WO2015154318A1 - 梯级水电站群日发电计划编制方法 - Google Patents

梯级水电站群日发电计划编制方法 Download PDF

Info

Publication number
WO2015154318A1
WO2015154318A1 PCT/CN2014/076566 CN2014076566W WO2015154318A1 WO 2015154318 A1 WO2015154318 A1 WO 2015154318A1 CN 2014076566 W CN2014076566 W CN 2014076566W WO 2015154318 A1 WO2015154318 A1 WO 2015154318A1
Authority
WO
WIPO (PCT)
Prior art keywords
power plant
power generation
daily
load
group
Prior art date
Application number
PCT/CN2014/076566
Other languages
English (en)
French (fr)
Inventor
刘攀
陈西臻
李泽君
张旺
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学 filed Critical 武汉大学
Priority to US15/303,403 priority Critical patent/US10482549B2/en
Publication of WO2015154318A1 publication Critical patent/WO2015154318A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention relates to the technical field of economic operation of hydropower stations, in particular to a method for compiling a group daily power generation plan of a cascade hydropower station.
  • the hydropower and power compensation of the cascade hydropower stations can improve the safety of the system and effectively utilize the hydropower resources.
  • the load of each unit of the cascade hydropower station can be reasonably allocated under the conditions of daily available water volume and grid demand, and the sequence and strategy of unit opening and closing can be formulated to improve the utilization efficiency of hydropower resources and realize the cascade hydropower station group. Maximize economic benefits.
  • the existing tiered hydropower station group daily power generation planning technology includes the following steps: 1 input short-term runoff forecast data, determine the daily available water volume of each reservoir according to the medium- and long-term dispatch results; 2 determine the maximum power generation benefit as the cascade hydropower station group optimization target; 3 determine Constraints for the optimization of cascade hydropower stations; 4 Based on the above steps, the daily power generation plan for cascade hydropower stations is compiled through optimization calculation.
  • the present invention provides a method for compiling a group day power generation plan for a cascade hydropower plant that takes into consideration the requirements of the power grid.
  • the present invention adopts the following technical solutions:
  • Method for compiling a group power generation plan for a cascade hydropower station including steps:
  • Step 1 analyze the historical daily power generation load data, and obtain the daily typical load curve of the power plant; Step 2, regardless of the opening and closing constraints of the power plant generator set, the power generation load of the hydropower station group is closest to the typical load of the power plant daily load.
  • the reservoir optimization method is used for the first optimization to obtain the group daily power generation plan of the cascade hydropower station;
  • Step 3 According to the step hydropower station group daily power generation plan obtained in step 2, the process of starting and closing the power plant generator set is prepared, and the power plant generator set opening and closing state process includes the start and close sequence of the generator set and the start Step 4: Add the constraint condition of the opening and closing state of the power plant generator set obtained in step 3, so that the similarity between the power generation load of the hydropower station group and the typical daily load of the power plant is the optimization target, and the reservoir optimization method is used for the second optimization. Obtained a group power generation plan for cascade hydropower stations.
  • the first optimization of the cascade power generation plan of the cascade hydropower stations described in step 2 is to optimize the total load process of the cascade hydropower stations and the process of opening and closing the generator sets of the power plants.
  • the second optimized cascade hydropower station group daily power generation plan described in step 4 is to optimize the distribution process of each power plant and each generator set of the power plant according to the process of the power plant generator set opening and closing state.
  • Step 2 further includes the substeps:
  • the optimal total water consumption flow curve of the power plant is constructed by using the optimal load distribution method in the power plant, and the constraint conditions are determined according to the total water consumption flow curve;
  • the similarity between the power generation load of hydropower stations and the typical daily load of power plants is one of the optimization objectives, and the daily power generation plan of cascade hydropower stations is optimized.
  • Sub-step 2.2 uses dynamic programming or other reservoir scheduling optimization methods to optimize the group daily power generation plan for cascade hydropower stations.
  • the optimization goal in step 2 includes the system to maximize power generation efficiency.
  • the invention obtains the daily typical load curve of the power plant by analyzing the historical daily power generation load data of the power plant, and prepares the daily power generation plan curve of the hydropower station as one of the optimization goals as much as possible with the daily typical load curve.
  • the invention is not only applicable to the preparation of the group daily power generation plan of the cascade hydropower station, but also applies to the preparation of the daily power generation plan of the single hydropower station. Compared with the prior art, the present invention has the following significant advancements and outstanding effects:
  • the prior art does not consider the grid demand problem.
