WO2015154510A1 - 串行信道选择的方法、装置及系统 - Google Patents

串行信道选择的方法、装置及系统 Download PDF

Info

Publication number
WO2015154510A1
WO2015154510A1 PCT/CN2014/093987 CN2014093987W WO2015154510A1 WO 2015154510 A1 WO2015154510 A1 WO 2015154510A1 CN 2014093987 W CN2014093987 W CN 2014093987W WO 2015154510 A1 WO2015154510 A1 WO 2015154510A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
rssi
aps
combined
rssi value
Prior art date
Application number
PCT/CN2014/093987
Other languages
English (en)
French (fr)
Inventor
邵名波
吴宗德
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015154510A1 publication Critical patent/WO2015154510A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for serial channel selection.
  • WLAN Wireless Local Area Networks
  • AMPDU Aggregated MAC Protocal
  • Auxiliary technologies such as the Data Unit (Aggregated MAC Layer Data Unit), the AMSDU (Aggregated MAC Service Data Unit), and the SGI (Short Guard Interval) make the WLAN wireless service rate more and more Fast, and gradually become an extension and supplement of the wired network.
  • WLAN technology is becoming more and more widely used, and it is no longer limited to private occasions such as home wireless Internet access.
  • Public areas such as airports, libraries, exhibition halls, cafes, conference halls, etc. can also search for WLAN channels and be easily accessed for fast Internet access.
  • the 2.4G frequency band is divided into 1 to 13 channels, and the adjacent channel center frequency is 5 MHz; the 5G frequency band has 149, 153, 157, 161, and 165 channels, and the adjacent channel center frequency The interval is 20MHz.
  • 2.4G frequency band Due to the early appearance of 2.4G WLAN terminal equipment, the market share is high, and the free space attenuation of 2.4G frequency band is small. Compared with 5G, 2.4G frequency band is more common, and WLAN equipment working on 2.4G is more More, it is also more crowded, wireless interference is strong, and the probability of fluctuations in the wireless service experience is great.
  • the following uses 2.4G as an example to illustrate the problem of WLAN channel layout.
  • 2.4G has 13 channels from 1 to 13, but the channel spacing is only 5MHz, there are very few non-overlapping channels. Generally, it will be laid out according to 1, 6, and 11 in actual use. In some cases, 3 and 8 will be used. , 13 channels. Although the 2.4G band also supports the 40MHz bandwidth mode, considering the interference factor, the 2.4G band generally only uses 20MHz bandwidth in practical applications.
  • the channel layout In the centralized networking environment of the access point (AP), in order to minimize the intra-frequency and adjacent-channel interference in the WLAN, the channel layout must be performed for all APs in the environment. In the layout, not only the horizontal interference but also the vertical interference should be considered, and the number of non-overlapping channels available in 2.4G is only three, so the channel layout work is time-consuming and labor-intensive, and the effect is not significant. For the traditional artificial channel layout, before optimizing the channel, it is necessary to investigate: obtain the location of the AP, the map of the building, the MAC, the existing channel and the neighbor AP channel; and then draw a sketch according to the survey results.
  • AP information carefully consider how to set the channel of each AP, confirm the channel, and then solidify the channel one by one for each AP.
  • the best channel that the AP should select is often closely related to the location of the AP, the antenna type and gain to which the AP is connected, and the strength of the AP field. To integrate these factors, it is more difficult to select a suitable working channel for each AP. In some high-density layout scenarios, there are often hundreds of APs in a building. A cell with 10 buildings often has thousands of APs. If each AP is manually determined by a manual method, The workload will be very large, and the subsequent AP increase or decrease may have an impact on the channel layout. When the increase or decrease is more, the channel needs to be re-arranged.
  • each AP in the WLAN centralized networking environment independently selects the most suitable working channel: it can save the manual workload of channel layout and reduce the difficulty of channel layout without considering AP.
  • APs of many manufacturers generally support automatic channel selection, but the selection and handover process are often parallel, that is, all APs in the environment simultaneously run some selection algorithm, scan surrounding interference channels, and determine the channel with the least interference as the channel. Your own subsequent working channel.
  • the disadvantage of this parallel selection scheme is that when the AP runs the algorithm at the same time, the channel switching and scanning are performed simultaneously, and the WLAN environment also changes at any time before the channel of all APs is determined. It is very difficult to choose a certain optimal channel in an unstable wireless environment, and the algorithm is difficult to converge, and sometimes even into a loop operation.
  • the AP in the process of channel scanning calculation and final channel switching, the AP is accompanied by the parallel scanning operation of other surrounding APs, and the change of the WLAN environment necessarily leads to unreasonable channel selection.
  • Parallel channel selection schemes result in the best channel to be determined at a certain point in time, and at a later point in time, it becomes no longer suitable for the AP.
  • the invention provides a method, a device and a system for serial channel selection, which are used to solve the problem that the parallel channel selection technology in the prior art has various uncertainties in channel selection and affects channel selection.
  • a method for serial channel selection including:
  • the server places each access point AP to be configured in the channel into a silent state
  • the server selects a target AP in each AP, and indicates that the target AP turns off the silent state.
  • the server instructs the target AP to select a channel and switch among the scan channel lists one by one;
  • the server selects the next target AP for channel configuration in each AP to be configured by the channel until all the APs are traversed.
  • a method for serial channel selection including:
  • the target AP based on the first indication of the server, turns off the silent state and switches to each channel in the scan channel list one by one to obtain an available channel with the smallest interference, wherein the target AP is an AP selected from each AP configured to be used by the channel. And the APs start the silent state based on the second indication of the server;
  • the server is notified to select a next target AP for channel configuration in each AP configured by the channel.
  • the available channels with the least interference are obtained, which specifically includes:
  • the combined received signal strength indicator RSSI value of the channel is calculated, and the obtained combined RSSI values of the channels are compared, and the channel with the smallest combined RSSI value is obtained in the available channel, and the obtained channel is obtained.
  • the smallest available interference channel is
  • the manner in which the target AP calculates a combined RSSI value includes:
  • the manner in which the target AP calculates a combined RSSI value includes:
  • the manner in which the target AP calculates a combined RSSI value further includes:
  • the combined combined RSSI value and the combined RSSI value of the current channel are accumulated to obtain a combined RSSI value of the current channel considering the influence of the neighbor channel.
  • the method before accumulating the RSSI values, the method further includes: converting the RSSI values into operations for accumulating power units; and obtaining the combined RSSI values.
  • the combined RSSI value performs an operation of unit reverse conversion.
  • the combining the accumulated value CRSSI with the first normalized result and/or combining the accumulated value CRSSI′ with the second normalized result Specifically, the accumulated value CRSSI is multiplied by the first normalized result and/or the accumulated value CRSSI′ is multiplied by the second normalized result.
  • a server including:
  • a silent state indication module configured to put each AP to be configured in a channel into a silent state
  • the AP selection module is configured to select a target AP in each AP, and instruct the target AP to turn off the silent state;
  • a channel scan indication module configured to instruct the target AP to select a channel and switch among the scan channel lists one by one
  • the AP traversing module is configured to trigger the AP selection module to select a next target among the APs to be configured by the channel after the target AP acquires the available channel with the least interference based on the channel switching and migrates to the available channel.
  • the AP performs channel configuration until all APs are traversed.
  • an AP is further provided, where the AP is an AP in a to-be-channel configuration list, and the AP includes:
  • a state setting module configured to: when the server indicates that all APs in the to-be-channel configuration list are in a silent state, enable the silent state of all the APs, and turn off the silent state when the AP is the target AP selected by the server;
  • the channel obtaining module is configured to: according to the instruction of the server, select a channel and switch in a scan channel list one by one, and obtain an available channel with the least interference after switching to each channel;
  • the channel migration module is configured to migrate the channel to the available channel with the least interference, and after the migration, notify the server to select a next target AP in the to-be-channel configuration list for channel configuration.
  • the channel obtaining module is configured to calculate a combined RSSI value of the channel after the AP switches to the corresponding channel, and compare the combined RSSI values of the obtained channels.
  • the available channel with the smallest combined RSSI value is determined as the available channel with the least interference.
  • the channel acquiring module further includes:
  • a first information acquiring submodule configured to acquire an RSSI value of a current channel to which the AP is switched and all APs in the adjacent channel;
  • the first attenuation processing submodule is configured to attenuate the RSSI value of each AP in the adjacent channel according to the channel distance and the preset attenuation amount;
  • a first combined RSSI value obtaining submodule configured to accumulate an RSSI value of each AP in the current channel and each RSSI value attenuated by the adjacent channel to obtain a combined RSSI value of the current channel.
  • the channel acquiring module further includes:
  • a second information acquiring submodule configured to obtain an RSSI value of all APs in the current channel to which the AP is switched;
  • the accumulating submodule is configured to accumulate the RSSI values of the neighboring APs in the current channel to obtain an accumulated value CRSSI;
  • the normalization sub-module is configured to acquire preset RSSI intervals indicating the strength of the interference, and count the number of neighboring APs in the RSSI intervals, and according to preset preset rights corresponding to the RSSI intervals The value normalizes the number of neighboring APs to obtain a first normalized result;
  • a second combined RSSI value obtaining submodule configured to combine the accumulated value CRSSI with the first normalized result to obtain a combined RSSI value of the current channel.
  • the second information acquiring submodule is further configured to acquire an RSSI value of all APs in each adjacent channel of the current channel to which the AP is switched;
  • the accumulating submodule is further configured to accumulate RSSI values of each AP in the adjacent channel to obtain an accumulated value CRSSI' of the adjacent channel;
  • the normalization sub-module is further configured to acquire preset RSSI intervals indicating the strength of the interference, and count the number of each AP in the adjacent channel falling into each RSSI interval, and according to the preset and the preset The weight corresponding to the RSSI interval normalizes the number of APs to obtain a second normalized result;
  • the channel obtaining module further includes: a second attenuation processing sub-module, configured to combine the accumulated value CRSSI′ with the second normalized result to obtain a combined RSSI value of the adjacent channel, and according to the channel distance and Presetting the amount of attenuation to attenuate the combined RSSI;
  • the second combined RSSI value obtaining submodule is further configured to accumulate the combined combined RSSI value and the obtained combined RSSI value of the current channel to obtain a combined RSSI value of the current channel when considering the influence of the neighbor channel.
  • a system for serial channel selection comprising the server of the present invention, and an AP to be channel configured in a target area; Said AP.
  • the solution in the embodiment of the present invention completes the accurate selection of the best channel by each AP in the target area, avoids channel uncertainty in parallel selection, and the channel selection result is more accurate, which can effectively reduce the wireless interference in the field. ;
  • the solution in the embodiment of the present invention does not need to pay attention to the number of regional APs, the geographical location of each AP and the antenna, the floor distribution, and the weak gap of the field strength, and the APs determine the channel according to the surrounding environment, which is relatively simple and easy. And the method is not limited by the scene and is convenient for promotion.
