WO2015159760A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2015159760A1
WO2015159760A1 PCT/JP2015/060852 JP2015060852W WO2015159760A1 WO 2015159760 A1 WO2015159760 A1 WO 2015159760A1 JP 2015060852 W JP2015060852 W JP 2015060852W WO 2015159760 A1 WO2015159760 A1 WO 2015159760A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
smoothing capacitor
relay
value
set value
Prior art date
Application number
PCT/JP2015/060852
Other languages
French (fr)
Japanese (ja)
Inventor
治信 温品
洋平 久保田
圭一 石田
慧 小川
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201580003687.7A priority Critical patent/CN105874702B/en
Priority to JP2016513728A priority patent/JP6255088B2/en
Publication of WO2015159760A1 publication Critical patent/WO2015159760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • Embodiment of this invention is related with the power converter device which converts the voltage of AC power supply into DC, and converts the DC voltage into the AC voltage of a predetermined frequency.
  • a rectifier circuit that converts the voltage of the commercial AC power source into DC, a smoothing capacitor that smoothes the output voltage of the rectifier circuit, an inverter that converts the voltage of the smoothing capacitor into an AC voltage of a predetermined frequency, a commercial AC power source and a rectifier circuit,
  • a power conversion device in which a PTC thermistor for preventing an inrush current (a resistor whose resistance increases with a rise in temperature) is inserted and connected to a power line between and a relay contact is connected in parallel to the PTC thermistor.
  • This power converter prevents inrush current when the power is turned on by opening the relay contact and putting the PTC thermistor into the current path.
  • the relay contact is closed to form a short circuit to the PTC thermistor, and the PTC thermistor is disconnected. Even when the voltage of the commercial AC power supply temporarily decreases and the voltage of the smoothing capacitor falls below the output voltage of the rectifier circuit, the relay contact is opened and a PTC thermistor is turned on to prevent inrush current.
  • a relay is used to turn on and off the PTC thermistor.
  • the relay changes an electrical signal into a mechanical contact movement, there is a delay of several milliseconds from when the electrical signal is received until the contact is actually opened and closed. This time delay may prevent the inrush current from being prevented.
  • An object of an embodiment of the present invention is to provide a power conversion device that can reliably prevent an inrush current.
  • the power conversion device is a converter that converts a voltage of a commercial AC power source into a DC voltage, a smoothing capacitor connected to an output terminal of the converter, a voltage of the smoothing capacitor is converted into an AC voltage, and the AC voltage Output as drive power to the load, a resistor for preventing inrush current disposed in a current path between the converter and the smoothing capacitor, and a relay having a contact connected in parallel to the resistor, Control means for closing the relay when the voltage of the smoothing capacitor rises above a specified value, and opening the relay when the voltage of the smoothing capacitor drops below a set value.
  • the set value is higher than the minimum voltage value of the smoothing capacitor necessary for the current flowing through the converter not to exceed the maximum allowable current of the converter.
  • FIG. 1 is a block diagram showing the configuration of each embodiment.
  • FIG. 2 is a flowchart showing the control of the first embodiment.
  • FIG. 3 is a time chart showing the voltage change of the smoothing capacitor, the change of the relay drive signal, and the change of the normally open contact in the first embodiment.
  • FIG. 4 is a flowchart showing the control of the second embodiment.
  • FIG. 5 is a time chart showing a voltage change of a smoothing capacitor, a change of a relay drive signal, and a change of a normally open contact in the second embodiment.
  • FIG. 6 is a flowchart showing the control of the third embodiment.
  • FIG. 7 is a time chart showing the voltage change of the smoothing capacitor, the change of the relay drive signal, and the change of the normally open contact in the third embodiment.
  • FIG. 8 is a flowchart showing the control of the fourth embodiment.
  • a converter 2 is connected to a commercial three-phase AC power source 1.
  • Converter 2 includes a plurality of switching elements and a plurality of diodes, and converts the AC voltage of commercial three-phase AC power supply 1 into a DC voltage.
  • a smoothing capacitor (electrolytic capacitor) 4 is connected to the output end of the converter 2 via a parallel circuit of the resistor 3 and the relay contact 30a.
  • the resistor 3 is, for example, a PTC thermistor for preventing inrush current.
  • the relay contact 30 a is a normally open contact of the relay 30.
  • an inverter 10 is connected to the smoothing capacitor 4, and a load, for example, a brushless DC motor (also referred to as a permanent magnet synchronous motor) M is connected to the output terminal of the inverter 10.
  • the inverter 10 includes a U-phase series circuit of two switching elements T1 and T2 each having a reflux diode connected in antiparallel, and a V-phase series circuit of two switching elements T3 and T4 each having a reflux diode connected in antiparallel, It includes a W-phase series circuit of two switching elements T5 and T6 each having a reverse diode connected in reverse parallel, converts the voltage of the smoothing capacitor 4 into an AC voltage of a predetermined frequency, and converts the AC voltage to the brushless DC motor M. Output as drive power. Phase windings Lu, Lv, and Lw of the brushless DC motor M are connected to interconnection points of both switching elements in each series circuit of the inverter 10, respectively.
  • the DC voltage Vd is applied to the relay 30 via the collector / emitter of the NPN transistor 22.
  • the base of the NPN transistor 22 is connected to the main controller 20.
  • the NPN transistor 22 is turned on when the relay drive signal D supplied from the main controller 20 is at a high level, and turned off when the relay drive signal D is at a low level.
  • the NPN transistor 22 is turned on, the exciting coil of the relay 30 is energized and the relay contact 30a is closed. That is, the relay 30 is closed.
  • the NPN transistor 22 is turned off, the exciting coil of the relay 30 is de-energized and the relay contact 30a is opened. That is, the relay 30 opens.
  • the voltage detector 21 is connected to both ends of the smoothing capacitor 4.
  • the voltage detector 21 detects the voltage Vdc generated in the smoothing capacitor 4. This voltage detector 21 is connected to the main controller 20.
  • Current sensors (current transformers) 11, 12, and 13 are disposed on each phase energization line between the output terminal of the inverter 10 and the brushless DC motor M.
  • Current sensors 11, 12, and 13 detect currents (phase currents) flowing through the phase windings Lu, Lv, and Lw of the brushless DC motor M, respectively. These current sensors 11, 12, and 13 are connected to the main control unit 20.
  • the sensorless vector controller 50 is further connected to the main controller 20.
  • the sensorless vector control unit 50 includes a current detection unit 51, a speed estimation calculation unit 52, an integration unit 53, a subtraction unit 54, a speed control unit 55, a calculation unit 56, subtraction units 57 and 58, a current control unit (first current control). Unit) 61, a current control unit (second current control unit) 62, and a PWM signal generation unit 63.
  • the current detection unit 51 performs three-phase to two-phase conversion on the detection currents of the current sensors 11, 12, and 13, and field axis (d axis) coordinates and torque axis (q axis) coordinates on the rotor axis in the brushless DC motor M.
  • d axis field axis
  • q axis torque axis
  • Iq torque component current
  • the speed estimation calculation unit 52 estimates the rotor speed ⁇ est of the brushless DC motor M by calculation based on the field component current Id and the torque component current Iq detected by the current detection unit 51.
  • brushless operation is performed by calculation using the field component current Id, the torque component current Iq, the field component voltage Vd obtained by the current control unit 61, and the torque component voltage Vq obtained by the current control unit 62.
  • a field component speed electromotive force (referred to as d-axis speed electromotive force) Ed in the DC motor M is estimated, and an estimated rotor speed ⁇ est is obtained based on a proportional / integral control (PI control) calculation of the d-axis speed electromotive force Ed.
  • PI control proportional / integral control
  • the integrating unit 53 obtains an estimated rotor position ⁇ est by integrating the estimated rotor speed ⁇ est obtained by the speed estimation calculating unit 52.
  • the estimated rotor position ⁇ est is supplied to the current detection unit 51 and the PWM signal generation unit 63.
  • the subtracting unit 54 obtains a speed deviation between the target speed ⁇ ref and the estimated rotor speed ⁇ est by subtracting the estimated rotor speed ⁇ est from the target speed ⁇ ref commanded from the main control unit 20.
  • the speed control unit 55 calculates a target value Iqref of the torque component current Iq by calculating a proportional / integral control (PI control) on the speed deviation obtained by the subtracting unit 54.
  • PI control proportional / integral control
  • the calculation unit 56 obtains the target value Idref of the field component current Id from the target value Iqref of the torque component current Iq.
  • the subtracting unit 57 obtains a deviation ⁇ Id between the target value Idref and the field component current Id by subtracting the field component current Id from the target value Idref.
  • the subtraction unit 58 obtains a deviation ⁇ Iq between the target value Iqref and the torque component current Iq by subtracting the torque component current Iq from the target value Iqref.
  • the current control unit 61 obtains the field component voltage Vd converted into the d-axis coordinate on the rotor shaft in the brushless DC motor M by the proportional / integral control (PI control) calculation of the deviation ⁇ Id.
  • the current control unit 62 obtains a torque component voltage Vq converted into q-axis coordinates on the rotor shaft in the brushless DC motor M by proportional / integral control (PI control) calculation of the deviation ⁇ Iq.
  • the PWM signal generation unit 63 generates a switching pulse width modulation signal (referred to as a PWM signal) for the inverter 10 according to the field component voltage Vd, the torque component voltage Vq, and the estimated rotor position ⁇ est.
  • the switching elements T1 to T6 of the inverter 10 are turned on and off, and drive voltages Vu, Vv, and Vw for the phase windings Lu, Lv, and Lw of the brushless DC motor M are output from the inverter 10.
  • the speed of the brushless DC motor M is controlled so as to reach the target speed in a short time.
  • the main control unit 20 has the following means (1) to (3) as main functions.
  • the first set value V1 ′ is a specified value V2 or less, and is a value that is higher by a predetermined value than the minimum voltage value V1 of the smoothing capacitor 4 that is necessary for the current flowing through the converter 2 not to exceed the allowable maximum current of the converter 2. It is.
  • the allowable maximum current of the converter 2 is, for example, the maximum rated current of a switching element or a diode in the converter 2.
  • the inrush current Ix (in accordance with the difference “Va ⁇ Vdc” between the output voltage Va of the converter 2 and the voltage Vdc of the smoothing capacitor 4 and the line impedance Z from the commercial three-phase AC power supply 1 to the smoothing capacitor 4. Va ⁇ Vdc) / Z tends to flow from the converter 2 to the smoothing capacitor 4.
  • the main control unit 20 determines the magnitude of the load based on the torque component current Iq in the sensorless vector control unit 50 (Step S1). S5). Specifically, when the torque component current Iq is less than a certain value, the main control unit 20 determines that the load is a light load with a value less than a predetermined value, and when the torque component current Iq is greater than or equal to a certain value. It is determined that the load is a medium load or a heavy load greater than or equal to a predetermined value.
  • the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S6) when determining that the load is a light load (YES in step S5).
  • the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22,
  • the relay 30 is de-energized (opening operation) (step S7).
  • the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4.
  • the relay contact 30a is a mechanical contact that moves mechanically, a time delay t1 of several milliseconds occurs after the relay drive signal D is set to a low level until the relay contact 30a is actually opened.
  • the first set value V1 ′ higher than the minimum voltage value V1 necessary for preventing the inrush current is selected for deactivating the relay 30, before the voltage Vdc drops below the minimum voltage value V1.
  • the relay contact 30a is opened and the resistor 3 is turned on. Therefore, even if the voltage Vdc falls below the minimum voltage value V1, since the resistor 3 is already turned on at that time, no inrush current occurs. That is, the semiconductor switch and the diode of the converter 2 can be prevented from being destroyed.
  • main controller 20 determines that voltage Vdc of smoothing capacitor 4 is decreasing (NO in step S1, YES in step S4), and determines that the load is medium load or heavy load (NO in step S5).
  • the main control unit 20 sets the relay drive signal D to a low level and turns off the transistor 22, thereby
  • the relay 30 is de-energized (step S7).
  • the relay 30 is de-energized, the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4.
  • the load is a medium load or a heavy load
  • the voltage Vdc descends quickly, and a time delay t1 of several msec from when the relay drive signal D is set to a low level until the relay contact 30a is actually opened.
  • the relay contact 30a is opened before the voltage Vdc drops to the minimum voltage value V1, and the resistance is reduced.