  • the present invention is based on the historical typical load curve of the power plant, and the similarity degree between the power generation load of the cascade hydropower station group and the historical typical load curve of the power plant is taken as an optimization target, and the daily power generation plan is prepared. Get a more realistic power generation strategy for hydropower plants.
  • Figure 1 is a flow chart of the method of the present invention.
  • the method for compiling the group daily power generation plan of the cascade hydropower station of the present invention is as follows:
  • Step 1 Analyze the historical daily power generation load data to obtain the daily typical load curve of the power plant.
  • the average daily load curve for each season is obtained as the daily typical load curve of the power plant.
  • Step 2 Determine the constraints and optimization objectives, and use an optimization algorithm to optimize the daily generation plan of the cascade hydropower stations.
  • the optimal total water consumption flow curve of the power plant is constructed by using the optimal load distribution method of the power plant, and the constraint conditions are determined according to the optimal total water consumption flow curve of the power plant; Constraint, using dynamic programming method or other reservoir scheduling optimization method to optimize the group daily power generation plan of cascade hydropower stations.
  • the dynamic planning method is used to optimize the group daily power generation plan of the cascade hydropower stations, and the initial state of the group daily power generation plan of the cascade hydropower stations is obtained according to experience.
  • the present invention does not consider the opening and closing constraints of the power plant generator set, and increases the optimization target (2)
  • the optimization goals determined by the present invention include:
  • E t represents the amount of power generated by the system during the t-th period
  • m represents the number of hydropower stations in the system
  • P k ' t indicates the number The output of k hydropower stations at time t
  • C t represents the electricity price during the t-th period
  • T represents the daily power generation plan The length of the period.
  • the similarity between the generating load of the hydropower station group and the typical daily load of the power plant is the closest:
  • the similarity between the generating load and the daily typical load can be used to evaluate the degree of meeting the demand of the grid.
  • the correlation coefficient r is used to indicate:
  • T represents the length of the daily power generation planning period
  • E t represents the power generation amount of the t-th period of the system
  • f represents the average value of the power generation amount E t of each period in the length of the T period
  • D t represents the daily load of the power plant
  • 5 represents the average value of the power generation amount D t in each period on the typical load curve of the power plant in the length of the T period.
  • Q k , t represents the reference flow of the kth hydropower station during the t-th period
  • W k represents the kth
  • m represents the number of hydropower stations in the system
  • At is the length of the period.
  • V k , t+1 V +(I -Q -QW )-At (4)
  • V k , t , 1 ⁇ 4' 1+1 are the kth hydropower station at the beginning and end of the tth time
  • Q ki represents the reference flow of the kth hydropower station during the t period;
  • I kt and QW kt are the inflow and other water flows of the kth hydropower station during the tth period, and the other water flows are leaks.
  • flood flow, At is the length of the period.
  • WQ ⁇ (5) Equation (5) IL ⁇ is the interval inflow of the kth hydropower station during the tth period; r k is the lag time of the (k-1) hydropower station discharge to the kth hydropower station; Q k – lt ⁇ represents the power generation reference flow of the (k-1)th hydropower station during the (tr t ) period.
  • PMIN kt is the minimum allowable output, depending on the type and characteristics of the turbine; PMAX kt is the power generation capacity of the power station under the head of the t period.
  • V kmin is the minimum water storage capacity of the reservoir to be guaranteed during the t period
  • V kmax is the maximum water storage capacity of the reservoir allowed during the t period, such as the flood control limit water level during the flood season and the normal high water level during the non-flood period.
  • Qmin is the minimum discharge flow required to ensure the downstream integrated water for the t period
  • Qmax is the maximum discharge flow of the reservoir allowed for the t period.
  • Step 3 According to the daily power generation plan of the cascade hydropower station obtained in step 2, the starting and closing sequence and the number of opening and closing of the generator set of the power plant are determined by the following constraints;
  • X k ° ;: — is the length of the start-up period from genset k to t-1, and T° n is the shortest start-up Over time, U k , t , U kt —! are the open and stop states of unit k in the t-th period and t - 1 period, respectively, open to 1 and stop at 0; X k °, from unit k to t _l period
  • T° ff is the minimum downtime.
  • Step 4 Increase the constraints of the power plant generator set opening and closing process, optimize the target and other constraints as in step 2, and use the dynamic programming method or other reservoir scheduling optimization method to re-optimize the cascade hydropower station group daily power generation plan, that is, obtain the final cascade hydropower station group. Daily power generation plan.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种梯级水电站群日发电计划编制方法,包括步骤:步骤1,不考虑发电厂发电机组的启闭约束,以水电站群的发电负荷与发电厂日典型负荷的相似程度最接近为优化目标之一,进行一次优化获得梯级水电站群日发电计划;步骤2,根据梯级水电站群日发电计划拟定发电厂发电机组启闭状态过程;步骤3,增加发电厂发电机组启闭状态过程约束条件,以水电站群的发电负荷与发电厂日典型负荷的相似程度最接近为优化目标,进行二次优化获得梯级水电站群日发电计划。本发明考虑了电网需求问题,可获得更符合实际情况的水电厂发电策略,适用于单一水电站和梯级水电站群日发电计划的编制。