  • FIG. 2 is a flowchart of a method for serial channel selection according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a framework for serial channel selection in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of combined RSSI acquisition in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an improved type of combined RSSI acquisition according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a detailed implementation of a serial channel selection method according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a server according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of an AP according to an embodiment of the present invention.
  • the embodiment of the invention provides a method, a device and a system for serial channel selection.
  • the method is simple in operation and high in channel selection accuracy, and ensures that all APs in the centralized networking area can select a suitable working channel.
  • An embodiment of the present invention provides a method for serial channel selection, which describes a scheme for serially selecting a channel from a server side. As shown in FIG. 1, the method includes:
  • Step S11 The server puts each AP to be configured in the channel into a silent state
  • the introduction of the AP silent state can avoid mutual interference in the traditional parallel channel selection process, and provide necessary support for the subsequent AP to correctly and quickly lock the optimal channel.
  • Step S12 The server selects a target AP in each AP, and instructs the AP to turn off the silent state.
  • Step S13 the server instructs the selected target AP to select channels and switch them one by one in the scan channel list;
  • Step S14 After the selected target AP acquires the available channel with the least interference based on the channel switching and migrates to the available channel, the server returns to step S12 to select the next target AP for channel configuration until all the APs are traversed.
  • the address of each AP, the available channel to migrate to, and the combined RSSI value of the available channel are stored in a tabular manner.
  • An embodiment of the present invention provides a method for serial channel selection, which illustrates a scheme for serially selecting a channel from an AP side. As shown in FIG. 2, the method includes:
  • Step S21 Each AP that is to be configured on the channel starts the silent state according to the indication of the server;
  • Step S22 The target AP turns off the silent state based on the indication of the server, and switches to each channel in the scan channel list one by one to obtain an available channel with the least interference;
  • Step S23 After the target AP migrates to the available channel, the server is notified to select the next target AP for channel configuration in each AP to be configured by the channel.
  • the manner of obtaining the available channel with the least interference includes, but is not limited to, calculating the combined RSSI value of each channel after the selected target APs are switched to the channels one by one, and performing the combined RSSI values of the obtained channels. In comparison, the channel with the smallest combined RSSI value is obtained in the available channel, and the channel is determined to be the available channel with the least interference.
  • the maximum possible interference situation of the WLAN environment can be obtained more accurately, which provides a basis for selecting the optimal channel.
  • the manner in which the selected target AP calculates the combined RSSI value includes but is not limited to:
  • the AP acquires the channel to which the current handover is and the RSSI value of all APs in the adjacent channel;
  • the AP attenuates the RSSI value of each AP in the adjacent channel according to the channel distance and the preset attenuation amount;
  • the AP converts the RSSI value of each AP in the current channel and each RSSI value after the adjacent channel is attenuated into power units that are convenient to be accumulated, and accumulates the RSSI values after unit conversion;
  • the AP performs inverse unit conversion on the accumulated RSSI value to obtain a combined RSSI value of the current channel.
  • the AP acquires the RSSI value of all APs in the channel to which the current handover is performed;
  • the AP converts the RSSI value of each neighbor AP in the current channel into a power unit that is convenient for accumulation, and accumulates the unitized RSSI values to obtain an accumulated value CRSSI;
  • the AP obtains the preset RSSI intervals indicating the strength of the interference, and counts the number of neighbor APs in each RSSI interval, and normalizes the number of neighbor APs according to the preset weights corresponding to the intervals.
  • the AP multiplies the CRSSI by the normalized result and performs a unit inverse conversion on the multiplied result to obtain a combined RSSI value of the current channel.
  • the AP acquires the RSSI value of all APs in each adjacent channel that is currently switched to the channel;
  • the AP converts the RSSI value of each AP in the adjacent channel into a power unit for accumulating, and accumulates the unitized RSSI values to obtain an accumulated value CRSSI' of the adjacent channel;
  • the AP obtains preset RSSI intervals indicating the strength of the interference, and counts the number of APs that each AP falls into each RSSI interval, and normalizes the number of APs according to the preset weights corresponding to the intervals.
  • the AP multiplies the CRSSI' by the normalized AP number, and performs a unit inverse conversion on the multiplied result to obtain a combined RSSI value of the adjacent channel, and attenuates the value according to the channel distance and the preset attenuation amount;
  • the AP converts the combined combined RSSI value and the combined RSSI value of the current channel obtained by the mode 2 into accumulative power units, and performs the inverse unit conversion to obtain the current channel when considering the influence of the neighbor channel. Combine the RSSI value.
  • the method in this embodiment completes the accurate selection of the best channel by each AP in the cell one by one, avoids the channel uncertainty at the time of simultaneous selection, and can effectively reduce the wireless interference in the field.
  • the serial channel selection method according to the embodiment of the present invention includes system level operations (ie, server side operations) and AP level operations.
  • AP selection operation 101 Select each AP one by one according to the AP address list 104 prepared in advance. After an AP operation process is completed, select the next AP and instruct its operation.
  • all APs need to be in a silent state.
  • the WLAN system should have no user connection and no management, control, and data packets from any AP.
  • the WLAN environment is in a state of silence. The state of silence. Then, the APs are started one by one, and before starting the channel selection of a single AP, the silence is turned off and the normal wireless transceiver status is entered.
  • AP automatic channel selection initiation operation 103 Instructs the AP to start automatic channel selection, specifically referring to which sub-operations refer to the AP-level operation instructions.
  • AP Address List 104 Provides a list of addresses required for serial operation of system level operations, which need to be obtained in advance.
  • Channel scan operation 105 After receiving the AP automatic channel selection start command of the system level operation, the operation is first transferred. According to the scan channel list 110, each channel is scanned, calculated, and switched one by one. Wherein, the calculation is done by the combined RSSI detection operation 109.
  • the channel decision module 106 determines the current best working channel based on the scan results of the selectable channel list 111 and the channel scan operation 105.
  • Channel migration module 107 Performs actual channel migration based on the results of channel decision module 106.
  • Silent on and off operation 108 receiving an indication of system level operation to enable silent opening and closing of the AP.
  • Combined RSSI detection operation 109 In conjunction with channel scan operation 105, a combined RSSI value is calculated for each channel in the switch to scan channel list 110, in dBm.
  • Scan channel list 110 Provides all channel numbers to be scanned.
  • Optional Channel List 111 Provides all optional channel numbers to be determined and migrated.
  • the manner in which the combined RSSI detection operation 109 calculates the combined RSSI value includes:
  • the combined RSSI value calculation acquisition process mainly includes the following parts:
  • the MAC/RSSI information acquisition operation 201 receives the output from the channel scanning module 105, and acquires the MAC/RSSI correspondence information of the current channel (the channel to which the AP is switched according to the scan channel list) and all APs of the adjacent channel.
  • MAC/RSSI information link list aging update operation 202 Put the MAC/RSSI corresponding information into the linked list, update the existing information, and start a timer to perform aging judgment. The aged MAC/RSSI information will be deleted from the linked list. After the linked list operation ends, it enters the same adjacent frequency RSSI pre-operation 203 for processing.
  • the adjacent-frequency RSSI pre-operation 203 one AP (ie, node) is taken out one by one from the linked list. If the AP belongs to the adjacent channel, the RSSI value of the AP is attenuated according to the channel distance and the preset attenuation; if the AP belongs to For the current channel, no attenuation is performed.
  • dBm to pw conversion and accumulation operation 204 After the operation of the adjacent-frequency RSSI pre-operation 203 is completed, the RSSI (in dBm) of each AP in the linked list is converted into a pw (pitch) unit (because dBm is not convenient to directly accumulate), And on this basis, an accumulation operation is performed to combine various RSSI values.
  • Pw accumulated value to dBm conversion operation 205 inversely converts the accumulated pw unit result of 204 into the combined RSSI information in dBm to obtain the combined RSSI value of the current channel.
  • the current channel combination RSSI information recording operation 206 records the combined RSSI information calculated by the current channel as the decision basis of the subsequent optimal channel determination module 106.
  • the combined RSSI value calculation acquisition process mainly includes the following parts:
  • the MAC/RSSI information acquisition operation 301 receives the output from the channel scanning module 105, and acquires MAC/RSSI correspondence information of all APs of the current channel (the channel to which the AP switches according to the scan channel list).
  • MAC/RSSI information link list aging update operation 302 Put each MAC/RSSI corresponding information into a linked list, update the existing information, and start a timer to perform aging judgment. The aged MAC/RSSI information will be deleted from the linked list.
  • dBm to pw conversion and accumulation operation 303 converting the dBm that is inconvenient to be directly accumulated into a pw (pitch) unit according to the RSSI information of the neighbor AP of the channel (ie, the neighbor AP of the selected AP in the current channel) On this basis, an accumulation operation is performed to combine various RSSI values.
  • the combined RSSI obtained at this time is called CRSSI (pw) and the unit is pw.
  • Obtaining the number of neighboring APs in each RSSI interval operation 304 Obtaining the number of neighboring APs in each RSSI interval of the current channel, where the RSSI interval is [0, -45] dBm, [-46, -65] dBm, [-66, -75] dBm, [-75, -85] dBm.
  • These interval distributions represent neighboring APs that are near, medium, far, and far.
  • the interference of neighboring APs in these intervals to the AP is strong to weak.
  • the RSSI interval indicating near, medium, far, and far can be divided according to empirical values, or can be divided by prior experiments.
  • Normalized neighbor AP number NNUM calculation operation 305 According to the interval distribution result of 304, and considering that the interference of the neighbor APs of the sections to the local AP is strong to weak, multiplying the number of neighbor APs of each section by the corresponding weights To get the normalized neighbor AP number NNUM.
  • the number of neighboring APs of [0, -45] dBm, [-46, -65] dBm, [-66, -75] dBm, [-75, -85] dBm is N1, N2, N3, N4, respectively.
  • the principle of setting the weight is that the larger the interference is, the larger the value is.
  • the specific weights given above are only an exemplary explanation, and those skilled in the art can flexibly set according to the setting principle according to specific requirements.
  • N1, N2, N3, and N4 are 2, 11, 10, and 56, respectively, and the calculated normal neighbor AP number NNUM is 15.
  • Multiply operation 306 Multiply the results of 303, 305.
  • Pw accumulated value to dBm conversion operation 307 Converts the result of 306 into dBm, which is the modified combined RSSI, called MRSSI (dBm). According to the above exemplary explanation, the corrected combined RSSI obtained is -23 dBm.
  • the current channel combination RSSI information recording operation 308 recording the calculated combined combined RSSI information of the current channel as the determination basis of the subsequent optimal channel determination module 106.
  • the implementation process of the mode is the same as that of the second mode, but the influence of the neighbor channel is considered.
  • the specific calculation methods include:
