surface.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit.
 成形時の金型温度は150℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は110℃であった。
剥離ロールとフィルムとの離間距離は0.1mmであった。剥離したフィルムを下流側の巻き取り装置側に送り出し、巻き取った。
The mold temperature at the time of molding was set to 150 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 110 ° C.
The separation distance between the peeling roll and the film was 0.1 mm. The peeled film was sent out to the downstream winding device side and wound up.
 (4)成形結果
 成形したフィルムの突起形成面の走査型電子顕微鏡((株)キーエンス VE-7800)による写真を図10に示す。本実施例では表面に平均直径Dが300nm、平均高さHが1.0μm、突起の平均高さHと平均直径Dとの比(H/D)が3.3の突起が全面に形成された。このとき、10000μmに形成されている突起の個数は21595個であった。突起の傾斜する方向は不定であった。なお、フィルムをフィルムの表面に対して垂直な方向で切断したとき、断面における突起のうち、70%以上がフィルムの表面に対して垂直な方向に対して5°以上傾斜していた。また、図11は、本発明の表面に突起を有する構造体である樹脂フィルムの断面を走査型電子顕微鏡で撮影した写真であり、突起の方向は、不定であった。
(4) Molding result FIG. 10 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800). In this embodiment, protrusions having an average diameter D of 300 nm, an average height H of 1.0 μm, and a ratio of the average height H to the average diameter D (H / D) of 3.3 are formed on the entire surface. It was. At this time, the number of protrusions formed at 10,000 μm 2 was 21595. The direction in which the protrusions incline was indefinite. When the film was cut in a direction perpendicular to the film surface, 70% or more of the protrusions in the cross section were inclined by 5 ° or more with respect to the direction perpendicular to the film surface. FIG. 11 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was indefinite.
 (5)撥液性・液滴移動性効果
  撥液性物品の表面に1.41μLの水を滴下し、接触角計(協和界面科学社製、CA-D型)を用いて、水滴の接触角を測定した。水滴を滴下すると、水滴はフィルムの表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。
(5) Liquid repellency / droplet transfer effect 1.41 μL of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. When a water droplet is dropped, the water droplet rolls on the surface of the film and cannot be kept in one place, so that the contact angle cannot be measured.
 (実施例2)
 (1)フィルム
 ポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み100μmのフィルムを用いた。
(Example 2)
(1) Film A film having a thickness of 100 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が300nmから1.0μmの凹み構造が全面に形成された金型を作製した。凹みが形成された領域は表面に対して、21%であった。
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Then, the metal mold | die with which the dent structure with a diameter of 300 nm-1.0 micrometer was formed in the whole surface with respect to the metal mold | die surface by laser processing was produced. The area where the dent was formed was 21% with respect to the surface.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼り付いたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。成形時の金型温度は150℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は80℃であった。剥離ロールとフィルムとの離間距離は0.3mmであった。剥離したフィルムを下流側の巻き取り装置側に送り出し、巻き取った。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. Moreover, the peeling means for peeling the film stuck on the metal mold | die is installed in the press unit. The mold temperature at the time of molding was set to 150 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 80 ° C. The separation distance between the peeling roll and the film was 0.3 mm. The peeled film was sent out to the downstream winding device side and wound up.
 (4)成形結果
 成形したフィルムの突起形成面の走査型電子顕微鏡((株)キーエンス VE-780))よる写真を図12に示す。表面に平均直径Dが350nm、平均高さHが1.2μm、突起の平均高さHと平均直径Dとの比(H/D)が3.4の突起が全面に形成された。このとき、10000μmに形成されている突起の個数は14345個であった。また、フィルムの表面に対して垂直な方向でフィルムを切断した断面における突起の傾斜角度の範囲は、断面における突起の70%以上がフィルムの表面に対して垂直な方向に対して、20°~45°の範囲であった。図13は、本発明の表面に突起を有する構造体である樹脂フィルムの断面を走査型電子顕微鏡で撮影した写真であり、突起の方向は、一定であった。