Description

梯级水电站群日发电 编制方法 技术领域
本发明涉及水电站经济运行技术领域,特别涉及一种梯级水电站群日发电计 划编制方法。
背景技术
梯级水电站群通过水力、 电力补偿, 可提高系统安全性, 能有效利用水能资 源。通过制定梯级水电站群日发电计划, 可在满足日可用水量、 电网需求等条件 下, 合理分配梯级水电站各机组的负荷, 制定机组启闭顺序及策略, 提高水能资 源利用效率, 实现梯级水电站群经济效益的最大化。
现有的梯级水电站群日发电计划编制技术包括步骤:①输入短期径流预报资 料,根据中长期调度结果确定各水库的日可用水量;②将最大化发电效益确定为 梯级水电站群优化目标; ③确定梯级水电站群优化的约束条件; ④在上述步骤的 基础上通过优化计算编制梯级水电站群日发电计划。
现行方法存在问题: (1) 优化计算未考虑电网的需求约束, 往往不能生成常 见的双峰型负荷曲线; (2) 水电厂发电机组的开停机约束, 制约了动态规划算法 的应用。
发明内容
针对现有技术存在的不足,本发明提供了一种考虑了电网需求的梯级水电站 群日发电计划编制方法。
为解决上述技术问题, 本发明采用如下的技术方案:
梯级水电站群日发电计划编制方法, 包括步骤:
步骤 1, 分析历史日发电负荷数据, 获得发电厂的日典型负荷曲线; 步骤 2, 不考虑发电厂发电机组的启闭约束, 以水电站群的发电负荷与发电 厂日典型负荷的相似程度最接近为优化目标之一,采用水库调度优化方法进行第 一次优化获得梯级水电站群日发电计划;
步骤 3, 根据步骤 2获得的梯级水电站群日发电计划拟定发电厂发电机组启 闭状态过程,所述的发电厂发电机组启闭状态过程包括发电机组的启闭顺序和启 步骤 4, 增加步骤 3获得的发电厂发电机组启闭状态过程约束条件, 以水电 站群的发电负荷与发电厂日典型负荷的相似程度最接近为优化目标,采用水库调 度优化方法进行第二次优化获得梯级水电站群日发电计划。
步骤 2 中所述的第一次优化梯级水电站群日发电计划是优化梯级水电站群 总负荷过程和发电厂发电机组启闭状态过程。
步骤 4 中所述的第二次优化梯级水电站群日发电计划是根据发电厂发电机 组启闭状态过程优化分配各发电厂和发电厂各发电机组的出力过程。
步骤 2进一步包括子步骤:
2.1根据发电厂机组构成, 采用发电厂内负荷最优分配方法, 构建发电厂最 优总耗水流量曲线, 根据总耗水流量曲线确定约束条件;
2.2不考虑发电厂发电机组的启闭约束, 以水电站群的发电负荷与发电厂日 典型负荷的相似程度最接近为优化目标之一, 优化梯级水电站群日发电计划。
子步骤 2.2中所述的水电站群的发电负荷与发电厂日典型负荷的相似程度采
∑[(Ε「 5)]
用相关系数 r 表示, 其中, T表示日发电计划时段长
Figure imgf000004_0001
度; Et表示系统第 t时段的发电量; 表示 T时段长度内各时段发电量 Et的平 均值; Dt表示发电厂的日典型负荷曲线上第 t时段的发电量; 5表示 T时段长度 内、 发电厂日典型负荷曲线上各时段发电量 Dt的平均值。 子步骤 2.2中采用动态规划法或其他水库调度优化方法优化梯级水电站群日 发电计划。
步骤 2中的优化目标包括系统发电效益最大。 本发明通过分析发电厂的历史日发电负荷数据获得发电厂的日典型负荷曲 线, 以尽可能与日典型负荷曲线相似为优化目标之一,编制水电站日发电计划曲 线。本发明不仅适用于梯级水电站群日发电计划的编制, 同样适用于单一水电站 日发电计划的编制。 与现有技术相比, 本发明具有以下的显著进步和突出效果:
1、现有技术未考虑电网需求问题,本发明基于发电厂的历史典型负荷曲线, 将梯级水电站群的发电负荷与发电厂的历史典型负荷曲线相似程度作为优化目 标, 进行日发电计划编制, 可获得更符合实际情况的水电厂发电策略。
2、 采用两次优化: 第一次优化梯级水电站群总负荷过程和机组启闭顺序; 第二次根据机组启闭顺序再次优化分配各电厂、 各机组的出力过程。
附图说明
图 1为本发明方法流程图。
具体实 IS ^式
下面将结合具体实施方式详细说明本发明。
本发明梯级水电站群日发电计划编制方法, 具体步骤如下:
步骤 1, 分析历史日发电负荷数据, 获得发电厂的日典型负荷曲线。
通过分析发电厂的历史发电负荷数据,得到各季节的平均日负荷曲线作为发 电厂的日典型负荷曲线。
步骤 2, 确定约束条件和优化目标, 采用优化算法优化梯级水电站群日发电 计划。