  • MAC/RSSI information acquisition operation receiving an output from the channel scanning module 105, and acquiring MAC/RSSI correspondence information of all APs in each adjacent channel.
  • MAC/RSSI information link list aging update operation Put the MAC/RSSI corresponding information into the linked list, update the existing information, and start the timer to perform aging judgment. The aged MAC/RSSI information will be deleted from the linked list.
  • dBm to pw conversion and accumulation operation converting the RSSI value of each AP in the adjacent channel into a pw (pitch) unit for accumulating, and accumulating the unitized RSSI values to obtain the accumulated value CRSSI' of the adjacent channel.
  • Each RSSI interval AP number distribution acquisition operation and normalized AP number calculation operation acquiring preset RSSI intervals indicating the strength of the interference, and counting the number of APs in each adjacent RSSI falling into each RSSI interval, and according to the pre- The weights corresponding to the intervals are normalized to the number of APs.
  • Multiplication operation Multiply CRSSI' by the number of normalized APs.
  • Pw accumulated value to dBm conversion operation The result of the multiplication operation is converted into dBm, which is the combined RSSI value of the adjacent channel correction.
  • Attenuation operation attenuating the combined RSSI value of the adjacent channel according to the channel distance and the preset attenuation amount;
  • the adjacent adjacent frequency combining operation converting the combined RSSI value of the attenuated adjacent channel and the combined RSSI value of the current channel calculated according to the second method into accumulatively added pw units, and accumulating the accumulated result, and performing the unit inverse conversion.
  • the combined RSSI value of the current channel is taken into account when considering the influence of the neighbor channel.
  • the current channel combination RSSI information recording operation recording the combined RSSI value of the current channel when considering the influence of the neighbor channel, as the determination basis of the subsequent optimal channel determination module 106.
  • the method includes:
  • Step 1 Investigate the AP address table for obtaining the channel configuration in the cell.
  • the AP address table can be listed by IP address, and subsequent serial operations will process the AP based on this list.
  • Step 2 The AP address and the currently working channel number, the combined RSSI of the channel, and the like are organized into a table for comparison with the optimized situation in step 14.
  • Step 3 According to the AP address table sorted in step 1, each AP is set to a silent open state. After this operation, all APs in the area do not send wireless data packets and management packets, and therefore do not interfere with subsequent AP channel selection.
  • Step 4 Select each AP in turn. This is to select an AP from the beginning of the AP address list.
  • Step 5 Turn off the silent state for the AP selected in step 4.
  • the AP can normally send a Beacon frame and a Probe Response frame.
  • Step 6 Perform a channel scan operation on the selected AP.
  • Step 7 The AP selects a channel from the scan list and switches to the channel to send and receive packets.
  • Step 8 The AP obtains information such as MAC/RSSI of the channel by using active scanning or passive scanning on the channel selected in step 7.
  • Step 9 Determine whether the channels in the scan list have been switched. If there is still a channel that has not been switched, go to step 6 for processing. Otherwise, go to step 10.
  • Step 10 Calculate the combined RSSI based on the channels in the scan list and combine the RSSI information of the channel and the adjacent channel respectively.
  • Step 11 From the optional channel list, according to the combined RSSI of each channel calculated in step 10, select a channel with the smallest combined RSSI value.
  • the optional channel list is a subset of the scan channel list.
  • the 2.4G scan channel list contains 1, 6, 11, 3, 8, and 13 channels, while the field layout only allows 1, 6, and 11 channels, so the optional channel list can only be 1, 6, and 11.
  • 3, 8, and 13 are only used as data inputs when the adjacent frequency RSSI is converted.
  • Step 12 The AP migrates to the channel selected in step 11 and displays the channel information. At this point, the AP will normally send Beacon and Probe Resp on the channel and allow the user to access and work normally. The signal field strength sent by it will be used as the same adjacent interference source input when other APs perform channel selection.
  • Step 13 Determine whether the devices in the AP address list are traversed. If there are still APs that are not processed, skip to step 4 and continue to select the next AP to run the channel selection algorithm. If there are no remaining APs, go to step 14.
  • Step 14 The channel selection algorithms of all APs are all completed, and the AP address and the newly selected channel number, the combined RSSI of the channel, and the like are organized into a table.
  • Step 15 The serial channel selection algorithm ends and all APs are in normal working state.
  • each microcell has 3 teams in 1, 6, and 11 channels, but there are N microcells in one building, so 3*N teams can be arranged, 3 *N is approximately equal to 100.
  • the division of this micro-cell does not require human research, nor does it have a specific boundary.
  • the serial channel selection method described in this embodiment eliminates the previous field investigation and manual analysis and optimization operations.
  • the serial channel selection operation can be performed for one cell, for a certain building, or for a newly installed AP, and the algorithm is simple and easy. And the number of channels scanned, the scanning time of each channel can be set, which improves the flexibility of the system.
  • the solution is not limited by the scene, and can be used in low-density, high-density AP scenes, multi-floor coverage scenarios, and room coverage scenarios.
  • each AP sequentially obtains a combined decision value by sensing the weak influence of all APs of the neighboring cell and the strong influence of other APs in the cell, and selects the best channel from among them.
  • This method does not pay attention to the number of regional APs, the geographical location of each AP and antenna, the floor distribution, and the weak gap of the field strength. It is relatively simple and easy for each AP to determine according to the surrounding environment. Since each AP performs channel selection in serial operation, a certain channel is selected to remain fixed, avoiding the continuously changing mutual interference when the parallel channel is selected, and is replaced by static measurable mutual interference, so the result of channel selection More precise.
  • the method described in this embodiment attempts to reduce intra-system interference, and the scheme is still effective even if there are multiple operators' WLAN interference signals (out-of-system) interference in the field. Not only is the channel selection for 2.4G effective, but in the 5G band, the solution is still feasible.
  • This scheme is mainly used in the WLAN network planning network optimization phase. It automatically remains fixed after the channel is selected, and does not require periodic channel selection.
  • An embodiment of the present invention provides a server, as shown in FIG. 7, including:
  • the silent state indication module 711 is configured to put each AP to be configured in the channel into a silent state
  • the AP selection module 712 is configured to select a target AP in each AP, and instruct the AP to turn off the silent state.
  • the channel scan indication module 713 is configured to instruct the selected target AP to select and switch channels one by one in the scan channel list;
  • the AP traversing module 714 is configured to: after the selected target AP acquires the available channel with the least interference based on the channel switching and migrates to the available channel, the triggering AP selecting module 712 selects the next target AP from each AP to be configured by the channel. Channel configuration until all APs are traversed.
  • the process of serial selection of the auxiliary APs is completed from the server side.
  • all APs By setting all APs to be in a silent state, mutual interference in the traditional parallel channel selection process can be avoided, and the target APs selected subsequently can be correct and fast. Locking the best channel provides the necessary support.
  • An embodiment of the present invention provides an AP, where the AP is an AP in a to-be-configured list, as shown in FIG.
  • the state setting module 810 is configured to: when the server indicates that all the APs in the to-be-configured channel list are in the silent state, enable the silent state of the AP, and disable the silent state when the AP is the target AP selected by the server;
  • the channel obtaining module 820 is configured to select and switch channels one by one in the scan channel list according to the indication of the server, and obtain an available channel with the least interference after switching to each channel;
  • the channel migration module 830 is configured to migrate the channel to the available channel with the least interference, and after the migration, notify the server to select the next target AP for channel configuration in the to-be-channel configuration list.
  • the channel obtaining module 820 is specifically configured to calculate a combined RSSI value of the channel after the associated AP switches to the corresponding channel, and compare the combined RSSI values of the obtained channels to determine that the available channel with the smallest combined RSSI value is The smallest available interference channel.
  • the manner in which the channel obtaining module 820 calculates the combined RSSI value includes:
  • the channel obtaining module 820 includes:
  • a first information acquiring submodule configured to acquire a channel to which the AP is currently switched and an RSSI value of all APs in the adjacent channel;
  • the first attenuation processing submodule is configured to attenuate the RSSI value of each AP in the adjacent channel according to the channel distance and the preset attenuation amount;
  • the first combined RSSI value acquisition sub-module is configured to accumulate the RSSI value of each AP in the current channel and the RSSI values after the adjacent channel is attenuated to obtain a combined RSSI value of the current channel.
  • the channel obtaining module 820 includes:
  • a second information acquiring submodule configured to obtain an RSSI value of all APs in the channel to which the AP is currently switched
  • the accumulating submodule is configured to accumulate the RSSI values of the neighboring APs in the current channel to obtain an accumulated value CRSSI;
  • the normalized sub-module is configured to obtain preset RSSI intervals indicating the strength of the interference, and count the number of neighboring APs in each RSSI interval, and normalize the neighbors according to the preset weights corresponding to the intervals.
  • the second combined RSSI value acquisition sub-module is configured to combine the accumulated value CRSSI with the normalized result to obtain a combined RSSI value of the current channel.
  • the channel obtaining module 820 includes:
  • the second information acquiring sub-module is further configured to obtain an RSSI value of all APs in each adjacent channel that the AP currently switches to the channel;
  • the accumulating submodule is further configured to accumulate the RSSI values of the APs in the adjacent channels to obtain an accumulated value CRSSI' of the adjacent channels;
  • the normalized sub-module is further configured to obtain preset RSSI intervals indicating the strength of the interference, and count the number of APs in the adjacent channel falling into the RSSI intervals, and return according to the preset weights corresponding to the intervals.
  • the second attenuation processing sub-module is configured to combine the accumulated value CRSSI' with the normalized AP number to obtain a combined RSSI value of the adjacent channel, and attenuate the value according to the channel distance and the preset attenuation amount;
  • the second combined RSSI value acquisition sub-module is further configured to accumulate the combined combined RSSI value and the obtained combined RSSI value of the current channel to obtain a combined RSSI value of the current channel when considering the influence of the neighbor channel.
  • each RSSI value needs to be converted into a power unit that is convenient for accumulation.
  • the obtained combined RSSI value is also required to be inversely converted in units.
  • the solution in this embodiment completes the accurate selection of the best channel by each AP in the cell, avoids the channel uncertainty at the time of simultaneous selection, and can effectively reduce the wireless interference in the field.
  • the embodiment of the present invention provides a system for serial channel selection, the system includes the server according to the third embodiment, and the AP to be configured in the target area, and the AP is the AP according to the fourth embodiment.
  • the accurate selection of the best channel by each AP in the target area is completed one by one, thereby avoiding channel uncertainty in parallel selection, so that the result of channel selection is more accurate and effectively reduced.
  • Radio interference on site; at the same time, do not pay attention to the number of APs in the area, the geography of each AP and antenna
  • the weak gap between location, floor distribution and field strength is determined by each AP according to the surrounding environment, which is relatively simple and easy, and the method is not limited by the scene and is easy to promote.