  • Container 3 is turned on. That is, even when the voltage Vdc falls below the minimum voltage value V1, since the resistor 3 is already turned on at that time, no inrush current occurs. Therefore, destruction of the semiconductor switch and the diode of the converter 2 can be prevented.
  • the main control unit 20 stops switching of the inverter 10.
  • the relay 30 when the voltage Vdc drops, the relay 30 is de-energized at a timing when the voltage Vdc falls below the first set value V1 ′ or the second set value V2 that is higher than the minimum voltage value V1 for preventing inrush current. Even if there is a time delay in opening and closing the relay contact 30a, the inrush current can be reliably prevented.
  • the first set value V1 ′ is selected for de-energizing the relay 30 at light load
  • the voltage Vdc is applied during the switching time delay t2 of the relay contact 30a even if there is a sudden drop in the voltage Vdc at the time of heavy load. Is selected to a minimum value that does not reach the minimum voltage value V1 for preventing inrush current. Thereby, the introduction of the resistor 3 can be extended to the last timing of inrush current generation.
  • the resistor 3 When the resistor 3 is turned on, the input power (current) is limited. When this input power is less than the driveable power of the inverter 10, the inverter 10 cannot be driven. However, as described above, the insertion of the resistor 3 can be extended until the timing of the inrush current generation, so that the drive stop of the inverter 10 due to the limitation of the input power can be postponed as much as possible. As a result, the operation rate of the inverter 10 can be increased. In addition, when the resistor 3 is turned on, the power consumed by the resistor 3 is wasted. However, as described above, the turning on of the resistor 3 can be extended to the last timing of inrush current generation. Save energy.
  • Step S1 When the voltage Vdc of the smoothing capacitor 4 decreases (NO in Step S1, YES in Step S4), the main control unit 20 determines the magnitude of the load based on the torque component current Iq in the sensorless vector control unit 50 (Step S1). S5).
  • step S5 When it is determined that the load is a light load (YES in step S5), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S6). When the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′ (YES in step S6), the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22 and thereby the relay 30 is deactivated (opening operation) (step S7). When the relay 30 is de-energized, the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4. Subsequently, the main control unit 20 cancels the output torque reduction described later (step S10).
  • main controller 20 determines that voltage Vdc of smoothing capacitor 4 is decreasing (NO in step S1, YES in step S4), and determines that the load is medium load or heavy load (NO in step S5).
  • the voltage Vdc of the smoothing capacitor 4 is compared with the second set value V2 (step S8).
  • the main control unit 20 outputs the output of the inverter 10 so that the load becomes a light load that is less than a predetermined value.
  • Torque is reduced (step S9).
  • the main control unit 20 reduces the torque component current Iq in the sensorless vector control unit 50 so that the load becomes a light load less than a predetermined value.
  • the main control unit 20 returns to the determination in step S1 after reducing the torque component current Iq. If the voltage Vdc continues to decrease (NO in step S1, YES in step S4), the main control unit 20 determines whether the load has become a light load (step S5).
  • step S5 If the magnitude of the load is reduced to a light load (YES in step S5), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S6). When the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′ (YES in step S6), the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22, Thus, the relay 30 is de-energized (step S7). When the relay 30 is de-energized, the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4.
  • the main control unit 20 cancels the reduction of the torque component current Iq (output torque reduction) in the sensorless vector control unit 50 (step S10).
  • the voltage Vdc of the smoothing capacitor 4 is lowered and the load is a light load with a magnitude less than a predetermined value
  • the voltage Vdc is higher than the minimum voltage value V1 for preventing inrush current. Since the relay 30 is deenergized at a timing lower than ', even if there is a time delay in opening and closing the relay contact 30a, an inrush current can be reliably prevented.
  • the output torque of the inverter 10 is reduced so that the load size becomes a light load less than the predetermined value, thereby reducing the rate of decrease in the voltage Vdc. Since the speed is reduced to the lowering speed at light load, the lowering of the voltage Vdc can be reliably captured. That is, inrush current can be reliably prevented without being affected by the size of the load. Other effects are the same as those of the first embodiment.
  • the main control unit 20 has the following means (11) to (13) as main functions.
  • Second control means for opening the relay contact 30a by opening the relay 30 when the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′.
  • step S1 When the voltage Vdc of the smoothing capacitor 4 increases (YES in step S1), the main control unit 20 cancels the allowable minimum operating frequency Fmin described later (step S1a), and cancels the voltage Vdc and the second voltage Vdc. 2
  • the set value V2 is compared (step S2).
  • the main control unit 20 sets the relay drive signal D to a high level based on the determination that the inrush current has been eliminated.
  • the transistor 22 is turned on, thereby energizing (closing operation) the relay 30 (step S3).
  • steps S1 to S3 is different from the first and second embodiments only in that the process of step S1a is added.
  • step S11 When the voltage Vdc of the smoothing capacitor 4 falls (NO in step S1, YES in step S4), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S11).
  • the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the second set value V2 (step S12).
  • the main control unit 20 sets the torque component current Iq in the sensorless vector control unit 50 to a negative value, thereby The inverter 10 is operated in the regeneration mode (step S13).
  • the inverter 10 operates in the regenerative mode, the voltage Vdc of the smoothing capacitor 4 turns upward and the output frequency F of the inverter 10 gradually decreases.
  • step S14 When the output frequency F of the inverter 10 decreases to the allowable minimum operating frequency Fmin (YES in step S14), the main control unit 20 returns the torque component current Iq to a positive value and ends the operation of the inverter 10 in the regeneration mode. At the same time (step S15), the output torque (torque component current Iq) of the inverter 10 is controlled so that the output frequency F of the inverter 10 maintains the allowable minimum operating frequency Fmin (step S16). Then, the main control unit 20 returns to the process of step S1 while continuing this output torque control.
  • step S18 When the voltage Vdc of the smoothing capacitor 4 falls below the set value V1 ′ while continuing the output torque control of the inverter 10 (NO in step S1, YES in step S4, YES in step S11), the main control unit 20 deactivates the relay 30 (step S17), and cancels the control for maintaining the output frequency F at the allowable minimum operating frequency Fmin (output torque control of the inverter 10) (step S18).
  • the relay 30 is de-energized at a timing when the voltage Vdc falls below the first set value V1 ′ that is higher than the minimum voltage value V1 for preventing inrush current. Even if there is a time delay in opening and closing the relay contact 30a, inrush current can be reliably prevented.
  • the inverter 10 when the voltage Vdc of the smoothing capacitor 4 is lowered, the inverter 10 is operated in the regeneration mode at a timing when the voltage Vdc falls below the second specified value V2 higher than the first set value V1 ′, and the smoothing capacitor 4 is generated by the regenerative energy. Since the voltage Vdc is once changed to the rising side, the introduction of the resistor 3 based on the first set value V1 ′ can be made as late as possible. Thereby, the power loss in the resistor 3 can be reduced. Stopping of the inverter 10 based on the set value V0 can be avoided as much as possible. Other effects are the same as those of the first embodiment.
  • the magnitude of the load of the brushless DC motor M is determined by the magnitude of the fluctuation of the voltage Vdc of the smoothing capacitor 4.
  • the main control unit 20 has the following means (21) to (24) as main functions.
  • (21) The voltage of the smoothing capacitor 4 when the commercial three-phase AC power supply 1 is stable is obtained as a reference voltage, and the difference between the reference voltage and the voltage of the smoothing capacitor 4 (the detection voltage of the voltage detection unit 21) Vdc at this time Calculation means for obtaining the change amount ⁇ Vdc.
  • the reference voltage for example, an average value Vdcx of the voltage Vdc of the smoothing capacitor 4 over a predetermined time is obtained.
  • the average value Vdcx is a value obtained by integrating the voltage Vdc over a long period of time, and is obtained by, for example, low-pass filter processing with a large time constant.
  • First control means for closing the relay contact 30a by closing the relay 30 when the voltage of the smoothing capacitor 4 (detection voltage of the voltage detection unit 21) Vdc rises to the second set value V2 or more.
  • Third control means for opening the relay contact 30a by opening the relay 30 when the determination result is a medium load or a heavy load and the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2.
  • Other configurations are the same as those of the first embodiment.
  • the main control unit 20 sequentially obtains an average value Vdcx of the voltage Vdc of the smoothing capacitor 4 by, for example, a low-pass filter process having a large time constant, and calculates a difference between the average value Vdcx and the current voltage Vdc of the smoothing capacitor 4 as a voltage change amount. It calculates as (DELTA) Vdc (step S0).
  • the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the specified value V2 when the voltage Vdc of the smoothing capacitor 4 increases (YES in Step S1) (Step S2).
  • the main control unit 20 sets the relay drive signal D to a high level based on the determination that the inrush current has been eliminated.
  • the transistor 22 is turned on, thereby energizing (closing operation) the relay 30 (step S3). By this energization, the relay contact 30 a is closed, a short circuit path for the resistor 3 is formed, and the resistor 3 is disconnected from the energization path between the converter 2 and the smoothing capacitor 4.
  • step S5a When the voltage Vdc of the smoothing capacitor 4 decreases (NO in step S1, YES in step S4), the main control unit 20 compares the obtained voltage change amount ⁇ Vdc with the predetermined amount ⁇ Vs (step S5a).
  • step S5a When the voltage change amount ⁇ Vdc is as small as less than the predetermined amount ⁇ Vs (YES in step S5a), the main control unit 20 determines that the load is a light load less than the predetermined value and the voltage Vdc of the smoothing capacitor 4 1 set value V1 'is compared (step S6). When the voltage Vdc of the smoothing capacitor 4 falls below the set value V1 ′ (YES in step S6), the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22 and thereby the relay 30 is deactivated (step S7). By deactivating the relay 30, the relay contact 30a is opened and the resistor 3 is turned on.
  • the main control unit 20 determines the voltage of the smoothing capacitor 4 based on the determination that the load is a medium load or a heavy load greater than the predetermined value. Vdc and the second set value V2 are compared (step S8). When the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2 (YES in step S8), the main control unit 20 sets the relay drive signal D to a low level and turns off the transistor 22, thereby The relay 30 is de-energized (step S7). By deactivating the relay 30, the relay contact 30a is opened and the resistor 3 is turned on.
  • the average value Vdcx of the voltage Vdc of the smoothing capacitor 4 is sequentially obtained as the reference voltage, and the difference between the average value Vdcx and the current voltage Vdc of the smoothing capacitor 4 is obtained as the voltage change amount ⁇ Vdc.
  • the magnitude of the load is determined from the amount ⁇ Vdc, the first set value V1 ′ is selected for deactivation of the relay 30 at light load, and the second higher than the first set value V1 ′ at medium load or heavy load.
  • the average value Vdcx of the voltage Vdc of the smoothing capacitor 4 is used as the reference voltage.
  • the voltage Vdc before a predetermined time in which a fluctuation such as a drop in the power supply voltage occurs is stored and used as the reference voltage. It may be used as
  • the specified value V2 for relay energization for the rising voltage Vdc is used as it is as the second setting value for relay de-energization for the falling voltage Vdc. It is not limited to. That is, the second set value may be a value higher than the set value V1 ′, and may be determined as appropriate according to the time delay of opening and closing of the relay 30 and the power consumption of the inverter 10.
  • SYMBOLS 1 Commercial three-phase alternating current power supply, 2 ... Converter, 3 ... Resistor for inrush current prevention, 4 ... Room smoothing capacitor, 10 ... Inverter, M ... Brushless DC motor (load), 11, 12, 13 ... Current sensor, DESCRIPTION OF SYMBOLS 20 ... Main control part, 21 ... Voltage detection part, 22 ... NPN type transistor, 30 ... Relay, 30a ... Relay contact, 50 ... Sensorless vector control part

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

An inrush current prevention resistor (3) is disposed on the current path between a converter (2) and a smoothing capacitor (4), and the contact (30a) of a relay (30) is connected in parallel with the resistor (3). When the voltage of the smoothing capacitor (4) rises to a specified value or more, the relay (30) is allowed to perform a close operation, and when the voltage of the smoothing capacitor (4) falls to less than a set value, the relay (30) is allowed to perform an open operation. The set value is higher than the minimum voltage value of the smoothing capacitor (4), which is necessary for the current flowing through the converter (2) not to exceed the allowable maximum current of the converter (2). According to this power conversion device, inrush current can be reliably prevented.

Description

電力変換装置Power converter
 本発明の実施形態は、交流電源の電圧を直流に変換し、その直流電圧を所定周波数の交流電圧に変換する電力変換装置に関する。 Embodiment of this invention is related with the power converter device which converts the voltage of AC power supply into DC, and converts the DC voltage into the AC voltage of a predetermined frequency.