根据发电厂机组构成,采用发电厂的厂内负荷最优分配方法, 构建发电厂最 优总耗水流量曲线,根据发电厂最优总耗水流量曲线确定约束条件; 不考虑发电 机组的启闭约束,采用动态规划法或其他水库调度优化方法优化梯级水电站群日 发电计划。本具体实施中, 采用动态规划法优化梯级水电站群日发电计划, 梯级 水电站群日发电计划初始状态根据经验获得。
和现有技术不同的是,本发明不考虑发电厂发电机组的启闭约束, 且增加了 优化目标 (2)
本发明确定的优化目标包括:
( 1 ) 发电效益 B最大:
Max B = ^(Ct -Et) Et =2 t ( 1 ) 式(1 ) 中: Et表示系统第 t时段的发电量; m表示系统中水电站个数; Pk't 表示第 k个水电站在 t时段的出力; Ct表示第 t时段的电价; T表示日发电计划 时段长度。
(2) 水电站群的发电负荷与发电厂的日典型负荷的相似程度最接近: 发电负荷与日典型负荷的相似程度可用来评价满足电网需求程度,采用相关 系数 r表示:
Figure imgf000006_0001
式(2)中: T表示日发电计划时段长度; Et表示系统第 t时段的发电量; f 表示 T时段长度内各时段发电量 Et的平均值; Dt表示发电厂的日典型负荷曲线 上第 t时段的发电量; 5表示 T时段长度内、 发电厂日典型负荷曲线上各时段发 电量 Dt的平均值。 相关系数 r越接近 1, 则表示梯级水电站群日发电计划曲线与发电厂的日典 型负荷曲线形状越相似,即表示水电站群的发电负荷与发电厂的日典型负荷的相 似程度越接近。
本发明确定的约束条件具体如下:
(1) 水库日用水量约束:
T
At∑Qkt =Wk k = l,2,'",m (3) t-l 式(3)中: Qk,t表示第 k个水电站在第 t时段的发电引用流量, Wk表示第 k 个水电站一天内的计划用水量, m表示系统中水电站个数, At为时段长度。
(2) 水库水量平衡方程:
Vk,t+1=V +(I -Q -QW )-At (4) 式(4)中: Vk,t、 ¼'1+1分别是第 k个水电站在第 t时段始、末的蓄水量; Qki 表示第 k个水电站在 t时段的发电引用流量; Ikt、 QWk t分别是第 k个水电站在 第 t时段的入库流量和其他用水流量, 其他用水流量为渗漏或溢洪流量, At为时 段长度。 (3) 梯级电站间水流联系:
W Q一 (5) 式 (5) 中: IL^是第 k个水电站在第 t时段的区间入流; rk为第 (k-1) 个水电站下泄流量到达第 k个水电站的滞后时间; Qklt τ表示第 (k-1) 个水电 站在 (t-rt) 时段的发电引用流量。
(4) 电站出力 Pkt约束:
PMIN ≤P ≤PMAXk,t (6) 式(6)中: PMINkt为允许最小出力,取决于水轮机的种类和特性; PMAXkt 为在 t时段水头下的电站发电能力。
(5) 全厂最优流量特性:
Qk,t =Q*(Pk,t Hk,t) k = l,--,m t = l,--,T (7) 式 (7) 中: (^(Ρ^,Η^)是水头为 Hkt、 出力为 Pk,t时的厂内经济运行策略, 为给定流量的最大出力或者给定出力的最小流量。
(6) 水库最大和最小库容 Vkt约束: ≤Vk,t≤Vk, k = l,-,m (8) 式 (8) 中: Vkmin为 t时段应保证的水库最小蓄水量, Vkmax为 t时段允许的 水库最大蓄水量, 如汛期的防洪限制水位, 非汛期的正常高水位等。
(7) 水库下泄流量 ¾约束:
Qmin <Qk <Qmax (9) 式(9) 中: Qmin为 t时段保证下游综合用水要求的最小下泄流量, Qmax 为 t时段允许的水库最大下泄流量。
(8) 全厂备用容量 Pkd约束: ≥p min (10) 式 (10)中: Pmin t时段所需备用容量。
步骤 3、 根据步骤 2获得的梯级水电站群日发电计划, 由下面约束条件拟定 发电厂发电机组的启闭顺序和启闭数量;
(xk:「 r).(uk,t—「 uk,t)≥o (ID
Ukt1)≥0 (12) 式(11)~ (12)中, Xk°;:— ,为发电机组 k至第 t一 1时段的开机时段长度, T°n 为最短开机历时, Uk,t、 Ukt—!分别为机组 k在第 t时段和第 t - 1时段的开停机 状态, 开为 1, 停为 0; Xk°, 为机组 k至第 t _l时段的停机时段长度, T°ff为最 短停机历时。
步骤 4、 增加发电厂发电机组启闭过程约束条件, 优化目标和其他约束条件 同步骤 2, 采用动态规划法或其他水库调度优化方法再次优化梯级水电站群日发 电计划, 即获得最终的梯级水电站群日发电计划。