Abstract

本发明提供了一种串行信道选择的方法、装置及系统,其中,所述串行信道选择方法包括:目标AP基于服务器的第一指示,关闭静默状态并逐一切换至扫描信道列表中的各信道,获取干扰最小的可用信道,其中,所述目标AP为从待信道配置的各AP中选择的AP,并且所述各AP基于所述服务器的第二指示均开启了静默状态;所述目标AP迁移至所述可用信道后,通知所述服务器在所述待信道配置的各AP中选取下一目标AP进行信道配置。采用本发明提供的上述技术方案,避免了并行选择时的信道不确定性,使得信道选择的结果更加精确,有效降低了现场的无线干扰;同时,由各AP根据周围的环境去确定,比较简单易行,并且所述方法不受场景限制,便于推广。

Description

串行信道选择的方法、装置及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种串行信道选择的方法、装置及系统。
背景技术
WLAN(Wireless Local Area Networks,无线局域网络)技术完成了从802.11b的11Mbps,到802.11a和802.11g的54Mbps,再到802.11N的最高450Mbps的物理层速率的飞跃,并伴随AMPDU(Aggregated MAC Protocal Data Unit,聚合MAC层协议数据单元)、AMSDU(Aggregated MAC Service Data Unit,聚合MAC层业务数据单元)、SGI(Short Guard Interval,短保护间隔)这类辅助技术,使得WLAN无线业务速率越来越快,逐渐成为有线网络的扩展与补充。
随着用户对于高速无线上网需求的愈加强烈,以及笔记本电脑、手机对高速WLAN的支持愈加普遍,WLAN技术得到越来越广泛的应用,其不再局限于家庭无线上网这类私有场合,而在机场、图书馆、展厅、咖啡厅、会议大厅等公共区域,也能搜索到WLAN信道并被方便地接入,实现快速的上网。
在WLAN无线应用中,有两个频段可以使用,2.4G和5G。由于是ISM(Industrial/Scientific/Medical,工业科学医疗)频段,使用时无需申请许可证,因此在该频段上工作的无线设备密度很高,相互干扰很大,直接影响无线业务的效果。以中国区为例,2.4G频段分为1~13信道,相邻信道中心频率的间隔为5MHz;5G频段现有149、153、157、161、165这几个信道,相邻信道中心频率的间隔为20MHz。
由于2.4G的WLAN终端设备出现的比较早,市场占有率高,且2.4G频段的自由空间衰减较小,相对5G而言,2.4G频段使用更为普遍,在2.4G上工作的WLAN设备较多,也较为拥挤,无线干扰较强,无线业务体验出现波动的概率很大。
下面以2.4G为例,来说明WLAN信道布局的问题。
尽管2.4G有1~13共13个信道,但由于信道之间间隔只有5MHz,因此真正的非重叠信道很少,一般实际使用中会按照1、6、11布局,个别情况会使用3、8、13信道。虽然2.4G频段也支持40MHz带宽模式,但考虑干扰因素,实际应用中2.4G频段一般只会采用20MHz带宽。
在AP(Access Point,接入点)集中组网环境下,为了尽可能降低WLAN实际场景下的同频及邻频干扰,必须对环境中的所有AP进行信道布局。布局时,不仅要考虑水平方向的干扰,还要考虑垂直方向的干扰,而2.4G可用的非重叠信道数只有3个,因此信道布局工作往往耗时耗力,成效并不显著。对于传统的人工信道布局而言,优化信道前,先要调研:获取AP的位置、所在楼栋房型简图、MAC、现有信道和邻居AP信道等信息;再根据调研结果绘出草图,标注AP信息,仔细斟酌各个AP的信道该如何设置,确认好信道后,再对各AP逐个固化信道。AP应选择的最佳信道,往往与AP所在位置、AP所连接的天线类型与增益、AP场强等因素密切相关。要综合这些因素,为每个AP选择一个合适的工作信道,难度较大。在某些高密度布局场景下,一个建筑物内往往有几百台AP,一个具有10栋建筑物的小区,往往就有几千台AP,如果对每个AP以人工的方式独立确定信道,工作量会非常大,而且后续AP的增减都可能对信道布局产生影响,增减较多时往往需要对信道重新布局。
基于上述考虑,让WLAN集中组网环境中的各AP自主选择最合适的工作信道,是非常具有现实意义的:可以省去人工进行信道布局的工作量,降低信道布局的难度,而无需考虑AP位置、天线类型等因素;有AP增减时,只需重新进行一次自动信道选择,无需考虑增减的AP周围的其他AP的信道分布情况;让AP自身去分析WLAN环境状况,并自主决定工作信道,可以使选择结果更精确。
目前,很多厂家的AP一般都支持自动信道选择,但其选择及切换过程往往是并行的,即环境中的所有AP同时运行某种选择算法,扫描周围的干扰信道,并确定干扰最小的信道作为自己后续的工作信道。这种并行选择方案的缺点是:AP同时运行算法时,会同时进行信道切换并扫描,在所有AP的信道确定之前,WLAN环境也是在时刻变化的。在一个不稳定的无线环境中选择一个确定的最佳信道难度很大,且算法难以收敛,有时甚至会陷入循环运算。也就是说,AP在信道扫描计算和信道最终切换的过程中,伴随着周围其他AP的并行扫描操作,WLAN环境的变化必然导致不合理的信道选择。并行的信道选择方案,会导致在某一个时间点判定的最佳的信道,在随后的一个时间点,变得不再适合这个AP。
为解决上述问题,部分厂家设计了一些优化机制来改善信道选择结果,甚至规定信道选择按场景区分,某些场景下禁止启用自动信道选择。前者显然会进一步增加信道选择算法的复杂度,后者势必会使得某些WLAN应用场景再次回到人工配置信道的老路上。
所以,如何既能克服人工选择信道的繁琐与低效,又能避免传统并行信道选择过程中存在的不确定性问题,成为目前亟待解决的技术问题。
发明内容
本发明提供一种串行信道选择的方法、装置及系统,用以解决现有技术中并行信道选择技术在信道选择时存在各种不确定性,影响信道选择的问题。
依据本发明的一个实施例,提供一种串行信道选择的方法,包括:
服务器将待信道配置的各接入点AP置于静默状态;
服务器在各AP中选取一目标AP,并指示该目标AP关闭静默状态;
服务器指示所述目标AP在扫描信道列表内逐一选取信道并切换;
服务器在所述目标AP基于信道切换而获取到干扰最小的可用信道并迁移至该可用信道后,在所述待信道配置的各AP中选取下一目标AP进行信道配置,直到遍历完所有AP。
依据本发明的另一个实施例,还提供了一种串行信道选择的方法,包括:
目标AP基于服务器的第一指示,关闭静默状态并逐一切换至扫描信道列表中的各信道,获取干扰最小的可用信道,其中,所述目标AP为从待信道配置的各AP中选择的AP,并且所述各AP基于所述服务器的第二指示均开启了静默状态;
所述目标AP迁移至所述可用信道后,通知所述服务器在所述待信道配置的各AP中选取下一目标AP进行信道配置。
可选地,本发明实施例所述方法中,所述目标AP逐一切换至扫描信道列表中的各信道后,获取干扰最小的可用信道,具体包括:
所述目标AP在切换至相应信道后计算该信道的组合接收信号强度指示RSSI值,并将得到的各信道的组合RSSI值进行比较,在可用信道中获取组合RSSI值最小的信道,得到所述干扰最小的可用信道。
可选地,本发明实施例所述方法中,所述目标AP计算组合RSSI值的方式,包括:
获取切换至的当前信道以及邻近信道中所有AP的RSSI值;
根据信道距离及预置衰减量将所述邻近信道中各AP的RSSI值进行衰减;
将所述当前信道中各AP的RSSI值以及所述邻近信道衰减后的各RSSI值进行累加,得到所述当前信道的组合RSSI值。
可选地,本发明实施例所述方法中,所述目标AP计算组合RSSI值的方式,包括:
获取切换至的当前信道中所有AP的RSSI值;
将所述当前信道中各邻居AP的RSSI值进行累加,得到累加值CRSSI;
获取预置的表示干扰强弱的各RSSI区间,统计落入所述各RSSI区间中邻居AP的个数,并根据预置的与所述各RSSI区间对应的权值归一化邻居AP的个数;
将所述累加值CRSSI与归一化结果相结合,得到所述当前信道的组合RSSI值。
可选地,本发明实施例所述方法中,所述目标AP计算组合RSSI值的方式,还包括:
获取切换至的当前信道的各邻近信道中所有AP的RSSI值;
将邻近信道中各AP的RSSI值进行累加,得到所述邻近信道的累加值CRSSI’;
获取预置的表示干扰强弱的各RSSI区间,统计所述邻近信道中各AP落入各RSSI区间的个数,并根据预置的与所述各RSSI区间对应的权值归一化AP个数;
将所述累加值CRSSI’与所述归一化的AP个数相结合,得到所述邻近信道的组合RSSI值,并根据信道距离及预置衰减量将所述组合RSSI值进行衰减处理;
