WO2015157962A1 - 镜头安装平整度的实时调整方法及装置 - Google Patents

镜头安装平整度的实时调整方法及装置 Download PDF

Info

Publication number
WO2015157962A1
WO2015157962A1 PCT/CN2014/075582 CN2014075582W WO2015157962A1 WO 2015157962 A1 WO2015157962 A1 WO 2015157962A1 CN 2014075582 W CN2014075582 W CN 2014075582W WO 2015157962 A1 WO2015157962 A1 WO 2015157962A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
camera
image
stripe
real
Prior art date
Application number
PCT/CN2014/075582
Other languages
English (en)
French (fr)
Inventor
蒋才高
曹子晟
王铭钰
梁泰文
唐小正
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2014/075582 priority Critical patent/WO2015157962A1/zh
Priority to JP2016513211A priority patent/JP2016526182A/ja
Priority to US15/304,439 priority patent/US10375383B2/en
Publication of WO2015157962A1 publication Critical patent/WO2015157962A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof

Definitions

  • the invention relates to a real-time adjustment method and device for lens mounting flatness. ⁇ Background technique ⁇
  • the measurement method of a digital camera can usually be printed or displayed by taking an ISO chart, subjectively visually evaluating the image to obtain a visual resolution value, or being evaluated by a software measurement method consistent with the visual evaluation. Degree value.
  • a visual visual evaluation method for observing the spatial frequency of the change in the number of wedge lines as a resolution by printing or enlarging a fixed magnification ISO pattern is relatively simple, there are personal differences, time-consuming waste of labor, and limitations that are limited by the effects of display and printing equipment.
  • the software's method of measuring resolution is able to achieve good consistency between scoring and visual inspection without being limited by equipment and manpower, and thus has been widely used.
  • the MTF mainly reflects the resolving power of the human eye by measuring the contrast M x- n) / ( W, where I is the maximum and minimum values of the illuminance, respectively.
  • measuring the SFR Spatial Frequency Response
  • SFR primarily measures the effect of increasing lines of spatial frequency on a single image.
  • the visual evaluation method using visual inspection, while operating the cartridge, is limited by equipment and waste of labor, and therefore is not suitable for a wide range of industrial automation production.
  • MTF such as HYRes software in Japan
  • SFR-based measurement methods such as the US Imatest software
  • US Imatest software although relatively low cost, can achieve better mapping effects, but the operation is complicated, the requirements for factory testers are high, and real-time dynamic testing cannot be achieved.
  • the technical problem to be solved by the present invention is to provide a real-time adjustment method and device for lens mounting flatness, which can automatically test the real-time resolution value of the camera in real time, the measurement result and the visual vision.
  • the evaluation is consistent, flexible, and robust, and the angle of the camera's optical axis relative to the camera's photosensitive surface can be adjusted based on the camera's real-time resolution value.
  • a technical solution adopted by the present invention is: providing a real-time adjustment method for lens mounting flatness, the method comprising: acquiring an image of a test chart taken by a camera in real time, wherein the image includes Illustrating at least two sets of test charts at different positions of the photosensitive surface of the camera; performing image pre-processing on the images of the test chart to separate a plurality of sets of test charts; calculating and displaying the cameras in real time according to each set of the test charts Sensitively facing the real-time resolution value of each set of the test chart; adjusting the optical axis of the camera lens relative to the photosensitive surface in real time according to the real-time resolution value of each set of the test chart according to the sensitivity of the camera Installation angle.
  • Each of the test charts includes at least one test stripe group, and each of the test stripe groups includes a plurality of test strips spaced apart from each other, and a spacing between the test strips is along a spacing direction of the test strips. The vertical direction gradually changes.
  • Each of the test charts includes a first test strip group and a second test strip group, and the first test strip group includes a second interval along the first direction and a second direction perpendicular to the first direction. a plurality of first test strips extending in a direction, a spacing between the first test strips is gradually changed along the second direction, and the second test stripe group includes spacing along the second direction and along the a plurality of second test strips extending in a direction, and a spacing between the second test strips gradually changes along the first direction.
  • the at least two sets of test charts are five sets of test charts, wherein the four sets of test charts correspond to four corners of the photosensitive surface of the camera, and the other set of test charts correspond to the center of the photosensitive surface of the camera.
  • the step of real-time calculating and displaying the real-time resolution value of each camera of the test chart according to each set of the test chart comprises: performing progressively on each set of the test chart Or sampling by column to obtain a plurality of stripe square wave signals; performing Fourier transform on the stripe square wave signals to respectively generate a spectrogram corresponding to each of the stripe square wave signals; according to each of the stripe square waves
  • the spectrogram of the signal calculates and displays the real-time resolution values of the camera's light-sensing face for each set of test charts.
  • the step of calculating, according to the spectrogram of each of the stripe square wave signals, the real-time resolution value of the camera facing each set of the test chart comprises: according to each of the stripe square wave signals
  • the spectrogram calculates the average frequency amplitude A aver and the characteristic frequency amplitude A t of each of the stripe square wave signals; whether the characteristic frequency amplitude A t satisfies the significance condition by the following formula: where lk, Thres Ko is preset value, if the amplitude of the frequency characteristic A significant t satisfies the condition, then the fringe square wave signal corresponding to a value of the resolution of the camera facing the photosensitive test chart Real-time resolution values.
  • the method further includes: rotating the image of the test chart taken by the camera by using the following formula:
  • the step of performing image preprocessing on the image includes: performing grayscale processing on the image of the test chart; performing morphological filtering on the grayscale image to obtain test charts in different directions Region; image binarization of the test chart area, and separation of each group of test charts.
  • a real-time adjusting device for lens mounting flatness comprising a target, a processing system, and a display device, wherein: the target is presented for An image of a test chart taken, the image including at least two sets of test charts at different positions relative to a photosensitive surface of the camera; the processing system for receiving an image of the test chart taken by a camera, for the test Performing image pre-processing on the image of the chart to separate a plurality of sets of test charts, and real-time calculation of the real-time resolution value of the camera against each set of the test charts according to each set of the test charts obtained by the separation;
  • the display device is configured to receive a photorealistic resolution value of each of the test charts of the camera from the processing system and display the real-time resolution value, so that a user adjusts the camera in real time according to the real-time resolution value
  • the mounting angle of the optical axis of the lens with respect to the photosensitive surface is provided.
  • Each of the test charts includes at least one test stripe group, and each of the test stripe groups includes a plurality of test strips spaced apart from each other, and a spacing between the test strips is along a spacing direction of the test strips.
  • the vertical direction gradually changes to 4 ⁇ .
  • Each of the test charts includes a first test stripe set and a second test stripe set, the first set of test strips including a first interval along the first direction and a first perpendicular to the first direction a plurality of first test strips extending in two directions, a spacing between the first test strips gradually changing along the second direction, the second test stripe group including being spaced along the second direction and along the a plurality of second test strips extending in the first direction, and a spacing between the second test strips gradually changes along the first direction.
  • the at least two sets of test charts are five sets of test charts, wherein the four sets of test charts correspond to four corners of the photosensitive surface of the camera, and the other set of test charts correspond to the center of the photosensitive surface of the camera.
  • the processing system is specifically configured to perform row-by-row or column-by-column sampling on each set of the test chart to obtain a plurality of striped square wave signals, and perform Fourier transform on the obtained striped square wave signals, respectively. Generating a frequency map corresponding to each of the stripe square wave signals, and calculating a real-time resolution value of the camera's light-sensing face each set of the test chart according to the generated spectrogram of the stripe square wave signal.
  • the processing system is specifically configured to calculate an average frequency amplitude A aver and a characteristic frequency amplitude A t of each of the stripe square wave signals according to a spectrogram of each of the stripe square wave signals, and determine the Whether the characteristic frequency amplitude A t satisfies the significance condition: A t / A avCT > 73 ⁇ 4r ⁇ , where Thres is a preset threshold, and if the characteristic frequency amplitude A t satisfies the significance condition, the stripe square
  • the resolution value corresponding to the wave signal is the real-time resolution value of the camera's light-sensing face to the test chart.
  • x and y are the abscissa and ordinate of the pixel in the image after rotation, respectively
  • 3 ⁇ 4 and Wo are the height and width of the test chart before rotation in the image, respectively
  • H and W are The height and width of the test chart in the image after rotation
  • is the angle of rotation.
  • the processing system is specifically configured to perform grayscale processing on the image of the test chart, and perform morphological filtering on the grayscale image to obtain test chart regions in different directions, and the test chart is The area is image binarized and each set of test charts is separated.
  • the invention has the beneficial effects that: the invention obtains an image of a test chart taken by a camera in real time, wherein the image includes at least two sets of test charts at different positions relative to the photosensitive surface of the camera, and the image is preprocessed to separate each group.
  • Test chart calculate and display the real-time resolution value of each group of test charts in real time according to each set of test charts, adjust the camera lens in real time according to the real-time resolution value of each set of test charts according to the camera's light sensitivity.
  • the mounting angle of the optical axis with respect to the photosensitive surface is a test chart taken by a camera in real time, wherein the image includes at least two sets of test charts at different positions relative to the photosensitive surface of the camera, and the image is preprocessed to separate each group.
  • Test chart calculate and display the real-time resolution value of each group of test charts in real time according to each set of test charts, adjust the camera lens in real time according to the real-time resolution value of each set of test charts according to the camera's
  • the real-time resolution value of the camera can be automatically tested in real time, and the installation angle of the photosensitive surface of the camera relative to the optical axis of the camera can be adjusted in real time according to the real-time resolution value of the camera, thereby saving manpower and material resources.
  • the test results are consistent with the visual assessment results of the visual inspection, flexible and adjustable, and good robustness.
  • FIG. 1 is a flow chart of a method for real-time adjustment of lens mounting flatness according to an embodiment of the present invention