(4) Molding result FIG. 12 shows a photograph taken by a scanning electron microscope (Keyence VE-780) of the projection-formed surface of the molded film. Protrusions having an average diameter D of 350 nm, an average height H of 1.2 μm, and a ratio of the average height H to the average diameter D (H / D) of 3.4 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 μm 2 was 14345. Further, the range of the inclination angle of the protrusions in the cross section obtained by cutting the film in the direction perpendicular to the film surface is 20 ° to more than 70% of the protrusions in the cross section perpendicular to the film surface. The range was 45 °. FIG. 13 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was constant.
 (5)撥液性・液滴移動性効果
 撥液性物品の表面に1.41μLの水を滴下し、接触角計(協和界面科学社製、CA-D型)を用いて、水滴の接触角を測定した。水滴を滴下すると、水滴はフィルムの表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。この時、水滴の転がる方向に優先性があり、同じ方向に転がっていた。
(5) Liquid repellency / droplet transfer effect 1.41 μL of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. When a water droplet is dropped, the water droplet rolls on the surface of the film and cannot be kept in one place, so that the contact angle cannot be measured. At this time, the direction in which the water droplets roll was prioritized and rolled in the same direction.
 (実施例3)
 (1)フィルム
 ポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み100μmのフィルムを用いた。
Example 3
(1) Film A film having a thickness of 100 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が350nmから500nmの凹み構造が全面に形成された金型を作製した。凹みが形成された領域は表面に対して、6%であった。
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Then, the metal mold | die with which the dent structure with a diameter of 350 nm to 500 nm was formed in the whole surface with laser processing with respect to the metal mold | die surface was produced. The area where the dent was formed was 6% with respect to the surface.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。成形時の金型温度は150℃とし、加圧力としては全面で7MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は80℃であった。剥離ロールとフィルムとの離間距離は0.3mmであった。剥離したフィルムを下流側の巻き取り装置側に送り出し、巻き取った。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit. The mold temperature during molding was 150 ° C., and the pressure was 7 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 80 ° C. The separation distance between the peeling roll and the film was 0.3 mm. The peeled film was sent out to the downstream winding device side and wound up.
 (4)成形結果
 成形したフィルムの突起形成面の走査型電子顕微鏡((株)キーエンス VE-7800)による写真を図14に示す。表面には平均直径Dが410nm、平均高さHが700nm、突起の平均高さHと平均直径Dとの比(H/D)が1.7の突起が全面に形成された。このとき、10000μmに形成されている突起の個数は3200個であった。また、フィルムの表面に対して垂直な方向でフィルムを切断した断面における突起の傾斜角度の範囲は、断面における突起の70%以上がフィルムの表面に対して垂直な方向に対して、20°~45°の範囲であった。図15は、本発明の表面に突起を有する構造体である樹脂フィルムの断面を走査型電子顕微鏡で撮影した写真であり、突起の方向は一定であった。
(4) Molding result FIG. 14 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800). Protrusions having an average diameter D of 410 nm, an average height H of 700 nm, and a ratio of the average height H of the protrusions to the average diameter D (H / D) of 1.7 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 μm 2 was 3200. Further, the range of the inclination angle of the protrusions in the cross section obtained by cutting the film in the direction perpendicular to the film surface is 20 ° to more than 70% of the protrusions in the cross section perpendicular to the film surface. The range was 45 °. FIG. 15 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was constant.
 (5)撥液性・液滴移動性効果
 撥液性物品の表面に1.41μLの水を滴下し、接触角計(協和界面科学社製、CA-D型)を用いて、水滴の接触角を測定した。水滴を滴下すると、水滴はフィルムの表面を転がり、一箇所に留めることができないため、接触角の測定は不可能であった。この時、水滴の転がる方向に優先性があり、同じ方向に転がっていた。