Claims

权利要求书
1、 梯级水电站群日发电计划编制方法, 其特征在于, 包括步骤: 步骤 1, 分析历史日发电负荷数据, 获得发电厂的日典型负荷曲线; 步骤 2, 不考虑发电厂发电机组的启闭约束, 以水电站群的发电负荷与发电 厂日典型负荷的相似程度最接近为优化目标之一,采用水库调度优化方法进行第 一次优化获得梯级水电站群日发电计划;
步骤 3, 根据步骤 2获得的梯级水电站群日发电计划拟定发电厂发电机组启 闭状态过程,所述的发电厂发电机组启闭状态过程包括发电机组的启闭顺序和启 闭数量;
步骤 4, 增加步骤 3获得的发电厂发电机组启闭状态过程约束条件, 以水电 站群的发电负荷与发电厂日典型负荷的相似程度最接近为优化目标,采用水库调 度优化方法进行第二次优化获得梯级水电站群日发电计划。
2、 如权利要求 1所述的梯级水电站群日发电计划编制方法, 其特征在于: 步骤 2 中所述的第一次优化梯级水电站群日发电计划是优化梯级水电站群 总负荷过程和发电厂发电机组启闭状态过程。
3、 如权利要求 1所述的梯级水电站群日发电计划编制方法, 其特征在于: 步骤 4 中所述的第二次优化梯级水电站群日发电计划是根据发电厂发电机 组启闭状态过程优化分配各发电厂和发电厂各发电机组的出力过程。
4、 如权利要求 1所述的梯级水电站群日发电计划编制方法, 其特征在于: 步骤 2进一步包括子步骤:
2.1根据发电厂机组构成, 采用发电厂内负荷最优分配方法, 构建发电厂最 优总耗水流量曲线, 根据总耗水流量曲线确定约束条件;
2.2不考虑发电厂发电机组的启闭约束, 以水电站群的发电负荷与发电厂日 典型负荷的相似程度最接近为优化目标之一, 优化梯级水电站群日发电计划。
5、 如权利要求 4所述的梯级水电站群日发电计划编制方法, 其特征在于: 所述的水电站群的发电负荷与发电厂日典型负荷的相似程度采用相关系数 (E「gHD「5)]
r = 表示, 其中, Τ表示日发电计划时段长度; Et
Figure imgf000009_0001
示系统第 t时段的发电量; 表示 T时段长度内各时段发电量 Et的平均值; Dt表 示发电厂的日典型负荷曲线上第 t时段的发电量; 5表示 T时段长度内、 发电厂 日典型负荷曲线上各时段发电量 Dt的平均值。
PCT/CN2014/076566 2014-04-11 2014-04-30 梯级水电站群日发电计划编制方法 WO2015154318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/303,403 US10482549B2 (en) 2014-04-11 2014-04-30 Daily electricity generation plan making method of cascade hydraulic power plant group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410145034.X 2014-04-11
CN201410145034.XA CN103942728B (zh) 2014-04-11 2014-04-11 梯级水电站群日发电计划编制方法