 商用交流電源の電圧を直流に変換する整流回路、この整流回路の出力電圧を平滑する平滑コンデンサ、この平滑コンデンサの電圧を所定周波数の交流電圧に変換するインバータを備え、商用交流電源と整流回路との間の電源ラインに突入電流防止用のPTCサーミスタ(温度の上昇に対して抵抗が増大する抵抗器)を挿入接続し、そのPTCサーミスタに対しリレー接点を並列接続した電力変換装置がある。 A rectifier circuit that converts the voltage of the commercial AC power source into DC, a smoothing capacitor that smoothes the output voltage of the rectifier circuit, an inverter that converts the voltage of the smoothing capacitor into an AC voltage of a predetermined frequency, a commercial AC power source and a rectifier circuit, There is a power conversion device in which a PTC thermistor for preventing an inrush current (a resistor whose resistance increases with a rise in temperature) is inserted and connected to a power line between and a relay contact is connected in parallel to the PTC thermistor.
 この電力変換装置では、リレー接点を開いてPTCサーミスタを通電路に投入しておくことにより、電源投入時の突入電流を防止する。 This power converter prevents inrush current when the power is turned on by opening the relay contact and putting the PTC thermistor into the current path.
 その後、平滑コンデンサの電圧が上昇して突入電流の心配がなくなったとき、リレー接点を閉じてPTCサーミスタに対する短絡路を形成し、PTCサーミスタを切り離す。商用交流電源の電圧が一時的に低下し、平滑コンデンサの電圧が整流回路の出力電圧を下回った場合も、リレー接点を開いてPTCサーミスタを投入し、突入電流を防止する。 After that, when the voltage of the smoothing capacitor rises and there is no worry of inrush current, the relay contact is closed to form a short circuit to the PTC thermistor, and the PTC thermistor is disconnected. Even when the voltage of the commercial AC power supply temporarily decreases and the voltage of the smoothing capacitor falls below the output voltage of the rectifier circuit, the relay contact is opened and a PTC thermistor is turned on to prevent inrush current.
特開2011-182568号公報JP 2011-182568 A
 上記の電力変換装置では、電源ラインに流れる電流が大きく、また半導体スイッチは開閉時の電力損失が無視できないことから、PTCサーミスタの投入および切り離しにリレーを用いている。ただし、リレーは、電気信号を機械的な接点の動きに変えるものであるため、電気信号を受けてから実際に接点が開閉するまでに数msecの時間遅れが生じる。この時間遅れにより、突入電流を防止できなくなる可能性がある。 In the above power conversion device, since a large current flows through the power supply line, and the semiconductor switch cannot ignore power loss during opening and closing, a relay is used to turn on and off the PTC thermistor. However, since the relay changes an electrical signal into a mechanical contact movement, there is a delay of several milliseconds from when the electrical signal is received until the contact is actually opened and closed. This time delay may prevent the inrush current from being prevented.
 本発明の実施形態の目的は、突入電流を確実に防止できる電力変換装置を提供することである。 An object of an embodiment of the present invention is to provide a power conversion device that can reliably prevent an inrush current.
 請求項1の電力変換装置は、商用交流電源の電圧を直流に変換するコンバータと、このコンバータの出力端に接続された平滑コンデンサと、この平滑コンデンサの電圧を交流電圧に変換し、その交流電圧を負荷への駆動電力として出力するインバータと、前記コンバータと前記平滑コンデンサとの間の通電路に配置された突入電流防止用の抵抗器と、この抵抗器に並列接続された接点を有するリレーと、前記平滑コンデンサの電圧が規定値以上に上昇した場合に前記リレーを閉動作させ、前記平滑コンデンサの電圧が設定値未満に下降した場合に前記リレーを開動作させる制御手段と、を備える。前記設定値は、前記コンバータに流れる電流が同コンバータの許容最大電流を超えないために必要な前記平滑コンデンサの最小電圧値より高い。 The power conversion device according to claim 1 is a converter that converts a voltage of a commercial AC power source into a DC voltage, a smoothing capacitor connected to an output terminal of the converter, a voltage of the smoothing capacitor is converted into an AC voltage, and the AC voltage Output as drive power to the load, a resistor for preventing inrush current disposed in a current path between the converter and the smoothing capacitor, and a relay having a contact connected in parallel to the resistor, Control means for closing the relay when the voltage of the smoothing capacitor rises above a specified value, and opening the relay when the voltage of the smoothing capacitor drops below a set value. The set value is higher than the minimum voltage value of the smoothing capacitor necessary for the current flowing through the converter not to exceed the maximum allowable current of the converter.
図1は、各実施形態の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of each embodiment. 図2は、第1実施形態の制御を示すフローチャート。FIG. 2 is a flowchart showing the control of the first embodiment. 図3は、第1実施形態における平滑コンデンサの電圧変化、リレー駆動信号の変化、常開接点の変化を示すタイムチャート。FIG. 3 is a time chart showing the voltage change of the smoothing capacitor, the change of the relay drive signal, and the change of the normally open contact in the first embodiment. 図4は、第2実施形態の制御を示すフローチャート。FIG. 4 is a flowchart showing the control of the second embodiment. 図5は、第2実施形態における平滑コンデンサの電圧変化、リレー駆動信号の変化、常開接点の変化を示すタイムチャート。FIG. 5 is a time chart showing a voltage change of a smoothing capacitor, a change of a relay drive signal, and a change of a normally open contact in the second embodiment. 図6は、第3実施形態の制御を示すフローチャート。FIG. 6 is a flowchart showing the control of the third embodiment. 図7は、第3実施形態における平滑コンデンサの電圧変化、リレー駆動信号の変化、常開接点の変化を示すタイムチャート。FIG. 7 is a time chart showing the voltage change of the smoothing capacitor, the change of the relay drive signal, and the change of the normally open contact in the third embodiment. 図8は、第4実施形態の制御を示すフローチャート。FIG. 8 is a flowchart showing the control of the fourth embodiment.
 [1]以下、第1実施形態について図面を参照して説明する。 
 図1に示すように、商用三相交流電源1にコンバータ2が接続される。コンバータ2は、複数のスイッチング素子および複数のダイオードを含み、商用三相交流電源1の交流電圧を直流電圧に変換する。このコンバータ2の出力端に、抵抗器3とリレー接点30aとの並列回路を介して、平滑コンデンサ(電解コンデンサ)4が接続される。抵抗器3は、突入電流防止用の例えばPTCサーミスタである。リレー接点30aは、リレー30の常開接点である。
[1] A first embodiment will be described below with reference to the drawings.
As shown in FIG. 1, a converter 2 is connected to a commercial three-phase AC power source 1. Converter 2 includes a plurality of switching elements and a plurality of diodes, and converts the AC voltage of commercial three-phase AC power supply 1 into a DC voltage. A smoothing capacitor (electrolytic capacitor) 4 is connected to the output end of the converter 2 via a parallel circuit of the resistor 3 and the relay contact 30a. The resistor 3 is, for example, a PTC thermistor for preventing inrush current. The relay contact 30 a is a normally open contact of the relay 30.
 そして、平滑コンデンサ4にインバータ10が接続され、そのインバータ10の出力端に負荷である例えばブラシレスDCモータ(永久磁石同期モータともいう)Mが接続される。インバータ10は、還流用ダイオードがそれぞれ逆並列接続された2つのスイッチング素子T1,T2のU相直列回路、還流用ダイオードがそれぞれ逆並列接続された2つのスイッチング素子T3,T4のV相直列回路、還流用ダイオードがそれぞれ逆並列接続された2つのスイッチング素子T5,T6のW相直列回路を含み、平滑コンデンサ4の電圧を所定周波数の交流電圧に変換し、その交流電圧をブラシレスDCモータMへの駆動電力として出力する。このインバータ10の各直列回路における両スイッチング素子の相互接続点に、ブラシレスDCモータMの相巻線Lu,Lv,Lwがそれぞれ接続される。 Then, an inverter 10 is connected to the smoothing capacitor 4, and a load, for example, a brushless DC motor (also referred to as a permanent magnet synchronous motor) M is connected to the output terminal of the inverter 10. The inverter 10 includes a U-phase series circuit of two switching elements T1 and T2 each having a reflux diode connected in antiparallel, and a V-phase series circuit of two switching elements T3 and T4 each having a reflux diode connected in antiparallel, It includes a W-phase series circuit of two switching elements T5 and T6 each having a reverse diode connected in reverse parallel, converts the voltage of the smoothing capacitor 4 into an AC voltage of a predetermined frequency, and converts the AC voltage to the brushless DC motor M. Output as drive power. Phase windings Lu, Lv, and Lw of the brushless DC motor M are connected to interconnection points of both switching elements in each series circuit of the inverter 10, respectively.
 上記リレー30に、NPN型トランジスタ22のコレクタ・エミッタを介して、直流電圧Vdが印加される。NPN型トランジスタ22のベースは、主制御部20に接続される。NPN型トランジスタ22は、主制御部20から供給されるリレー駆動信号Dが高レベルのときにオンし、リレー駆動信号Dが低レベルのときにオフする。NPN型トランジスタ22がオンすると、リレー30の励磁コイルが付勢されてリレー接点30aが閉じる。つまり、リレー30が閉動作する。NPN型トランジスタ22がオフすると、リレー30の励磁コイルが消勢されてリレー接点30aが開く。つまり、リレー30が開動作する。 The DC voltage Vd is applied to the relay 30 via the collector / emitter of the NPN transistor 22. The base of the NPN transistor 22 is connected to the main controller 20. The NPN transistor 22 is turned on when the relay drive signal D supplied from the main controller 20 is at a high level, and turned off when the relay drive signal D is at a low level. When the NPN transistor 22 is turned on, the exciting coil of the relay 30 is energized and the relay contact 30a is closed. That is, the relay 30 is closed. When the NPN transistor 22 is turned off, the exciting coil of the relay 30 is de-energized and the relay contact 30a is opened. That is, the relay 30 opens.
 上記平滑コンデンサ4の両端に、電圧検出部21が接続される。電圧検出部21は、平滑コンデンサ4に生じる電圧Vdcを検出する。この電圧検出部21が主制御部20に接続される。 The voltage detector 21 is connected to both ends of the smoothing capacitor 4. The voltage detector 21 detects the voltage Vdc generated in the smoothing capacitor 4. This voltage detector 21 is connected to the main controller 20.
 上記インバータ10の出力端とブラシレスDCモータMとの間の各相通電ラインに、電流センサ(電流トランス)11,12,13が配置される。電流センサ11,12,13は、ブラシレスDCモータMの相巻線Lu,Lv,Lwに流れる電流(相電流)をそれぞれ検知する。これら電流センサ11,12,13が主制御部20に接続される。 Current sensors (current transformers) 11, 12, and 13 are disposed on each phase energization line between the output terminal of the inverter 10 and the brushless DC motor M. Current sensors 11, 12, and 13 detect currents (phase currents) flowing through the phase windings Lu, Lv, and Lw of the brushless DC motor M, respectively. These current sensors 11, 12, and 13 are connected to the main control unit 20.
 主制御部20には、さらに、センサレス・ベクトル制御部50が接続される。センサレス・ベクトル制御部50は、電流検出部51、速度推定演算部52、積分部53、減算部54、速度制御部55、演算部56、減算部57,58、電流制御部(第1電流制御部)61、電流制御部(第2電流制御部)62、PWM信号生成部63を含む。 The sensorless vector controller 50 is further connected to the main controller 20. The sensorless vector control unit 50 includes a current detection unit 51, a speed estimation calculation unit 52, an integration unit 53, a subtraction unit 54, a speed control unit 55, a calculation unit 56, subtraction units 57 and 58, a current control unit (first current control). Unit) 61, a current control unit (second current control unit) 62, and a PWM signal generation unit 63.
