WO2015155895A1 - Laser diode drive circuit and laser apparatus - Google Patents

Laser diode drive circuit and laser apparatus Download PDF

Info

Publication number
WO2015155895A1
WO2015155895A1 PCT/JP2014/060521 JP2014060521W WO2015155895A1 WO 2015155895 A1 WO2015155895 A1 WO 2015155895A1 JP 2014060521 W JP2014060521 W JP 2014060521W WO 2015155895 A1 WO2015155895 A1 WO 2015155895A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
prism
transmitting means
laser diode
Prior art date
Application number
PCT/JP2014/060521
Other languages
French (fr)
Japanese (ja)
Inventor
隼規 坂本
一郎 福士
章之 門谷
一馬 渡辺
直也 石垣
次郎 齊川
進吾 宇野
廣木 知之
東條 公資
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2016512562A priority Critical patent/JP6183544B2/en
Priority to PCT/JP2014/060521 priority patent/WO2015155895A1/en
Publication of WO2015155895A1 publication Critical patent/WO2015155895A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring

Definitions

  • the present invention relates to a laser diode drive circuit and a laser device.
  • APC auto power control
  • ACC auto current control
  • the APC method or the ACC method has also been used for a laser device that uses a plurality of laser diodes to obtain a single stable beam output by a fiber or the like.
  • Patent Document 1 is known as a driving method of a plurality of lasers using the APC method.
  • a plurality of laser diodes are connected in parallel, one light receiving means is provided for each laser diode, and a high-luminance laser beam output is obtained.
  • a laser diode drive circuit corresponding to a plurality of laser diodes and the plurality of laser diodes, and emits laser light emitted from the plurality of laser diodes.
  • a light receiving means for receiving a part of the laser light transmitted through the transmission means, and a control means for controlling the outputs of the plurality of laser diodes to a predetermined magnitude based on the intensity of the laser light received by the light receiving means.
  • the present invention it is possible to provide a laser diode driving circuit and a laser device capable of obtaining a stable output with a simple structure.
  • FIG. 1 is a diagram showing a configuration of a laser processing apparatus including a laser diode drive circuit according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing details of the light transmitting means of Example 1 in the laser diode drive circuit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing the details of the light transmitting means of Example 2 in the laser diode drive circuit according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing details of the light transmitting means of the third embodiment in the laser diode drive circuit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the details of the light transmission means of Example 4 in the laser diode drive circuit according to the embodiment of the present invention.
  • a laser apparatus includes a laser diode drive circuit, and, as shown in FIG. 1, collects laser light output from each of a plurality of laser diodes 11a to 11c that emit excitation light. 18, the workpiece 21 is irradiated with the beam, and the workpiece 21 is processed. The combined laser light passes through the optical fiber 19, is converged by the converging lens 20 (corresponding to the converging portion of the present invention), and is irradiated onto the workpiece 21.
  • the laser diode drive circuit is configured as follows.
  • a plurality of lenses 12a to 12c are provided corresponding to the plurality of laser diodes 11a to 11c.
  • the lens 12a guides the laser beam from the laser diode 11a to the prism 13a.
  • the lens 12c guides the laser light from the laser diode 11c to the prism 13b.
  • the lens 12 b guides the laser light from the laser diode 11 b to the lens 18.
  • the prisms 13a and 13b are provided corresponding to the laser diodes 11a and 11c, guide the laser beams emitted from the laser diodes 11a and 11c, and guide them to the lens 18.
  • the light transmitting means 14a is formed on the surface of the prism 13a, and the light transmitting means 14a transmits a part of the laser light totally reflected by the prism 13a.
  • the light receiving means 15 is made of, for example, a photodiode, and receives a part of the laser light transmitted from the light transmitting means 14a.
  • the control unit 16 corresponds to the control means of the present invention, and controls the outputs of the plurality of laser diodes 11a to 11c to a predetermined magnitude based on the laser light intensity received by the light receiving means 15.
  • a part of the laser light transmitted from the light transmitting means 14a formed on one prism 13a is received by the light receiving means 15, but from the light transmitting means formed on each of two or more prisms.
  • a part of the transmitted laser beam may be received by the light receiving means 15 arranged corresponding to each prism.