Publications (1)

Publication Number Publication Date
WO2015154318A1 true WO2015154318A1 (zh) 2015-10-15

Family

ID=51190380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076566 WO2015154318A1 (zh) 2014-04-11 2014-04-30 梯级水电站群日发电计划编制方法

Country Status (3)

Country Link
US (1) US10482549B2 (zh)
CN (1) CN103942728B (zh)
WO (1) WO2015154318A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108805434A (zh) * 2018-05-25 2018-11-13 河海大学 一种基于改进nsga-ⅲ的梯级水电站多目标优化调度方法
CN109886543A (zh) * 2019-01-16 2019-06-14 河南大学 基于均匀设计的水库优化调度方法
CN110705786A (zh) * 2019-09-29 2020-01-17 河南郑大水利科技有限公司 一种梯级水电站优化运行的评价方法
CN110969283A (zh) * 2019-10-21 2020-04-07 贵州电网有限责任公司 基于实时弃水风险评估的梯级水电站优化调度方法及系统
CN112681212A (zh) * 2020-11-25 2021-04-20 国家能源集团新疆吉林台水电开发有限公司 一种梯级水电站edc和闸门自动优化联动方法及系统
CN112950033A (zh) * 2021-03-04 2021-06-11 吴统明 一种基于水库调度规则合成的水库调度决策方法及系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104408557B (zh) * 2014-11-17 2017-06-06 大连理工大学 一种汛期水电富集电网省调平衡电厂电源电量分配方法
CN105809272B (zh) * 2016-02-25 2019-04-23 大连理工大学 一种基于数据挖掘的梯级水电站群指令调度优化方法
CN106099960B (zh) * 2016-07-18 2018-12-28 华中科技大学 一种小水电机群组成分布式储能系统的方法
CN107038151B (zh) * 2017-03-22 2020-03-31 贵州乌江水电开发有限责任公司 基于蓄能控制的梯级优化调度图绘制方法及调度方法
US10534327B2 (en) * 2017-07-06 2020-01-14 Dalian University Of Technology Method for long-term optimal operations of interprovincial hydropower system considering peak-shaving demands
CN107463993B (zh) * 2017-08-04 2020-11-24 贺志尧 基于互信息-核主成分分析-Elman网络的中长期径流预报方法
CN107818385B (zh) * 2017-11-24 2022-01-25 南瑞集团有限公司 一种梯级水电站群实时运行趋势预测方法
CN108090671B (zh) * 2017-12-15 2020-12-22 华电福新能源股份有限公司福建分公司 一种多阶段域间-域内反馈迭代的跨流域负荷分配方法
CN108053083B (zh) * 2018-01-16 2021-12-24 湖南发展集团股份有限公司 一种水库水电站非汛期联合优化发电调度方法
US10825113B2 (en) * 2018-03-16 2020-11-03 Dalian University Of Technology Method for short-term generation scheduling of cascade hydropower plants coupling cluster analysis and decision tree
CN109063901B (zh) * 2018-07-17 2021-06-18 昆明电力交易中心有限责任公司 一种省级电网水电系统中长期发电能力分析方法
CN109713737B (zh) * 2018-09-30 2021-12-03 中国电力科学研究院有限公司 一种接入柔性直流电网的新能源外送能力评估方法及系统
CN109698525B (zh) * 2019-02-21 2022-03-08 三峡大学 一种数据驱动的梯级水电和新能源联合运行模型
CN111864811B (zh) * 2019-04-29 2022-03-11 天津大学 一种考虑电网送出需求的水光互补系统光伏容量配置方法
CN110991797B (zh) * 2019-10-29 2023-04-18 广东工业大学 考虑多季节流量变化的小水电微电网电源容量配置方法
CN110880782B (zh) * 2019-10-29 2023-04-18 广东工业大学 一种小水电微电网电源容量配置方法
CN110826805B (zh) * 2019-11-07 2022-10-21 广西电网有限责任公司 一种考虑来水不均匀性的低水头梯级水电站中期优化调度方法
CN110838733B (zh) * 2019-11-18 2023-04-18 国网四川省电力公司电力科学研究院 一种适于梯级水光互补能源发电系统的光伏容量配置方法
CN110909954B (zh) * 2019-12-03 2022-10-25 西安交通大学 一种最大化可再生能源利用的多阶段电源规划方法
FR3105628B1 (fr) * 2019-12-20 2021-12-17 Commissariat Energie Atomique Procede de determination d’une sequence de fonctionnement d’un ensemble de groupes electrogenes d’un reseau electrique
CN111612292A (zh) * 2020-04-03 2020-09-01 贵州乌江水电开发有限责任公司 基于关键水位控制的梯级水电站调度控制系统及方法
CN111931849B (zh) * 2020-08-11 2023-11-17 北京中水科水电科技开发有限公司 一种水电机组运行数据趋势预警方法
CN112183839B (zh) * 2020-09-22 2022-08-30 河海大学 一种含梯级水电风光水互补发电系统中长期优化调度方法
CN113328465A (zh) * 2021-05-08 2021-08-31 湖北清江水电开发有限责任公司 流域梯级电厂厂间负荷转移系统及方法
CN115099468B (zh) * 2022-06-06 2024-02-13 中国长江电力股份有限公司 一种串联水库群防洪库容优化分配的计算方法
CN117154943B (zh) * 2023-09-07 2024-06-14 湖北清江水电开发有限责任公司 一种集控中心采集梯级电厂发电能力系统及采集方法
CN117035363A (zh) * 2023-09-07 2023-11-10 湖北清江水电开发有限责任公司 流域梯级电厂日发电计划编制方法
CN117217486A (zh) * 2023-09-27 2023-12-12 湖北清江水电开发有限责任公司 流域梯级电厂日发电计划自动编制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004835A (zh) * 2010-11-26 2011-04-06 武汉大学 一种面向发电风险的水电站优化调度图编制方法
CN102156815A (zh) * 2011-04-07 2011-08-17 国电南瑞科技股份有限公司 年度电量进度跟踪调度模式下发电计划优化方法
CN102567847A (zh) * 2011-12-20 2012-07-11 华北电网有限公司 日内调度优化方法
