WO2015152557A1 - Streetlight management system - Google Patents

Streetlight management system Download PDF

Info

Publication number
WO2015152557A1
WO2015152557A1 PCT/KR2015/002870 KR2015002870W WO2015152557A1 WO 2015152557 A1 WO2015152557 A1 WO 2015152557A1 KR 2015002870 W KR2015002870 W KR 2015002870W WO 2015152557 A1 WO2015152557 A1 WO 2015152557A1
Authority
WO
WIPO (PCT)
Prior art keywords
street
streetlight
gateway
coordinator
controller
Prior art date
Application number
PCT/KR2015/002870
Other languages
French (fr)
Korean (ko)
Inventor
성석
김영준
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Publication of WO2015152557A1 publication Critical patent/WO2015152557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters

Definitions

  • the present invention relates to a streetlight management network for managing a plurality of streetlights, and more particularly to a streetlight management system.
  • a large number of lighting facilities such as street lights and security lamps (hereinafter referred to as 'street lights') are installed in a relatively large area, and each street lamp is used to manage lighting time, turn off time, and trouble management of each street light.
  • the streetlight management network is connected to the remote control server.
  • a street light controller installed in each street light and managing and controlling the street light starts with a photoelectric type that is turned on by the amount of ambient light, and a timer that is simply turned off by a microcomputer, and one-way using VHF (Very High Frequency).
  • VHF Very High Frequency
  • ZigBee which is based on the IEEE 802.15.4 standard, uses a mesh network to transmit data through multiple intermediate nodes to its destination, enabling a wide range of communication despite low power. Ad-hoc network characteristics make it suitable for applications where no central node exists.
  • ZigBee operates on industrial, scientific and medical radio frequencies (ISM bands). It uses 868 MHz in Europe, 915 MHz in the US and Australia, and 2.45 GHz radio in most parts of the world.
  • Data transfer rates are around 20 kilobytes per second in the 868 MHz frequency band and 250 kilobytes per second in the 2.4 GHz frequency band.
  • the number of channels by ZigBee frequency can be used in 1 channel at 800MHz, 10 channels at 900MHz, 16 channels at 2.4GHz.
  • the Zigbee communication module is mounted on the street lamp controller, and the street lamp controller communicates with a central control server at a remote location through the Zigbee network to perform on / off control of a street lamp or automatic notification of a street lamp failure.
  • the proposed streetlight remote control method using ZigBee wireless communication technology is a remote control method for streetlights and performs broadcast using AODV (Adhoc On-Demand Vector) routing method and tree routing method.
  • AODV Adhoc On-Demand Vector
  • 1 is a schematic block diagram of a general street light management network.
  • the street light management network is installed in each street light (10-1, 10-2, ... 10-N) street light controller (11-1, 11-2,. 11-N).
  • Each of the street light controllers 11-1, 11-2, ... 11-N is equipped with a Zigbee module capable of short-range communication so that each street light controller 11-1, 11-2, ... 11-N It forms a Zigbee communication network, and has a structure capable of collecting data of each streetlight controller (11-1, 11-2, ... 11-N) to one gateway (14).
  • the Zigbee communication network used here is an ad hoc in which individual street light controllers 11-1, 11-2, ...
  • 11-N can serve as ZigBee routers to extend the communication distance beyond 1-hop.
  • a characteristic of the network configuration is that the streetlight controllers 11-1, 11-2, ... 11-N located within the Zigbee communication distance can transmit and receive data with each other.
  • a communication module connected to the airwave communication module such as CDMA or a wired Internet backbone network is mounted.
  • the gateway 14 receives the state information of each streetlight controller 11-1, 11-2, ... 11-N through Zigbee communication, and uses an external communication network 16 such as CDMA or mobile communication.
  • the manager terminal 52 By transmitting to the street lamp control server 40, the manager terminal 52 is connected to the control server 40 so that the administrator can be provided with the necessary information.
  • Command signals such as lighting control transmitted from the street lamp control server 40 are transmitted to the street lamp controllers 11-1, 11-2, ... 11-N of each street lamp through the gateway 14.
  • the street lights 10-1, 10-2, ... 10-N are typically installed in a line, for example, several tens of meters apart along a particular road. Accordingly, from the standpoint of the Zigbee communication network, the street light controller (11-1 in the example of FIG. 1) closest to the gateway 14 serves as a coordinator, and the remaining street light controller (in the example of FIG. 1). , 11-2, 11-N) serve as a router for transmitting a signal to a streetlight controller immediately adjacent to the rear end.
  • the Zigbee communication network composed of street light controllers 11-1, 11-2, ... 11-N is configured in such a manner that a plurality of routers are sequentially connected to one coordinator, thereby communicating in a short channel.
  • the channel is being formed.
  • This network configuration method causes channel resource saturation, especially when a large number of nodes (routers) are included in a narrow area, and communication failure is more likely to occur.
  • Wi-Fi Wi-Fi
  • Bluetooth Bluetooth
  • WLAN Wireless Local Area Network
  • WPAN Wireless Personal Area Network