(5) Liquid repellency / droplet transfer effect 1.41 μL of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. When a water droplet is dropped, the water droplet rolls on the surface of the film and cannot be kept in one place, so that the contact angle cannot be measured. At this time, the direction in which the water droplets roll was prioritized and rolled in the same direction.
 (比較例1)
 (1)フィルム
 ポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み100μmのフィルムを用いた。
(Comparative Example 1)
(1) Film A film having a thickness of 100 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が1.0μmから4.0μmの凹み構造が全面に形成された金型を作製した。凹みが形成された領域は表面に対して、35%であった。
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Then, the metal mold | die with which the dent structure with a diameter of 1.0 micrometer to 4.0 micrometer was formed in the whole surface with laser processing with respect to the metal mold | die surface was produced. The area where the dent was formed was 35% with respect to the surface.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit.
 成形時の金型温度は150℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は110℃であった。 The mold temperature at the time of molding was 150 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 110 ° C.
 剥離ロールとフィルムとの離間距離は0.1mmであった。剥離したフィルムを下流側の巻き取り装置側に送り出し、巻き取った。 The separation distance between the peeling roll and the film was 0.1 mm. The peeled film was sent out to the downstream winding device side and wound up.
 (4)成形結果
 成形したフィルムの突起形成面の走査型電子顕微鏡((株)キーエンス VE-7800)による写真を図16に示す。表面に平均直径が3.0μm、平均高さが2.5μm、突起の平均高さHと平均直径Dとの比(H/D)が0.8の突起が全面に形成された。このとき、10000μmに形成されている突起の個数は720個であった。また、突起の傾斜は見られなかった。図17は、表面に突起を有する構造体である樹脂フィルムの断面を走査型電子顕微鏡で撮影した写真である。
(4) Molding result FIG. 16 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800). Protrusions having an average diameter of 3.0 μm, an average height of 2.5 μm, and a ratio of the average height H to the average diameter D (H / D) of 0.8 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 μm 2 was 720. Moreover, the inclination of the protrusion was not seen. FIG. 17 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface, taken with a scanning electron microscope.
 (5)撥液性・液滴移動性効果
 撥液性物品の表面に1.41μLの水を滴下し、接触角計(協和界面科学社製、CA-D型)を用いて、水滴の接触角を測定した。この時の接触角は105°であり、成形前のフィルムと比較すると、10°接触角が高くなっていた。なお、成形前の接触角は95°であった。また、この時は実施例1または2のように水滴が転がる挙動は見られなかった。
(5) Liquid repellency / droplet transfer effect 1.41 μL of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. The contact angle at this time was 105 °, and the 10 ° contact angle was higher than that of the film before molding. The contact angle before molding was 95 °. At this time, the behavior of water droplets rolling as in Example 1 or 2 was not observed.
 (比較例2)
 (1)フィルム
 ポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み100μmのフィルムを用いた。
(Comparative Example 2)
(1) Film A film having a thickness of 100 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が400nmから700nmの凹み構造が全面に形成された金型を作製した。凹みが形成された領域は表面に対して、10.7%であった。
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Then, the metal mold | die with which the dent structure with a diameter of 400 nm-700 nm was formed in the whole surface with laser processing with respect to the metal mold | die surface was produced. The area where the dent was formed was 10.7% with respect to the surface.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。成形時の金型温度は150℃とし、加圧力としては全面で10MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は80℃であった。剥離ロールとフィルムとの離間距離は0.3mmであった。剥離したフィルムを下流側の巻き取り装置側に送り出し、巻き取った。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit. The mold temperature at the time of molding was set to 150 ° C., and a pressure of 10 MPa was applied over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 80 ° C. The separation distance between the peeling roll and the film was 0.3 mm. The peeled film was sent out to the downstream winding device side and wound up.