  • the laser beams emitted from the plurality of laser diodes 11a to 11c are incident on the prisms 13a and 13b.
  • the parallel beams incident on the prisms 13 a and 13 b are reflected a plurality of times (for example, twice) in the prism and then input to the fiber 19 through the condenser lens 18.
  • the light transmitting means 14a extracts a part of the incident laser light.
  • the light receiving means 15 receives a part of the laser light transmitted from the light transmitting means 14a.
  • the light receiving means 15 outputs the received laser beam to an unillustrated auto power control unit (APC unit).
  • the APC unit controls the current flowing through the laser diode 11a or a plurality of laser diodes connected in series to the laser diode 11a so that the laser beam from the light receiving means 15 is constant. That is, a stable output can be obtained.
  • an optical element such as a beam splitter for entering the light receiving means becomes unnecessary, and a stable output can be obtained with a simple structure.
  • FIG. 2 is a diagram showing details of the light transmitting means of Example 1 in the laser diode drive circuit according to the embodiment of the present invention.
  • the light transmitting means 14a shown in FIG. 2 has irregularities formed on the surface of the prism 13a, and scatters and transmits a part of the totally reflected laser light.
  • the surface of the prism 13a is formed in a frosted glass shape, a fine scratch is formed on the surface of the prism 13a, or a grating is formed on the surface of the prism 13a. By performing such processing, a part of the laser beam totally reflected by the prism 13a can be transmitted.
  • FIG. 3 is a diagram showing details of the light transmission means of Example 2 in the laser diode drive circuit according to the embodiment of the present invention.
  • the light transmitting means 14a shown in FIG. 3 uses a polarization characteristic in total reflection of the prism 13b. Specifically, a part of the laser light is transmitted using a prism having polarization characteristics (polarization transmission characteristics) or a prism having polarization characteristics in transmittance. Alternatively, the incident angle of the laser beam to the prism 13a may be set to the Brewster angle so that a part of the laser beam is transmitted.
  • FIG. 4 is a diagram showing details of the light transmitting means of Example 3 in the laser diode drive circuit according to the embodiment of the present invention.
  • the surface of the prism 13a is coated with a single layer film or a dielectric multilayer film 25 made of a metal thin film having a refractive index different from that of the prism 13a. That is, by changing the refractive index of the prism surface by the single layer film or the dielectric multilayer film 25, a part of the laser beam can be transmitted.
  • FIG. 5 is a diagram showing details of the light transmitting means of Example 4 in the laser diode drive circuit according to the embodiment of the present invention.
  • the light transmitting means 14a shown in FIG. 5 emits light by exciting the light emitting material 26 using an evanescent wave generated when the light emitting material 26 is formed on the surface of the prism 13a and the laser light is totally reflected by the prism 13a. The light is incident on the light receiving means 15.
  • Fluorescent molecular thin film is used as the light emitting material 26.
  • a silver thin film 26a and a fluorescent molecular thin film 26b are formed on a slope where the light transmitting means 14a of the prism 13a is to be formed, using a technique such as vapor deposition.
  • a surface plasmon is excited in the vicinity of the interface of the silver thin film 26a and the fluorescent molecular thin film 26b by an evanescent wave generated when the laser light is totally reflected, and light emitted from the excited molecule is directly fed back to the light receiving means 15. . Thereby, a part of laser beam can be transmitted indirectly.
  • the present invention is applicable to laser devices, laser processing devices, and laser illumination devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Disclosed is a laser diode drive circuit wherein a plurality of prisms (13a, 13b) are provided corresponding to a plurality of laser diodes (11a, 11c), and guide laser light emitted from the laser diodes. A light transmitting means (14a) is formed on a surface of at least one prism of the plurality of prisms, and transmits a part of laser light totally reflected by means of the prisms. A light receiving means (15) receives the part of the laser light transmitted through the light transmitting means. On the basis of the intensity of the laser light received by means of the light receiving means, a control means (16) controls outputs of the laser diodes to a predetermined level.