CN102904249A (zh) * 2012-09-27 2013-01-30 中国电力科学研究院 一种基于安全约束的实时发电计划方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888717B2 (ja) * 1992-04-06 1999-05-10 公生 石丸 エネルギー供給システム
US7343360B1 (en) * 1998-05-13 2008-03-11 Siemens Power Transmission & Distribution, Inc. Exchange, scheduling and control system for electrical power
AU2001296336A1 (en) * 2000-09-26 2002-04-08 Daniel S. Gluck Automated new energy technology consulting and demand aggregation system and method
US7464551B2 (en) * 2002-07-04 2008-12-16 Alstom Technology Ltd. Method for operation of a power generation plant
US8382886B2 (en) * 2008-08-19 2013-02-26 Canyon West Energy, Llc Cavitation phase separators for steam-based generating systems
US8892264B2 (en) * 2009-10-23 2014-11-18 Viridity Energy, Inc. Methods, apparatus and systems for managing energy assets
WO2011053978A2 (en) * 2009-11-02 2011-05-05 Cho Michael Y System and method for water expulsion from underwater hydropower plant and hydropower plant associated therewith
US8373949B2 (en) * 2010-06-16 2013-02-12 Transocean Sedco Forex Ventures Limited Hybrid power plant for improved efficiency and dynamic performance
EP2518665A1 (en) * 2011-04-28 2012-10-31 Vestas Wind Systems A/S Renewable energy configurator
EP2575230B1 (en) * 2011-09-30 2018-11-07 ABB Research Ltd. Systems and methods for integrating demand response with service restoration in an electric distribution system
JP5254500B1 (ja) * 2011-12-14 2013-08-07 パナソニック株式会社 分散型発電システム及び分散型発電システムの制御方法
US20120150679A1 (en) * 2012-02-16 2012-06-14 Lazaris Spyros J Energy management system for power transmission to an intelligent electricity grid from a multi-resource renewable energy installation
US9507367B2 (en) * 2012-04-09 2016-11-29 Clemson University Method and system for dynamic stochastic optimal electric power flow control
US9727071B2 (en) * 2012-05-04 2017-08-08 Viridity Energy Solutions, Inc. Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model
US9058443B2 (en) * 2012-07-17 2015-06-16 International Business Machines Corporation Planning economic energy dispatch in electrical grid under uncertainty
CN102855591B (zh) * 2012-08-14 2016-09-14 贵州乌江水电开发有限责任公司 梯级水库群短期联合发电优化调度方法及系统
CN103023073B (zh) * 2012-12-21 2015-04-15 大连理工大学 一种水电站群电站与机组混合优化调度方法
CN103259262B (zh) * 2013-05-03 2015-07-22 国家电网公司 含大规模风电的电力系统的检修计划优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004835A (zh) * 2010-11-26 2011-04-06 武汉大学 一种面向发电风险的水电站优化调度图编制方法
CN102156815A (zh) * 2011-04-07 2011-08-17 国电南瑞科技股份有限公司 年度电量进度跟踪调度模式下发电计划优化方法
CN102567847A (zh) * 2011-12-20 2012-07-11 华北电网有限公司 日内调度优化方法
CN102904249A (zh) * 2012-09-27 2013-01-30 中国电力科学研究院 一种基于安全约束的实时发电计划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI, XINGBO;: "Research and Application for Daily Generation Scheduling of Cascade Hydropower Stations", MASTER'S DISSERTATION OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, 31 December 2012 (2012-12-31) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108805434A (zh) * 2018-05-25 2018-11-13 河海大学 一种基于改进nsga-ⅲ的梯级水电站多目标优化调度方法
CN109886543A (zh) * 2019-01-16 2019-06-14 河南大学 基于均匀设计的水库优化调度方法
CN109886543B (zh) * 2019-01-16 2022-09-16 河南大学 基于均匀设计的水库优化调度方法
CN110705786A (zh) * 2019-09-29 2020-01-17 河南郑大水利科技有限公司 一种梯级水电站优化运行的评价方法
CN110969283A (zh) * 2019-10-21 2020-04-07 贵州电网有限责任公司 基于实时弃水风险评估的梯级水电站优化调度方法及系统
CN112681212A (zh) * 2020-11-25 2021-04-20 国家能源集团新疆吉林台水电开发有限公司 一种梯级水电站edc和闸门自动优化联动方法及系统
CN112950033A (zh) * 2021-03-04 2021-06-11 吴统明 一种基于水库调度规则合成的水库调度决策方法及系统
CN112950033B (zh) * 2021-03-04 2024-03-29 吴统明 一种基于水库调度规则合成的水库调度决策方法及系统