 (4)成形結果
 成形したフィルムの突起形成面の走査型電子顕微鏡((株)キーエンス VE-780))よる写真を図18に示す。表面に平均直径Dが550nm、平均高さHが500nm、突起の平均高さHと平均直径Dとの比(H/D)が0.91の突起が全面に形成された。このとき、10000μmに形成されている突起の個数は4500個であり、下地面積に対する突起の総面積率は7.8%であった。また、フィルムの表面に対して垂直な方向でフィルムを切断した断面における突起の傾斜角度の範囲は、断面における突起の70%以上がフィルムの表面に対して垂直な方向に対して、20°~45°の範囲であった。図19は、本発明の表面に突起を有する構造体である樹脂フィルムの断面を走査型電子顕微鏡で撮影した写真であり、突起の方向は一定であった。
(4) Molding result FIG. 18 shows a photograph taken by a scanning electron microscope (Keyence VE-780) of the projection-formed surface of the molded film. Protrusions having an average diameter D of 550 nm, an average height H of 500 nm, and a ratio of the average height H of the protrusions to the average diameter D (H / D) of 0.91 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 μm 2 was 4500, and the total area ratio of protrusions to the base area was 7.8%. Further, the range of the inclination angle of the protrusions in the cross section obtained by cutting the film in the direction perpendicular to the film surface is 20 ° to more than 70% of the protrusions in the cross section perpendicular to the film surface. The range was 45 °. FIG. 19 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface of the present invention, taken with a scanning electron microscope, and the direction of the protrusions was constant.
 (5)撥液性・液滴移動性効果
 撥液性物品の表面に1.41μLの水を滴下し、接触角計(協和界面科学社製、CA-D型)を用いて、水滴の接触角を測定した。この時の接触角は131°であり、成形前のフィルムと比較すると、36°接触角が高くなっていた。なお、成形前の接触角は95°であった。また、この時は実施例1または2のように水滴が転がる挙動は見られなかった。
(5) Liquid repellency / droplet transfer effect 1.41 μL of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. The contact angle at this time was 131 °, and the contact angle at 36 ° was higher than that of the film before molding. The contact angle before molding was 95 °. At this time, the behavior of water droplets rolling as in Example 1 or 2 was not observed.
 (比較例3)
 (1)フィルム
 ポリプロピレンを主体としたポリマー(融点が144℃)を含む厚み100μmのフィルムを用いた。
(Comparative Example 3)
(1) Film A film having a thickness of 100 μm containing a polymer mainly composed of polypropylene (melting point: 144 ° C.) was used.
 (2)金型
 ステンレス板の表面に、Niを主体とした材料を厚さ100μm程度被覆した。その後、金型表面に対し、レーザー加工で直径が300nmから500nmの凹み構造が全面に形成された金型を作製した。凹みが形成された領域は表面に対して、15%であった。
(2) Mold On the surface of the stainless steel plate, a material mainly composed of Ni was coated with a thickness of about 100 μm. Then, the metal mold | die with which the dent structure with a diameter of 300 nm to 500 nm was formed in the whole surface with the laser processing with respect to the metal mold | die surface was produced. The area where the dent was formed was 15% with respect to the surface.
 (3)成形装置および条件
 装置は図5に示すような装置を適用した。プレスユニットは油圧ポンプで加圧される機構で、内部に加圧プレートが上下に2枚取り付けられ、それぞれ、加熱装置、冷却装置に連結されている。金型は下側の加圧プレートの上面に設置される。また、金型に貼りついたフィルムを剥離するための剥離手段がプレスユニット内に設置されている。
(3) Molding apparatus and conditions The apparatus as shown in FIG. 5 was applied. The press unit is a mechanism that is pressurized by a hydraulic pump. Two pressurizing plates are attached inside the press unit, and are connected to a heating device and a cooling device, respectively. The mold is placed on the upper surface of the lower pressure plate. A peeling means for peeling the film attached to the mold is installed in the press unit.
 成形時の金型温度は150℃とし、加圧力としては全面で5MPaの圧力がかかるようにした。加圧時間としては30秒であった。また、剥離時の金型温度は70℃であった。
剥離ロールとフィルムとの離間距離は0.1mmであった。剥離したフィルムを下流側の巻き取り装置側に送り出し、巻き取った。