Description

レーザダイオードの駆動回路及びレーザ装置Laser diode drive circuit and laser device
 本発明は、レーザダイオードの駆動回路及びレーザ装置に関する。 The present invention relates to a laser diode drive circuit and a laser device.
 レーザ出力を安定化するためには、フォトダイオードなどの受光手段にレーザ出力の一部をフィードバックし、レーザ出力を一定に制御するAPC(オートパワーコントロール)方式がある。また、駆動電流をモニタすることにより駆動電流を一定に制御するACC(オートカレントコントロール)方式がある。 In order to stabilize the laser output, there is an APC (auto power control) system in which a part of the laser output is fed back to a light receiving means such as a photodiode and the laser output is controlled to be constant. Further, there is an ACC (auto current control) system in which the drive current is controlled to be constant by monitoring the drive current.
 従来、複数のレーザダイオードを用いてファイバ等により一本の安定したビーム出力を得るレーザ装置についてもAPC方式あるいはACC方式が用いられて来た。 Conventionally, the APC method or the ACC method has also been used for a laser device that uses a plurality of laser diodes to obtain a single stable beam output by a fiber or the like.
 APC方式を用いた複数レーザの駆動方式としては、例えば、特許文献1が知られている。特許文献1では、複数のレーザダイオードを並列に接続し、1つのレーザダイオードに対して1つの受光手段を設け、高輝度のレーザビーム出力を得ている。 For example, Patent Document 1 is known as a driving method of a plurality of lasers using the APC method. In Patent Document 1, a plurality of laser diodes are connected in parallel, one light receiving means is provided for each laser diode, and a high-luminance laser beam output is obtained.
特開2004-214225号公報JP 2004-214225 A
 しかしながら、加工用レーザ装置のように高出力を得るために複数のレーザダイオードを用いる場合において、特許文献1のように全てのレーザダイオードに対して出力をコントロールすると、レーザ駆動回路およびレーザ装置が複雑化し、高コストとなる。 However, in the case where a plurality of laser diodes are used to obtain a high output as in a processing laser apparatus, if the output is controlled for all the laser diodes as in Patent Document 1, the laser drive circuit and the laser apparatus are complicated. And high cost.
 本発明は、簡易な構造で安定した出力を得ることができるレーザダイオードの駆動回路及びレーザ装置を提供することを目的とする。 It is an object of the present invention to provide a laser diode drive circuit and a laser device that can obtain a stable output with a simple structure.
 上記の課題を解決するために、本発明に係るレーザダイオードの駆動回路は、複数のレーザダイオードと、前記複数のレーザダイオードに対応して設けられ、前記複数のレーザダイオードから出射されるレーザ光をガイドする複数のプリズムと、前記複数のプリズムのうちの少なくとも1つのプリズムの表面に形成され、前記プリズムにおいて全反射される前記レーザ光の一部のレーザ光を透過させる光透過手段と、前記光透過手段を透過したその一部のレーザ光を受光する受光手段と、前記受光手段で受光したレーザ光強度に基づいて、前記複数のレーザダイオードの出力を所定の大きさにコントロールする制御手段とを備える。 In order to solve the above problems, a laser diode drive circuit according to the present invention is provided corresponding to a plurality of laser diodes and the plurality of laser diodes, and emits laser light emitted from the plurality of laser diodes. A plurality of prisms for guiding; light transmitting means that is formed on a surface of at least one of the plurality of prisms, and transmits a part of the laser light that is totally reflected by the prism; and the light A light receiving means for receiving a part of the laser light transmitted through the transmission means, and a control means for controlling the outputs of the plurality of laser diodes to a predetermined magnitude based on the intensity of the laser light received by the light receiving means. Prepare.
 本発明によれば、簡易な構造で安定した出力を得ることができるレーザダイオードの駆動回路及びレーザ装置を提供することができる。 According to the present invention, it is possible to provide a laser diode driving circuit and a laser device capable of obtaining a stable output with a simple structure.