将衰减后的组合RSSI值以及所述当前信道的组合RSSI值进行累加,得到考虑邻居信道影响时所述当前信道的组合RSSI值。
可选地,本发明实施例所述方法中,在对各RSSI值进行累加前还包括将所述各RSSI值转换为便于累加的功率单位的操作;在得到组合RSSI值时还包括对得到的所述组合RSSI值进行单位反向转换的操作。
可选地,本发明实施例所述方法中,,所述将累加值CRSSI与所述第一归一化结果相结合和/或将累加值CRSSI’与所述第二归一化结果相结合具体为:将累加值CRSSI与所述第一归一化结果进行相乘操作和/或将累加值CRSSI’与所述第二归一化结果进行相乘操作。
依据本发明的第三个实施例,还提供了一种服务器,包括:
静默状态指示模块,设置为将待信道配置的各AP置于静默状态;
AP选取模块,设置为在各AP中选取一目标AP,并指示该目标AP关闭静默状态;
信道扫描指示模块,设置为指示所述目标AP在扫描信道列表内逐一选取信道并切换;
AP遍历模块,设置为在所述目标AP基于信道切换而获取到干扰最小的可用信道并迁移至该可用信道后,触发所述AP选取模块在所述待信道配置的各AP中选取下一目标AP进行信道配置,直到遍历完所有AP。
依据本发明的第四个实施例,还提供了一种AP,所述AP为待信道配置列表中的AP,所述AP包括:
状态设置模块,设置为当服务器指示所述待信道配置列表中的所有AP开启静默状态时,开启所述所有AP的静默状态,并在所述AP为服务器选取的目标AP时,关闭静默状态;
信道获取模块,设置为根据所述服务器的指示,在扫描信道列表内逐一选取信道并切换,并在切换至各信道后,获取干扰最小的可用信道;
信道迁移模块,设置为将信道迁移至所述干扰最小的可用信道上,并在迁移后,通知所述服务器在所述待信道配置列表中选取下一目标AP进行信道配置。
可选地,本发明所述的AP中,所述信道获取模块,设置为在所述AP切换至相应信道后,计算该信道的组合RSSI值,将得到的各信道的组合RSSI值进行比较,将所述组合RSSI值最小的可用信道确定为干扰最小的可用信道。
可选地,本发明实施例所述的AP中,所述信道获取模块,进一步包括:
第一信息获取子模块,设置为获取AP切换至的当前信道以及邻近信道中所有AP的RSSI值;
第一衰减处理子模块,设置为根据信道距离及预置衰减量将邻近信道中各AP的RSSI值进行衰减;
第一组合RSSI值获取子模块,设置为将所述当前信道中各AP的RSSI值以及所述邻近信道衰减后的各RSSI值进行累加,得到所述当前信道的组合RSSI值。
可选地,本发明实施例所述的AP中,所述信道获取模块,进一步包括:
第二信息获取子模块,设置为获取AP切换至的当前信道中所有AP的RSSI值;
累加子模块,设置为将所述当前信道中各邻居AP的RSSI值进行累加,得到累加值CRSSI;
归一化子模块,设置为获取预置的表示干扰强弱的各RSSI区间,统计落入所述各RSSI区间中邻居AP的个数,并根据预置的与所述各RSSI区间对应的权值归一化邻居AP的个数,得到第一归一化结果;
第二组合RSSI值获取子模块,设置为将所述累加值CRSSI与所述第一归一化结果相结合,得到所述当前信道的组合RSSI值。
可选地,本发明实施例所述的AP中,
所述第二信息获取子模块,还设置为获取AP切换至的当前信道的各邻近信道中所有AP的RSSI值;
所述累加子模块,还设置为将所述邻近信道中各AP的RSSI值进行累加,得到所述邻近信道的累加值CRSSI’;
所述归一化子模块,还设置为获取预置的表示干扰强弱的各RSSI区间,统计所述邻近信道中各AP落入各RSSI区间的个数,并根据预置的与所述各RSSI区间对应的权值归一化AP个数,得到第二归一化结果;
所述信道获取模块,还包括:第二衰减处理子模块,设置为将累加值CRSSI’与所述第二归一化结果相结合,得到所述邻近信道的组合RSSI值,并根据信道距离及预置衰减量将所述组合RSSI进行衰减处理;
所述第二组合RSSI值获取子模块,还设置为将衰减后的组合RSSI值以及得到的当前信道的组合RSSI值进行累加,得到考虑邻居信道影响时当前信道的组合RSSI值。
依据本发明的第五个实施例,还提供了一种串行信道选择的系统,所述系统包括本发明所述的服务器,以及目标区域内待信道配置的AP;所述AP为本发明所述的AP。
本发明有益效果如下:
首先,本发明实施例所述方案通过逐个完成目标区域内各AP对最佳信道的准确选择,避免并行选择时的信道不确定性,信道选择的结果更加精确,可有效地降低现场的无线干扰;
其次,本发明实施例所述方案不用关注区域AP数量、每个AP和天线的地理位置、楼层分布以及场强的微弱差距,而由各AP根据周围的环境去确定信道,比较简单易行,并且所述方法不受场景限制,便于推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种串行信道选择的方法的流程图;
图2为本发明实施例二提供的一种串行信道选择的方法的流程图;
图3为本发明实施例中串行信道选择的框架示意图;
图4为本发明实施例中组合RSSI获取的示意图;
图5为本发明实施例中组合RSSI获取的改进型示意图;
图6为本发明实施例所述的串行信道选择方法的详细实现流程图;
图7为本发明实施例提供的一种服务器的结构框图;
图8为本发明实施例提供的一种AP的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术中并行信道选择技术在信道选择时存在各种不确定性,影响信道选择的问题,本发明实施例提供一种串行信道选择的方法、装置以及系统。所述方法操作简单,信道选择准确度高,保证了集中组网区域内的所有AP均能选择到合适的工作信道。下面就通过几个具体实施例对本发明的详细实施过程进行阐述。
实施例一
本发明实施例提供一种串行信道选择的方法,该方法从服务器侧对串行选择信道的方案进行说明,如图1所示,所述方法包括:
步骤S11,服务器将待信道配置的各AP置于静默状态;
该步骤中,AP静默状态的引入,可以避免传统的并行信道选择过程中的互干扰,为后续AP可以正确而快速地锁定最佳信道提供必要支持。
步骤S12,服务器在各AP中选取一目标AP,并指示该AP关闭静默状态;
步骤S13,服务器指示选取的目标AP在扫描信道列表内逐一选取信道并切换;
步骤S14,服务器在选取的目标AP基于信道切换而获取到干扰最小的可用信道并迁移至该可用信道后,返回步骤S12,选取下一目标AP进行信道配置,直到遍历完所有AP。
优选地,当遍历完所有AP后,将各AP的地址、迁移至的可用信道以及该可用信道的组合RSSI值以表格方式存储。
实施例二
本发明实施例提供一种串行信道选择的方法,该方法从AP侧对串行选择信道的方案进行说明,如图2所示,所述方法包括:
步骤S21,待信道配置的各AP基于服务器的指示均开启静默状态;
步骤S22,目标AP基于服务器的指示,关闭静默状态并逐一切换至扫描信道列表中的各信道,获取干扰最小的可用信道;
步骤S23,目标AP迁移至所述可用信道后,通知服务器在待信道配置的各AP中选取下一目标AP进行信道配置。
上述步骤S22中,获取干扰最小的可用信道的方式包括但不限于为:当选取的目标AP逐一切换至各信道后,计算各信道的组合RSSI值,并将得到的各信道的组合RSSI值进行比较,在可用信道中获取组合RSSI值最小的信道,确定该信道为干扰最小的可用信道。
该优选方式,通过组合RSSI值的计算,可以较为精确地获取所处WLAN环境的最大可能干扰情况,为最佳信道的选择提供依据。
其中,选取的目标AP计算组合RSSI值的方式包括但不限于为:
方式一:
AP获取当前切换至的信道以及邻近信道中所有AP的RSSI值;
AP将邻近信道中各AP的RSSI值根据信道距离及预置衰减量进行衰减;
AP将当前信道中各AP的RSSI值以及邻近信道衰减后的各RSSI值转换为便于累加的功率单位,并将单位转换后的各RSSI值进行累加;
AP将累加后的RSSI值进行单位反向转换,得到当前信道的组合RSSI值。
方式二:
AP获取当前切换至的信道中所有AP的RSSI值;
AP将当前信道中各邻居AP的RSSI值转换为便于累加的功率单位,并将单位转换后的各RSSI值进行累加,得到累加值CRSSI;
AP获取预置的表示干扰强弱的各RSSI区间,统计落入各RSSI区间中邻居AP的个数,并根据预置的与各区间对应的权值归一化邻居AP的个数;
AP将CRSSI与归一化结果相乘,并将相乘结果进行单位反向转换,得到当前信道的组合RSSI值。
方式三,该方式的实施需要结合方式二,具体为:
AP获取当前切换至信道的各邻近信道中所有AP的RSSI值;
AP将邻近信道中各AP的RSSI值转换为便于累加的功率单位,并将单位转换后的各RSSI值进行累加,得到邻近信道的累加值CRSSI’;