The mold temperature at the time of molding was set to 150 ° C., and the pressure was 5 MPa over the entire surface. The pressurization time was 30 seconds. The mold temperature at the time of peeling was 70 ° C.
The separation distance between the peeling roll and the film was 0.1 mm. The peeled film was sent out to the downstream winding device side and wound up.
 (4)成形結果
 成形したフィルムの突起形成面の走査型電子顕微鏡((株)キーエンス VE-7800)による写真を図20に示す。表面に平均直径が350nm、平均高さが1.2μm、突起の平均高さHと平均直径Dとの比(H/D)が3.3の突起が全面に形成された。このとき、10000μmに形成されている突起の個数は14900個であった。また、突起の傾斜は見られなかった。図21は、表面に突起を有する構造体である樹脂フィルムの断面を走査型電子顕微鏡で撮影した写真である。
(4) Molding result FIG. 20 shows a photograph of the projection-formed surface of the molded film using a scanning electron microscope (Keyence VE-7800). Protrusions having an average diameter of 350 nm, an average height of 1.2 μm, and a ratio of the average height H to the average diameter D (H / D) of 3.3 were formed on the entire surface. At this time, the number of protrusions formed at 10,000 μm 2 was 14900. Moreover, the inclination of the protrusion was not seen. FIG. 21 is a photograph of a cross section of a resin film, which is a structure having protrusions on the surface, taken with a scanning electron microscope.
 (5)撥液性・液滴移動性効果
 撥液性物品の表面に1.41μLの水を滴下し、接触角計(協和界面科学社製、CA-D型)を用いて、水滴の接触角を測定した。この時の接触角は158°であり、成形前のフィルムと比較すると、63°接触角が高くなっていた。なお、成形前の接触角は95°であった。また、この時は実施例1または2のように水滴が転がる挙動は見られなかったが、フィルムを10°傾斜させた場合、水滴は傾斜させた方向へ転がった。
(5) Liquid repellency / droplet transfer effect 1.41 μL of water is dropped onto the surface of the liquid repellent article, and contact of water droplets is performed using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-D type). The corner was measured. The contact angle at this time was 158 °, and the contact angle of 63 ° was higher than that of the film before molding. The contact angle before molding was 95 °. At this time, the behavior of water droplets rolling as in Example 1 or 2 was not observed, but when the film was tilted by 10 °, the water droplets rolled in the tilted direction.
 本発明の表面に突起を有する構造体は、マイクロ流路、細胞培養シート、包装材、防汚または防水シート、記録材料、スクリーン、セパレータ、イオン交換膜、電池隔膜材料、ディスプレイ、光学材料等の表面で撥液性を要する製品や部材に好適に使用される。 Structures having protrusions on the surface of the present invention include microchannels, cell culture sheets, packaging materials, antifouling or waterproof sheets, recording materials, screens, separators, ion exchange membranes, battery membrane materials, displays, optical materials, etc. It is suitably used for products and members that require liquid repellency on the surface.
11:構造体
12:フィルムの表面
13:突起
14:突起の先端の中心
15:突起の根元の中心
16:突起の根元の中心15と突起の先端の中心14を結んだ直線
17:フィルムの表面12に垂直な方向
50:製造装置
51:巻出ロール
52:巻出ユニット
53:金型
54:プレスユニット
55:剥離手段
55A:剥離ロール
55B:剥離補助ロール
55H:剥離ロール55Aと金型との離間距離
56:巻取ロール
57、58:加圧プレート
59、60:バッファ手段
61:巻取ユニット
70:製造装置
71:突起形成面73:巻出ロール
74:ラミネート装置
75:加熱ロール
76:金型
77:ニップロール
78:冷却ロール
79:剥離ロール
79H:剥離ロール79と金型との離間距離
80:搬送ロール
81:巻取ロール
11: Structure 12: Film surface 13: Projection 14: Center of projection tip 15: Center of projection base 16: Straight line connecting center 15 of projection base and center 14 of projection 17: Surface of film Direction perpendicular to 12: Manufacturing device 51: Unwinding roll 52: Unwinding unit 53: Mold 54: Press unit 55: Peeling means 55A: Peeling roll 55B: Peeling auxiliary roll 55H: Peeling roll 55A and mold Separation distance 56: Winding roll 57, 58: Pressure plate 59, 60: Buffer means 61: Winding unit 70: Manufacturing device 71: Protrusion forming surface 73: Unwinding roll 74: Laminating device 75: Heating roll 76: Gold Mold 77: Nip roll 78: Cooling roll 79: Peeling roll 79H: Separation distance between the peeling roll 79 and the mold 80: Conveying roll 81: Winding roll