図1は本発明の実施形態に係るレーザダイオードの駆動回路を含むレーザ加工装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a laser processing apparatus including a laser diode drive circuit according to an embodiment of the present invention. 図2は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例1の光透過手段の詳細を示す図である。FIG. 2 is a diagram showing details of the light transmitting means of Example 1 in the laser diode drive circuit according to the embodiment of the present invention. 図3は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例2の光透過手段の詳細を示す図である。FIG. 3 is a diagram showing the details of the light transmitting means of Example 2 in the laser diode drive circuit according to the embodiment of the present invention. 図4は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例3の光透過手段の詳細を示す図である。FIG. 4 is a diagram showing details of the light transmitting means of the third embodiment in the laser diode drive circuit according to the embodiment of the present invention. 図5は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例4の光透過手段の詳細を示す図である。FIG. 5 is a diagram showing the details of the light transmission means of Example 4 in the laser diode drive circuit according to the embodiment of the present invention.
 以下、本発明の実施形態に係るレーザダイオードの駆動回路及びレーザ装置が、レーザ加工装置に適用される場合について、図面を参照しながら詳細に説明される。 Hereinafter, a case where a laser diode drive circuit and a laser apparatus according to an embodiment of the present invention are applied to a laser processing apparatus will be described in detail with reference to the drawings.
 本発明の実施形態に係るレーザ装置は、レーザダイオードの駆動回路を含み、図1に示すように、励起光を出射する複数のレーザダイオード11a~11cの各々から出力されるレーザ光を集光レンズ18で合波して加工対象物21に照射し該加工対象物21を加工する。合波されたレーザ光は、光ファイバ19を通り、収束レンズ20(本発明の収束部に対応)で収束されて加工対象物21に照射される。 A laser apparatus according to an embodiment of the present invention includes a laser diode drive circuit, and, as shown in FIG. 1, collects laser light output from each of a plurality of laser diodes 11a to 11c that emit excitation light. 18, the workpiece 21 is irradiated with the beam, and the workpiece 21 is processed. The combined laser light passes through the optical fiber 19, is converged by the converging lens 20 (corresponding to the converging portion of the present invention), and is irradiated onto the workpiece 21.
 レーザダイオードの駆動回路は、以下のように構成される。複数のレーザダイオード11a~11cに対応して、複数のレンズ12a~12cが設けられている。レンズ12aはレーザダイオード11aからのレーザ光をプリズム13aに導く。レンズ12cはレーザダイオード11cからのレーザ光をプリズム13bに導く。レンズ12bはレーザダイオード11bからのレーザ光をレンズ18に導く。 The laser diode drive circuit is configured as follows. A plurality of lenses 12a to 12c are provided corresponding to the plurality of laser diodes 11a to 11c. The lens 12a guides the laser beam from the laser diode 11a to the prism 13a. The lens 12c guides the laser light from the laser diode 11c to the prism 13b. The lens 12 b guides the laser light from the laser diode 11 b to the lens 18.
 プリズム13a,13bは、レーザダイオード11a,11cに対応して設けられ、レーザダイオード11a,11cから出射されるレーザ光をガイドして、レンズ18に導く。 The prisms 13a and 13b are provided corresponding to the laser diodes 11a and 11c, guide the laser beams emitted from the laser diodes 11a and 11c, and guide them to the lens 18.
 プリズム13aの表面には光透過手段14aが形成され、この光透過手段14aは、プリズム13aにおいて全反射されるレーザ光の一部のレーザ光を透過させる。受光手段15は、例えば、フォトダイオードからなり、光透過手段14aから透過したレーザ光の一部を受光する。 The light transmitting means 14a is formed on the surface of the prism 13a, and the light transmitting means 14a transmits a part of the laser light totally reflected by the prism 13a. The light receiving means 15 is made of, for example, a photodiode, and receives a part of the laser light transmitted from the light transmitting means 14a.
 制御部16は、本発明の制御手段に対応し、受光手段15で受光したレーザ光強度に基づいて、複数のレーザダイオード11a~11cの出力を所定の大きさにコントロールする。 The control unit 16 corresponds to the control means of the present invention, and controls the outputs of the plurality of laser diodes 11a to 11c to a predetermined magnitude based on the laser light intensity received by the light receiving means 15.