  • FIG. 2 is a flow chart of image pre-processing of an image of a test chart according to an embodiment of the present invention
  • FIG. 3 is a real-time calculation of each set of test charts according to an embodiment of the present invention, and displaying a photo-sensing of the camera facing each set of tests. a flow chart of the real-time resolution values of the chart;
  • FIG. 4 is a schematic diagram of a principle of camera imaging provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a test stripe group according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a set of test charts provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the relative positions of the photosensitive surfaces of the five sets of test charts corresponding to the camera according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a relationship between a signal characteristic frequency amplitude and a Moire fringe frequency amplitude of a spectrogram corresponding to one of the sample data according to an embodiment of the present invention
  • FIG. 9 is a spectrum diagram corresponding to a sampling point corresponding to a resolution scale of four points according to an embodiment of the present invention
  • FIG. 10 is a spectrum corresponding to a sampling point at a resolution scale of 4.5 provided by an embodiment of the present invention
  • FIG. 11 is a spectrum diagram corresponding to a sampling point corresponding to a resolution scale of 5 according to an embodiment of the present invention
  • FIG. 12 is a spectrum diagram corresponding to a sampling point at a resolution scale of 5.5 provided by an embodiment of the present invention
  • FIG. 13 is a frequency diagram corresponding to a sample point corresponding to a resolution scale according to an embodiment of the present invention
  • FIG. 14 is a spectrum diagram corresponding to a sample point corresponding to a resolution scale of 6.5 according to an embodiment of the present invention
  • FIG. 15 is a spectrum diagram corresponding to a sampling point corresponding to a resolution scale of 7 according to an embodiment of the present invention
  • FIG. 16 is a spectrum diagram corresponding to a sampling point corresponding to a resolution scale of 7.5 according to an embodiment of the present invention
  • FIG. 17 is a schematic structural diagram of a real-time adjusting device for lens mounting flatness according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for real-time adjustment of lens mounting flatness according to an embodiment of the present invention. This embodiment is described in terms of a real-time adjusting device for lens mounting flatness.
  • the real-time adjustment methods for installation flatness include:
  • S101 acquiring an image of a test chart taken by the camera in real time, the image includes at least two sets of test charts at different positions relative to the photosensitive surface of the camera;
  • Fig. 4 is a schematic diagram of the principle of camera imaging.
  • the light from the object passes through the lens of the camera and then converges on the film to form an inverted and reduced real image.
  • the optical axis of the camera lens runs through the center point of the object, the lens, and the image of the object.
  • test chart should be kept as consistent as possible with the horizontal or vertical lines to avoid affecting the accuracy of the test results.
  • FIG. 5 is a schematic structural diagram of a test stripe group according to an embodiment of the present invention, where each test stripe group includes a plurality of spaced apart rows.
  • the stripe is tested, and the spacing between the test strips gradually changes along the vertical direction of the interval of the test strips, and may gradually become larger or smaller.
  • the spacing direction of the stripes is horizontal
  • the direction perpendicular to the spacing direction of the stripes is vertical
  • the spacing between the stripes from the bottom to the top is gradually increased.
  • the spacing between the stripes from the top to the bottom in the straight direction is gradually reduced.
  • There is also a resolution tick on the stripe test group indicating that the test stripe group is not The resolution value corresponding to the same position.
  • each set of test charts includes a first test stripe set and a second test stripe set, as shown in FIG. 6,
  • FIG. 6 is a structure of one set of test charts provided by an embodiment of the present invention.
  • the first test stripe group includes a plurality of first test strips spaced along the first direction and extending in a second direction perpendicular to the first direction, the spacing between the first test strips gradually changing along the second direction, It can be gradually getting bigger or getting smaller.
  • the second test stripe group includes a plurality of second test strips spaced along the second direction and extending along the first direction. The spacing between the second test strips gradually changes along the first direction, and may be gradually larger or gradually changing. small. Here gradually become larger or smaller, just a relative statement, please refer to the above detailed description, and will not repeat them here.
  • FIG. 7 is a schematic diagram of relative positions of the photosensitive surfaces of the five sets of test charts corresponding to the camera provided by the embodiment of the present invention.
  • the four sets of test charts of the group test chart correspond to the four corners of the photosensitive surface of the camera, and the other set of test charts correspond to the center of the photosensitive surface of the camera.
  • S102 Perform image preprocessing on the image of the test chart to separate multiple sets of test charts; perform image preprocessing on the images of the obtained test charts to separate multiple sets of test charts.
  • the test chart before the image is preprocessed, in order to avoid the accuracy of the test, the test chart can not be consistent with the horizontal or vertical lines due to device limitations or other reasons, the camera is determined by the following formula. The image of the captured test chart is rotated to make the image satisfy the condition:
  • mapping according to the above formula may have floating point coordinates, it is necessary to perform bilinear interpolation optimization, ie
  • n O.5Wsin0 - O.5H cos0 + O.5H o ,
  • y 0 are the abscissa and ordinate of the pixel in the image before rotation, respectively, and X and y are the abscissa and ordinate of the pixel in the image after rotation, respectively.
  • W The height and width of the test chart in the image before rotation, respectively, H and W are the height and width of the test chart in the image after rotation, and ⁇ is the rotation angle.
  • FIG. 2 is a flowchart of image pre-processing on an image.
  • the image pre-processing of the image in this embodiment may include the following sub-steps: S1021: Perform grayscale processing on the image of the test chart;
  • the image of the test chart is grayed out to obtain an image gray matrix.
  • Colors can be divided into black and white and color. Black and white means that the color does not contain any color components, only black and white.
  • Color and gray scale can be transformed into each other, and the process of converting color to gray is called grayscale processing.
  • Morphological filtering is performed on the grayscale image.
  • the morphological method mainly studies the image based on the theory of the set, and performs morphological operations on the image set F with different structural elements to obtain the result set sequence Yi.
  • Morphological corrosion is defined as: F ! Ei
  • Morphological expansion is defined as: F ® ⁇ ⁇ ® ⁇
  • the morphological opening operation is defined as:
  • the morphological closing operation is defined as: F Ei UU. Ei
  • S1023 Perform image binarization on the test chart area, and separate each set of test charts; image binarization is to set the gray value of the pixel on the image to 0 or 255, that is, the entire image is presented obviously. Black and white effect.
  • Each set of test charts is separated by using a classical edge detection algorithm to detect the edges of the test area in different directions. At this point, the image pre-processing operation is completed.
  • S103 Calculate and display real-time resolution values of the camera's light-sensing face each set of test charts in real time according to each set of test charts;
  • the real-time resolution of the camera's sensitivities to each set of test charts is calculated in real time, and the calculated real-time resolution is displayed.
  • FIG. 3 is a flowchart of real-time calculation and display of the real-time resolution value of the camera's light-sensing face each set of test charts according to each set of test charts according to an embodiment of the present invention, which may include the following step: SI 031: Line-by-row or column-by-column sampling for each set of test charts to obtain multiple striped square wave signals; according to each set of test charts obtained by separation, according to the central axis of symmetry of each set of test charts, progressive or By column-by-column sampling, a series of fixed-period striped square wave signals can be obtained.
  • the Fourier transform is performed on the stripe square wave signal obtained by the sample, and the frequency map corresponding to each stripe square wave signal is generated separately.
  • the characteristic frequency amplitude A t in the spectrogram is not significant. Therefore, in a preferred implementation, the DC component of the stripe square wave signal is removed first and then Fu
  • the inner leaf transform is specifically processed as follows:
  • x ( k ) is the stripe square wave signal before the DC component is removed
  • mean ( x ( k ) ) is the average value of the stripe square wave signal before the DC component is removed
  • x, (k ) is the stripe after removing the DC component.
  • Each sampled data corresponds to a spectrogram.
  • the Moire fringe frequency amplitude supplement 1 and the signal characteristic frequency amplitude A t of each sampled data can be obtained separately. See Figure 8, Figure 8 It is a schematic diagram of the relationship between the signal characteristic frequency amplitude and the Moire fringe frequency amplitude of the spectrogram corresponding to one of the sample data provided by the embodiment of the present invention.
  • the signal characteristic frequency amplitude in the spectrogram is used.
  • the peak amplitude is used as the signal characteristic frequency amplitude.
  • FIG. 9 to FIG. 16 When the samples are respectively corresponding to the different resolution scales on the test chart, the corresponding frequency points corresponding to the sampling points of different scales are shown in FIG. 9 to FIG. 16, and FIG. 9 to FIG. 16 are embodiments of the present invention.
  • the spectrograms corresponding to the sampling points at the resolution scales of 4, 4.5, 5, 5.5, 6, 6.5, 7, and 7.5 are sequentially provided.
  • S 1033 calculating a real-time resolution value of the camera's light-sensing face for each set of test charts according to the spectrogram of each stripe square wave signal and displaying;
  • One implementation manner is as follows: According to the spectrogram analysis, the amplitude of the moiré fringe frequency and the characteristic frequency of the signal are obtained, and whether the amplitude of the moiré fringe frequency is greater than the amplitude of the characteristic frequency of the signal, and the amplitude of the moiré fringe is greater than the signal characteristic. At the amplitude of the frequency, the resolution value corresponding to the stripe square wave signal is the sense of the camera. The light faces the real-time resolution value of the test chart.
  • a threshold Thres is set to spike the amplitude of the signal characteristic frequency in the frequency diagram.
  • the amplitude is used as the signal characteristic frequency amplitude A t
  • the amplitude of each signal characteristic frequency is summed as an average frequency amplitude A aver .
  • the characteristic frequency amplitude A t satisfies the significance condition by the following formula: A t IA aver > Thres, if the characteristic frequency amplitude A t satisfies the significant condition, the resolution value corresponding to the stripe square wave signal is the sensitivity of the camera The real-time resolution value of the test chart.
  • the real-time resolution is displayed after calculating the real-time resolution value of the camera's sensitization face for each set of test charts.
  • S104 adjusting the installation angle of the optical axis of the camera lens relative to the photosensitive surface in real time according to the real-time resolution value of each set of test charts according to the sensitization of the camera;
  • the camera's adjustment device adjusts the installation angle of the optical axis of the lens relative to the photosensitive surface in real time according to the real-time resolution value of each set of test charts according to the displayed light sensitivity of the camera.