Claims (5)

  1. 表面に突起を有する構造体であって、
    (1)前記突起のうち70%以上が、根元の中心から先端の中心に引いた直線が、構造体の表面に垂直な方向に対して傾斜した突起であり、
    (2)前記構造体の表面における前記突起の個数は、10000μm中に10個以上、4×10個以下であり、
    (3)前記突起の平均直径Dが100nm以上、10μm以下であり、
    (4)前記突起の平均高さHと平均直径Dとの比(H/D)が1以上、50以下である構造体。
    A structure having protrusions on the surface,
    (1) 70% or more of the protrusions are protrusions in which a straight line drawn from the center of the base to the center of the tip is inclined with respect to a direction perpendicular to the surface of the structure,
    (2) The number of the protrusions on the surface of the structure is 10 or more and 4 × 10 5 or less in 10,000 μm 2 .
    (3) The average diameter D of the protrusions is 100 nm or more and 10 μm or less,
    (4) A structure in which the ratio (H / D) of the average height H to the average diameter D of the protrusions is 1 or more and 50 or less.
  2. 前記突起の根元の中心から先端の中心に引いた直線の方向が不定である請求項1に記載の構造体。 The structure according to claim 1, wherein a direction of a straight line drawn from the center of the base of the protrusion to the center of the tip is indefinite.
  3. 前記突起の根元の中心から先端の中心に引いた直線の方向が一定である請求項1に記載の構造体。 The structure according to claim 1, wherein the direction of a straight line drawn from the center of the protrusion to the center of the tip is constant.
  4. 前記突起の根元の中心から先端の中心に引いた直線のうち70%以上が、構造体の表面に垂直な方向に対して、25°以上、50°以下の角度をなす請求項1~3のいずれかに記載の構造体。 The straight line drawn from the center of the base of the protrusion to the center of the tip forms an angle of 25 ° or more and 50 ° or less with respect to a direction perpendicular to the surface of the structure. A structure according to any one of the above.
  5. 前記突起の高さが不定である請求項1~4のいずれかに記載の構造体。 The structure according to any one of claims 1 to 4, wherein a height of the protrusion is indefinite.
PCT/JP2015/061263 2014-04-15 2015-04-10 Structure having protrusion formed on surface thereof WO2015159825A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015523736A JP6493206B2 (en) 2014-04-15 2015-04-10 Structure having protrusions on the surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014083449 2014-04-15
JP2014-083449 2014-04-15