 なお、図1に示す例では、1つのプリズム13aに形成した光透過手段14aから透過したレーザ光の一部を受光手段15で受光したが、2つ以上のプリズムにそれぞれ形成した光透過手段から透過したレーザ光の一部を各プリズムに対応して配置された受光手段15で受光してもよい。 In the example shown in FIG. 1, a part of the laser light transmitted from the light transmitting means 14a formed on one prism 13a is received by the light receiving means 15, but from the light transmitting means formed on each of two or more prisms. A part of the transmitted laser beam may be received by the light receiving means 15 arranged corresponding to each prism.
 このように実施形態のレーザ装置によれば、複数のレーザダイオード11a~11cから出射されたレーザ光の内、レーザダイオード11a,11cから出射されたレーザ光は、プリズム13a,13bに入射する。 Thus, according to the laser apparatus of the embodiment, among the laser beams emitted from the plurality of laser diodes 11a to 11c, the laser beams emitted from the laser diodes 11a and 11c are incident on the prisms 13a and 13b.
 プリズム13a,13bに入射した平行ビームは、プリズム内で複数回(例えば、2回)反射された後、集光レンズ18を介してファイバ19に入力される。 The parallel beams incident on the prisms 13 a and 13 b are reflected a plurality of times (for example, twice) in the prism and then input to the fiber 19 through the condenser lens 18.
 このとき、プリズム13aの斜面部に形成された光透過手段14aにおいて、入射したレーザ光の一部が散乱され透過するようになる。即ち、光透過手段14aは、入射したレーザ光の一部を取り出す。そして、受光手段15は、光透過手段14aから透過したレーザ光の一部を受光する。 At this time, a part of the incident laser light is scattered and transmitted by the light transmitting means 14a formed on the inclined surface of the prism 13a. That is, the light transmitting means 14a extracts a part of the incident laser light. The light receiving means 15 receives a part of the laser light transmitted from the light transmitting means 14a.
 受光手段15は、受光したレーザ光を図示しないオートパワーコントロール部(APC部)に出力する。APC部は、受光手段15からのレーザ光が一定となるようにレーザダイオード11aあるいはレーザダイオード11aに直列接続された複数のレーザダイオードに流れる電流を制御する。即ち、安定した出力を得ることができる。 The light receiving means 15 outputs the received laser beam to an unillustrated auto power control unit (APC unit). The APC unit controls the current flowing through the laser diode 11a or a plurality of laser diodes connected in series to the laser diode 11a so that the laser beam from the light receiving means 15 is constant. That is, a stable output can be obtained.
 また、実施形態の受光手段を用いることにより、受光手段に入射するためのビームスプリッタ等の光学素子が不要となり、簡易な構造で安定した出力を得ることができる。 Further, by using the light receiving means of the embodiment, an optical element such as a beam splitter for entering the light receiving means becomes unnecessary, and a stable output can be obtained with a simple structure.
(光透過手段14の実施例)
 次に、光透過手段14aの具体的な実施例を例示する。図2は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例1の光透過手段の詳細を示す図である。
(Example of the light transmission means 14)
Next, a specific example of the light transmission means 14a will be illustrated. FIG. 2 is a diagram showing details of the light transmitting means of Example 1 in the laser diode drive circuit according to the embodiment of the present invention.
 図2に示す光透過手段14aは、プリズム13aの表面に凹凸が形成され、全反射されるレーザ光の一部を散乱し透過させる。具体的には、プリズム13aの表面をすりガラス状に形成したり、あるいはプリズム13aの表面に細かいキズを形成したり、あるいは、プリズム13aの表面にグレーティングを形成する。このような処理を施すことで、プリズム13aにおいて全反射されるレーザ光の一部を透過させることができる。 The light transmitting means 14a shown in FIG. 2 has irregularities formed on the surface of the prism 13a, and scatters and transmits a part of the totally reflected laser light. Specifically, the surface of the prism 13a is formed in a frosted glass shape, a fine scratch is formed on the surface of the prism 13a, or a grating is formed on the surface of the prism 13a. By performing such processing, a part of the laser beam totally reflected by the prism 13a can be transmitted.