 電流検出部51は、電流センサ11,12,13の検知電流を3相2相変換して、ブラシレスDCモータMにおけるロータ軸上の界磁軸(d軸)座標およびトルク軸(q軸)座標にそれぞれ換算された界磁成分電流(d軸電流ともいう)Idおよびトルク成分電流(q軸電流ともいう)Iqを検出する。速度推定演算部52は、電流検出部51で検出された界磁成分電流Idおよびトルク成分電流Iqに基づく演算により、ブラシレスDCモータMのロータ速度ωestを推定する。具体的には、界磁成分電流Idと、トルク成分電流Iqと、電流制御部61で求められる界磁成分電圧Vdと、電流制御部62で求められるトルク成分電圧Vqとを用いる演算により、ブラシレスDCモータMにおける界磁成分速度起電力(d軸速度起電力という)Edを推定し、このd軸速度起電力Edの比例・積分制御(PI制御)演算に基づいて推定ロータ速度ωestを求める。 The current detection unit 51 performs three-phase to two-phase conversion on the detection currents of the current sensors 11, 12, and 13, and field axis (d axis) coordinates and torque axis (q axis) coordinates on the rotor axis in the brushless DC motor M. Are converted to field component current (also referred to as d-axis current) Id and torque component current (also referred to as q-axis current) Iq. The speed estimation calculation unit 52 estimates the rotor speed ωest of the brushless DC motor M by calculation based on the field component current Id and the torque component current Iq detected by the current detection unit 51. Specifically, brushless operation is performed by calculation using the field component current Id, the torque component current Iq, the field component voltage Vd obtained by the current control unit 61, and the torque component voltage Vq obtained by the current control unit 62. A field component speed electromotive force (referred to as d-axis speed electromotive force) Ed in the DC motor M is estimated, and an estimated rotor speed ωest is obtained based on a proportional / integral control (PI control) calculation of the d-axis speed electromotive force Ed.
 積分部53は、速度推定演算部52で求められた推定ロータ速度ωestを積分することにより、推定ロータ位置θestを得る。この推定ロータ位置θestは、電流検出部51およびPWM信号生成部63に供給される。減算部54は、主制御部20から指令される目標速度ωrefから推定ロータ速度ωestを減算することにより、目標速度ωrefと推定ロータ速度ωestとの速度偏差を得る。速度制御部55は、減算部54で得られた速度偏差を比例・積分制御(PI制御)演算することにより、トルク成分電流Iqの目標値Iqrefを求める。演算部56は、トルク成分電流Iqの目標値Iqrefから界磁成分電流Idの目標値Idrefを求める。減算部57は、目標値Idrefから界磁成分電流Idを減算することにより、目標値Idrefと界磁成分電流Idとの偏差ΔIdを得る。減算部58は、目標値Iqrefからトルク成分電流Iqを減算することにより、目標値Iqrefとトルク成分電流Iqとの偏差ΔIqを得る。 The integrating unit 53 obtains an estimated rotor position θest by integrating the estimated rotor speed ωest obtained by the speed estimation calculating unit 52. The estimated rotor position θest is supplied to the current detection unit 51 and the PWM signal generation unit 63. The subtracting unit 54 obtains a speed deviation between the target speed ωref and the estimated rotor speed ωest by subtracting the estimated rotor speed ωest from the target speed ωref commanded from the main control unit 20. The speed control unit 55 calculates a target value Iqref of the torque component current Iq by calculating a proportional / integral control (PI control) on the speed deviation obtained by the subtracting unit 54. The calculation unit 56 obtains the target value Idref of the field component current Id from the target value Iqref of the torque component current Iq. The subtracting unit 57 obtains a deviation ΔId between the target value Idref and the field component current Id by subtracting the field component current Id from the target value Idref. The subtraction unit 58 obtains a deviation ΔIq between the target value Iqref and the torque component current Iq by subtracting the torque component current Iq from the target value Iqref.
 電流制御部61は、偏差ΔIdの比例・積分制御(PI制御)演算により、ブラシレスDCモータMにおけるロータ軸上のd軸座標に換算した界磁成分電圧Vdを求める。電流制御部62は、偏差ΔIqの比例・積分制御(PI制御)演算により、ブラシレスDCモータMにおけるロータ軸上のq軸座標に換算したトルク成分電圧Vqを求める。PWM信号生成部63は、界磁成分電圧Vd、トルク成分電圧Vq、および推定ロータ位置θestに応じて、インバータ10に対するスイッチング用のパルス幅変調信号(PWM信号という)を生成する。このPWM信号により、インバータ10のスイッチング素子T1~T6がオン,オフ動作し、ブラシレスDCモータMの相巻線Lu,Lv,Lwに対する駆動電圧Vu,Vv,Vwがインバータ10から出力される。これにより、ブラシレスDCモータMの速度が短時間で目標速度となるように制御される。 The current control unit 61 obtains the field component voltage Vd converted into the d-axis coordinate on the rotor shaft in the brushless DC motor M by the proportional / integral control (PI control) calculation of the deviation ΔId. The current control unit 62 obtains a torque component voltage Vq converted into q-axis coordinates on the rotor shaft in the brushless DC motor M by proportional / integral control (PI control) calculation of the deviation ΔIq. The PWM signal generation unit 63 generates a switching pulse width modulation signal (referred to as a PWM signal) for the inverter 10 according to the field component voltage Vd, the torque component voltage Vq, and the estimated rotor position θest. With this PWM signal, the switching elements T1 to T6 of the inverter 10 are turned on and off, and drive voltages Vu, Vv, and Vw for the phase windings Lu, Lv, and Lw of the brushless DC motor M are output from the inverter 10. Thus, the speed of the brushless DC motor M is controlled so as to reach the target speed in a short time.
 主制御部20は、主要な機能として次の(1)~(3)の手段を有する。 
 (1)平滑コンデンサ4の電圧(電圧検出部21の検出電圧)Vdcが予め定めた規定値V2以上に上昇した場合に、リレー30を閉動作させてリレー接点30aを閉じる第1制御手段。
The main control unit 20 has the following means (1) to (3) as main functions.
(1) First control means for closing the relay contact 30a by closing the relay 30 when the voltage of the smoothing capacitor 4 (detection voltage of the voltage detection unit 21) Vdc rises to a predetermined value V2 or more.
 (2)負荷の大きさが所定値未満(軽負荷)で且つ平滑コンデンサ4の電圧Vdcが予め定めた第1設定値V1´(<V2)未満に下降した場合に、リレー30を開動作させてリレー接点30aを開く第2制御手段。第1設定値V1´は、規定値V2以下であって、コンバータ2に流れる電流が同コンバータ2の許容最大電流を超えないために必要な平滑コンデンサ4の最小電圧値V1より所定値だけ高い値である。コンバータ2の許容最大電流は、例えば、コンバータ2におけるスイッチング素子やダイオードの最大定格電流である。 (2) When the magnitude of the load is less than a predetermined value (light load) and the voltage Vdc of the smoothing capacitor 4 falls below a predetermined first set value V1 ′ (<V2), the relay 30 is opened. Second control means for opening the relay contact 30a. The first set value V1 ′ is a specified value V2 or less, and is a value that is higher by a predetermined value than the minimum voltage value V1 of the smoothing capacitor 4 that is necessary for the current flowing through the converter 2 not to exceed the allowable maximum current of the converter 2. It is. The allowable maximum current of the converter 2 is, for example, the maximum rated current of a switching element or a diode in the converter 2.
 (3)負荷の大きさが所定値以上(中負荷または重負荷)で且つ平滑コンデンサ4の電圧Vdcが上記第1設定値V1´より高い第2設定値未満に下降した場合に、リレー30を開動作させてリレー接点30aを開く第3制御手段。第2設定値として、例えば規定値V2を用いる。以下、規定値の符号“V2”を第2設定値にも付ける。 (3) When the magnitude of the load is equal to or greater than a predetermined value (medium load or heavy load) and the voltage Vdc of the smoothing capacitor 4 falls below a second set value that is higher than the first set value V1 ′, the relay 30 is turned on. Third control means for opening and opening the relay contact 30a. For example, a specified value V2 is used as the second set value. Hereinafter, the reference value “V2” is also attached to the second set value.
 つぎに、主制御部20が実行する制御を図2のフローチャートおよび図3のタイムチャートを参照しながら説明する。 
 商用三相交流電源1が投入されると、その商用三相交流電源1の電圧がコンバータ2で直流電圧Vaに変換され、その直流電圧Vaが平滑コンデンサ4に印加される。この印加により、平滑コンデンサ4の電圧Vdcが上昇する。
Next, the control executed by the main control unit 20 will be described with reference to the flowchart of FIG. 2 and the time chart of FIG.
When the commercial three-phase AC power source 1 is turned on, the voltage of the commercial three-phase AC power source 1 is converted into a DC voltage Va by the converter 2, and the DC voltage Va is applied to the smoothing capacitor 4. By this application, the voltage Vdc of the smoothing capacitor 4 increases.
 この電源投入時、コンバータ2の出力電圧Vaと平滑コンデンサ4の電圧Vdcとの差“Va-Vdc”および商用三相交流電源1から平滑コンデンサ4までのラインインピーダンスZに応じた突入電流Ix=(Va-Vdc)/Zが、コンバータ2から平滑コンデンサ4に流れようとする。しかしながら、コンバータ2と平滑コンデンサ4との間の通電路にはリレー接点30aの開放によって抵抗器3が投入された状態にあるので、実際に流れる電流は、抵抗器3の抵抗値Rが加わる分だけ抑制された電流Iy=(Va-Vdc)/(Z+R)である。この電流Iyは、コンバータ2の許容最大電流を超えない値である。よって、コンバータ2のスイッチング素子やダイオードの破壊を防ぐことができる。 When the power is turned on, the inrush current Ix = (in accordance with the difference “Va−Vdc” between the output voltage Va of the converter 2 and the voltage Vdc of the smoothing capacitor 4 and the line impedance Z from the commercial three-phase AC power supply 1 to the smoothing capacitor 4. Va−Vdc) / Z tends to flow from the converter 2 to the smoothing capacitor 4. However, since the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4 by opening the relay contact 30a, the current that actually flows is equivalent to the resistance value R of the resistor 3 being added. Only suppressed current Iy = (Va−Vdc) / (Z + R). This current Iy is a value that does not exceed the maximum allowable current of converter 2. Therefore, destruction of the switching element and the diode of the converter 2 can be prevented.
 平滑コンデンサ4の電圧Vdcの上昇時(ステップS1のYES)、主制御部20は、平滑コンデンサ4の電圧Vdcと規定値(=第2設定値)V2とを比較する(ステップS2)。そして、電圧Vdcが規定値V2に達したとき(ステップS2のYES)、主制御部20は、突入電流の心配がなくなったとの判断の下に、リレー駆動信号Dを高レベルに設定してトランジスタ22をオンし、これによりリレー30を付勢(閉動作)する(ステップS3)。この付勢により、リレー接点30aが閉じて抵抗器3に対する短絡路が形成される。つまり、コンバータ2と平滑コンデンサ4との間の通電路から抵抗器3が切り離された状態となる。なお、リレー接点30aは機械的に動くいわゆるメカニカル接点であるため、リレー駆動信号Dが高レベルに設定されてから実際にリレー接点30aが閉じるまでに、数msecの時間遅れt2が生じる。 When the voltage Vdc of the smoothing capacitor 4 increases (YES in Step S1), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with a specified value (= second set value) V2 (Step S2). When the voltage Vdc reaches the specified value V2 (YES in step S2), the main control unit 20 sets the relay drive signal D to a high level and determines that the inrush current is no longer a concern. 22 is turned on, thereby energizing (closing operation) the relay 30 (step S3). By this energization, the relay contact 30a is closed and a short circuit path for the resistor 3 is formed. That is, the resistor 3 is disconnected from the energization path between the converter 2 and the smoothing capacitor 4. Since the relay contact 30a is a so-called mechanical contact that moves mechanically, a time delay t2 of several milliseconds occurs after the relay drive signal D is set to a high level until the relay contact 30a is actually closed.
 一方、商用三相交流電源1に電圧低下が生じた場合、その電源電圧の低下に伴ってコンバータ2の出力電圧Vaも低下する。この場合、負荷であるブラシレスDCモータMへの電力供給は続くため、平滑コンデンサ4の電圧Vdcが下降することがある。 On the other hand, when a voltage drop occurs in the commercial three-phase AC power supply 1, the output voltage Va of the converter 2 also drops as the power supply voltage drops. In this case, since the power supply to the brushless DC motor M as a load continues, the voltage Vdc of the smoothing capacitor 4 may decrease.