Publications (1)

Publication Number Publication Date
WO2015159825A1 true WO2015159825A1 (en) 2015-10-22

Family

ID=54324034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061263 WO2015159825A1 (en) 2014-04-15 2015-04-10 Structure having protrusion formed on surface thereof

Country Status (3)

Country Link
JP (1) JP6493206B2 (en)
TW (1) TW201600331A (en)
WO (1) WO2015159825A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016562A1 (en) * 2016-07-20 2018-01-25 デンカ株式会社 Thermoplastic resin sheet having hairlike body and molded product thereof
WO2019049897A1 (en) * 2017-09-06 2019-03-14 デンカ株式会社 Resin sheet having capillaceous bodies and molded product thereof
WO2019159792A1 (en) * 2018-02-16 2019-08-22 東レ株式会社 Resin structure and method for manufacturing resin structure
US20220258084A1 (en) * 2019-05-24 2022-08-18 Ultra Small Fibers, LLC Filter media ribbons with nanofibers formed thereon
EP4091795A4 (en) * 2020-01-15 2023-05-31 Denka Company Limited Resin sheet having flocks and molded article including same
CN117065818A (en) * 2023-10-12 2023-11-17 惠科股份有限公司 Microfluidic Chip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119878B1 (en) * 2019-10-21 2020-06-05 허남일 Manufacturing method of marine antifouling and low friction film utilizing fine protuberance and riblet structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264613A (en) * 2006-02-28 2007-10-11 Univ Of Tsukuba Reflection preventing structure and light emitting element having the reflection preventing structure
JP2011017781A (en) * 2009-07-07 2011-01-27 Olympus Corp Optical device and optical system
WO2011013401A1 (en) * 2009-07-28 2011-02-03 シャープ株式会社 Optical film, method for producing same, and method for controlling optical characteristics of same
JP2012150356A (en) * 2011-01-20 2012-08-09 Dainippon Printing Co Ltd Optical sheet, display device and method for manufacturing optical sheet
WO2012173258A1 (en) * 2011-06-17 2012-12-20 三菱レイヨン株式会社 Mould having an uneven surface structure, optical article, manufacturing method therefor, transparent base material for surface-emitting body and surface-emitting body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262711A (en) * 2002-03-08 2003-09-19 Seiko Epson Corp Reflecting body and method for manufacturing the same
JP5464308B1 (en) * 2012-08-09 2014-04-09 大日本印刷株式会社 Method for producing fine convex pattern structure and system for producing fine convex pattern structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264613A (en) * 2006-02-28 2007-10-11 Univ Of Tsukuba Reflection preventing structure and light emitting element having the reflection preventing structure
JP2011017781A (en) * 2009-07-07 2011-01-27 Olympus Corp Optical device and optical system
WO2011013401A1 (en) * 2009-07-28 2011-02-03 シャープ株式会社 Optical film, method for producing same, and method for controlling optical characteristics of same
JP2012150356A (en) * 2011-01-20 2012-08-09 Dainippon Printing Co Ltd Optical sheet, display device and method for manufacturing optical sheet
WO2012173258A1 (en) * 2011-06-17 2012-12-20 三菱レイヨン株式会社 Mould having an uneven surface structure, optical article, manufacturing method therefor, transparent base material for surface-emitting body and surface-emitting body