 図3は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例2の光透過手段の詳細を示す図である。図3に示す光透過手段14aは、プリズム13bの全反射における偏光特性を用いている。具体的には、偏光特性(偏光透過特性)を有するプリズムや透過率に偏光特性を備えたプリズムを用いてレーザ光の一部を透過させる。あるいは、プリズム13aへのレーザ光の入射角をブリュースタ角に設定して、レーザ光の一部を透過させるようにしても良い。 FIG. 3 is a diagram showing details of the light transmission means of Example 2 in the laser diode drive circuit according to the embodiment of the present invention. The light transmitting means 14a shown in FIG. 3 uses a polarization characteristic in total reflection of the prism 13b. Specifically, a part of the laser light is transmitted using a prism having polarization characteristics (polarization transmission characteristics) or a prism having polarization characteristics in transmittance. Alternatively, the incident angle of the laser beam to the prism 13a may be set to the Brewster angle so that a part of the laser beam is transmitted.
 図4は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例3の光透過手段の詳細を示す図である。図4に示す光透過手段14aは、プリズム13aの表面に、プリズム13aの屈折率とは異なる屈折率を持つ金属薄膜からなる単層膜又は誘電体多層膜25がコーティングされている。即ち、単層膜又は誘電体多層膜25によりプリズム表面の屈折率を変化させることによって、レーザ光の一部を透過させることができる。 FIG. 4 is a diagram showing details of the light transmitting means of Example 3 in the laser diode drive circuit according to the embodiment of the present invention. In the light transmitting means 14a shown in FIG. 4, the surface of the prism 13a is coated with a single layer film or a dielectric multilayer film 25 made of a metal thin film having a refractive index different from that of the prism 13a. That is, by changing the refractive index of the prism surface by the single layer film or the dielectric multilayer film 25, a part of the laser beam can be transmitted.
 図5は本発明の実施形態に係るレーザダイオードの駆動回路内の実施例4の光透過手段の詳細を示す図である。図5に示す光透過手段14aは、プリズム13aの表面に発光材料26が形成され、プリズム13aでレーザ光が全反射される際に発生するエバネッセント波を用いて前記発光材料26を励起して発光させ、受光手段15に光を入射させる。 FIG. 5 is a diagram showing details of the light transmitting means of Example 4 in the laser diode drive circuit according to the embodiment of the present invention. The light transmitting means 14a shown in FIG. 5 emits light by exciting the light emitting material 26 using an evanescent wave generated when the light emitting material 26 is formed on the surface of the prism 13a and the laser light is totally reflected by the prism 13a. The light is incident on the light receiving means 15.
 発光材料26としては、蛍光分子薄膜が用いられる。プリズム13aの光透過手段14aを形成したい斜面部に、蒸着法等の手法を用いて銀薄膜26a、蛍光分子薄膜26bを形成する。レーザ光が全反射された際に発生するエバネッセント波によって、銀薄膜26a、蛍光分子薄膜26b界面近傍に表面プラズモンを励起させ、励起された分子から放射される光を直接、受光手段15にフィードバックする。これにより、レーザ光の一部を間接的に透過させることができる。 Fluorescent molecular thin film is used as the light emitting material 26. A silver thin film 26a and a fluorescent molecular thin film 26b are formed on a slope where the light transmitting means 14a of the prism 13a is to be formed, using a technique such as vapor deposition. A surface plasmon is excited in the vicinity of the interface of the silver thin film 26a and the fluorescent molecular thin film 26b by an evanescent wave generated when the laser light is totally reflected, and light emitted from the excited molecule is directly fed back to the light receiving means 15. . Thereby, a part of laser beam can be transmitted indirectly.
 本発明は、レーザ装置、レーザ加工装置、レーザ照明装置に適用可能である。 The present invention is applicable to laser devices, laser processing devices, and laser illumination devices.