  • the real-time adjustment method of the lens mounting flatness of the present invention acquires an image of a test chart taken by the camera in real time, and the image includes at least two sets of test charts at different positions relative to the photosensitive surface of the camera.
  • the real-time resolution values of each set of test charts adjust the mounting angle of the optical axis of the lens relative to the photosensitive surface in real time.
  • test results are consistent with the visual assessment results of the visual inspection, and are flexible and robust, effectively solving the shortcomings of traditional software measurement methods that cannot be dynamically measured in real time, saving time and manpower for camera manufacturers' image sensors and sharpness adjustment, and improving production efficiency. .
  • FIG. 15 is a schematic structural diagram of a real-time adjusting device for lens mounting flatness according to an embodiment of the present invention.
  • the real-time adjusting device 100 for lens mounting flatness of the embodiment includes a target. 11.
  • the target 11 is for presenting an image of a test chart for photographing, the image including at least two sets of test charts at different positions relative to the photosensitive surface of the camera;
  • the camera captures an image of the test chart presented in the target 11 in real time, wherein the image includes at least two sets of test charts at different positions relative to the photosensitive surface of the camera. It should be noted that when shooting the camera, the test chart should be kept as consistent as possible with the horizontal or vertical lines, so as not to affect the accuracy of the test results.
  • each set of test charts may include at least one test stripe group, each test stripe set includes a plurality of test strips spaced apart from each other, and the spacing between the test strips gradually changes along a vertical direction of the interval of the test stripe, It can be gradually getting bigger or getting smaller.
  • the spacing direction of the stripes is horizontal
  • the direction perpendicular to the spacing direction of the stripes is vertical
  • the spacing between the stripes from the bottom to the top is gradually increased.
  • the spacing between the stripes from the top to the bottom in the straight direction is gradually reduced.
  • the spacing direction of the stripes is a horizontal direction
  • the direction perpendicular to the spacing direction of the stripes is a vertical direction
  • the spacing between the stripes gradually becomes larger when the vertical direction is from the bottom to the top.
  • the vertical direction is from top to bottom, the spacing between the stripes gradually becomes smaller.
  • resolution tick marks on the stripe test group which represent the resolution values corresponding to different positions on the test stripe group.
  • each set of test charts includes a first test stripe combined with a second test stripe set, the first set of test strips including spaced along the first direction and extending in a second direction perpendicular to the first direction.
  • the plurality of first test strips, the spacing between the first test strips gradually changes along the second direction, and may gradually become larger or smaller.
  • the second test stripe group includes a plurality of second test strips spaced along the second direction and extending along the first direction. The spacing between the second test strips gradually changes along the first direction, and may be gradually larger or gradually Become smaller.
  • the camera captures images of five sets of test charts, four of which are corresponding to the four corners of the camera's photosensitive surface, and the other set of test charts corresponding to the camera's photosensitive surface. center of.
  • the processing system 12 is configured to receive an image of a test chart taken by the camera, perform image pre-processing on the image of the test chart, to separate a plurality of sets of test charts, and calculate the camera in real time according to each set of the test charts obtained by the separation.
  • Photosensitive faces the real-time resolution values of each of the set of test charts.
  • the processing system 12 prevents the test chart taken from being unable to maintain horizontal or vertical lines due to device limitations or other reasons before image pre-processing of the image. Consistently affecting the accuracy of the test, the image of the test chart taken by the camera is rotated by the following formula to make the image satisfy the condition:
  • mapping according to the above formula may have floating point coordinates, it is necessary to perform bilinear interpolation optimization, ie
  • n O.5Wsin0 -0.5Hcos6 + 0.5H 0 ,
  • y They are the abscissa and ordinate of the pixel in the image before rotation, and X and y are the abscissa and ordinate of the pixel in the image after rotation, H. And Wo are the height and width of the test table in the image before rotation, and H and W are the height and width of the test chart in the image after rotation, respectively, and the rotation angle.
  • the processing system 12 is specifically configured to perform grayscale processing on the image of the test chart, and perform morphological filtering on the grayscale image to obtain test chart regions in different directions, and perform image binary on the test chart region. Each group of test charts is separated.
  • the processing system 12 performs image gradation on each frame of image to obtain an image gray matrix.
  • Colors can be divided into black and white and color. Black and white means that the color does not contain any color components, only black and white.
  • Color and gray scale can be transformed into each other, and the process of converting color to gray is called grayscale processing.
  • the grayscale image is then morphologically filtered to obtain test chart regions in different directions; the processing system 12 performs morphological filtering on the grayscale image.
  • the morphological method mainly studies the image based on the theory of set, and performs morphological operations on the image set F with different structural elements to obtain the result set sequence Y 10 if F, ⁇ EJ c Z 2 , E 2 (2003), E n ⁇ As a collection of multiple structural elements, then:
  • Morphological corrosion is defined as: F ! F !
  • Morphological expansion is defined as: F e lEi UU OEi
  • the morphological opening operation is defined as: F D
  • the morphological closure operation is defined as: F .
  • the final processing system 12 binarizes the resulting test chart area and separates each set of test charts.
  • Image binarization is to set the gray value of the pixel on the image to 0 or 255, which is to show the whole image a distinct black and white effect.
  • Each set of test charts is separated by using a classical edge detection algorithm to detect the edges of the test area in different directions. At this point, the image pre-processing operation is completed.
  • the processing system 12 is specifically configured to perform row-by-row or column-by-column sampling for each group of test charts to obtain a plurality of stripe square wave signals, and perform Fourier transform on the obtained stripe square wave signals to generate each And a spectrogram corresponding to the stripe square wave signal, and calculating, according to the generated spectrogram of each of the stripe square wave signals, a real-time resolution value of the camera to each set of the test chart.
  • the processing system 12 obtains a series of fixed-period striped square wave signals according to the separated set of test charts, according to the central axis of symmetry of each set of test charts, row by row or column by column.
  • the sampled square wave signal is subjected to Fourier transform to generate a frequency map corresponding to each stripe square wave signal.
  • the processing system 12 first removes the DC component of the stripe square wave signal. Fourier transform is performed, and the following processing is specifically performed:
  • x ( k ) is the stripe square wave signal before the DC component is removed
  • mean ( x ( k ) ) is the average value of the stripe square wave signal before the DC component is removed
  • x, ( k ) is the stripe after removing the DC component Square wave signal.
  • Each sampled data corresponds to a spectrogram.
  • the Moiré fringe frequency amplitude A m and the signal characteristic frequency amplitude A t of each sampled data can be respectively obtained.
  • the final processing system 12 calculates a real-time resolution value for each set of test charts based on the generated spectrogram of each striped square wave signal.
  • the calculated sensitivities of the camera are output to the display device 13 for display in real time, so that the user can adjust the installation angle of the optical axis of the camera lens relative to the photosensitive surface in real time according to the real-time resolution value. .
  • the processing system 12 calculates the real-time resolution value of the camera's light-sensing face for each set of test charts based on the frequency map of each stripe square wave signal.
  • One implementation manner is as follows: According to the frequency borrowing graph analysis, the amplitude of the moiré fringe frequency and the amplitude of the characteristic frequency of the signal are obtained, and whether the amplitude of the moiré fringe frequency is greater than the amplitude of the characteristic frequency of the signal, and the amplitude of the moiré fringe is greater than the signal characteristic. At the frequency amplitude, the resolution value corresponding to the stripe square wave signal is the real-time resolution value of the camera's photosensitive face test chart.
  • a threshold Thres is set to frequency the amplitude of the signal characteristic frequency in the graph.
  • the peak amplitude is used as the signal characteristic frequency amplitude A t
  • the amplitude of each signal characteristic frequency is summed as an average frequency amplitude A avCT .
  • the fluctuations in the resolution calculation results are as follows: After calculating the camera's sensitivities to the real-time resolution values of each set of test charts, the display device
  • the user can adjust the installation angle of the optical axis of the camera lens with respect to the photosensitive surface of the camera in real time according to the real-time resolution value of each set of test charts according to the sensitivity of the camera displayed by the display device 13.
  • the real-time adjustment device for the lens mounting flatness of the above embodiment can be implemented as a separate device, or can be embedded in the camera or other devices to realize its function.
  • the real-time adjustment device for the lens mounting flatness of the embodiment can implement the steps of the real-time adjustment method of the lens installation flatness shown in FIG. 1 to FIG. 3, and the division of each functional component is only an exemplary one, and is not used.
  • the scope of protection of the present invention is defined. Under the premise that the object of the present invention can be achieved, the division of the functional elements of the real-time adjustment device of the lens mounting flatness may have other forms, for example, the components may be combined or integrated into another system, or some features. Can be ignored, or not executed.
  • the real-time adjustment method and device for lens mounting flatness of the present invention acquires an image of a test chart taken by a camera in real time, and the image includes at least two groups of different positions relative to the photosensitive surface of the camera.
  • Test the chart image pre-process the image of the test chart to separate multiple sets of test charts, calculate and display the real-time resolution value of the camera's sensitization face each group of test charts according to each set of test charts, according to the camera's sensitization
  • the real-time resolution value of each set of test charts adjusts the mounting angle of the optical axis of the camera lens relative to the photosensitive surface of the camera in real time.
  • test results are consistent with the visual assessment results, and are flexible and robust, effectively solving the shortcomings of traditional software measurement methods that cannot be dynamically measured in real time, saving time and manpower for camera manufacturers' image sensors and sharpness adjustment, and improving production efficiency.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as the units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明公开了一种镜头安装平整度的实时调整方法及装置。其中相机的实时调整方法包括:实时获取相机拍摄的对应于的不同位置的至少两组测试图表的图像,对图像进行图像预处理,以分离得到每一组测试图表,根据每一组测试图表实时计算且显示相机的感光面对每一组测试图表的实时解析度数值,根据相机的感光面对每一组测试图表的实时解析度数值实时调整相机的镜头的光轴相对于感光面的安装角度。通过上述方式,本发明能够实时自动测试得到相机的实时解析度数值,测量结果跟目测的视觉评估结果一致,灵活可调,鲁棒性好,并可以根据相机的实时解析度数值对相机镜头的光轴的安装角度做调整。