 平滑コンデンサ4の電圧Vdcの下降時(ステップS1のNO、ステップS4のYES)、主制御部20は、センサレス・ベクトル制御部50におけるトルク成分電流Iqに基づき、負荷の大きさを判定する(ステップS5)。具体的には、主制御部20は、トルク成分電流Iqが一定値未満の場合は負荷の大きさが所定値未満の軽負荷であると判定し、トルク成分電流Iqが一定値以上の場合は負荷の大きさが所定値以上の中負荷または重負荷であると判定する。 When the voltage Vdc of the smoothing capacitor 4 decreases (NO in Step S1, YES in Step S4), the main control unit 20 determines the magnitude of the load based on the torque component current Iq in the sensorless vector control unit 50 (Step S1). S5). Specifically, when the torque component current Iq is less than a certain value, the main control unit 20 determines that the load is a light load with a value less than a predetermined value, and when the torque component current Iq is greater than or equal to a certain value. It is determined that the load is a medium load or a heavy load greater than or equal to a predetermined value.
 主制御部20は、負荷の大きさが軽負荷であると判定した場合(ステップS5のYES)、平滑コンデンサ4の電圧Vdcと第1設定値V1´とを比較する(ステップS6)。そして、平滑コンデンサ4の電圧Vdcが第1設定値V1´を下回ったとき(ステップS6のYES)、主制御部20は、リレー駆動信号Dを低レベルに設定してトランジスタ22をオフし、これによりリレー30を消勢(開動作)する(ステップS7)。リレー30が消勢されると、リレー接点30aが開き、コンバータ2と平滑コンデンサ4との間の通電路に抵抗器3が投入された状態となる。 The main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S6) when determining that the load is a light load (YES in step S5). When the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′ (YES in step S6), the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22, Thus, the relay 30 is de-energized (opening operation) (step S7). When the relay 30 is de-energized, the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4.
 リレー接点30aは機械的に動くいわゆるメカニカル接点であるため、リレー駆動信号Dが低レベルに設定されてから実際にリレー接点30aが開くまでに数msecの時間遅れt1が生じる。ただし、突入電流防止のために必要な最小電圧値V1よりも高い第1設定値V1´をリレー30の消勢用として選択しているので、電圧Vdcが最小電圧値V1以下に下降する前に、リレー接点30aが開いて抵抗器3が投入される。したがって、電圧Vdcが最小電圧値V1を下回っても、その時点ではすでに抵抗器3が投入された状態にあるので、突入電流は生じない。つまり、コンバータ2の半導体スイッチやダイオードの破壊を未然に防ぐことができる。 Since the relay contact 30a is a mechanical contact that moves mechanically, a time delay t1 of several milliseconds occurs after the relay drive signal D is set to a low level until the relay contact 30a is actually opened. However, since the first set value V1 ′ higher than the minimum voltage value V1 necessary for preventing the inrush current is selected for deactivating the relay 30, before the voltage Vdc drops below the minimum voltage value V1. The relay contact 30a is opened and the resistor 3 is turned on. Therefore, even if the voltage Vdc falls below the minimum voltage value V1, since the resistor 3 is already turned on at that time, no inrush current occurs. That is, the semiconductor switch and the diode of the converter 2 can be prevented from being destroyed.
 一方、平滑コンデンサ4の電圧Vdcの下降時、負荷の大きさが中負荷または重負荷である場合は、平滑コンデンサ4の電圧Vdcの下降速度が速くなる。 On the other hand, when the voltage Vdc of the smoothing capacitor 4 is lowered, if the load is a medium load or a heavy load, the falling speed of the voltage Vdc of the smoothing capacitor 4 is increased.
 主制御部20は、平滑コンデンサ4の電圧Vdcの下降時(ステップS1のNO、ステップS4のYES)、かつ負荷の大きさが中負荷または重負荷であると判定した場合(ステップS5のNO)、平滑コンデンサ4の電圧Vdcと第2設定値(=規定値)V2とを比較する(ステップS8)。そして、平滑コンデンサ4の電圧Vdcが第2設定値V2を下回ったとき(ステップS8のYES)、主制御部20は、リレー駆動信号Dを低レベルに設定してトランジスタ22をオフし、これによりリレー30を消勢する(ステップS7)。リレー30が消勢されると、リレー接点30aが開き、コンバータ2と平滑コンデンサ4との間の通電路に抵抗器3が投入された状態となる。 When main controller 20 determines that voltage Vdc of smoothing capacitor 4 is decreasing (NO in step S1, YES in step S4), and determines that the load is medium load or heavy load (NO in step S5). The voltage Vdc of the smoothing capacitor 4 is compared with the second set value (= specified value) V2 (step S8). When the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2 (YES in step S8), the main control unit 20 sets the relay drive signal D to a low level and turns off the transistor 22, thereby The relay 30 is de-energized (step S7). When the relay 30 is de-energized, the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4.
 この場合、負荷の大きさが中負荷または重負荷なので電圧Vdcの下降速度が速く、しかもリレー駆動信号Dが低レベルに設定されてから実際にリレー接点30aが開くまでに数msecの時間遅れt1が生じるが、第1設定値V1´より高い第2設定値V2をリレー30の消勢用として選択しているので、電圧Vdcが最小電圧値V1まで下降する前にリレー接点30aが開いて抵抗器3が投入される。つまり、電圧Vdcが最小電圧値V1を下回っても、その時点ではすでに抵抗器3が投入された状態にあるので、突入電流は生じない。したがって、コンバータ2の半導体スイッチやダイオードの破壊を未然に防ぐことができる。 In this case, since the load is a medium load or a heavy load, the voltage Vdc descends quickly, and a time delay t1 of several msec from when the relay drive signal D is set to a low level until the relay contact 30a is actually opened. However, since the second set value V2 higher than the first set value V1 ′ is selected for deactivating the relay 30, the relay contact 30a is opened before the voltage Vdc drops to the minimum voltage value V1, and the resistance is reduced. Container 3 is turned on. That is, even when the voltage Vdc falls below the minimum voltage value V1, since the resistor 3 is already turned on at that time, no inrush current occurs. Therefore, destruction of the semiconductor switch and the diode of the converter 2 can be prevented.
 なお、平滑コンデンサ4の電圧Vdcが突入電流防止用の最小電圧値V1より低い設定値V0まで下降した場合、主制御部20は、インバータ10のスイッチングを停止する。 In addition, when the voltage Vdc of the smoothing capacitor 4 falls to the set value V0 lower than the minimum voltage value V1 for preventing inrush current, the main control unit 20 stops switching of the inverter 10.
 以上のように、電圧Vdcの下降時は、電圧Vdcが突入電流防止用の最小電圧値V1よりも高い第1設定値V1´または第2設定値V2を下回るタイミングでリレー30を消勢するので、たとえリレー接点30aの開閉に時間遅れがあっても、突入電流を確実に防止できる。 As described above, when the voltage Vdc drops, the relay 30 is de-energized at a timing when the voltage Vdc falls below the first set value V1 ′ or the second set value V2 that is higher than the minimum voltage value V1 for preventing inrush current. Even if there is a time delay in opening and closing the relay contact 30a, the inrush current can be reliably prevented.
 しかも、軽負荷時は第1設定値V1´をリレー30の消勢用として選択し、中負荷時または重負荷時は第1設定値V1´より高い第2設定値(=規定値)V2をリレー30の消勢用として選択するので、負荷の大きさに影響を受けることなく、突入電流を確実に防止できる。 Moreover, the first set value V1 ′ is selected for de-energizing the relay 30 at light load, and the second set value (= specified value) V2 higher than the first set value V1 ′ is selected at medium load or heavy load. Since the relay 30 is selected for deactivation, the inrush current can be reliably prevented without being affected by the magnitude of the load.
 第1設定値V1´と突入電流防止用の最小電圧値V1との差については、重負荷時の急激な電圧Vdcの低下があっても、リレー接点30aの開閉時間遅れt2の間に電圧Vdcが突入電流防止用の最小電圧値V1に至ることのない最小限の値が選定される。これにより、抵抗器3の投入を突入電流発生のぎりぎりのタイミングまで延ばすことができる。 Regarding the difference between the first set value V1 ′ and the minimum voltage value V1 for preventing the inrush current, the voltage Vdc is applied during the switching time delay t2 of the relay contact 30a even if there is a sudden drop in the voltage Vdc at the time of heavy load. Is selected to a minimum value that does not reach the minimum voltage value V1 for preventing inrush current. Thereby, the introduction of the resistor 3 can be extended to the last timing of inrush current generation.
 抵抗器3が投入されると、入力電力(電流)が制限される。この入力電力がインバータ10の駆動可能電力に満たなくなった場合には、インバータ10を駆動できなくなる。ただし、上記のように、抵抗器3の投入を突入電流発生のぎりぎりのタイミングまで延ばすことができるので、入力電力の制限によるインバータ10の駆動停止をできるだけ先延ばしにすることができる。結果として、インバータ10の稼働率を高めることができる。また、抵抗器3を投入すると、その抵抗器3で消費される電力が無駄になるが、上記のように抵抗器3の投入を突入電流発生のぎりぎりのタイミングまで延ばすことができるので、その分、省エネルギとなる。 When the resistor 3 is turned on, the input power (current) is limited. When this input power is less than the driveable power of the inverter 10, the inverter 10 cannot be driven. However, as described above, the insertion of the resistor 3 can be extended until the timing of the inrush current generation, so that the drive stop of the inverter 10 due to the limitation of the input power can be postponed as much as possible. As a result, the operation rate of the inverter 10 can be increased. In addition, when the resistor 3 is turned on, the power consumed by the resistor 3 is wasted. However, as described above, the turning on of the resistor 3 can be extended to the last timing of inrush current generation. Save energy.
 [2]第2実施形態について説明する。 
 主制御部20は、主要な機能として、第1実施形態の(3)の第3制御手段に代えて、次の(3a)の第3制御手段を有する。 
 (3a)負荷の大きさが所定値以上(中負荷または重負荷)で且つ平滑コンデンサ4の電圧Vdcが第2設定値(=規定値)V2未満に下降した場合に、負荷の大きさが所定値未満となるようにインバータ10の出力トルクを低減する第3制御手段。 
 他の構成は第1実施形態と同じである。
[2] A second embodiment will be described.
The main control unit 20 has the following third control means (3a) instead of the third control means (3) of the first embodiment as a main function.
(3a) When the magnitude of the load is equal to or greater than a predetermined value (medium load or heavy load) and the voltage Vdc of the smoothing capacitor 4 falls below the second set value (= specified value) V2, the magnitude of the load is predetermined. Third control means for reducing the output torque of the inverter 10 so as to be less than the value.
Other configurations are the same as those of the first embodiment.
 主制御部20が実行する制御を図4のフローチャートおよび図5のタイムチャートを参照しながら説明する。 
 平滑コンデンサ4の電圧Vdcが上昇した場合(ステップS1のYES)、主制御部20は、第1実施形態と同じステップS2,S3の処理を実行する。この説明については省略する。
The control executed by the main control unit 20 will be described with reference to the flowchart of FIG. 4 and the time chart of FIG.
When the voltage Vdc of the smoothing capacitor 4 increases (YES in Step S1), the main control unit 20 executes the same processes of Steps S2 and S3 as in the first embodiment. This description is omitted.
 商用三相交流電源1に電圧低下が生じた場合、その電源電圧の低下に伴ってコンバータ2の出力電圧Vaも低下する。この場合、負荷であるブラシレスDCモータMへの電力供給は続くため、平滑コンデンサ4の電圧Vdcが下降してコンバータ2の出力電圧Vaを下回る。 When a voltage drop occurs in the commercial three-phase AC power supply 1, the output voltage Va of the converter 2 also decreases as the power supply voltage decreases. In this case, since the power supply to the brushless DC motor M as a load continues, the voltage Vdc of the smoothing capacitor 4 decreases and falls below the output voltage Va of the converter 2.
 平滑コンデンサ4の電圧Vdcの下降時(ステップS1のNO、ステップS4のYES)、主制御部20は、センサレス・ベクトル制御部50におけるトルク成分電流Iqに基づき、負荷の大きさを判定する(ステップS5)。 When the voltage Vdc of the smoothing capacitor 4 decreases (NO in Step S1, YES in Step S4), the main control unit 20 determines the magnitude of the load based on the torque component current Iq in the sensorless vector control unit 50 (Step S1). S5).