Claims (6)

  1.  複数のレーザダイオードと、
     前記複数のレーザダイオードに対応して設けられ、前記複数のレーザダイオードから出射されるレーザ光をガイドする複数のプリズムと、
     前記複数のプリズムのうちの少なくとも1つのプリズムの表面に形成され、前記プリズムにおいて全反射される前記レーザ光の一部のレーザ光を透過させる光透過手段と、
     前記光透過手段を透過したその一部のレーザ光を受光する受光手段と、
     前記受光手段で受光したレーザ光強度に基づいて、前記複数のレーザダイオードの出力を所定の大きさにコントロールする制御手段と、
    を備えるレーザダイオードの駆動回路。
    A plurality of laser diodes;
    A plurality of prisms provided corresponding to the plurality of laser diodes, for guiding laser light emitted from the plurality of laser diodes;
    A light transmitting means that is formed on a surface of at least one of the plurality of prisms and transmits a part of the laser light that is totally reflected by the prism;
    A light receiving means for receiving a part of the laser light transmitted through the light transmitting means;
    Control means for controlling the outputs of the plurality of laser diodes to a predetermined magnitude based on the laser light intensity received by the light receiving means;
    A laser diode drive circuit comprising:
  2.  前記光透過手段は、前記プリズムの表面に凹凸が形成され、前記全反射される前記レーザ光の一部を散乱させる請求項1記載のレーザダイオードの駆動回路。 2. The laser diode driving circuit according to claim 1, wherein the light transmitting means has irregularities formed on a surface of the prism and scatters a part of the laser light that is totally reflected. 3.
  3.  前記光透過手段は、前記プリズムの全反射における偏光特性を用いる請求項1記載のレーザダイオードの駆動回路。 2. The laser diode driving circuit according to claim 1, wherein the light transmitting means uses a polarization characteristic in total reflection of the prism.
  4.  前記光透過手段は、前記プリズムの表面に、前記プリズムの屈折率とは異なる屈折率を持つ単層膜又は多層膜がコーティングされている請求項1記載のレーザダイオードの駆動回路。 2. The laser diode driving circuit according to claim 1, wherein the light transmitting means is coated on the surface of the prism with a single layer film or a multilayer film having a refractive index different from that of the prism.
  5.  前記光透過手段は、前記プリズムの表面に発光材料が形成され、前記プリズムでレーザ光が全反射される際に発生するエバネッセント波を用いて前記発光材料を励起して発光させ、前記受光手段に光を入射させる請求項1記載のレーザダイオードの駆動回路。 The light transmitting means is formed with a light emitting material on the surface of the prism, and uses the evanescent wave generated when the laser light is totally reflected by the prism to cause the light emitting material to emit light. The laser diode driving circuit according to claim 1, wherein light is incident.
  6.  請求項1乃至5のいずれか1項記載のレーザダイオードの駆動回路と、
     前記複数のレーザダイオードから出射されるレーザ光を合波する光ファイバと、
     前記光ファイバで合成されたレーザ光を収束して加工対象物に照射し該加工対象物を加工する収束部と、
    を備えるレーザ装置。
    A laser diode drive circuit according to any one of claims 1 to 5,
    An optical fiber for combining laser beams emitted from the plurality of laser diodes;
    A converging unit for converging the laser beam synthesized by the optical fiber to irradiate the processing object and processing the processing object;
    A laser apparatus comprising:
PCT/JP2014/060521 2014-04-11 2014-04-11 Laser diode drive circuit and laser apparatus WO2015155895A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016512562A JP6183544B2 (en) 2014-04-11 2014-04-11 Laser diode drive circuit and laser device
PCT/JP2014/060521 WO2015155895A1 (en) 2014-04-11 2014-04-11 Laser diode drive circuit and laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060521 WO2015155895A1 (en) 2014-04-11 2014-04-11 Laser diode drive circuit and laser apparatus