AP获取预置的表示干扰强弱的各RSSI区间,统计邻近信道中各AP落入各RSSI区间的个数,并根据预置的与各区间对应的权值归一化AP个数;
AP将CRSSI’与归一化AP个数相乘,并将相乘结果进行单位反向转换,得到邻近信道的组合RSSI值,并将该值根据信道距离及预置衰减量进行衰减处理;
AP将衰减后的组合RSSI值以及通过方式二获取的当前信道的组合RSSI值转换为便于累加的功率单位后进行累加,并将累加结果进行单位反向转换,得到考虑邻居信道影响时当前信道的组合RSSI值。
综上所述,本实施例所述方法通过逐个完成小区内各AP对最佳信道的准确选择,避免同时选择时的信道不确定性,可有效地降低现场的无线干扰。
基于上述原理性阐述,下面根据图3~图6给出本发明一个较佳的实施例,并结合对实施例的描述,进一步给出本发明的技术细节,使其能够更好地说明本发明的提供的方法的具体实现过程。
本发明实施例所述的串行信道选择方法,如图3所示,包括系统级操作(即服务器侧的操作)和AP级操作。
系统级操作,具体包括如下几个子操作:
AP选择操作101:根据事先准备的AP地址列表104,逐个选择各AP。待某个AP操作处理完成后,再选择下一个AP并指示其操作。
AP静默指示操作102:指示AP启动静默和关闭静默。在串行信道选择操作开始之初,需要指示所有AP均处于静默状态,此时WLAN系统内部应无用户连接、无任何AP发出的管理、控制及数据报文,WLAN环境处于一种“鸦雀无声”的寂静状态。接着,逐个启动AP,在启动单个AP的信道选择之前,先关闭其静默,进入正常的无线收发包状态。
AP自动信道选择启动操作103:指示AP开始进行自动信道选择,具体涉及哪些子操作参考AP级操作说明。
AP地址列表104:提供系统级操作的串行操作所需的地址列表,需预先获取。
AP级操作,包括如下几个子操作:
信道扫描操作105:接收系统级操作的AP自动信道选择启动命令后,首先转入此操作。根据扫描信道列表110,对各信道逐个扫描、计算并切换。其中,计算由组合RSSI检测操作109完成。
信道判定模块106:根据可选信道列表111及信道扫描操作105的扫描结果,确定当前最佳工作信道。
信道迁移模块107:根据信道判定模块106的结果,进行实际的信道迁移。
静默开启与关闭操作108:接收系统级操作的指示,实现AP的静默开启与关闭。
组合RSSI检测操作109:配合信道扫描操作105,对切换至扫描信道列表110中的每个信道计算出组合RSSI值,以dBm为单位。
扫描信道列表110:提供待扫描的所有信道号。
可选信道列表111:提供待判定并迁移的所有可选信道号。
其中,组合RSSI检测操作109计算组合RSSI值的方式包括:
方式一:如图4所示,组合RSSI值计算获取过程主要包括以下几个部分:
MAC/RSSI信息获取操作201:接收来自信道扫描模块105的输出,获取当前信道(AP根据扫描信道列表切换至的信道)及邻近信道所有AP的MAC/RSSI对应信息。
MAC/RSSI信息链表老化更新操作202:将MAC/RSSI对应信息放入链表,对于已存在的信息则进行更新,并启动定时器进行老化判断,老化的MAC/RSSI信息将从链表中删除。链表操作结束后,进入同邻频RSSI预操作203进行处理。
同邻频RSSI预操作203:从链表中逐一取出一AP(即节点),若该AP属于邻近信道,则将该AP的RSSI值,根据信道距离及预置衰减量进行衰减;若该AP属于当前信道,则不做衰减操作。
dBm至pw转换及累加操作204:在同邻频RSSI预操作203操作完成后,将链表中各AP的RSSI(单位为dBm)转换为pw(皮瓦)单位(因为dBm不便于直接累加),并在此基础上进行累加操作,以组合各种RSSI值。
pw累加值至dBm转换操作205:将204累加的pw单位结果,反向转换为以dBm为单位的组合的RSSI信息,得到当前信道的组合RSSI值。
当前信道组合RSSI信息记录操作206:将当前信道计算的组合RSSI信息进行记录,作为后续最佳信道判定模块106的判定依据。
方式二,如图5所示,组合RSSI值计算获取过程主要包括以下几个部分:
MAC/RSSI信息获取操作301:接收来自信道扫描模块105的输出,获取当前信道(AP根据扫描信道列表切换至的信道)所有AP的MAC/RSSI对应信息。
MAC/RSSI信息链表老化更新操作302:将各MAC/RSSI对应信息放入链表,对于已存在的信息则进行更新,并启动定时器进行老化判断,老化的MAC/RSSI信息将从链表中删除。
dBm至pw转换及累加操作303:根据本信道的邻居AP(即:选取的AP在当前信道中的邻居AP)的RSSI信息,将不便于直接累加的dBm转化为pw(皮瓦)单位,并在此基础上进行累加操作,以组合各种RSSI值。此时获得的组合RSSI的称为CRSSI(pw),单位为pw。
各RSSI区间邻居AP个数分布获取操作304:获取当前信道各RSSI区间范围的邻居AP个数,其中RSSI区间如[0,-45]dBm、[-46,-65]dBm、[-66,-75]dBm、[-75,-85]dBm。这些区间分布代表近、中、远、很远的邻居AP,这些区间的邻居AP对本AP的干扰由强至弱。其中,表示近、中、远、很远的RSSI区间可以根据经验值划分,也可以通过预先实验进行划分。
归一化邻居AP个数NNUM计算操作305:根据304的区间分布结果,并考虑到这些区间的邻居AP对本AP的干扰由强至弱,将各区间的邻居AP个数乘以对应的权值,以获取归一化邻居AP个数NNUM。例如[0,-45]dBm、[-46,-65]dBm、[-66,-75]dBm、[-75,-85]dBm的邻居AP个数分别为N1、N2、N3、N4,则可考虑一组权值100、70、25、5,归一化邻居AP个数为:NNUM=(N1*100+N2*70+N3*25+N4*5)/100。其中,权值的设定原则是干扰越大值越大,上述给出的具体权值只是一种示例性解释,本领域技术人员根据具体需求可以根据设定原则进行灵活设定。
N1、N2、N3、N4分别为2、11、10、56,则计算出的归一化邻居AP个数NNUM为15。
相乘操作306:将303、305的结果进行乘法操作。
pw累加值至dBm转换操作307:将306的结果转化为dBm,此即修正后的组合RSSI,称为MRSSI(dBm)。按照上述示例性解释,获取的修正后的组合RSSI为-23dBm。
当前信道组合RSSI信息记录操作308:将计算得到的当前信道的修正后的组合RSSI信息进行记录,作为后续最佳信道判定模块106的判定依据。
方式三,该方式的实施过程与方式二相同,只是考虑了邻居信道影响,具体计算方式包括:
由于当前信道的组合RSSI值获取方式在方式二中已经详细阐述,所以在此不作赘述,只对邻近信道的组合RSSI值,以及将得到的邻近信道的组合RSSI值合并到当前信道的组合RSSI值得到最终的组合RSSI的过程进行阐述,具体的:
MAC/RSSI信息获取操作:接收来自信道扫描模块105的输出,获取各邻近信道中所有AP的MAC/RSSI对应信息。
MAC/RSSI信息链表老化更新操作:将各MAC/RSSI对应信息放入链表,对于已存在的信息则进行更新,并启动定时器进行老化判断,老化的MAC/RSSI信息将从链表中删除。
dBm至pw转换及累加操作:将邻近信道中各AP的RSSI值转换为便于累加的pw(皮瓦)单位,并将单位转换后的各RSSI值进行累加,得到邻近信道的累加值CRSSI’。
各RSSI区间AP个数分布获取操作以及归一化AP个数计算操作:获取预置的表示干扰强弱的各RSSI区间,统计邻近信道中各AP落入各RSSI区间的个数,并根据预置的与各区间对应的权值归一化AP个数。
相乘操作:将CRSSI’与归一化AP个数相乘。
pw累加值至dBm转换操作:相乘操作的结果转化为dBm,此即邻近信道修正后的组合RSSI值。
衰减操作:根据信道距离及预置衰减量对邻近信道修正后的组合RSSI值进行衰减处理;
同邻频合并操作:将衰减后的邻近信道的组合RSSI值以及按照方式二计算得到的当前信道的组合RSSI值转换为便于累加的pw单位后进行累加,并将累加结果进行单位反向转换,得到考虑邻居信道影响时当前信道的组合RSSI值。
当前信道组合RSSI信息记录操作:将得到的考虑邻居信道影响时当前信道的组合RSSI值进行记录,作为后续最佳信道判定模块106的判定依据。
基于上述具体方式的阐述,下面给出本发明实施例所述串行自动信道选择方法的详细实施流程,如图6所示,包括:
步骤1:调查获取小区内待信道配置的AP地址表。一般情况,AP地址表可以按IP地址罗列,后续串行操作均会基于此列表,对AP挨个进行处理。
步骤2:将AP地址及当前工作的信道号、该信道的组合RSSI等信息,整理成表格,以便与步骤14优化后的情况进行对比。