 負荷の大きさが軽負荷であると判定した場合(ステップS5のYES)、主制御部20は、平滑コンデンサ4の電圧Vdcと第1設定値V1´とを比較する(ステップS6)。平滑コンデンサ4の電圧Vdcが第1設定値V1´を下回ったとき(ステップS6のYES)、主制御部20は、リレー駆動信号Dを低レベルに設定してトランジスタ22をオフし、これによりリレー30を消勢(開動作)する(ステップS7)。リレー30が消勢されると、リレー接点30aが開き、コンバータ2と平滑コンデンサ4との間の通電路に抵抗器3が投入された状態となる。続いて、主制御部20は、後述の出力トルク低減を行っている場合はそれを解除する(ステップS10)。 When it is determined that the load is a light load (YES in step S5), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S6). When the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′ (YES in step S6), the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22 and thereby the relay 30 is deactivated (opening operation) (step S7). When the relay 30 is de-energized, the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4. Subsequently, the main control unit 20 cancels the output torque reduction described later (step S10).
 一方、平滑コンデンサ4の電圧Vdcの下降時、負荷の大きさが中負荷または重負荷である場合は、平滑コンデンサ4の電圧Vdcの下降速度が速くなる。 On the other hand, when the voltage Vdc of the smoothing capacitor 4 is lowered, if the load is a medium load or a heavy load, the falling speed of the voltage Vdc of the smoothing capacitor 4 is increased.
 主制御部20は、平滑コンデンサ4の電圧Vdcの下降時(ステップS1のNO、ステップS4のYES)、かつ負荷の大きさが中負荷または重負荷であると判定した場合(ステップS5のNO)、平滑コンデンサ4の電圧Vdcと第2設定値V2とを比較する(ステップS8)。そして、平滑コンデンサ4の電圧Vdcが第2設定値V2を下回ったとき(ステップS8のYES)、主制御部20は、負荷の大きさが所定値未満の軽負荷となるようにインバータ10の出力トルクを低減する(ステップS9)。具体的には、主制御部20は、負荷の大きさが所定値未満の軽負荷となるように、センサレス・ベクトル制御部50におけるトルク成分電流Iqを低減する。こうして、インバータ10の出力トルクを低減することにより、電圧Vdcの下降速度が軽負荷時の下降速度に減少する。 When main controller 20 determines that voltage Vdc of smoothing capacitor 4 is decreasing (NO in step S1, YES in step S4), and determines that the load is medium load or heavy load (NO in step S5). The voltage Vdc of the smoothing capacitor 4 is compared with the second set value V2 (step S8). When the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2 (YES in step S8), the main control unit 20 outputs the output of the inverter 10 so that the load becomes a light load that is less than a predetermined value. Torque is reduced (step S9). Specifically, the main control unit 20 reduces the torque component current Iq in the sensorless vector control unit 50 so that the load becomes a light load less than a predetermined value. Thus, by reducing the output torque of the inverter 10, the descending speed of the voltage Vdc is reduced to the descending speed at light load.
 主制御部20は、トルク成分電流Iqを低減した後、ステップS1の判定に戻る。電圧Vdcの下降が続いていれば(ステップS1のNO、ステップS4のYES)、主制御部20は、負荷の大きさが軽負荷となったかとうかかを判定する(ステップS5)。 The main control unit 20 returns to the determination in step S1 after reducing the torque component current Iq. If the voltage Vdc continues to decrease (NO in step S1, YES in step S4), the main control unit 20 determines whether the load has become a light load (step S5).
 負荷の大きさが軽負荷に減少していれば(ステップS5のYES)、主制御部20は、平滑コンデンサ4の電圧Vdcと第1設定値V1´とを比較する(ステップS6)。そして、平滑コンデンサ4の電圧Vdcが第1設定値V1´を下回ったとき(ステップS6のYES)、主制御部20は、リレー駆動信号Dを低レベルに設定してトランジスタ22をオフし、これによりリレー30を消勢する(ステップS7)。リレー30が消勢されると、リレー接点30aが開き、コンバータ2と平滑コンデンサ4との間の通電路に抵抗器3が投入された状態となる。そして、主制御部20は、センサレス・ベクトル制御部50におけるトルク成分電流Iqの低減(出力トルク低減)を解除する(ステップS10)
 以上のように、平滑コンデンサ4の電圧Vdcの下降時、かつ負荷の大きさが所定値未満の軽負荷時は、電圧Vdcが突入電流防止用の最小電圧値V1よりも高い第1設定値V1´を下回るタイミングでリレー30を消勢するので、たとえリレー接点30aの開閉に時間遅れがあっても、突入電流を確実に防止できる。
If the magnitude of the load is reduced to a light load (YES in step S5), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S6). When the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′ (YES in step S6), the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22, Thus, the relay 30 is de-energized (step S7). When the relay 30 is de-energized, the relay contact 30a is opened, and the resistor 3 is put in the energization path between the converter 2 and the smoothing capacitor 4. Then, the main control unit 20 cancels the reduction of the torque component current Iq (output torque reduction) in the sensorless vector control unit 50 (step S10).
As described above, when the voltage Vdc of the smoothing capacitor 4 is lowered and the load is a light load with a magnitude less than a predetermined value, the voltage Vdc is higher than the minimum voltage value V1 for preventing inrush current. Since the relay 30 is deenergized at a timing lower than ', even if there is a time delay in opening and closing the relay contact 30a, an inrush current can be reliably prevented.
 負荷の大きさが所定値以上の中負荷時または重負荷時は、負荷の大きさが所定値未満の軽負荷となるようにインバータ10の出力トルクを低減し、これにより電圧Vdcの下降速度を軽負荷時の下降速度まで減少させるので、電圧Vdcの下降を確実に捕らえることができる。すなわち、負荷の大きさに影響を受けることなく、突入電流を確実に防止できる。 
 他の効果は第1実施形態と同じである。
When the load size is medium load or heavy load greater than or equal to a predetermined value, the output torque of the inverter 10 is reduced so that the load size becomes a light load less than the predetermined value, thereby reducing the rate of decrease in the voltage Vdc. Since the speed is reduced to the lowering speed at light load, the lowering of the voltage Vdc can be reliably captured. That is, inrush current can be reliably prevented without being affected by the size of the load.
Other effects are the same as those of the first embodiment.
 [3]第3実施形態について説明する。 
 主制御部20は、主要な機能として、次の(11)~(13)の手段を有する。 
 (11)平滑コンデンサ4の電圧(電圧検出部21の検出電圧)Vdcが第2設定値V2以上に上昇した場合に、リレー30を閉動作させてリレー接点30aを閉じる第1制御手段。
[3] A third embodiment will be described.
The main control unit 20 has the following means (11) to (13) as main functions.
(11) First control means for closing the relay contact 30a by closing the relay 30 when the voltage of the smoothing capacitor 4 (detection voltage of the voltage detection unit 21) Vdc rises to the second set value V2 or more.
 (12)平滑コンデンサ4の電圧Vdcが第1設定値V1´未満に下降した場合に、リレー30を開動作させてリレー接点30aを開く第2制御手段。 (12) Second control means for opening the relay contact 30a by opening the relay 30 when the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′.
 (13)平滑コンデンサ4の電圧Vdcが第2設定値V2未満に下降した場合にインバータ10を回生モードで動作させ、この回生モードの動作によりインバータ10の出力周波数Fが所定周波数である例えば許容最低運転周波数Fminに低下したとき、インバータ10の回生モードの動作を終了し同インバータ10の出力周波数Fが許容最低運転周波数Fminを保つようにインバータ10の出力トルク(トルク成分電流Iq)を制御する第3制御手段。 
 他の構成は第1実施形態と同じである。
(13) When the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2, the inverter 10 is operated in the regeneration mode, and the output frequency F of the inverter 10 is a predetermined frequency by the operation in the regeneration mode. When the operating frequency Fmin is lowered, the operation of the inverter 10 in the regenerative mode is terminated, and the output torque (torque component current Iq) of the inverter 10 is controlled so that the output frequency F of the inverter 10 maintains the allowable minimum operating frequency Fmin. 3 control means.
Other configurations are the same as those of the first embodiment.
 主制御部20が実行する制御を図6のフローチャートおよび図7のタイムチャートを参照しながら説明する。 
 平滑コンデンサ4の電圧Vdcの上昇時(ステップS1のYES)、主制御部20は、後述する許容最低運転周波数Fminの保持を行っていればそれを解除し(ステップS1a)、かつ電圧Vdcと第2設定値V2とを比較する(ステップS2)。そして、電圧Vdcが第2設定値V2に達したとき(ステップS2のYES)、主制御部20は、突入電流の心配がなくなったとの判断の下に、リレー駆動信号Dを高レベルに設定してトランジスタ22をオンし、これによりリレー30を付勢(閉動作)する(ステップS3)。このリレー30の付勢により、リレー接点30aが閉じて抵抗器3に対する短絡路が形成され、コンバータ2と平滑コンデンサ4との間の通電路から抵抗器3が切り離された状態となる。このステップS1~S3の処理の流れは、ステップS1aの処理が加わっている点のみ第1および第2実施形態と異なる。
The control executed by the main control unit 20 will be described with reference to the flowchart of FIG. 6 and the time chart of FIG.
When the voltage Vdc of the smoothing capacitor 4 increases (YES in step S1), the main control unit 20 cancels the allowable minimum operating frequency Fmin described later (step S1a), and cancels the voltage Vdc and the second voltage Vdc. 2 The set value V2 is compared (step S2). When the voltage Vdc reaches the second set value V2 (YES in step S2), the main control unit 20 sets the relay drive signal D to a high level based on the determination that the inrush current has been eliminated. The transistor 22 is turned on, thereby energizing (closing operation) the relay 30 (step S3). By energizing the relay 30, the relay contact 30 a is closed to form a short circuit path for the resistor 3, and the resistor 3 is disconnected from the energization path between the converter 2 and the smoothing capacitor 4. The process flow of steps S1 to S3 is different from the first and second embodiments only in that the process of step S1a is added.
 商用三相交流電源1に電圧低下が生じた場合、それに伴ってコンバータ2の出力電圧Vaも低下する。この場合、負荷であるブラシレスDCモータMへの電力供給は続くため、平滑コンデンサ4の電圧Vdcが下降してコンバータ2の出力電圧Vaを下回る。 When a voltage drop occurs in the commercial three-phase AC power source 1, the output voltage Va of the converter 2 is also lowered accordingly. In this case, since the power supply to the brushless DC motor M as a load continues, the voltage Vdc of the smoothing capacitor 4 decreases and falls below the output voltage Va of the converter 2.
 平滑コンデンサ4の電圧Vdcの下降時(ステップS1のNO、ステップS4のYES)、主制御部20は、平滑コンデンサ4の電圧Vdcと第1設定値V1´とを比較する(ステップS11)。 When the voltage Vdc of the smoothing capacitor 4 falls (NO in step S1, YES in step S4), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the first set value V1 ′ (step S11).
 平滑コンデンサ4の電圧Vdcが第1設定値V1´未満でない場合(ステップS11のNO)、主制御部20は、平滑コンデンサ4の電圧Vdcと第2設定値V2とを比較する(ステップS12)。 When the voltage Vdc of the smoothing capacitor 4 is not less than the first set value V1 ′ (NO in step S11), the main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the second set value V2 (step S12).
 平滑コンデンサ4の電圧Vdcが第2設定値V2を下回った場合(ステップS12のYES)、主制御部20は、センサレス・ベクトル制御部50におけるトルク成分電流Iqを負の値に設定し、これによりインバータ10を回生モードで動作させる(ステップS13)。インバータ10が回生モードで動作すると、平滑コンデンサ4の電圧Vdcが上昇方向に転じるとともに、インバータ10の出力周波数Fが徐々に低下していく。 When the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2 (YES in step S12), the main control unit 20 sets the torque component current Iq in the sensorless vector control unit 50 to a negative value, thereby The inverter 10 is operated in the regeneration mode (step S13). When the inverter 10 operates in the regenerative mode, the voltage Vdc of the smoothing capacitor 4 turns upward and the output frequency F of the inverter 10 gradually decreases.
 インバータ10の出力周波数Fが許容最低運転周波数Fminに低下したとき(ステップS14のYES)、主制御部20は、トルク成分電流Iqを正の値に戻してインバータ10の回生モードの動作を終了するとともに(ステップS15)、インバータ10の出力周波数Fが許容最低運転周波数Fminを保つようにインバータ10の出力トルク(トルク成分電流Iq)を制御する(ステップS16)。そして、主制御部20は、この出力トルク制御を継続しながらステップS1の処理に戻る。 When the output frequency F of the inverter 10 decreases to the allowable minimum operating frequency Fmin (YES in step S14), the main control unit 20 returns the torque component current Iq to a positive value and ends the operation of the inverter 10 in the regeneration mode. At the same time (step S15), the output torque (torque component current Iq) of the inverter 10 is controlled so that the output frequency F of the inverter 10 maintains the allowable minimum operating frequency Fmin (step S16). Then, the main control unit 20 returns to the process of step S1 while continuing this output torque control.