Publications (1)

Publication Number Publication Date
WO2015155895A1 true WO2015155895A1 (en) 2015-10-15

Family

ID=54287494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060521 WO2015155895A1 (en) 2014-04-11 2014-04-11 Laser diode drive circuit and laser apparatus

Country Status (2)

Country Link
JP (1) JP6183544B2 (en)
WO (1) WO2015155895A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437172B1 (en) * 2018-04-02 2018-12-12 三菱電機株式会社 Laser equipment
JP2019515487A (en) * 2016-04-26 2019-06-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser module having optical component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033604A (en) * 1999-05-20 2001-02-09 Sharp Corp Manufacture of optical component and polyimide thick film
JP2001215371A (en) * 2000-02-04 2001-08-10 Sumitomo Osaka Cement Co Ltd Optical waveguide type element with monitor
JP2004317630A (en) * 2003-04-14 2004-11-11 Fujikura Ltd Optical transmitting module
JP2005308658A (en) * 2004-04-23 2005-11-04 Rohm Co Ltd Surface plasmon resonance sensor apparatus
JP2009236939A (en) * 2008-03-25 2009-10-15 Fuji Xerox Co Ltd Optical waveguide, method for manufacturing the same, and optical waveguide module
JP2011145546A (en) * 2010-01-15 2011-07-28 Panasonic Electric Works Co Ltd Hot-line detector
JP2011238698A (en) * 2010-05-07 2011-11-24 Furukawa Electric Co Ltd:The Laser module
JP2012163903A (en) * 2011-02-09 2012-08-30 Furukawa Electric Co Ltd:The Optical communication module and optical coupling member
JP2012194454A (en) * 2011-03-17 2012-10-11 Enplas Corp Lens array and optical module equipped with the same
JP2013024738A (en) * 2011-07-21 2013-02-04 Panasonic Corp Live-wire detection device
JP2013506871A (en) * 2009-09-30 2013-02-28 コーニング インコーポレイテッド Angle-cleaved optical fiber and method for manufacturing and using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254296B2 (en) * 2003-01-16 2007-08-07 Sae Magnetics (Hong Kong) Limited Apparatus for improved fiber optic coupling efficiency
JP4153438B2 (en) * 2003-01-30 2008-09-24 富士フイルム株式会社 Laser beam multiplexing method and apparatus
JP5550353B2 (en) * 2010-01-08 2014-07-16 株式会社エンプラス Lens array and optical module having the same
JP2013061587A (en) * 2011-09-15 2013-04-04 Alps Electric Co Ltd Beam splitter and optical communication module using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033604A (en) * 1999-05-20 2001-02-09 Sharp Corp Manufacture of optical component and polyimide thick film
JP2001215371A (en) * 2000-02-04 2001-08-10 Sumitomo Osaka Cement Co Ltd Optical waveguide type element with monitor
JP2004317630A (en) * 2003-04-14 2004-11-11 Fujikura Ltd Optical transmitting module
JP2005308658A (en) * 2004-04-23 2005-11-04 Rohm Co Ltd Surface plasmon resonance sensor apparatus
JP2009236939A (en) * 2008-03-25 2009-10-15 Fuji Xerox Co Ltd Optical waveguide, method for manufacturing the same, and optical waveguide module
JP2013506871A (en) * 2009-09-30 2013-02-28 コーニング インコーポレイテッド Angle-cleaved optical fiber and method for manufacturing and using the same
JP2011145546A (en) * 2010-01-15 2011-07-28 Panasonic Electric Works Co Ltd Hot-line detector
JP2011238698A (en) * 2010-05-07 2011-11-24 Furukawa Electric Co Ltd:The Laser module
JP2012163903A (en) * 2011-02-09 2012-08-30 Furukawa Electric Co Ltd:The Optical communication module and optical coupling member
JP2012194454A (en) * 2011-03-17 2012-10-11 Enplas Corp Lens array and optical module equipped with the same
JP2013024738A (en) * 2011-07-21 2013-02-04 Panasonic Corp Live-wire detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515487A (en) * 2016-04-26 2019-06-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser module having optical component
JP2022031843A (en) * 2016-04-26 2022-02-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser module with optical component
JP7261857B2 (en) 2016-04-26 2023-04-20 エイエムエス-オスラム インターナショナル ゲーエムベーハー Laser module with optical components
JP6437172B1 (en) * 2018-04-02 2018-12-12 三菱電機株式会社 Laser equipment
WO2019193640A1 (en) * 2018-04-02 2019-10-10 三菱電機株式会社 Laser device
US10958043B2 (en) 2018-04-02 2021-03-23 Mitsubishi Electric Corporation Laser device

Also Published As

Publication number Publication date
JPWO2015155895A1 (en) 2017-04-13
JP6183544B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
US10322467B2 (en) Position detecting device and laser processing device
US11073751B2 (en) Wavelength conversion apparatus, light source system and projection device
US7586961B2 (en) Laser systems
IL308961A (en) Lidar with co-aligned transmit and receive paths
US9129717B2 (en) EUV excitation light source with a laser beam source and a beam guide device for manipulating the laser beam
TWI459122B (en) Optical system
RU2012112398A (en) LASER FOCUSING HEAD WITH ZnS LENSES THAT HAVE THICKNESS AT THE EDGES, AT LEAST 5 mm, AND INSTALLATION AND METHOD OF LASER CUTTING USING ONE SUCH FOCUS USING
WO2009050876A1 (en) Short wavelength light source and optical device
JP2017098505A (en) Optical module
US20120305746A1 (en) Auto-focusing apparatus and auto-focusing method using the same
JP6183544B2 (en) Laser diode drive circuit and laser device
EP2916163A2 (en) Laser light source device and projection display apparatus
JP2018031815A (en) projector
RU2010154659A (en) LIGHT-RADIATING DEVICE AND METHOD FOR RADIATING LIGHT
JP2020529628A (en) Spectroscopic filter for high power fiber illumination sources
WO2009016806A1 (en) Multiphoton laser scanning microscope device
KR20160073785A (en) Laser processing system and laser processing method using the laser processing system
JP5286512B2 (en) Laser annealing method and laser annealing apparatus
US8073025B2 (en) Laser light source
JP2020027844A (en) Semiconductor laser device
JP2011112686A5 (en)
WO2009063604A1 (en) Optical disk device
JP5415828B2 (en) Laser apparatus and semiconductor laser module
KR101057458B1 (en) Drilling device and drilling method
JP7039922B2 (en) Laser processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888571

Country of ref document: EP

Kind code of ref document: A1