Description

镜头安装平整度的实时调整方法及装置
【技术领域】
本发明涉及一种镜头安装平整度的实时调整方法及装置。 【背景技术】
数码相机的测量方式, 通常可以通过拍摄 ISO 图表后, 打印或者显示拍摄 影像, 对该影像进行主观的视觉评估从而得到目测的解析度数值, 或利用与视 觉评估一致的软件测量方法进行评估得到解析度数值。
目测的视觉评估的方法, 通过打印或放大固定倍率 ISO 图案观察楔形线数 变化的空间频率作为解析度。 虽然视觉评估的方法比较简单, 但是存在个人差 异、 耗时浪费人力以及受限于显示和打印设备影响的缺点。 软件测量解析度的 方法, 能够得到结杲与目测具有良好的一致性而不受设备和人力限制, 因此得 到广泛的应用。
为 了可以清楚的计算得到解析度数据, 传统上最多采用 的是
MTF(Modulation Transfer Function, 调制传递)为基础的测试方法。 MTF主要是 通过测量反差 M x- n)/ ( W, 其中 I 分别为照度的最大值和最 小值, 来反映人眼的分辨能力。 另外, 测量 SFR( Spatial Frequency Response, 空 间频率响应)也成为近些年来常用的手段。 SFR主要测量随着空间频率的线条增 加对单一影像产生的影响。
采用目测的视觉评估方法虽然操作筒单, 但是受限于设备和浪费人力, 因 此, 不适合广泛的工业自动化生产。 采用 MTF的测量方法 (如日本的 HYRes软 件)虽然久经考验, 但是随着千万级像素数码相机的发展, 其拍摄的分辨率早就 超越了 USAF1951和 IS012233的极限, 那么其测试就不存在相对上的意义, 同 时需要花费大量的计算代价, 不能够实时动态处理。 基于 SFR的测量方法 (如美 国的 Imatest软件)虽然成本比较低,能够得到比较好的制图效杲,但是操作复杂, 对于工厂测试人员要求较高, 而且不能实现实时动态测试。
【发明内容】
本发明主要解决的技术问题是提供一种镜头安装平整度的实时调整方法及 装置, 能够实时自动测试得到相机的实时解析度数值, 测量结果跟目测的视觉 评估结杲一致, 灵活可调, 鲁棒性好, 并可以根据相机的实时解析度数值对相 机镜头的光轴相对于相机的感光面的安装角度做调整。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种镜头安装 平整度的实时调整方法, 所述方法包括: 实时获取相机拍摄的测试图表的图像, 所述图像中包括相对于所述相机的感光面不同位置的至少两组测试图表; 对所 述测试图表的图像进行图像预处理, 以分离得到多组测试图表; 根据每一组所 述测试图表实时计算且显示所述相机的感光面对每一组所述测试图表的实时解 析度数值; 根据所述相机的感光面对每一组所述测试图表的实时解析度数值实 时调整所述相机镜头的光轴相对所述感光面的安装角度。
其中, 每一组所述测试图表包括至少一测试条纹组, 每一所述测试条纹组 包括彼此间隔排列的多个测试条纹, 所述测试条纹之间的间距沿所述测试条纹 的间隔方向的垂直方向逐渐变 ·ί匕。
其中, 每一组所述测试图表包括一第一测试条纹组和一第二测试条纹组, 所述第一测试条纹组包括沿第一方向间隔排列且沿垂直于所述第一方向的第二 方向延伸的多个第一测试条纹, 所述第一测试条纹之间的间距沿所述第二方向 逐渐变化, 所述第二测试条纹组包括沿所述第二方向间隔排列且沿所述第一方 向延伸的多个第二测试条纹, 所述第二测试条纹之间的间距沿所述第一方向逐 渐变化。
其中, 所述至少两组测试图表为五组测试图表, 其中四组测试图表对应于 所述相机的感光面的四个角落, 另一组测试图表对应于所述相机的感光面的中 心。
其中, 所述根据每一组所述测试图表实时计算且显示所述相机的感光面对 每一组所述测试图表的实时解析度数值的步骤包括: 对每一组所述测试图表进 行逐行或逐列采样, 以得到多个条纹方波信号; 对所述条纹方波信号进行傅里 叶变换, 分别生成每个所述条纹方波信号对应的频谱图; 根据每个所述条纹方 波信号的频谱图计算所述相机的感光面对每一组所述测试图表的实时解析度数 值并显示。
其中, 所述根据每个所述条纹方波信号的频谱图计算所述相机的感光面对 每一组所述测试图表的实时解析度数值的步骤包括: 根据每个所述条纹方波信 号的频谱图计算每个所述条纹方波信号的平均频率幅值 Aaver和特征频率幅值 At ; 通过以下公式判断所述特征频率幅值 At是否满足显著性条件: l k 其中, Thres是预设的阁值, 若所述特征频率幅值 At满足显著 性条件, 则所述条纹方波信号所对应的解析度数值为所述相机的感光面对所述 测试图表的实时解析度数值。
其中, 所述对所述条纹方波信号进行傅里叶变换的步骤之前, 还包括: 去 除所述条纹方波信号的直流分量, 具体进行如下处理: X' ( k ) = x ( k ) -mean ( x ( k ) ); 其中, x ( k ) 为去除直流分量前的所述条纹方波信号, mean ( x ( k ) ) 为去除直流分量前的所述条纹方波信号的平均值, x' ( k ) 为去除直流分量后的 所述条纹方波信号。
其中, 所述对所述图像进行图像预处理之前, 还包括: 通过如下公式对所 述相机拍摄的测试图表的图像进行旋转:
xQ = X cos Θ + y sin Θ + m
Q Q , 其 中 , m =— 0.5Wcose— 0.5Hsin6 + 0.5Wn , y0 = -x sm Θ + y cos Θ + n 0 n = 0.5W sin9 -0.5H cos9 + 0.5H0 , x0和 y。分别为图像中的像素点在旋转前的横坐 标和纵坐标, X和 y分别为图像中的像素点在旋转后的横坐标和纵坐标, ¾和 Wo分别为图像中的所述测试图表在旋转前的高度和宽度, H和 W分别为图像中 的所述测试图表在旋转后的高度和宽度, Θ为旋转角度。
其中, 所述对所述图像进行图像预处理的步骤包括: 对所述测试图表的图 像进行灰度化处理; 对所述灰度化后的图像进行形态学滤波, 以得到不同方向 的测试图表区域; 对所述测试图表区域进行图像二值化, 分离得到每一组测试 图表。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种镜头安 装平整度的实时调整装置, 所述装置包括标靶、 处理系统以及显示设备, 其中: 所述标耙呈现用于拍摄的测试图表的图像, 所述图像中包括相对于所述相机的 感光面不同位置的至少两组测试图表; 所述处理系统用于接收相机拍摄的所述 测试图表的图像, 对所述测试图表的图像进行图像预处理, 以分离得到多组测 试图表, 根据分离得到的每一组所述测试图表实时计算得到所述相机的感光面 对每一组所述测试图表的实时解析度数值; 所述显示设备用于接收来自所述处 理系统的所述相机的感光面对每一组所述测试图表的实时解析度数值并显示, 以使得用户根据所述实时解析度数值实时调整所述相机镜头的光轴相对于所述 感光面的安装角度。 其中, 每一组所述测试图表包括至少一测试条纹组, 每一所述测试条纹组 包括彼此间隔排列的多个测试条纹, 所述测试条纹之间的间距沿所述测试条纹 的间隔方向的垂直方向逐渐变 4匕。
其中, 每一组所述测试图表包括一第一测试条紋组和一第二测试条纹组, 所述第一测试条纹组包括沿第一方向间隔排列且沿垂直于所述第一方向的第二 方向延伸的多个第一测试条纹, 所述第一测试条纹之间的间距沿所述第二方向 逐渐变化, 所述第二测试条纹组包括沿所述第二方向间隔排列且沿所述第一方 向延伸的多个第二测试条纹, 所述第二测试条紋之间的间距沿所述第一方向逐 渐变化。
其中, 所述至少两组测试图表为五组测试图表, 其中四组测试图表对应于 所述相机的感光面的四个角落, 另一组测试图表对应于所述相机的感光面的中 心。
其中, 所述处理系统具体用于对每一组所述测试图表进行逐行或逐列采样, 以得到多个条纹方波信号, 对得到的所述条纹方波信号进行傅里叶变换, 分别 生成每个所述条纹方波信号对应的频豫图, 根据生成的每个所述条纹方波信号 的频谱图计算所述相机的感光面对每一组所述测试图表的实时解析度数值。
其中, 所述处理系统具体用于根据每个所述条纹方波信号的频谱图计算每 个所述条纹方波信号的平均频率幅值 Aaver和特征频率幅值 At, 通过以下公式判 断所述特征频率幅值 At是否满足显著性条件: At / AavCT > 7¾r^, 其中, Thres 是预设的阈值, 若所述特征频率幅值 At满足显著性条件, 则所述条纹方波信号 所对应的解析度数值为所述相机的感光面对所述测试图表的实时解析度数值。
其中, 所述处理系统还具体用于在对所述条纹方波信号进行傅里叶变换之 前, 去除所述条纹方波信号的直流分量, 具体进行如下处理: x' ( k ) = X ( k ) -mean ( x ( k ) ); 其中, x ( k )为去除直流分量前的所述条纹方波信号, mean ( x ( k ) ) 为去除直流分量前的所述条纹方波信号的平均值, x' ( k ) 为去除直流分 量后的所述条纹方波信号。
其中, 所述处理系统还用于通过如下公式对所述相机拍摄的测试图表的图 f xQ = X cos θ + y sin θ + m
像进行旋转: · Q Q ,其中, m =— 0.5WcosS— 0.5H sm6 + 0.5Wn, y0 = -x sm0 + y cos9 + n 0 n = 0.5W sin9 - 0.5H cos9 + 0.5H0 , x。和 y。分别为图像中的像素点在旋转前的横坐 标和纵坐标, x和 y分别为图像中的像素点在旋转后的横坐标和纵坐标, ¾和 Wo分别为图像中的所述测试图表在旋转前的高度和宽度, H和 W分别为图像中 的所述测试图表在旋转后的高度和宽度, Θ为旋转角度。
其中, 所述处理系统具体用于对所述测试图表的图像进行灰度化处理, 对 所述灰度化后的图像进行形态学滤波, 以得到不同方向的测试图表区域, 对所 述测试图表区域进行图像二值化, 分离得到每一组测试图表。
本发明的有益效果是: 本发明实时获取相机拍摄的测试图表的图像, 其中 图像中包括相对于相机的感光面不同位置的至少两组测试图表, 对图像进行图 像预处理以分离得到每一组测试图表, 根据每一组测试图表实时计算且显示相 机的感光面对每一组测试图表的实时解析度数值, 根据相机的感光面对每一组 测试图表的实时解析度数值实时调整相机镜头的光轴相对于感光面的安装角 度。 通过这样的方式, 能够实时自动测试得到相机的实时解析度数值, 并根据 相机的实时解析度数值实时调整相机的感光面相对于相机的光轴的安装角度, 节省人力物力。 并且测试结果跟目测的视觉评估结果一致, 灵活可调, 鲁棒性 好。
【附图说明】