Also Published As

Publication number Publication date
CN103942728A (zh) 2014-07-23
US10482549B2 (en) 2019-11-19
CN103942728B (zh) 2017-02-08
US20170039659A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2015154318A1 (zh) 梯级水电站群日发电计划编制方法
CN110135631B (zh) 基于信息间隙决策理论的电气综合能源系统调度方法
Yuan et al. Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming
Arnold et al. Model predictive control of energy storage including uncertain forecasts
Ding et al. A forecast-driven decision-making model for long-term operation of a hydro-wind-photovoltaic hybrid system
US8655497B2 (en) System and method for regulating electrical and thermal energy generated by co/trigeneration energy system in multi-source energy plant
CN104063808B (zh) 一种跨省送电梯级水电站群调峰调度两阶段搜索方法
CN110739726B (zh) 一种考虑海上风电接入的多类型电源容量长期规划方法
CN105184426B (zh) 一种基于随机连续寻优策略的梯级电站调峰方法
CN114330827B (zh) 多能流虚拟电厂分布式鲁棒自调度优化方法及其应用
CN116341881B (zh) 计及热网灵活性的电-热系统鲁棒超前调度方法及系统
CN104674748B (zh) 一种梯级水电站群弃水概率量化方法
CN105244870A (zh) 一种快速计算电网风电场弃风率及机组发电量的方法
CN116402210A (zh) 一种综合能源系统多目标优化方法、系统、设备和介质
CN113363976B (zh) 一种基于场景图的风光水互补发电系统中期优化调度方法
CN104239960A (zh) 考虑抽水蓄能机组的发电计划优化方法
CN112134271A (zh) 一种多能互补系统装机容量优化方法及系统
CN108767855A (zh) 一种时序持续混合的电力系统随机生产模拟方法
CN115758763A (zh) 一种计及源荷不确定性的多能流系统优化配置方法及系统
CN110717694B (zh) 基于新能源消纳期望值的储能配置随机决策方法及装置
Wei et al. Power system flexibility scheduling model for wind power integration considering heating system
CN115080907A (zh) 综合能源系统的控制方法、装置及设备
Hering et al. Optimal scheduling of a pumped-storage hydro power plant operation
Grønvik et al. Feasibility of linear decision rules for hydropower scheduling
Polisetty et al. Co-Optimization of Electrical and District Heating Networks: Bornholm case study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15303403

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14888807

Country of ref document: EP

Kind code of ref document: A1