 インバータ10の出力トルク制御を継続している状態で、平滑コンデンサ4の電圧Vdcが設定値V1´未満に下降した場合(ステップS1のNO、ステップS4のYES、ステップS11のYES)、主制御部20は、リレー30を消勢し(ステップS17)、かつ出力周波数Fを許容最低運転周波数Fminに保つ制御(インバータ10の出力トルク制御)を解除する(ステップS18)。 When the voltage Vdc of the smoothing capacitor 4 falls below the set value V1 ′ while continuing the output torque control of the inverter 10 (NO in step S1, YES in step S4, YES in step S11), the main control unit 20 deactivates the relay 30 (step S17), and cancels the control for maintaining the output frequency F at the allowable minimum operating frequency Fmin (output torque control of the inverter 10) (step S18).
 以上のように、平滑コンデンサ4の電圧Vdcの下降時は、その電圧Vdcが突入電流防止用の最小電圧値V1よりも高い第1設定値V1´を下回るタイミングでリレー30を消勢するので、たとえリレー接点30aの開閉に時間遅れがあっても、突入電流を確実に防止できる。 As described above, when the voltage Vdc of the smoothing capacitor 4 decreases, the relay 30 is de-energized at a timing when the voltage Vdc falls below the first set value V1 ′ that is higher than the minimum voltage value V1 for preventing inrush current. Even if there is a time delay in opening and closing the relay contact 30a, inrush current can be reliably prevented.
 しかも、平滑コンデンサ4の電圧Vdcの下降時は、その電圧Vdcが第1設定値V1´より高い第2規定値V2を下回るタイミングでインバータ10を回生モードで動作させ、その回生エネルギによって平滑コンデンサ4の電圧Vdcを一旦上昇側に変化させるので、第1設定値V1´に基づく抵抗器3の投入をできるだけ遅くすることができる。これにより、抵抗器3における電力損失を少なくすることができる。設定値V0に基づくインバータ10の停止もできるだけ回避することができる。 
 他の効果は第1実施形態と同じである。
In addition, when the voltage Vdc of the smoothing capacitor 4 is lowered, the inverter 10 is operated in the regeneration mode at a timing when the voltage Vdc falls below the second specified value V2 higher than the first set value V1 ′, and the smoothing capacitor 4 is generated by the regenerative energy. Since the voltage Vdc is once changed to the rising side, the introduction of the resistor 3 based on the first set value V1 ′ can be made as late as possible. Thereby, the power loss in the resistor 3 can be reduced. Stopping of the inverter 10 based on the set value V0 can be avoided as much as possible.
Other effects are the same as those of the first embodiment.
 [4]第4実施形態について説明する。 
 この実施形態では、ブラシレスDCモータMの負荷の大きさを、平滑コンデンサ4の電圧Vdcの変動の大きさで判断する。
[4] A fourth embodiment will be described.
In this embodiment, the magnitude of the load of the brushless DC motor M is determined by the magnitude of the fluctuation of the voltage Vdc of the smoothing capacitor 4.
 主制御部20は、主要な機能として、次の(21)~(24)の手段を有する。 
 (21)商用三相交流電源1の安定時における平滑コンデンサ4の電圧を基準電圧として求め、この基準電圧と現時点における平滑コンデンサ4の電圧(電圧検出部21の検出電圧)Vdcとの差を電圧変化量ΔVdcとして求める演算手段。上記基準電圧として、例えば、平滑コンデンサ4の電圧Vdcの所定時間における平均値Vdcxを求める。平均値Vdcxは、電圧Vdcを長時間にわたり積分した値であり、例えば、時定数の大きいローパスフィルタ処理により求める。
The main control unit 20 has the following means (21) to (24) as main functions.
(21) The voltage of the smoothing capacitor 4 when the commercial three-phase AC power supply 1 is stable is obtained as a reference voltage, and the difference between the reference voltage and the voltage of the smoothing capacitor 4 (the detection voltage of the voltage detection unit 21) Vdc at this time Calculation means for obtaining the change amount ΔVdc. As the reference voltage, for example, an average value Vdcx of the voltage Vdc of the smoothing capacitor 4 over a predetermined time is obtained. The average value Vdcx is a value obtained by integrating the voltage Vdc over a long period of time, and is obtained by, for example, low-pass filter processing with a large time constant.
 (22)上記電圧変化量ΔVdcが所定量ΔVs未満の場合に負荷の大きさが所定値未満の軽負荷であると判定し、上記電圧変化量ΔVdcが所定量ΔVs以上の場合に負荷の大きさが所定値以上の中負荷または重負荷であると判定する判定手段。 (22) When the voltage change amount ΔVdc is less than the predetermined amount ΔVs, it is determined that the load is a light load having a value less than the predetermined value, and when the voltage change amount ΔVdc is equal to or greater than the predetermined amount ΔVs, Determining means for determining that the load is a medium load or a heavy load exceeding a predetermined value.
 (23)平滑コンデンサ4の電圧(電圧検出部21の検出電圧)Vdcが第2設定値V2以上に上昇した場合に、リレー30を閉動作させてリレー接点30aを閉じる第1制御手段。 (23) First control means for closing the relay contact 30a by closing the relay 30 when the voltage of the smoothing capacitor 4 (detection voltage of the voltage detection unit 21) Vdc rises to the second set value V2 or more.
 (24)上記判定結果が軽負荷で且つ平滑コンデンサ4の電圧Vdcが第1設定値V1´(<V2)未満に下降した場合に、リレー30を開動作させてリレー接点30aを開く第2制御手段。 (24) Second control for opening the relay contact 30a by opening the relay 30 when the determination result is a light load and the voltage Vdc of the smoothing capacitor 4 falls below the first set value V1 ′ (<V2). means.
 (25)上記判定結果が中負荷または重負荷で且つ平滑コンデンサ4の電圧Vdcが第2設定値V2未満に下降した場合に、リレー30を開動作させてリレー接点30aを開く第3制御手段。 
 他の構成は第1実施形態と同じである。
(25) Third control means for opening the relay contact 30a by opening the relay 30 when the determination result is a medium load or a heavy load and the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2.
Other configurations are the same as those of the first embodiment.
 主制御部20が実行する制御を図8のフローチャートを参照しながら説明する。 
 主制御部20は、平滑コンデンサ4の電圧Vdcの平均値Vdcxを例えば時定数の大きいローパスフィルタ処理により逐次に求め、この平均値Vdcxと現時点の平滑コンデンサ4の電圧Vdcとの差を電圧変化量ΔVdcとして算出する(ステップS0)。
Control executed by the main control unit 20 will be described with reference to the flowchart of FIG.
The main control unit 20 sequentially obtains an average value Vdcx of the voltage Vdc of the smoothing capacitor 4 by, for example, a low-pass filter process having a large time constant, and calculates a difference between the average value Vdcx and the current voltage Vdc of the smoothing capacitor 4 as a voltage change amount. It calculates as (DELTA) Vdc (step S0).
 そして、主制御部20は、平滑コンデンサ4の電圧Vdcの上昇時(ステップS1のYES)、平滑コンデンサ4の電圧Vdcと規定値V2とを比較する(ステップS2)。平滑コンデンサ4の電圧Vdcが規定値V2に達したとき(ステップS2のYES)、主制御部20は、突入電流の心配がなくなったとの判断の下に、リレー駆動信号Dを高レベルに設定してトランジスタ22をオンし、これによりリレー30を付勢(閉動作)する(ステップS3)。この付勢により、リレー接点30aが閉じて抵抗器3に対する短絡路が形成され、コンバータ2と平滑コンデンサ4との間の通電路から抵抗器3が切り離された状態となる。 The main control unit 20 compares the voltage Vdc of the smoothing capacitor 4 with the specified value V2 when the voltage Vdc of the smoothing capacitor 4 increases (YES in Step S1) (Step S2). When the voltage Vdc of the smoothing capacitor 4 reaches the specified value V2 (YES in step S2), the main control unit 20 sets the relay drive signal D to a high level based on the determination that the inrush current has been eliminated. The transistor 22 is turned on, thereby energizing (closing operation) the relay 30 (step S3). By this energization, the relay contact 30 a is closed, a short circuit path for the resistor 3 is formed, and the resistor 3 is disconnected from the energization path between the converter 2 and the smoothing capacitor 4.
 主制御部20は、平滑コンデンサ4の電圧Vdcの下降時(ステップS1のNO、ステップS4のYES)、上記求めた電圧変化量ΔVdcと所定量ΔVsとを比較する(ステップS5a)。 When the voltage Vdc of the smoothing capacitor 4 decreases (NO in step S1, YES in step S4), the main control unit 20 compares the obtained voltage change amount ΔVdc with the predetermined amount ΔVs (step S5a).
 電圧変化量ΔVdcが所定量ΔVs未満と小さい場合(ステップS5aのYES)、主制御部20は、負荷が所定値未満の軽負荷であるとの判断の下に、平滑コンデンサ4の電圧Vdcと第1設定値V1´とを比較する(ステップS6)。そして、平滑コンデンサ4の電圧Vdcが設定値V1´を下回ったとき(ステップS6のYES)、主制御部20は、リレー駆動信号Dを低レベルに設定してトランジスタ22をオフし、これによりリレー30を消勢する(ステップS7)。このリレー30の消勢により、リレー接点30aが開き、抵抗器3が投入される。 When the voltage change amount ΔVdc is as small as less than the predetermined amount ΔVs (YES in step S5a), the main control unit 20 determines that the load is a light load less than the predetermined value and the voltage Vdc of the smoothing capacitor 4 1 set value V1 'is compared (step S6). When the voltage Vdc of the smoothing capacitor 4 falls below the set value V1 ′ (YES in step S6), the main control unit 20 sets the relay drive signal D to a low level to turn off the transistor 22 and thereby the relay 30 is deactivated (step S7). By deactivating the relay 30, the relay contact 30a is opened and the resistor 3 is turned on.
 電圧変化量ΔVdcが所定量ΔVs以上と大きい場合(ステップS5aのNO)、主制御部20は、負荷が所定値以上の中負荷または重負荷であるとの判断の下に、平滑コンデンサ4の電圧Vdcと第2設定値V2とを比較する(ステップS8)。そして、平滑コンデンサ4の電圧Vdcが第2設定値V2を下回ったとき(ステップS8のYES)、主制御部20は、リレー駆動信号Dを低レベルに設定してトランジスタ22をオフし、これによりリレー30を消勢する(ステップS7)。このリレー30の消勢により、リレー接点30aが開き、抵抗器3が投入される。 When the voltage change amount ΔVdc is as large as the predetermined amount ΔVs or more (NO in step S5a), the main control unit 20 determines the voltage of the smoothing capacitor 4 based on the determination that the load is a medium load or a heavy load greater than the predetermined value. Vdc and the second set value V2 are compared (step S8). When the voltage Vdc of the smoothing capacitor 4 falls below the second set value V2 (YES in step S8), the main control unit 20 sets the relay drive signal D to a low level and turns off the transistor 22, thereby The relay 30 is de-energized (step S7). By deactivating the relay 30, the relay contact 30a is opened and the resistor 3 is turned on.
 以上のように、平滑コンデンサ4の電圧Vdcの平均値Vdcxを基準電圧として逐次に求め、この平均値Vdcxと現時点の平滑コンデンサ4の電圧Vdcとの差を電圧変化量ΔVdcとして求め、この電圧変化量ΔVdcから負荷の大きさを判定し、軽負荷時は第1設定値V1´をリレー30の消勢用として選択し、中負荷時または重負荷時は第1設定値V1´より高い第2設定値V2をリレー30の消勢用として選択することにより、負荷の大きさに影響を受けることなく、突入電流を確実に防止できる。 As described above, the average value Vdcx of the voltage Vdc of the smoothing capacitor 4 is sequentially obtained as the reference voltage, and the difference between the average value Vdcx and the current voltage Vdc of the smoothing capacitor 4 is obtained as the voltage change amount ΔVdc. The magnitude of the load is determined from the amount ΔVdc, the first set value V1 ′ is selected for deactivation of the relay 30 at light load, and the second higher than the first set value V1 ′ at medium load or heavy load. By selecting the set value V2 for de-energizing the relay 30, an inrush current can be reliably prevented without being affected by the magnitude of the load.