图 1是本发明实施实施例提供的一种镜头安装平整度的实时调整方法的流 程图;
图 2是本发明实施例提供的对测试图表的图像进行图像预处理的流程图; 图 3是本发明实施例提供的根据每一组测试图表实时计算且显示相机的感 光面对每一组测试图表的实时解析度数值的流程图;
图 4是本发明实施例提供的相机成像的原理示意图;
图 5是本发明实施例提供的一个测试条纹组的结构示意图;
图 6是本发明实施例提供的其中一组测试图表的结构示意图;
图 7是本发明实施例提供的五组测试图表的对应于相机的感光面的相对位 置示意图;
图 8是本发明实施例提供的其中一个釆样数据对应的频谱图的信号特征频 率幅值与莫尔条纹频率幅值之间的关系示意图;
图 9是本发明实施例提供的对应于解析度刻度为 4处采样点对应的频谱图; 图 10是本发明实施例提供的对应于解析度刻度为 4.5 处采样点对应的频谱 图;
图 11是本发明实施例提供的对应于解析度刻度为 5处采样点对应的频谱图; 图 12是本发明实施例提供的对应于解析度刻度为 5.5 处采样点对应的频谱 图;
图 13是本发明实施例提供的对应于解析度刻度为 6处釆样点对应的频傳图; 图 14是本发明实施例提供的对应于解析度刻度为 6.5 处釆样点对应的频谱 图;
图 15是本发明实施例提供的对应于解析度刻度为 7处采样点对应的频谱图; 图 16是本发明实施例提供的对应于解析度刻度为 7.5 处采样点对应的频谱 图;
图 17是本发明实施例提供的一种镜头安装平整度的实时调整装置的结构示 意图。
【具体实施方式】
请参阅图 1,图 1是本发明实施例提供的一种镜头安装平整度的实时调整方 法的流程图, 本实施例以镜头安装平整度的实时调整装置的角度来进行描述, 本实施例镜头安装平整度的实时调整方法包括:
S101 : 实时获取相机拍摄测试图表的图像, 图像中包括相对于相机的感光 面不同位置的至少两组测试图表;
可参阅图 4, 图 4是相机成像的原理示意图, 来自物体的光经过照相机的镜 头后会聚在胶片上, 成倒立、 缩小的实像。 相机镜头的光轴贯穿物体、 镜头以 及物体的像的中心点。
需要注意的是, 相机在拍摄时, 应尽可能保持所拍摄出来的测试图表与水 平或垂直线保持一致, 以免影响测试结果的精确性。
其中, 每一组测试图表可以包括至少一个测试条纹组, 如图 5 所示, 图 5 是本发明实施例提供的一个测试条纹组的结构示意图, 每一个测试条纹组包括 彼此间隔排列的多个测试条纹, 测试条纹之间的间距沿测试条纹的间隔方向的 垂直方向逐渐变化, 可以是逐渐变大或逐渐变小。 比如以图 5 所示的测试图表 为例, 条纹的间隔方向为水平方向, 与条纹的间隔方向垂直的方向为竖直方向, 竖直方向从下往上条纹之间的间距逐渐变大, 竖直方向从上往下条纹之间的间 距逐渐变小。 在条纹测试组上还带有解析度刻度线, 分别表示测试条纹组上不 同位置对应的解析度数值。
作为一种优选的实现方式, 每一组测试图表包括一第一测试条纹组和一第 二测试条纹组, 如图 6所示, 图 6是本发明实施例提供的其中一组测试图表的 结构示意图, 第一测试条纹组包括沿第一方向间隔排列且沿垂直于第一方向的 第二方向延伸的多个第一测试条纹, 第一测试条紋之间的间距沿第二方向逐渐 变化, 可以是逐渐变大或逐渐变小。 第二测试条纹组包括沿第二方向间隔排列 且沿第一方向延伸的多个第二测试条纹, 第二测试条紋之间的间距沿第一方向 逐渐变化, 可以是逐渐变大或逐渐变小。 这里的逐渐变大或逐渐变小, 只是一 个相对说法, 请参阅上述的详细说明, 在此不再赘述。
在一种优选的实施例中, 相机拍摄五组测试图表的图像, 如图 7所示, 图 7 是本发明实施例提供的五组测试图表的对应于相机的感光面的相对位置示意 图, 五组测试图表的其中四组测试图表对应于相机的感光面的四个角落, 另一 组测试图表对应于相机的感光面的中心。
S102: 对测试图表的图像进行图像预处理, 以分离得到多组测试图表; 对所获取的测试图表的图像进行图像预处理, 以分离得到多组测试图表。 作为一种优选的实现方式, 在对图像进行图像预处理之前, 为了避免由于 设备限制或其他原因导致拍摄的测试图表不能与水平或垂直线保持一致而影响 测试的精准性, 通过如下公式对相机拍摄的测试图表的图像进行旋转以使得图 像满足条件:
Figure imgf000009_0001
由于根据上述公式映射得到的坐标可能会有浮点坐标的问题, 因此需要对 其进行双线性插值优化, 即
m = -0.5W cos Θ - 0.5H sin Θ + 0.5W0 , n = O.5Wsin0 - O.5H cos0 + O.5Ho ,
上述公式中 x。和 y0分别为图像中的像素点在旋转前的横坐标和纵坐标, X 和 y分别为图像中的像素点在旋转后的横坐标和纵坐标, H。和 W。分别为图像中 的测试图表在旋转前的高度和宽度, H和 W分别为图像中的测试图表在旋转后 的高度和宽度, θ为旋转角度。
其中, 本实施例中, 请进一步参见图 2 , 图 2是对图像进行图像预处理的流 程图, 本实施例的对图像进行图像预处理可以包括以下子步骤: S1021 : 对测试图表的图像进行灰度化处理;
对测试图表的图像进行图像灰度化, 获取图像灰度矩阵。 颜色可分为黑白 色和彩色。 黑白色指颜色中不包含任何的色彩成分, 仅由黑色和白色组成。 在 RGB颜色模型中,如杲 R=G=B,则颜色( R,G,B )表示一种黑白颜色,其中 R=G=B 的值叫做灰度值, 所以黑白色又叫灰度颜色。 彩色和灰度之间可以相互转化, 由彩色转化为灰度的过程叫做灰度化处理。
S1022: 对灰度化后的图像进行形态学滤波, 以得到不同方向的测试图表区 域;
对灰度化后的图像进行形态学滤波。 形态学的方法主要基于集合的理论去 研究图像, 用不同的结构元素 对图像集合 F做形态学运算, 得到结果集合序 列 Yi。 ^ F , {EJ cz Z2 , {^}={^, E2……, EJ为多结构元素的集合, 那么:
形态学腐蚀定义为: F !
Figure imgf000010_0001
Ei
形态学膨胀定义为: F ® ^ ^^ ® ^
形态学开运算定义为:
Figure imgf000010_0002
形态学闭运算定义为: F Ei UU. Ei
通过 F与 的不断交互, 形态学滤波不仅能够滤出我们希望得到的感兴趣 区域也就是不同方向的条纹测试图表区域, 也能够去除我们不感兴趣的污点干 扰块, 从而提高了整个系统的鲁棒性。
S1023: 对测试图表区域进行图像二值化, 分离得到每一组测试图表; 图像二值化就是将图像上的像素点的灰度值设置为 0或 255,也就是将整个 图像呈现出明显的黑白效果。 通过利用经典的边缘检测算法检测出不同方向测 试图表区域的边缘, 从而将每一组测试图表分离出来。 至此, 完成了图像预处 理操作。
S 103: 根据每一组测试图表实时计算且显示相机的感光面对每一组测试图 表的实时解析度数值;
根据每一组测试图表实时计算得到相机的感光面对每一组测试图表的实时 解析度, 并显示计算得到的实时解析度。
其中, 请参阅图 3, 图 3是本发明实施例提供的根据每一组测试图表实时计 算且显示相机的感光面对每一组测试图表的实时解析度数值的流程图, 其可以 包括以下子步骤: S I 031 :对每一组测试图表进行逐行或逐列采样,以得到多个条纹方波信号; 根据分离得到的每一组测试图表, 按照每一组测试图表的中心对称轴, 逐 行或逐列采样, 就可以得到一系列固定周期的条纹方波信号。
S 1032: 对条纹方波信号进行傅里叶变换, 分别生成每个条紋方波信号对应 的频谱图;
对釆样得到的条纹方波信号进行傅里叶变换, 分别生成每个条纹方波信号 对应的频傳图。
由于条纹方波信号中存在大量的直流分量, 会造成频谱图中特征频率幅值 At不显著, 因此, 在一种优选的实现方式中, 先去除条紋方波信号的直流分量 再进行傅里叶变换, 具体进行如下处理:
X' ( k ) = X ( k ) -mean ( x ( k ) );
其中, x ( k )为去除直流分量前的条纹方波信号, mean ( x ( k ) ) 为去除直 流分量前的条纹方波信号的平均值, x,(k )为去除直流分量后的条纹方波信号。
对去除直流分量后的条纹方波信号进行傅里叶变换得到 X ( ω ), 其中, X ( ω ) =FFT ( χ' ( k ) )。
每一个采样数据对应一个频谱图, 对得到的每个频谱图分析可以分别得到 每一个采样数据的莫尔条纹频率幅值八„1和信号特征频率幅值 At。 请参阅图 8, 图 8 是本发明实施例提供的其中一个釆样数据对应的频谱图的信号特征频率幅 值与莫尔条纹频率幅值之间的关系示意图。 本发明实施例中, 以频谱图中信号 特征频率幅值的尖峰幅值作为信号特征频率幅值。
当釆样分别是对应于测试图表上不同解析度刻度处进行釆样时, 不同刻度 对应的采样点对应的频借图如图 9-图 16所示, 图 9-图 16是本发明实施例提供 的依次对应于解析度刻度为 4、 4.5、 5、 5.5、 6、 6.5、 7、 7.5处采样点对应的频 谱图。
S 1033: 根据每个条纹方波信号的频谱图计算相机的感光面对每一组测试图 表的实时解析度数值并显示;
其中, 根据每个条纹方波信号的频谱图计算相机的感光面对每一组测试图 表的实时解析度数值可以有两种可能的实现方式。
一种实现方式是: 根据频谱图分析得到莫尔条紋频率幅值与信号特征频率 幅值, 判断莫尔条纹频率幅值是否大于信号特征频率幅值, 当莫尔条纹频率幅 值大于信号特征频率幅值时, 该条纹方波信号所对应的解析度数值为相机的感 光面对测试图表的实时解析度数值。
为了更好的表征出于人眼一致的视觉评价, 以符合不同的人的视觉差异, 在一种更加优选的实现方式中, 设定一个阈值 Thres, 以频 图中信号特征频率 幅值的尖峰幅值作为信号特征频率幅值 At, 对各个信号特征频率幅值求和取平 均值作为平均频率幅值 Aaver。 通过以下公式判断特征频率幅值 At是否满足显著 性条件: At I Aaver > Thres, 若特征频率幅值 At满足显著性条件, 则条纹方波信 号所对应的解析度数值为相机的感光面对测试图表的实时解析度数值。
当设置不同的阈值时, 解析度计算结果的波动如下表所示:
Figure imgf000012_0001
计算得到相机的感光面对每一组测试图表的实时解析度数值后, 显示该实 时解析度。
经过大量实验表明, 通过以上方法测试得到的实时解析度, 与目测的视觉 评估结果一致。
S 104: 根据相机的感光面对每一组测试图表的实时解析度数值实时调整相 机镜头的光轴相对于感光面的安装角度;
相机的调整装置根据显示的相机的感光面对每一组测试图表的实时解析度 数值, 实时调整镜头的光轴相对于感光面的安装角度。