  • an object of the present invention is to provide a street light management system that can prevent the occurrence of channel resource saturation and reduce the occurrence of communication failure.
  • Another object of the present invention is to provide a street light management system that can effectively cope with the occurrence of communication failure caused by frequency interference.
  • Still another object of the present invention is to provide a street lamp management system suitable for being implemented in a street lamp having a plurality of lamps in one column.
  • the present invention provides a management system for a plurality of street lamps, at least one lamp is installed in one column; A street light controller installed in the lamp and having a Zigbee communication module to form a Zigbee communication network;
  • the street lamp controller is connected to the Zigbee communication network, and transmits the information of the street lamp controller to a street lamp control server using an external communication network, and transmits the control information of the street lamp controller transmitted from the street lamp control server to the Zigbee communication network.
  • a street lamp controller installed in the lamps of the plurality of street lamps is divided into a coordinator and a router according to a setting, the gateway is connected to a plurality of coordinators, and each coordinator is connected to a router group;
  • the router group is characterized in that a plurality of routers are connected in series with each other, and the gateway and each coordinator communicate through different wireless channels.
  • the street lamp management system according to the present invention is suitable to be implemented in a street lamp having a plurality of lamps in one column, prevent the occurrence of channel resource saturation, and reduce the occurrence of communication failure. In addition, it is possible to effectively cope with the occurrence of communication failure due to frequency interference.
  • FIG. 1 is a schematic block diagram of a typical streetlight management network
  • FIG. 2 is a schematic block diagram of a streetlight management network according to an embodiment of the present invention.
  • FIG. 3 is a detailed block diagram of a streetlight controller of FIG.
  • FIG. 4 is a configuration diagram of a connection relationship on the Zigbee communication network of FIG.
  • FIG. 5 is an exemplary view schematically showing a channel avoidance operation performed in a streetlight management network according to another embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a streetlight management network according to an embodiment of the present invention.
  • two first and second streetlights 20-1 and 20-2 are provided for convenience of illustration. While this is shown, it will be appreciated that a number of other street lights may be provided to form a street light management network.
  • the number of channels for each frequency of ZigBee can use 1 channel at 800 MHz, 10 channels at 900 MHz, and 16 channels at 2.4 GHz.
  • the present invention uses a plurality of street lights by using a total of 16 channels at least two or more in Zigbee 2.4 GHz. Can be controlled. In particular, when using 16 channels can control the maximum number of street lights can maximize the effect of the present invention.
  • the street lamp 20-1. 20-2 shown in Figure 2 is an exemplary view for showing a configuration in which two or more street lamps are installed in one column, in Figure 2, for example, one column A six-lamp street light is shown in which six lamps are installed.
  • the streetlight management network is installed in each of the six-lamp streetlight (20-1, 20-2) by six, streetlight controller 21 for controlling the lamp of the installed streetlight -1, 21-2, 21-3, 21-4, 21-5, 21-6, 22-1, 22-2, 22-3, 22-4, 22-5, 22-6) .
  • Each street light controller 21-1, ... 22-6 is equipped with a Zigbee module capable of short-range communication, and forms a Zigbee communication network between each street light controller 21-1, ... 22-6, It has a structure that can collect the data of each street light controller (21-1, ... 22-N) in one gateway (14).
  • the six streetlight controllers 21-1, 21-6 which are installed closest to the gateway 14, that is, the first streetlight 20-1 in which the gateway 14 is installed, are provided. Since the signal strength with the gateway 14 is the strongest, the coordinator serves as a coordinator. Each street lamp controller 21-1, ... Act as coordinator on the In the general Zigbee communication method, the coordinator role or the router role is determined through mutual competition in the same channel. However, according to the feature of the present invention, a plurality of street light controllers installed in each street light are assigned different operating channels. It acts as a coordinator or router on the channel.
  • the Zigbee communication standard stipulates to support 16 channels in the 2.45 GHz band.
  • Each of the six streetlight controllers 21-1, ... 21-6 can be allocated with, for example, first to sixth channels. Can be.
  • each of the street light controller 22-1, ... 22-6 installed in the second street light 20-2 adjacent to the first street light 20-1 without the gateway 14 installed. Is to act as a router according to the signal strength strength with the gateway 14, similarly, each of the street light controller 22-1, ... 22-6) are also allocated, for example, first to sixth channels.
  • the street light controller 21-1 to which the first channel is allocated in the first street light 20-1 serves as a coordinator of the corresponding first channel.