 他の効果は第1実施形態と同じである。なお、この第4実施形態では、平滑コンデンサ4の電圧Vdcの平均値Vdcxを基準電圧として用いたが、電源電圧低下等の変動が生じる所定時間前の電圧Vdcを記憶しておきそれを基準電圧として用いてもよい。 Other effects are the same as in the first embodiment. In the fourth embodiment, the average value Vdcx of the voltage Vdc of the smoothing capacitor 4 is used as the reference voltage. However, the voltage Vdc before a predetermined time in which a fluctuation such as a drop in the power supply voltage occurs is stored and used as the reference voltage. It may be used as
 [5]変形例 
 上記各実施形態では、下降時の電圧Vdcに対するリレー消勢用の第2設定値として、上昇時の電圧Vdcに対するリレー付勢用の規定値V2をそのまま用いたが、第2設定値についてはこれに限定されるものではない。すなわち、第2設定値は、設定値V1´よりも高い値であればよく、またリレー30の開閉の時間遅れやインバータ10の消費電力量に応じて適宜に定めればよい。
[5] Modification
In each of the above embodiments, the specified value V2 for relay energization for the rising voltage Vdc is used as it is as the second setting value for relay de-energization for the falling voltage Vdc. It is not limited to. That is, the second set value may be a value higher than the set value V1 ′, and may be determined as appropriate according to the time delay of opening and closing of the relay 30 and the power consumption of the inverter 10.
 その他、上記各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Other than the above, the above embodiments and modifications are presented as examples, and are not intended to limit the scope of the invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.
 1…商用三相交流電源、2…コンバータ、3…突入電流防止用の抵抗器、4…室平滑コンデンサ、10…インバータ、M…ブラシレスDCモータ(負荷)、11,12,13…電流センサ、20…主制御部、21…電圧検出部、22…NPN型トランジスタ、30…リレー、30a…リレー接点、50…センサレス・ベクトル制御部 DESCRIPTION OF SYMBOLS 1 ... Commercial three-phase alternating current power supply, 2 ... Converter, 3 ... Resistor for inrush current prevention, 4 ... Room smoothing capacitor, 10 ... Inverter, M ... Brushless DC motor (load), 11, 12, 13 ... Current sensor, DESCRIPTION OF SYMBOLS 20 ... Main control part, 21 ... Voltage detection part, 22 ... NPN type transistor, 30 ... Relay, 30a ... Relay contact, 50 ... Sensorless vector control part

Claims (6)

  1.  商用交流電源の電圧を直流に変換するコンバータと、
     前記コンバータの出力端に接続された平滑コンデンサと、
     前記平滑コンデンサの電圧を交流電圧に変換し、その交流電圧を負荷への駆動電力として出力するインバータと、
     前記コンバータと前記平滑コンデンサとの間の通電路に配置された突入電流防止用の抵抗器と、
     前記抵抗器に並列接続された接点を有するリレーと、
     前記平滑コンデンサの電圧が規定値以上に上昇した場合に前記リレーを閉動作させ、前記平滑コンデンサの電圧が設定値未満に下降した場合に前記リレーを開動作させる制御手段と、
     を備え、
     前記設定値は、前記コンバータに流れる電流が同コンバータの許容最大電流を超えないために必要な前記平滑コンデンサの最小電圧値より高い
     ことを特徴とする電力変換装置。
    A converter that converts the voltage of the commercial AC power source into DC,
    A smoothing capacitor connected to the output of the converter;
    An inverter that converts the voltage of the smoothing capacitor into an AC voltage and outputs the AC voltage as drive power to a load;
    A resistor for preventing an inrush current disposed in a current path between the converter and the smoothing capacitor;
    A relay having contacts connected in parallel to the resistor;
    Control means for closing the relay when the voltage of the smoothing capacitor rises above a specified value, and opening the relay when the voltage of the smoothing capacitor drops below a set value;
    With
    The power converter according to claim 1, wherein the set value is higher than a minimum voltage value of the smoothing capacitor required so that a current flowing through the converter does not exceed an allowable maximum current of the converter.
  2.  前記設定値は、前記規定値以下であって、前記コンバータに流れる電流が同コンバータの許容最大電流を超えないために必要な前記平滑コンデンサの最小電圧値より所定値高い第1設定値、およびその第1設定値より高い第2設定値を含む
     ことを特徴とする請求項1記載の電力変換装置。
    The set value is equal to or less than the specified value, and is a first set value that is higher by a predetermined value than the minimum voltage value of the smoothing capacitor necessary for the current flowing through the converter not to exceed the maximum allowable current of the converter, and The power conversion device according to claim 1, further comprising a second set value higher than the first set value.
  3.  前記制御手段は、
     前記平滑コンデンサの電圧が前記規定値以上に上昇した場合に、前記リレーを閉動作させ、
     前記負荷の大きさが所定未満で且つ前記平滑コンデンサの電圧が前記第1設定値未満に下降した場合に、前記リレーを開動作させ、
     前記負荷の大きさが所定以上で且つ前記平滑コンデンサの電圧が前記第2設定値未満に下降した場合に、前記リレーを開動作させる
     ことを特徴とする請求項2記載の電力変換装置。
    The control means includes
    When the voltage of the smoothing capacitor rises above the specified value, the relay is closed,
    When the magnitude of the load is less than a predetermined value and the voltage of the smoothing capacitor falls below the first set value, the relay is opened.
    The power converter according to claim 2, wherein when the magnitude of the load is equal to or larger than a predetermined value and the voltage of the smoothing capacitor falls below the second set value, the relay is opened.
  4.  前記制御手段は、
     前記平滑コンデンサの電圧が前記規定値以上に上昇した場合に、前記リレーを閉動作させ、
     前記負荷の大きさが所定未満で且つ前記平滑コンデンサの電圧が前記第1設定値未満に下降した場合に、前記リレーを開動作させ、
     前記負荷の大きさが所定以上で且つ前記平滑コンデンサの電圧が前記第2設定値未満に下降した場合に、前記インバータの出力トルクを低減する
     ことを特徴とする請求項2記載の電力変換装置。
    The control means includes
    When the voltage of the smoothing capacitor rises above the specified value, the relay is closed,
    When the magnitude of the load is less than a predetermined value and the voltage of the smoothing capacitor falls below the first set value, the relay is opened.
    The power converter according to claim 2, wherein the output torque of the inverter is reduced when the magnitude of the load is equal to or greater than a predetermined value and the voltage of the smoothing capacitor falls below the second set value.
  5.  前記制御手段は、
     前記平滑コンデンサの電圧が前記規定値以上に上昇した場合に、前記リレーを閉動作させ、
     前記平滑コンデンサの電圧が前記第2設定値未満に下降した場合に前記インバータを回生モードで動作させ、この回生モードの動作により前記インバータの出力周波数が所定周波数に低下した場合に、前記インバータの回生モードの動作を終了し同インバータの出力周波数が前記所定周波数を保つように同インバータの出力トルクを制御し、
     前記平滑コンデンサの電圧が前記第1設定値未満に下降した場合に、前記リレーを開動作させるとともに、前記出力トルクの制御を解除する
     ことを特徴とする請求項2記載の電力変換装置。
    The control means includes
    When the voltage of the smoothing capacitor rises above the specified value, the relay is closed,
    The inverter is operated in a regeneration mode when the voltage of the smoothing capacitor falls below the second set value, and when the output frequency of the inverter is lowered to a predetermined frequency due to the operation in the regeneration mode, the regeneration of the inverter is performed. Control the output torque of the inverter so that the operation of the mode ends and the output frequency of the inverter maintains the predetermined frequency,
    The power converter according to claim 2, wherein when the voltage of the smoothing capacitor falls below the first set value, the relay is opened and the control of the output torque is released.
  6.  前記制御手段は、
     前記商用交流電源の安定時における前記平滑コンデンサの電圧を基準電圧として求め、この基準電圧と現時点における平滑コンデンサの電圧との差を電圧変化量として求め、
     前記電圧変化量が所定量未満の場合に、前記負荷の大きさが所定値未満であると判定し、
     前記電圧変化量が所定量以上の場合に、前記負荷の大きさが所定値以上であると判定する
     ことを特徴とする請求項3または請求項4記載の電力変換装置。
    The control means includes
    Obtain the voltage of the smoothing capacitor at the time of stabilization of the commercial AC power supply as a reference voltage, obtain the difference between the reference voltage and the voltage of the smoothing capacitor at the present time as a voltage change amount,
    When the voltage change amount is less than a predetermined amount, it is determined that the size of the load is less than a predetermined value,
    The power converter according to claim 3 or 4, wherein when the voltage change amount is equal to or greater than a predetermined amount, the load is determined to be greater than or equal to a predetermined value.
PCT/JP2015/060852 2014-04-17 2015-04-07 Power conversion device WO2015159760A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580003687.7A CN105874702B (en) 2014-04-17 2015-04-07 Power-converting device
JP2016513728A JP6255088B2 (en) 2014-04-17 2015-04-07 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-085396 2014-04-17
JP2014085396 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015159760A1 true WO2015159760A1 (en) 2015-10-22

Family

ID=54323971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060852 WO2015159760A1 (en) 2014-04-17 2015-04-07 Power conversion device

Country Status (3)

Country Link
JP (1) JP6255088B2 (en)
CN (1) CN105874702B (en)
WO (1) WO2015159760A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014813A (en) * 2016-07-20 2018-01-25 東芝シュネデール・インバータ株式会社 Inverter device
EP3379712A4 (en) * 2015-11-18 2019-07-10 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098722B (en) * 2019-05-06 2021-04-13 阳光电源股份有限公司 Switching method, device and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196072A (en) * 1986-02-21 1987-08-29 Mitsubishi Electric Corp Rush-current limitting circuit for inverter
JPS63124766A (en) * 1986-11-13 1988-05-28 Matsushita Electric Ind Co Ltd Rush current limiting circuit
JPS63262026A (en) * 1987-04-16 1988-10-28 日本電気株式会社 Ac-dc switching source input voltage monitoring circuit
JP2012147548A (en) * 2011-01-11 2012-08-02 Konica Minolta Business Technologies Inc Power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196072A (en) * 1986-02-21 1987-08-29 Mitsubishi Electric Corp Rush-current limitting circuit for inverter
JPS63124766A (en) * 1986-11-13 1988-05-28 Matsushita Electric Ind Co Ltd Rush current limiting circuit
JPS63262026A (en) * 1987-04-16 1988-10-28 日本電気株式会社 Ac-dc switching source input voltage monitoring circuit
JP2012147548A (en) * 2011-01-11 2012-08-02 Konica Minolta Business Technologies Inc Power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379712A4 (en) * 2015-11-18 2019-07-10 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device
JP2018014813A (en) * 2016-07-20 2018-01-25 東芝シュネデール・インバータ株式会社 Inverter device

Also Published As

Publication number Publication date
CN105874702A (en) 2016-08-17
JP6255088B2 (en) 2017-12-27
CN105874702B (en) 2018-10-26
JPWO2015159760A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US10116245B2 (en) Compressor driving device, compressor including the same, and refrigeration cycle apparatus including the compressor driving device and the compressor
US9431933B2 (en) Inverter apparatus
JP5314103B2 (en) Permanent magnet synchronous motor drive device
JP2014023182A (en) Inverter
WO2016167041A1 (en) Motor driving device
JP6241460B2 (en) Electric motor control device
JP6255088B2 (en) Power converter
CN113273077B (en) Motor control device and air conditioner
JP6345135B2 (en) Motor drive device
JP2018088741A (en) Motor driving device and control method thereof
WO2016035434A1 (en) Motor drive device
JP6462821B2 (en) Motor drive device
JP6301270B2 (en) Motor drive device
JP6304401B2 (en) Motor control device and control method
CN113196646B (en) Motor driving device, refrigerating loop device, air conditioner, water heater and refrigerator
CN112219350B (en) Motor drive device, control device for motor drive device, control method for motor drive device, and air conditioner
KR20100070222A (en) Apparatus and method for initially driving a sensorless bldc motor
US20200212829A1 (en) Control device and control method for synchronous electric motor
JP7433513B2 (en) motor drive device
JP6851495B2 (en) Electric motor control device
US11177756B2 (en) Electric motor drive device and air conditioner
JP2013230035A (en) Controller of motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779454

Country of ref document: EP

Kind code of ref document: A1