通过上述实施例的详细阐述, 可以理解, 本发明镜头安装平整度的实时调 整方法, 通过实时获取相机拍摄的测试图表的图像, 图像中包括相对于相机的 感光面不同位置的至少两组测试图表, 对测试图表的图像进行图像预处理以分 离得到多组测试图表, 根据每一组测试图表实时计算且显示相机的感光面对每 一组测试图表的实时解析度数值, 根据相机的感光面对每一组测试图表的实时 解析度数值实时调整镜头的光轴相对于感光面的安装角度。 通过这样的方式, 可以实现对相机图像传感器和镜头安装不平整实现实时动态的测量和微调。 测 试结杲与目测的视觉评估结果一致, 并且灵活可调、 鲁棒性好, 有效解决传统 软件测量方法不能动态实时测量的缺陷, 为相机厂商图像传感器和清晰度调整 节省时间人力, 提高生产效率。
请参阅图 15,图 15是本发明实施例提供的一种镜头安装平整度的实时调整 装置的结构示意图, 本实施例的镜头安装平整度的实时调整装置 100 包括标靶 11、 处理系统 12以及显示设备 13, 其中:
标靶 11用于呈现用于拍摄的测试图表的图像, 图像中包括相对于相机的感 光面不同位置的至少两组测试图表;
首先相机实时拍摄标靶 11中呈现的测试图表的图像, 其中图像中包括相对 于相机的感光面不同位置的至少两组测试图表。 需要注意的是, 相机在拍摄时, 应尽可能保持所拍摄出来的测试图表与水平或垂直线保持一致, 以免影响测试 结果的精确性。
其中, 每一组测试图表可以包括至少一个测试条紋组, 每一个测试条纹组 包括彼此间隔排列的多个测试条纹, 测试条紋之间的间距沿测试条纹的间隔方 向的垂直方向逐渐变化, 可以是逐渐变大或逐渐变小。 比如以图 5 所示的测试 图表为例, 条纹的间隔方向为水平方向, 与条纹的间隔方向垂直的方向为竖直 方向, 竖直方向从下往上条纹之间的间距逐渐变大, 竖直方向从上往下条纹之 间的间距逐渐变小。 比如以图 5 所示的测试图表为例, 条纹的间隔方向为水平 方向, 与条纹的间隔方向垂直的方向为竖直方向, 当竖直方向从下往上时条纹 之间的间距逐渐变大, 当竖直方向从上往下时, 条纹之间的间距逐渐变小。 在 条纹测试组上还带有解析度刻度线, 分别表示测试条纹组上不同位置对应的解 析度数值。
作为一种优选的实现方式, 每一组测试图表包括第一测试条纹组合第二测 试条纹组, 第一测试条纹组包括沿第一方向间隔排列且沿垂直于第一方向的第 二方向延伸的多个第一测试条纹, 第一测试条纹之间的间距沿第二方向逐渐变 化, 可以是逐渐变大或逐渐变小。 第二测试条紋组包括沿第二方向间隔排列且 沿第一方向延伸的多个第二测试条纹, 第二测试条紋之间的间距沿第一方向逐 渐变化, 可以是逐渐变大或逐渐变小。
在一种优选的实施例中, 相机拍摄五组测试图表的图像, 五组测试图表的 其中四组测试图表对应于相机的感光面的四个角落, 另一组测试图表对应于相 机的感光面的中心。
处理系统 12用于接收相机拍摄的测试图表的图像, 对测试图表的图像进行 图像预处理, 以分离得到多组测试图表, 根据分离得到的每一组所述测试图表 实时计算得到所述相机的感光面对每一组所述测试图表的实时解析度数值。
作为一种优选的实现方式, 处理系统 12在对图像进行图像预处理之前, 为 了避免由于设备限制或其他原因导致拍摄的测试图表不能与水平或垂直线保持 一致而影响测试的精准性, 通过如下公式对相机拍摄的测试图表的图像进行旋 转以使得图像满足条件:
xQ = X cos θ + y sin θ + m
yQ = -xsin9 + y cos9 + n '
由于根据上述公式映射得到的坐标可能会有浮点坐标的问题, 因此需要对 其进行双线性插值优化, 即
m = -0.5W cos Θ - 0.5H sin Θ + 0.5W0 , n = O.5Wsin0 -0.5Hcos6 + 0.5H0 ,
上述公式中 x。和 y。分别为图像中的像素点在旋转前的横坐标和纵坐标, X 和 y为图像中的像素点在旋转后的横坐标和纵坐标, H。和 Wo分别为图像中的测 试图表在旋转前的高度和宽度, H和 W分别为图像中的测试图表在旋转后的高 度和宽度, Θ为旋转角度。
其中, 处理系统 12具体用于对测试图表的图像进行灰度化处理, 对灰度化 后的图像进行形态学滤波, 以得到不同方向的测试图表区域, 对所述测试图表 区域进行图像二值化, 分离得到每一组测试图表。
首先, 处理系统 12对每一帧图像进行图像灰度化, 获取图像灰度矩阵。 颜 色可分为黑白色和彩色。 黑白色指颜色中不包含任何的色彩成分, 仅由黑色和 白色组成。 在 RGB颜色模型中, 如果 R=G=B, 则颜色 (R,G,B )表示一种黑白 颜色, 其中 R=G=B的值叫做灰度值, 所以黑白色又叫灰度颜色。 彩色和灰度之 间可以相互转化, 由彩色转化为灰度的过程叫做灰度化处理。
再对灰度化后的图像进行形态学滤波, 以得到不同方向的测试图表区域; 处理系统 12对灰度化后的图像进行形态学滤波。 形态学的方法主要基于集 合的理论去研究图像, 用不同的结构元素 对图像集合 F做形态学运算, 得到 结果集合序列 Y10 若 F、 {EJ c Z2 , E2……, En}为多结构元素的集合, 那么:
形态学腐蚀定义为: F !
Figure imgf000014_0001
F !
形态学膨胀定义为: F e lEi UU OEi
形态学开运算定义为: F D
形态学闭运算定义为: F .
Figure imgf000014_0002
通过 F与 的不断交互, 形态学滤波不仅能够滤出我们希望得到的感兴趣 区域也就是不同方向的条纹测试图表区域, 也能够去除我们不感兴趣的污点干 扰块, 从而提高了整个系统的鲁棒性。
最后处理系统 12对得到的测试图表区域进行图像二值化, 分离得到每一组 测试图表。
图像二值化就是将图像上的像素点的灰度值设置为 0或 255,也就是将整个 图像呈现出明显的黑白效果。 通过利用经典的边缘检测算法检测出不同方向测 试图表区域的边缘, 从而将每一组测试图表分离出来。 至此, 完成了图像预处 理操作。
其中, 处理系统 12具体用于对每一组测试图表进行逐行或逐列采样, 以得 到多个条纹方波信号, 对得到的所述条纹方波信号进行傅里叶变换, 分别生成 每个所述条纹方波信号对应的频谱图, 根据生成的每个所述条纹方波信号的频 谱图计算所述相机的感光面对每一组所述测试图表的实时解析度数值。
处理系统 12根据分离得到的每一组测试图表, 按照每一组测试图表的中心 对称轴, 逐行或逐列采样, 就可以得到一系列固定周期的条纹方波信号。
对采样得到的条纹方波信号进行傅里叶变换, 分别生成每个条纹方波信号 对应的频傳图。
由于条纹方波信号中存在大量的直流分量, 会造成频谱图中特征频率幅值 At不显著, 因此, 在一种优选的实现方式中, 处理系统 12先去除条纹方波信号 的直流分量再进行傅里叶变换, 具体进行如下处理:
x, ( k ) = X ( k ) -mean ( x ( k ) );
其中, x ( k )为去除直流分量前的条纹方波信号, mean ( x ( k ) ) 为去除直 流分量前的条纹方波信号的平均值, x, ( k )为去除直流分量后的条纹方波信号。
对去除直流分量后的条紋方波信号进行傅里叶变换得到 X ( ω ), 其中, X ( ω ) =FFT ( χ' ( k ) )。
每一个采样数据对应一个频谱图, 对得到的每个频谱图分析可以分别得到 每一个采样数据的莫尔条纹频率幅值 Am和信号特征频率幅值 At
最后处理系统 12根据生成的每个条纹方波信号的频谱图计算相机的感光面 对每一组测试图表的实时解析度数值。 将计算得到的相机的感光面对每一组测 试图表的实时解析度数值输出给显示设备 13进行显示, 以使得用户可以根据实 时解析度数值实时调整相机镜头的光轴相对于感光面的安装角度。
其中, 处理系统 12根据每个条纹方波信号的频谙图计算相机的感光面对每 一组测试图表的实时解析度数值可以有两种可能的实现方式。 一种实现方式是: 根据频借图分析得到莫尔条纹频率幅值与信号特征频率 幅值, 判断莫尔条纹频率幅值是否大于信号特征频率幅值, 当莫尔条纹频率幅 值大于信号特征频率幅值时, 该条纹方波信号所对应的解析度数值为相机的感 光面对测试图表的实时解析度数值。
为了更好的表征出于人眼一致的视觉评价, 以符合不同的人的视觉差异, 在一种更加优选的实现方式中, 设定一个阈值 Thres, 以频借图中信号特征频率 幅值的尖峰幅值作为信号特征频率幅值 At, 对各个信号特征频率幅值求和取平 均值作为平均频率幅值 AavCT。 通过以下公式判断特征频率幅值 At是否满足显著 性条件: At I Aaver > Thres, 若特征频率幅值 At满足显著性条件, 则条纹方波信 号所对应的解析度数值为相机的感光面对测试图表的实时解析度数值。
当设置不同的阁值时, 解析度计算结果的波动如下表所示:
Figure imgf000016_0001
计算得到相机的感光面对每一组测试图表的实时解析度数值后, 显示设备
13显示该实时解析度。
用户可以根据显示设备 13显示的相机的感光面对每一组测试图表的实时解 析度数值实时调整相机镜头的光轴相对于相机的感光面的安装角度。
上述实施例的镜头安装平整度的实时调整装置, 可以作为一个独立的装置 来实现其功能, 也可以嵌入相机内或者其他设备内来实现其功能。
本实施例的镜头安装平整度的实时调整装置, 可以实现图 1-图 3所示的镜 头安装平整度的实时调整方法的各个步骤, 各个功能元件的划分只是一种示意 性的, 并不用以限定本发明的保护范围, 在能实现本发明目的的前提下, 镜头 安装平整度的实时调整装置各个功能元件的划分可以有其他形式, 例如元件可 以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。