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904518B2 (en) 2016-07-20 2024-02-20 Denka Company Limited Thermoplastic resin sheet having hairlike bodies and molded product thereof
JPWO2018016562A1 (en) * 2016-07-20 2019-06-06 デンカ株式会社 Thermoplastic resin sheet having hairy body and molded article thereof
JP7049246B2 (en) 2016-07-20 2022-04-06 デンカ株式会社 Thermoplastic resin sheet with trichome and its molded product
WO2018016562A1 (en) * 2016-07-20 2018-01-25 デンカ株式会社 Thermoplastic resin sheet having hairlike body and molded product thereof
WO2019049897A1 (en) * 2017-09-06 2019-03-14 デンカ株式会社 Resin sheet having capillaceous bodies and molded product thereof
US11623424B2 (en) 2017-09-06 2023-04-11 Denka Company Limited Resin sheet having capillaceous bodies and molded product thereof
WO2019159792A1 (en) * 2018-02-16 2019-08-22 東レ株式会社 Resin structure and method for manufacturing resin structure
CN111712380A (en) * 2018-02-16 2020-09-25 东丽株式会社 Resin structure and method for producing resin structure
KR20200123087A (en) 2018-02-16 2020-10-28 도레이 카부시키가이샤 Resin structure and manufacturing method of resin structure
JPWO2019159792A1 (en) * 2018-02-16 2020-12-10 東レ株式会社 Resin structure and manufacturing method of resin structure
CN111712380B (en) * 2018-02-16 2022-08-30 东丽株式会社 Resin structure and method for producing resin structure
JP7234917B2 (en) 2018-02-16 2023-03-08 東レ株式会社 RESIN STRUCTURE AND METHOD FOR MANUFACTURING RESIN STRUCTURE
US20220258084A1 (en) * 2019-05-24 2022-08-18 Ultra Small Fibers, LLC Filter media ribbons with nanofibers formed thereon
US11944926B2 (en) * 2019-05-24 2024-04-02 Ultra Small Fibers, LLC Filter media ribbons with nanofibers formed thereon
EP4091795A4 (en) * 2020-01-15 2023-05-31 Denka Company Limited Resin sheet having flocks and molded article including same
CN117065818A (en) * 2023-10-12 2023-11-17 惠科股份有限公司 Microfluidic Chip
CN117065818B (en) * 2023-10-12 2023-12-26 惠科股份有限公司 Microfluidic Chip

Also Published As

Publication number Publication date
JPWO2015159825A1 (en) 2017-04-13
JP6493206B2 (en) 2019-04-03
TW201600331A (en) 2016-01-01

Similar Documents

Publication Publication Date Title
JP6493206B2 (en) Structure having protrusions on the surface
RU2481949C1 (en) Mould and method of its production
TWI624370B (en) Method for moving thermoplastic film
JP6160319B2 (en) Molded body, method for manufacturing molded body, and stamper
US9416461B2 (en) Die and method for manufacturing die, and anti-reflection coating
EP2801862A2 (en) Transparent substrate including fine metal line and method for manufacturing same
WO2019097977A1 (en) Film, molding transfer foil comprising same, film roll, and method for producing film
JP6786930B2 (en) Manufacturing method of thermoplastic resin film
WO2019159792A1 (en) Resin structure and method for manufacturing resin structure
JP2008093970A (en) Metal mold for transferring fine shape and manufacturing device of fine shape transfer sheet
JP4305656B2 (en) Adsorption fixing sheet and manufacturing method thereof
JP5088778B2 (en) Manufacturing method of surface processed substrate having fine uneven surface
JP2015112781A (en) Function transfer body and method for transferring functional layer
JP6415590B2 (en) Mold manufacturing method and antireflection film manufacturing method
KR20130141386A (en) Method and apparatus for leveling a printed image and preventing image offset
JP5104228B2 (en) Fine shape transfer sheet manufacturing apparatus and fine shape transfer sheet manufacturing method
JP5626667B2 (en) Infrared transmitting film and method for manufacturing infrared transmitting film
JP2010214750A (en) Film for fine shape transfer, fine shape transfer film, and method for manufacturing the same
JP2014201012A (en) Laminate film composed of substrate film with fine structure formed on surface thereof and resin for transfer
JP6324048B2 (en) Functional transfer body, method of transferring functional layer, solar cell and method of manufacturing the same
KR102455004B1 (en) Method for manufacturing wrinkled graphene substrate
Chen et al. Self-organization of microlens arrays caused by the spin-coating-assisted hydrophobic effect
JP2017164906A (en) Laminate having projection and method for producing the same
Shan et al. Roll-to-roll thermal embossing for large area microstructure formation and application
WO2019119189A1 (en) Adhesive having increased bonding strength

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015523736

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780195

Country of ref document: EP

Kind code of ref document: A1