步骤3:根据步骤1整理出来的AP地址表,将各AP均置为静默开启状态。经过这一操作,区域内的所有AP不发无线数据包和管理包,因此不会对随后的AP信道选择产生干扰。
步骤4:依次选择各AP。此即从AP地址列表中,从头开始选择一个AP。
步骤5:对于步骤4选中的AP,关闭静默状态。此时,该AP可以正常发出Beacon(信标)帧和Probe Response(探测响应)帧。
步骤6:对选中的AP进行信道扫描操作。
步骤7:AP从扫描列表中选择一个信道,并切换至该信道收发发包。
步骤8:AP在步骤7选择的信道上,通过主动扫描或被动扫描方式,获取该信道的MAC/RSSI等信息。
步骤9:判断扫描列表中的信道是否均已切换完毕,若还有信道未切换,则转至步骤6处理,否则执行步骤10。
步骤10:分别以扫描列表中的各信道为基础,结合本信道和邻近信道的RSSI信息,计算出组合的RSSI。
步骤11:从可选信道列表中,根据步骤10计算出的各信道的组合RSSI情况,选择一个组合RSSI值最小的信道。需要注意的是,可选信道列表是扫描信道列表的一个子集。例如2.4G的扫描信道列表包含1、6、11、3、8、13信道,而现场布局只允许1、6、11信道,因此可选信道列表只能是1、6、11。而3、8、13仅作为同邻频RSSI折算时的数据输入。
步骤12:AP迁移至步骤11所选择的信道,并显示该信道信息。此时,AP将在该信道上正常发送Beacon和Probe Resp,并允许用户接入,可正常工作。其发出的信号场强将作为其他AP进行信道选择时的同邻频干扰源输入。
步骤13:判断AP地址列表中的设备是否均遍历完毕,若仍有AP未处理,则跳至步骤4,继续选择下一个AP运行信道选择算法,若已无剩余AP,则转至步骤14。
步骤14:所有AP的信道选择算法均运行完毕,将AP地址及新选择的信道号、该信道的组合RSSI等信息,整理成表格。
步骤15:串行信道选择算法结束,所有AP均处于正常工作状态。
以一个安装100台AP的楼栋为例,首先让所有AP静默,然后逐个启动AP,让各AP自由扫描并选择当前位置的干扰最小的信道。假设允许选择的信道只有3个:1、6、11。该楼栋内的相邻AP可以按其势力范围分成很多的微蜂窝,在微蜂窝内部,信道必须区分开,而微蜂窝之间距离相对较远,影响很小,信道完全可以复用。在运行串行信道选择时,AP需要在微蜂窝内部选择到一个最佳信道。可以简单的理解为:由于地理上的隔离,每个微蜂窝内按1、6、11信道排3个队,但一个楼栋内有N个微蜂窝,因此可以排3*N个队,3*N约等于100。这个微蜂窝的划分,不需要人为调研,也没有特别明确的界限。
综上所述,本实施例所述的串行信道选择方法,省去了前期现场调研,人工分析优化的操作。该串行信道选择操作既可以针对一个小区进行,也可以针对某栋楼进行,还可以只针对一个新装上的AP进行,算法简单易行。并且扫描的信道个数,每个信道的扫描时间均可以设置,提高了系统的灵活性。另外,该方案不受场景限制,在低密度、高密度AP场景、多楼层覆盖场景、室分覆盖场景均可使用。在串行自动信道选择的时候,每个AP依次通过感知邻居蜂窝所有AP的弱影响和本蜂窝其他AP的强影响,综合得到一个组合判定值,从中选取最佳的信道。这种方式不用关注区域AP数量、每个AP和天线的地理位置、楼层分布以及场强的微弱差距,由各AP根据周围的环境去确定,比较简单易行。由于各AP进行信道选择是串行操作的,选中了某信道即保持固定,避开了并行信道选择时的持续变化的互干扰,取而代之的是静态的可衡量的互干扰,因此信道选择的结果更加精确。
本实施例所述方法力图减少系统内干扰,即使现场有多个运营商的WLAN干扰信号(系统外)干扰,本方案依然有效。不仅对于2.4G的信道选择有效,在5G频段内,该方案依然可行。该方案主要用于WLAN网规网优阶段,自动选择好信道后即保持固定,并不需要周期运行信道选择。
实施例三
本发明实施例提供一种服务器,如图7所示,包括:
静默状态指示模块711,设置为将待信道配置的各AP置于静默状态;
AP选取模块712,设置为在各AP中选取一目标AP,并指示该AP关闭静默状态;
信道扫描指示模块713,设置为指示选取的目标AP在扫描信道列表内逐一选取信道并切换;
AP遍历模块714,设置为在选取的目标AP基于信道切换而获取到干扰最小的可用信道并迁移至该可用信道后,触发AP选取模块712在待信道配置的各AP中选取下一目标AP进行信道配置,直到遍历完所有AP。
本实施例从服务器侧去说明其辅助AP完成信道串行选择的过程,通过设置所有AP处于静默状态,可以避免传统的并行信道选择过程中的互干扰,为后续选取的目标AP可以正确而快速地锁定最佳信道提供必要支持。
实施例四
本发明实施例提供一种AP,该AP为待信道配置列表中的AP,如图8所示,AP具体包括:
状态设置模块810,设置为当服务器指示待信道配置列表中所有AP开启静默状态时,开启所属AP的静默状态,并在所属AP为服务器选取的目标AP时,关闭静默状态;
信道获取模块820,设置为根据服务器的指示,在扫描信道列表内逐一选取信道并切换,并在切换至各信道后,获取干扰最小的可用信道;
信道迁移模块830,设置为将信道迁移至干扰最小的可用信道上,并在迁移后,通知服务器在待信道配置列表中选取下一目标AP进行信道配置。
优选地,信道获取模块820,具体设置为在所属AP切换至相应信道后,计算该信道的组合RSSI值,并将得到的各信道的组合RSSI值进行比较,判定组合RSSI值最小的可用信道为干扰最小的可用信道。
其中,信道获取模块820计算组合RSSI值的方式包括:
方式一:
信道获取模块820,包括:
第一信息获取子模块,设置为获取AP当前切换至的信道以及邻近信道中所有AP的RSSI值;
第一衰减处理子模块,设置为将邻近信道中各AP的RSSI值根据信道距离及预置衰减量进行衰减;
第一组合RSSI值获取子模块,设置为将当前信道中各AP的RSSI值以及邻近信道衰减后的各RSSI值进行累加,得到当前信道的组合RSSI值。
方式二:
信道获取模块820,包括:
第二信息获取子模块,设置为获取AP当前切换至的信道中所有AP的RSSI值;
累加子模块,设置为将当前信道中各邻居AP的RSSI值进行累加,得到累加值CRSSI;
归一化子模块,设置为获取预置的表示干扰强弱的各RSSI区间,统计落入各RSSI区间中邻居AP的个数,并根据预置的与各区间对应的权值归一化邻居AP的个数;
第二组合RSSI值获取子模块,设置为将累加值CRSSI与归一化结果相结合,得到当前信道的组合RSSI值。
方式三,该方式的实施需要结合方式二:
信道获取模块820,包括:
第二信息获取子模块,还设置为获取AP当前切换至信道的各邻近信道中所有AP的RSSI值;
累加子模块,还设置为将邻近信道中各AP的RSSI值进行累加,得到邻近信道的累加值CRSSI’;
归一化子模块,还设置为获取预置的表示干扰强弱的各RSSI区间,统计邻近信道中各AP落入各RSSI区间的个数,并根据预置的与各区间对应的权值归一化AP个数;
第二衰减处理子模块,设置为将累加值CRSSI’与归一化AP个数相结合,得到邻近信道的组合RSSI值,并将该值根据信道距离及预置衰减量进行衰减处理;
第二组合RSSI值获取子模块,还设置为将衰减后的组合RSSI值以及得到的当前信道的组合RSSI值进行累加,得到考虑邻居信道影响时当前信道的组合RSSI值。
另外,值得一提的是,由于RSSI值为dBm单位,不便于直接累加,所以在具体进行累加操作前时,还需将各RSSI值转换为便于累加的功率单位。与之对应的,当得到组合RSSI值时,还需对得到的组合RSSI值进行单位反向转换。
综上所述,本实施例所述方案通过逐个完成小区内各AP对最佳信道的准确选择,避免同时选择时的信道不确定性,可有效地降低现场的无线干扰。
实施例五
本发明实施例提供一种串行信道选择的系统,该系统包括实施例三所述的服务器,以及目标区域内待信道配置的AP;所述AP为实施例四所述的AP。
由于实施例三、四中已经对服务器和AP的具体组成以及实现信道串行选择的过程进行了详细阐述,所以对于本系统的具体实施过程在此也不作赘述。
另外,由于本实施例包含实施例三、四的所有实现方案,所以本实施例可以达到实施例三、四所述的所有技术效果。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
工业实用性
基于本发明实施例提供的上述技术方案,通过逐个完成目标区域内各AP对最佳信道的准确选择,避免了并行选择时的信道不确定性,使得信道选择的结果更加精确,有效地降低了现场的无线干扰;同时,不用关注区域AP数量、每个AP和天线的地理 位置、楼层分布以及场强的微弱差距,由各AP根据周围的环境去确定,比较简单易行,并且所述方法不受场景限制,便于推广。