通过上述实施例的详细阐述, 可以理解, 本发明镜头安装平整度的实时调 整方法及装置, 通过实时获取相机拍摄的测试图表的图像, 图像中包括相对于 相机的感光面不同位置的至少两组测试图表, 对测试图表的图像进行图像预处 理以分离得到多组测试图表, 根据每一组测试图表实时计算且显示相机的感光 面对每一组测试图表的实时解析度数值, 根据相机的感光面对每一组测试图表 的实时解析度数值实时调整相机镜头的光轴相对相机的感光面的安装角度。 通 过这样的方式, 可以实现对相机图像传感器和镜头安装不平整实现实时动态的 测量和微调。 测试结果与目测的视觉评估结果一致, 并且灵活可调、 鲁棒性好, 有效解决传统软件测量方法不能动态实时测量的缺陷, 为相机厂商图像传感器 和清晰度调整节省时间人力, 提高生产效率。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系 统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦 合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信 连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元 中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或 使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或 部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或 者网络设备等)或处理器(processor )执行本发明各个实施例所述方法的全部或 部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory ). 随机存取存储器 ( RAM, Random Access Memory )、 磁碟 或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1.一种镜头安装平整度的实时调整方法, 其特征在于, 所述方法包括: 实时获取相机拍摄的测试图表的图像, 所述图像中包括相对于所述相机的 感光面不同位置的至少两组测试图表;
对所述测试图表的图像进行图像预处理, 以分离得到多组测试图表; 根据每一组所述测试图表实时计算且显示所述相机的感光面对每一组所述 测试图表的实时解析度数值;
根据所述相机的感光面对每一组所述测试图表的实时解析度数值实时调整 所述相机镜头的光轴相对所述感光面的安装角度。
2.根据权利要求 1所述的方法, 其特征在于, 每一组所述测试图表包括至少 一测试条纹组, 每一所述测试条纹组包括彼此间隔排列的多个测试条纹, 所述 测试条纹之间的间距沿所述测试条纹的间隔方向的垂直方向逐渐变大或逐渐变 小。
3.根据权利要求 1所述的方法, 其特征在于, 每一组所述测试图表包括一第 一测试条纹组和一第二测试条纹组, 所述第一测试条纹组包括沿第一方向间隔 排列且沿垂直于所述第一方向的第二方向延伸的多个第一测试条纹, 所述第一 测试条纹之间的间距沿所述第二方向逐渐变大或变小, 所述第二测试条纹组包 括沿所述第二方向间隔排列且沿所述第一方向延伸的多个第二测试条纹, 所述 第二测试条纹之间的间距沿所述第一方向逐渐变大或逐渐变小。
4.根据权利要求 1-3任意一项所述的方法, 其特征在于, 所述至少两组测试 图表为五组测试图表, 其中四组测试图表对应于所述相机的感光面的四个角落, 另一组测试图表对应于所述相机的感光面的中心。
5.根据权利要求 1所述的方法, 其特征在于, 所述根据每一组所述测试图表 实时计算且显示所述相机的感光面对每一组所述测试图表的实时解析度数值的 步骤包括:
对每一组所述测试图表进行逐行或逐列釆样, 以得到多个条纹方波信号; 对所述条纹方波信号进行傅里叶变换, 分别生成每个所述条纹方波信号对 应的频谱图;
根据每个所述条纹方波信号的频谱图计算所述相机的感光面对每一组所述 测试图表的实时解析度数值并显示。
6.根据权利要求 5所述的方法, 其特征在于, 所述根据每个所述条纹方波信 号的频谱图计算所述相机的感光面对每一组所述测试图表的实时解析度数值的 步骤包括:
根据每个所述条纹方波信号的频借图计算每个所述条纹方波信号的平均频 率幅值 Aave和特征频率幅值 At;
通过以下公式判断所述特征频率幅值 At是否满足显著性条件:
At / Aavei > Thres ,
其中, Thres是预设的阈值, 若所述特征频率幅值 At满足显著性条件, 则所 述条纹方波信号所对应的解析度数值为所述相机的感光面对所述测试图表的实 时解析度数值。
7.根据权利要求 5所述的方法, 其特征在于, 所述对所述条紋方波信号进行 傅里叶变换的步骤之前, 还包括:
去除所述条纹方波信号的直流分量, 具体进行如下处理:
x, ( k ) = X ( k ) -mean ( x ( k ) );
其中, x ( k ) 为去除直流分量前的所述条紋方波信号, mean ( x ( k ) ) 为去 除直流分量前的所述条纹方波信号的平均值, x' ( k ) 为去除直流分量后的所述 条纹方波信号。
8.根据权利要求 1所述的方法, 其特征在于, 所述对所述图像进行图像预处 理之前, 还包括:
通过如下公式对所述相机拍摄的测试图表的图像进行旋转:
xQ = X cos Θ + y sin Θ + m
yQ = _x sm Θ + y cos θ + η '
其中, m =— 0.5Wcose -0.5Hsin9 + 0.5W。,
n = 0.5Wsine -0.5Hcos9 + 0.5H0 ,
x0和 y。分别为图像中的像素点在旋转前的横坐标和纵坐标, X和 y分别为图像 中的像素点在旋转后的横坐标和纵坐标, H。和 W。分别为图像中的所述测试图表 在旋转前的高度和宽度, H和 W分别为图像中的所述测试图表在旋转后的高度 和宽度, θ为旋转角度。
9.根据权利要求 1所述的方法, 其特征在于, 所述对所述图像进行图像预处 理的步骤包括: 对所述测试图表的图像进行灰度化处理;
对所述灰度化后的图像进行形态学滤波, 以得到不同方向的测试图表区域; 对所述测试图表区域进行图像二值化, 分离得到每一组测试图表。
10.—种镜头安装平整度的实时调整装置, 其特征在于, 所述装置包括标耙、 处理系统以及显示设备, 其中:
所述标靶呈现用于拍摄的测试图表的图像, 所述图像中包括相对于所述相 机的感光面不同位置的至少两组测试图表;
所述处理系统用于接收相机拍摄的所述测试图表的图像, 对所述测试图表 的图像进行图像预处理, 以分离得到多组测试图表, 根据分离得到的每一组所 述测试图表实时计算得到所述相机的感光面对每一组所述测试图表的实时解析 度数值;
所述显示设备用于接收来自所述处理系统的所述相机的感光面对每一组所 述测试图表的实时解析度数值并显示, 以使得用户根据所述实时解析度数值实 时调整所述相机镜头的光轴相对于所述感光面的安装角度。
11.根据权利要求 10所述的装置, 其特征在于, 每一组所述测试图表包括至 少一测试条纹组, 每一所述测试条纹组包括彼此间隔排列的多个测试条纹, 所 述测试条纹之间的间距沿所述测试条纹的间隔方向的垂直方向逐渐变化。
12.根据权利要求 10所述的装置, 其特征在于, 每一组所述测试图表包括一 第一测试条纹组和一第二测试条纹组, 所述第一测试条纹组包括沿第一方向间 隔排列且沿垂直于所述第一方向的第二方向延伸的多个第一测试条纹, 所述第 一测试条纹之间的间距沿所述第二方向逐渐变化, 所述第二测试条纹组包括沿 所述第二方向间隔排列且沿所述第一方向延伸的多个第二测试条纹, 所述第二 测试条纹之间的间距沿所述第一方向逐渐变化。
13.根据权利要求 10-12任一项所述的装置, 其特征在于, 所述至少两组测 试图表为五组测试图表, 其中四组测试图表对应于所述相机的感光面的四个角 落, 另一组测试图表对应于所述相机的感光面的中心。
14.根据权利要求 10所述的装置, 其特征在于, 所述处理系统具体用于对每 一组所述测试图表进行逐行或逐列采样, 以得到多个条纹方波信号, 对得到的 所述条纹方波信号进行傅里叶变换, 分别生成每个所述条纹方波信号对应的频 谱图, 根据生成的每个所述条纹方波信号的频谱图计算所述相机的感光面对每 一组所述测试图表的实时解析度数值。
15.根据权利要求 14所述的装置, 其特征在于, 所述处理系统具体用于根据 每个所述条纹方波信号的频谱图计算每个所述条纹方波信号的平均频率幅值 Aaver和特征频率幅值 At, 通过以下公式判断所述特征频率幅值 At是否满足显著 性条件: 其中, Thres是预设的阈值, 若所述特征频率幅值 At满足显著性条件, 则所 述条纹方波信号所对应的解析度数值为所述相机的感光面对所述测试图表的实 时解析度数值。
16.根据权利要求 14所述的装置, 其特征在于, 所述处理系统还具体用于在 对所述条纹方波信号进行傅里叶变换之前, 去除所述条纹方波信号的直流分量, 具体进行如下处理:
x, ( k ) = X ( k ) -mean ( x ( k ) );
其中, x (k)为去除直流分量前的所述条紋方波信号, mean (x (k)) 为去 除直流分量前的所述条纹方波信号的平均值, x' (k) 为去除直流分量后的所述 条纹方波信号。
17.根据权利要求 10所述的装置, 其特征在于, 所述处理系统还用于通过如 下公式对所述相机拍摄的测试图表的图像进行旋转:
f xQ = xcos0 + ysinO + m
ly。 = _x sin θ + y cos θ + η '
其中, m =— 0.5Wcose_0.5Hsin9 + 0.5W。,
n = 0.5Wsine-0.5Hcos9 + 0.5H0,
xo和 y。分别为图像中的像素点在旋转前的横坐标和纵坐标, X和 y分别为 图像中的像素点在旋转后的横坐标和纵坐标, H。和 W0分别为图像中的所述测试 图表在旋转前的高度和宽度, H和 W分别为图像中的所述测试图表在旋转后的 高度和宽度, θ为旋转角度。
18.根据权利要求 10所述的装置, 其特征在于, 所述处理系统具体用于对所 述测试图表的图像进行灰度化处理, 对所述灰度化后的图像进行形态学滤波, 以得到不同方向的测试图表区域, 对所述测试图表区域进行图像二值化, 分离 得到每一组测试图表。
PCT/CN2014/075582 2014-04-17 2014-04-17 镜头安装平整度的实时调整方法及装置 WO2015157962A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/075582 WO2015157962A1 (zh) 2014-04-17 2014-04-17 镜头安装平整度的实时调整方法及装置
JP2016513211A JP2016526182A (ja) 2014-04-17 2014-04-17 レンズ装着平面性の即時調整方法及び装置
US15/304,439 US10375383B2 (en) 2014-04-17 2014-04-17 Method and apparatus for adjusting installation flatness of lens in real time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075582 WO2015157962A1 (zh) 2014-04-17 2014-04-17 镜头安装平整度的实时调整方法及装置