  • the streetlight controller 22-1 to which the first channel is allocated in the second streetlight 20-2 is connected to the streetlight controller 21-1, which is a coordinator of the first channel of the first streetlight 20-1. Plays a role.
  • the second to sixth channels of the second streetlight 20-2 to the streetlight controllers 21-2, ... 21-6 which are coordinators of the second to sixth channels of the first streetlight 20-1.
  • the streetlight controllers 22-2, ... 22-6, which are routers, are respectively connected.
  • streetlight controllers of a third streetlight (not shown) adjacent to the second streetlight 20-2 are also routers, and streetlight controllers 22 of the first to sixth channels of the second streetlight 20-2. -1, .... 22-6) respectively.
  • the street light controller acting as a coordinator obtains identification information (address) of the street light controller serving as a router connected to it.
  • the gateway 14 is connected to a plurality of coordinators each using a different radio channel, and each coordinator has a structure connected to each router group.
  • Each router group is formed of a plurality of routers connected in series with each other.
  • the connection operation between the street light controllers when the initial Zigbee network is formed, the street light controller that acts as a coordinator sends a beacon (beacon) signal, the street light controller that detects the transmitted beacon signal joins the network ( by joining).
  • the street lamp controller serving as the coordinator may check the connection state of the street lamp controller serving as a router by periodically sending a polling message.
  • the street lamp controllers acting as routers may check the polling message to determine whether there is a duplicate, and if not, transfer the street controllers to another street lamp controller connected to the other router, and ignore the duplicated controller.
  • the street lamp management network can be configured, and since such a network configuration uses a plurality of channels, more smooth communication can be possible in a narrow area.
  • the gateway 14 is equipped with an airwave communication module, such as CDMA, for example, similar to the prior art, and receives the state information, etc. of each streetlight controller via Zigbee communication through the streetlight controller acting as a coordinator CDMA Or by using external communication network such as mobile communication. In addition, it receives a command signal for each channel or the lighting control of each individual lamp transmitted from the streetlight control server, and transmits the command signal to the streetlight controller acting as a coordinator, thereby propagating to the entire streetlight controller.
  • CDMA airwave communication module
  • FIG. 3 is a detailed block diagram of the street lamp controller of FIG. 2, and may be equally applied to all of the street lamp controllers shown in FIG. 2.
  • the street lamp controller may be classified into a Zigbee module that is in charge of a Zigbee communication operation and a control operation and a power module that is in charge of a power supply operation.
  • the Zigbee module includes a Zigbee communication unit 110 and a control unit 101
  • the power module includes a state sensing unit 120, a power supply unit 130, and a light switch 140.
  • the street lamp controller includes a Zigbee communication module, and communicates with other street lamp controllers or gateways in the vicinity, and receives a ZigBee communication unit for receiving operation instruction information on the corresponding lamp lamp and transmitting status information of the lamp controller.
  • a state detection unit 120 for detecting an operation state and a peripheral state of a corresponding street light controller including a failure state of a lamp, a power abnormality state, and the like;
  • the state information detected by the state detection unit 120 is transmitted through the Zigbee communication unit 110, and receives the operation instruction information for the corresponding street lamp lamp transmitted from the street light control server, the point of the corresponding street lamp lamp 150, A control unit 101 for controlling the lights out;
  • a turn-on / off switch 140 for switching on or off the street lamp 150 by a point-off control signal of the control unit 101;
  • a circuit including a switching mode power supply (SMPS) and the like is configured to include a power supply unit 130 that receives external commercial AC power and generates operating power for each of the functional units including the control unit 101.
  • SMPS switching mode power supply
  • the state detection unit 120 is a lamp failure detection sensor for detecting a failure state of the lamp using a photocoupler or the like, a power failure detection sensor for detecting a power failure state by detecting the flow of voltage or current of AC power It may include a temperature sensor and humidity sensor for detecting the ambient temperature and humidity, an illumination sensor for detecting the illuminance.
  • the street light controller may include a backup battery for supplying backup power in case of power failure.
  • each coordinator node [C] is connected to each gateway for each of the first to sixth channels, and each router node [R] for each channel is connected to each coordinator node of the first to sixth channels.
  • a null Zigbee Modem may be used for the connection between the coordinator nodes.
  • each coordinator node corresponds to six street light controllers provided in the first street light 20-1 shown in FIG. 2, and router nodes directly connected to each coordinator node are shown in FIG. It will be understood that it corresponds to six streetlight controllers provided in the second streetlight 20-2.