Claims (15)

  1. 一种串行信道选择的方法,包括:
    服务器将待信道配置的各接入点AP置于静默状态;
    服务器在各AP中选取一目标AP,并指示该目标AP关闭静默状态;
    服务器指示所述目标AP在扫描信道列表内逐一选取信道并切换;
    服务器在所述目标AP基于信道切换而获取到干扰最小的可用信道并迁移至该可用信道后,在所述待信道配置的各AP中选取下一目标AP进行信道配置,直到遍历完所有AP。
  2. 一种串行信道选择的方法,包括:
    目标AP基于服务器的第一指示,关闭静默状态并逐一切换至扫描信道列表中的各信道,获取干扰最小的可用信道,其中,所述目标AP为从待信道配置的各AP中选择的AP,并且所述各AP基于所述服务器的第二指示均开启了静默状态;
    所述目标AP迁移至所述可用信道后,通知所述服务器在所述待信道配置的各AP中选取下一目标AP进行信道配置。
  3. 如权利要求2所述的方法,其中,所述目标AP逐一切换至扫描信道列表中的各信道,获取干扰最小的可用信道,包括:
    所述目标AP在切换至相应信道后计算该信道的组合接收信号强度指示RSSI值,并将得到的各信道的组合RSSI值进行比较,在可用信道中获取组合RSSI值最小的信道,得到所述干扰最小的可用信道。
  4. 如权利要求3所述的方法,其中,所述目标AP计算组合RSSI值的方式,包括:
    获取切换至的当前信道以及邻近信道中所有AP的RSSI值;
    根据信道距离及预置衰减量将所述邻近信道中各AP的RSSI值进行衰减;
    将所述当前信道中各AP的RSSI值以及所述邻近信道衰减后的各RSSI值进行累加,得到所述当前信道的组合RSSI值。
  5. 如权利要求3所述的方法,其中,所述目标AP计算组合RSSI值的方式,包括:
    获取切换至的当前信道中所有AP的RSSI值;
    将所述当前信道中各邻居AP的RSSI值进行累加,得到累加值CRSSI;
    获取预置的表示干扰强弱的各RSSI区间,统计落入所述各RSSI区间中邻居AP的个数,并根据预置的与所述各RSSI区间对应的权值归一化邻居AP的个数,得到第一归一化结果;
    将所述累加值CRSSI与所述第一归一化结果相结合,得到所述当前信道的组合RSSI值。
  6. 如权利要求5所述的方法,其中,所述目标AP计算组合RSSI值的方式,还包括:
    获取切换至的当前信道的各邻近信道中所有AP的RSSI值;
    将邻近信道中各AP的RSSI值进行累加,得到所述邻近信道的累加值CRSSI’;
    获取预置的表示干扰强弱的各RSSI区间,统计所述邻近信道中各AP落入所述各RSSI区间的个数,并根据预置的与所述各RSSI区间对应的权值归一化AP个数,得到第二归一化结果;
    将所述累加值CRSSI’与所述第二归一化结果相结合,得到所述邻近信道的组合RSSI值,并根据信道距离及预置衰减量将所述组合RSSI值进行衰减处理;
    将衰减后的组合RSSI值以及所述当前信道的组合RSSI值进行累加,得到考虑邻居信道影响时所述当前信道的组合RSSI值。
  7. 如权利要求4或5或6所述的方法,其中,所述方法:
    在对各RSSI值进行累加前还包括将所述各RSSI值转换为便于累加的功率单位的操作;
    在得到组合RSSI值时还包括对得到的所述组合RSSI值进行单位反向转换的操作。
  8. 如权利要求6所述的方法,其中,所述将累加值CRSSI与所述第一归一化结果相结合和/或将累加值CRSSI’与所述第二归一化结果相结合具体为:将累加值CRSSI与所述第一归一化结果进行相乘操作和/或将累加值CRSSI’与所述第二归一化结果进行相乘操作。
  9. 一种服务器,包括:
    静默状态指示模块,设置为将待信道配置的各AP置于静默状态;
    AP选取模块,设置为在各AP中选取一目标AP,并指示该目标AP关闭静默状态;
    信道扫描指示模块,设置为指示所述目标AP在扫描信道列表内逐一选取信道并切换;
    AP遍历模块,设置为在所述目标AP基于信道切换而获取到干扰最小的可用信道并迁移至该可用信道后,触发所述AP选取模块在所述待信道配置的各AP中选取下一目标AP进行信道配置,直到遍历完所有AP。
  10. 一种AP,所述AP为待信道配置列表中的AP,包括:
    状态设置模块,设置为当服务器指示所述待信道配置列表中的所有AP开启静默状态时,开启所述所有AP的静默状态,并在所述AP为所述服务器选取的目标AP时,关闭静默状态;
    信道获取模块,设置为根据所述服务器的指示,在扫描信道列表内逐一选取信道并切换,并在切换至各信道后,获取干扰最小的可用信道;
    信道迁移模块,设置为将信道迁移至所述干扰最小的可用信道上,并在迁移后,通知所述服务器在所述待信道配置列表中选取下一目标AP进行信道配置。
  11. 如权利要求10所述的AP,其中,所述信道获取模块,设置为在所述AP切换至相应信道后,计算该信道的组合RSSI值,将得到的各信道的组合RSSI值进行比较,将所述组合RSSI值最小的可用信道确定为干扰最小的可用信道。
  12. 如权利要求11所述的AP,其中,所述信道获取模块,进一步包括:
    第一信息获取子模块,设置为获取AP切换至的当前信道以及邻近信道中所有AP的RSSI值;
    第一衰减处理子模块,设置为根据信道距离及预置衰减量将所述邻近信道中各AP的RSSI值进行衰减;
    第一组合RSSI值获取子模块,设置为将所述当前信道中各AP的RSSI值以及所述邻近信道衰减后的各RSSI值进行累加,得到所述当前信道的组合RSSI值。
  13. 如权利要求11所述的AP,其中,所述信道获取模块,进一步包括:
    第二信息获取子模块,设置为获取AP切换至的当前信道中所有AP的RSSI值;
    累加子模块,设置为将所述当前信道中各邻居AP的RSSI值进行累加,得到累加值CRSSI;
    归一化子模块,设置为获取预置的表示干扰强弱的各RSSI区间,统计落入所述各RSSI区间中邻居AP的个数,并根据预置的与所述各RSSI区间对应的权值归一化邻居AP的个数,得到第一归一化结果;
    第二组合RSSI值获取子模块,设置为将所述累加值CRSSI与所述第一归一化结果相结合,得到所述当前信道的组合RSSI值。
  14. 如权利要求13所述的系统,其中,
    所述第二信息获取子模块,还设置为获取AP切换至的当前信道的各邻近信道中所有AP的RSSI值;
    所述累加子模块,还设置为将所述邻近信道中各AP的RSSI值进行累加,得到所述邻近信道的累加值CRSSI’;
    所述归一化子模块,还设置为获取预置的表示干扰强弱的各RSSI区间,统计所述邻近信道中各AP落入各RSSI区间的个数,并根据预置的与所述各RSSI区间对应的权值归一化AP个数,得到第二归一化结果;
    所述信道获取模块,还包括:第二衰减处理子模块,设置为将所述累加值CRSSI’与所述第二归一化结果相结合,得到所述邻近信道的组合RSSI值,并根据信道距离及预置衰减量将所述组合RSSI值进行衰减处理;
    所述第二组合RSSI值获取子模块,还设置为将衰减后的组合RSSI值以及得到的所述当前信道的组合RSSI值进行累加,得到所述当前信道的组合RSSI值。
  15. 一种串行信道选择的系统,所述系统包括权利要求9所述的服务器,以及目标区域内待信道配置的AP;所述AP为权利要求10至14任意一项所述的AP。
PCT/CN2014/093987 2014-08-13 2014-12-16 串行信道选择的方法、装置及系统 WO2015154510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410396352.3 2014-08-13
CN201410396352.3A CN105338592B (zh) 2014-08-13 2014-08-13 串行信道选择的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2015154510A1 true WO2015154510A1 (zh) 2015-10-15

Family

ID=54287250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093987 WO2015154510A1 (zh) 2014-08-13 2014-12-16 串行信道选择的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN105338592B (zh)
WO (1) WO2015154510A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324850A (zh) * 2018-03-28 2019-10-11 富士通株式会社 共存干扰分析方法、业务类型训练集确定方法及其装置
CN117156444B (zh) * 2023-08-28 2024-04-02 广东省机场管理集团有限公司工程建设指挥部 一种wifi与5g融合组网方法、系统、介质及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013982A (zh) * 2007-02-09 2007-08-08 杭州华为三康技术有限公司 接入点的信道选择方法及设备
US20080130573A1 (en) * 2006-12-01 2008-06-05 Cameo Communications, Inc. Method and device for automatically allocating channels of wireless network system
US20130058310A1 (en) * 2011-09-06 2013-03-07 Samsung Electronics Co., Ltd. Apparatus and method for setting channel in wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080130573A1 (en) * 2006-12-01 2008-06-05 Cameo Communications, Inc. Method and device for automatically allocating channels of wireless network system
CN101013982A (zh) * 2007-02-09 2007-08-08 杭州华为三康技术有限公司 接入点的信道选择方法及设备
US20130058310A1 (en) * 2011-09-06 2013-03-07 Samsung Electronics Co., Ltd. Apparatus and method for setting channel in wireless network

Also Published As

Publication number Publication date
CN105338592A (zh) 2016-02-17
CN105338592B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
US9699601B2 (en) System and method for managing interference in a network environment based on user presence
EP2779720B1 (en) Method for managing heterogeneous cellular networks
US9282528B2 (en) Apparatus and method for detecting a location of a mobile station in a mobile communication system
US10034210B2 (en) Mobile communication device and wireless communication method
EP2373093B1 (en) Method and device for configuring neighbor cell
US9629042B2 (en) System and method for providing collaborative neighbor management in a network environment
US9942833B2 (en) Mobile terminal devices, mobile baseband modems, and methods of detecting network access points
US10257712B2 (en) Method and apparatus for inferring wireless scan information without performing scanning or performing limited scanning
WO2015058587A1 (zh) 信道选择方法及装置
US20150195845A1 (en) Distributed channel selection for wireless networks
US9432906B2 (en) Handling connected mode mobility from areas bounding multi-operator core network and non-multi-operator core network shared infrastructure
CN106465258A (zh) 基于优先化的节点进行小区选择的系统、方法和设备
US9736712B2 (en) Distributed small-cell search
US20150358980A1 (en) Mobile communication apparatus and radio communication method
US20230146543A1 (en) Method and Apparatus for Determining Radio Access Policy
US9648527B2 (en) Method and apparatus for selecting a cell of a communications network
WO2015154510A1 (zh) 串行信道选择的方法、装置及系统
WO2017188453A1 (ja) ユーザ装置、基地局、及び通信方法
Zhang et al. A fast handoff scheme for ieee 802.11 networks using software defined networking
US8804670B1 (en) Method and system for management of inter-frequency handoff
US11245590B1 (en) Neighbor list adaptive mapping
KR101129050B1 (ko) 무선 네트워크에서 핸드오버를 수행하기 위한 사전 스캐닝 방법 및 이를 지원하는 단말
US20160338003A1 (en) Method and radio network node for determining route update radius

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888717

Country of ref document: EP

Kind code of ref document: A1