Publications (1)

Publication Number Publication Date
WO2015157962A1 true WO2015157962A1 (zh) 2015-10-22

Family

ID=54323393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075582 WO2015157962A1 (zh) 2014-04-17 2014-04-17 镜头安装平整度的实时调整方法及装置

Country Status (3)

Country Link
US (1) US10375383B2 (zh)
JP (1) JP2016526182A (zh)
WO (1) WO2015157962A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607409A (zh) * 2016-01-07 2016-05-25 信利光电股份有限公司 一种双摄像头模组校正用的影像采集装置及其使用方法
CN107632407A (zh) * 2017-11-08 2018-01-26 凌云光技术集团有限责任公司 一种柱透镜成像系统的校准装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194953B (zh) * 2018-08-15 2021-03-02 瑞声光学解决方案私人有限公司 空间颜色和分辨率测量装置及测量方法
US11159706B2 (en) 2019-03-19 2021-10-26 Pfa Corporation Camera module manufacturing apparatus and camera module manufacturing method
CN112752094B (zh) * 2020-12-28 2023-12-01 歌尔科技有限公司 一种双摄像头光轴检测设备
CN116233408B (zh) * 2022-12-27 2023-10-13 盐城鸿石智能科技有限公司 一种摄像头模组光学测试平台及测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796987A (zh) * 2004-12-29 2006-07-05 鸿富锦精密工业(深圳)有限公司 光学检测装置和检测方法
CN1831626A (zh) * 2005-03-07 2006-09-13 普立尔科技股份有限公司 数字成像系统的自动调焦方法及其预览自动解析判读方法
CN102411256A (zh) * 2010-09-24 2012-04-11 鸿富锦精密工业(深圳)有限公司 镜头测试装置
CN102789111A (zh) * 2011-05-19 2012-11-21 华晶科技股份有限公司 镜头校准系统及其方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453166B2 (ja) * 2000-06-19 2010-04-21 株式会社デンソー 積層型ガスセンサ素子及びその製造方法
US6985177B2 (en) * 2000-07-04 2006-01-10 Canon Kabushiki Kaisha Image sensing system and its control method
JP4546781B2 (ja) 2004-07-16 2010-09-15 日本放送協会 撮像装置及び色ずれ補正プログラム
JP3766835B2 (ja) * 2004-09-10 2006-04-19 シャープ株式会社 レンズ系調整装置およびそれを用いたレンズ系調整方法
JP2007225768A (ja) * 2006-02-22 2007-09-06 Pentax Corp レンズ位置調整方法及びレンズ位置調整装置
CN101206294A (zh) 2006-12-14 2008-06-25 富士胶片株式会社 透镜光学系统的偏心调整方法、偏心调整装置和偏心调整程序
CN100592202C (zh) * 2007-05-15 2010-02-24 鸿富锦精密工业(深圳)有限公司 相机模组的影像测试系统及方法
KR100896803B1 (ko) 2007-07-30 2009-05-11 김대봉 카메라모듈 검사장치를 위한 검사차트
AU2007254627B2 (en) * 2007-12-21 2010-07-08 Canon Kabushiki Kaisha Geometric parameter measurement of an imaging device
CN101489040A (zh) 2008-01-15 2009-07-22 富士胶片株式会社 调节图像传感器位置的方法,制造照相机组件的方法和设备,以及照相机组件
JP5198295B2 (ja) 2008-01-15 2013-05-15 富士フイルム株式会社 撮像素子の位置調整方法、カメラモジュール製造方法及び装置、カメラモジュール
CN101576707B (zh) * 2008-05-06 2012-07-18 鸿富锦精密工业(深圳)有限公司 镜头长度量测系统及量测方法
JP2010256471A (ja) * 2009-04-22 2010-11-11 Aiphone Co Ltd フォーカス調整装置
CN101957553B (zh) 2009-07-17 2014-02-19 鸿富锦精密工业(深圳)有限公司 测量镜头的调制传递函数值的方法
TW201203130A (en) * 2010-07-05 2012-01-16 Hon Hai Prec Ind Co Ltd System for correcting image and correcting method thereof
GB2482022A (en) * 2010-07-16 2012-01-18 St Microelectronics Res & Dev Method for measuring resolution and aberration of lens and sensor
US8581986B2 (en) * 2010-08-30 2013-11-12 Datacolor Holding Ag Method and apparatus for measuring the focus performance of a camera and lens combination
JP6004637B2 (ja) * 2010-12-06 2016-10-12 キヤノン株式会社 レンズユニット、画像読取装置、及びレンズユニットの製造方法
US9009952B2 (en) * 2011-08-29 2015-04-21 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
JP2013198053A (ja) * 2012-03-22 2013-09-30 Sharp Corp カメラモジュールの製造方法
KR101387295B1 (ko) * 2012-05-14 2014-04-18 삼성전기주식회사 카메라 모듈의 제조 장치 및 방법
WO2014205775A1 (en) * 2013-06-28 2014-12-31 Thomson Licensing Automatic image color correction using an extended imager
WO2015129120A1 (ja) * 2014-02-26 2015-09-03 富士フイルム株式会社 撮像モジュールの製造方法及び撮像モジュールの製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796987A (zh) * 2004-12-29 2006-07-05 鸿富锦精密工业(深圳)有限公司 光学检测装置和检测方法
CN1831626A (zh) * 2005-03-07 2006-09-13 普立尔科技股份有限公司 数字成像系统的自动调焦方法及其预览自动解析判读方法
CN102411256A (zh) * 2010-09-24 2012-04-11 鸿富锦精密工业(深圳)有限公司 镜头测试装置
CN102789111A (zh) * 2011-05-19 2012-11-21 华晶科技股份有限公司 镜头校准系统及其方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607409A (zh) * 2016-01-07 2016-05-25 信利光电股份有限公司 一种双摄像头模组校正用的影像采集装置及其使用方法
CN107632407A (zh) * 2017-11-08 2018-01-26 凌云光技术集团有限责任公司 一种柱透镜成像系统的校准装置
CN107632407B (zh) * 2017-11-08 2020-02-04 凌云光技术集团有限责任公司 一种柱透镜成像系统的校准装置

Also Published As

Publication number Publication date
US10375383B2 (en) 2019-08-06
US20170048518A1 (en) 2017-02-16
JP2016526182A (ja) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2015157962A1 (zh) 镜头安装平整度的实时调整方法及装置
CN101207833B (zh) 数码相机镜头光心偏移的检测方法
EP2461576B1 (en) Image processing apparatus and image processing program
CN111308448B (zh) 图像采集设备与雷达的外参确定方法及装置
CN103955109B (zh) 镜头安装平整度的实时调整方法及装置
JP5043755B2 (ja) 樹脂材料検査装置およびプログラム
EP1958158B1 (en) Method for detecting streaks in digital images
JP2004222231A (ja) 画像処理装置および画像処理プログラム
CN111861980A (zh) 一种成像检测方法、电子设备及计算机可读存储介质
CN115790384A (zh) 一种基于凹版涂布的打光成像方法及装置
EP1071042A2 (en) Method for determining the components of image noise patterns of an imaging device and use of this method in an imaging device
JP2006139777A (ja) 視覚モデルによりフラットパネル表示装置を検出する方法と装置
CN111638039A (zh) 一种基于人眼视觉特性的激光散斑测量系统
JP2004279239A (ja) 液晶パネルの表示欠陥検出方法及び表示欠陥検査装置
CN105338340B (zh) 非接触式图像性能客观测试方法
JP2004219291A (ja) 画面の線欠陥検出方法及び装置
Koren Using images of noise to estimate image processing behavior for image quality evaluation
JP2004134861A (ja) 解像度評価方法、解像度評価プログラム、および光学機器
JP3635327B2 (ja) 焦点調整機構とズーム機構による高精度3次元計測方法およびそのための高精度3次元計測装置
Boiangiu et al. Target Validation and Image Color Calibration
JP2004219072A (ja) 画面のスジ欠陥検出方法及び装置
CN113532473B (zh) 一种通过布置近场不动点的摄像测量误差抑制方法
CN103640331A (zh) 一种优化的印刷品清晰度检测方法
van Zwanenberg et al. Estimation of ISO12233 edge spatial frequency response from natural scene derived step-edge data (JIST-first)
CN109712132B (zh) 一种使用电子器件计数装置自动筛选计数的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016513211

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15304439

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889524

Country of ref document: EP

Kind code of ref document: A1