  • this approach has at least three depths of network by the gateway, coordinator and router.
  • the connection relationship of the ZigBee communication network of the first to sixth channel is shown on the network of the six-lamp street light as shown in FIG. 2, in another embodiment of the present invention, for example
  • streetlight controllers installed in a plurality of streetlights adjacent to the gateway may be configured to serve as coordinators to which different channels are assigned.
  • a street lamp installed in each direction of the road at the crossroad may be a four-light street lamp having four street lamps, and each street lamp may include four streetlight controllers.
  • the street light controllers of the street lamps installed on the first direction road are assigned first to fourth channels
  • the street light controllers of the street lamps installed on the second direction road are allocated the fifth to eighth channels.
  • Street light controllers of the street lamps installed on the third and fourth directions roads may be allocated to the ninth through twelfth channels and the thirteenth through sixth channels.
  • the gateway is installed at the central position of the crossroad, so that the streetlight controllers of the respective streetlights closest to the gateway for each of the first to fourth direction roads may be configured to act as coordinators of the first to sixteenth channels as a whole.
  • FIG. 5 is an exemplary view schematically illustrating a channel avoidance operation in a street lamp management network according to another exemplary embodiment of the present invention.
  • a street lamp management network between two lamp street lamps in which two street lamps are installed in one column is provided.
  • the formed state is shown.
  • Figure 5 (a) shows the initial communication connection state
  • Figure 5 (b) shows a state where a communication failure occurs due to frequency interference, etc.
  • Figure 5 (c) shows a failure to solve the communication failure problem
  • the state of avoiding a channel is disclosed.
  • FIG. 5 for example, a state in which the second lamps 1 to 3 street lights 30-1, 30-2, and 30-3 are sequentially connected is illustrated.
  • the first streetlight controllers 31-1, 32-1, and 33-1 provided in each of the streetlights 30-1, 30-2, and 30-3 are assigned a first channel.
  • the second streetlight controllers 31-2, 32-2, and 33-2 a fourth channel is allocated.
  • communication failure occurs in the first channel between the first street light 30-1 and the second street light 30-2. May occur.
  • the second streetlight controller 31-2 of the first streetlight 30-1 transmits data by changing a channel to a preliminary reserved channel, for example, a channel that can communicate with the next node.
  • a preliminary reserved channel for example, a channel that can communicate with the next node.
  • FIG. 5C for example, a state in which communication between the second streetlight controllers 31-2, 32-2, and 33-2 is performed through the second channel is illustrated.
  • a technology in which a spare channel is used may be applied as it is.
  • the reserved channel (s) prepared in addition to the main channel are allocated in advance, and when a communication failure occurs during communication through the main channel, Has a configuration that performs communication through the channel.
  • the first streetlight controller may be assigned a first channel as a main channel and a plurality of spare channels (second channel and third channel).
  • a fourth channel may be allocated as a main channel and a plurality of spare channels (eg, fifth to seventh channels) may be allocated.
  • the available channel check operation and the channel change operation are mutually negotiated through the channel scan operation.
  • Street light management system according to an embodiment of the present invention can be configured as described above, while in the above description of the present invention has been described with respect to specific embodiments, various modifications can be carried out without departing from the scope of the present invention. . Therefore, the scope of the present invention should not be defined by the described embodiments, but by the claims and equivalents of the claims.

Abstract

Disclosed is a system for managing a plurality of streetlights in which at least one lamp is installed at one lamp pole, the system comprising: streetlight controllers which are installed in the lamp and which have a Zigbee communication module so as to form a Zigbee communication network; and a gateway connected to the streetlight controllers through the Zigbee communication network, and transmitting information of the streetlight controllers to a streetlight control server by using an external communication network, and transferring control information of the streetlight controllers transmitted from the streetlight control server to the streetlight controllers through the Zigbee communication network, wherein: the streetlight controllers installed in the lamps of the plurality of streetlights are divided into a coordinator and a router depending on the set-up; the gateway is connected to a plurality of coordinators; each coordinator is connected to a router group; the router group includes a plurality of routers connected in series with each other; and the gateway and coordinators communicate with each other through wireless channels which are different from each other.

Description

가로등 관리 시스템Street light management system
본 발명은 다수의 가로등을 관리하는 가로등 관리 네트워크에 관한 기술로서, 특히 가로등 관리 시스템에 관한 것이다. The present invention relates to a streetlight management network for managing a plurality of streetlights, and more particularly to a streetlight management system.
일반적으로, 가로등이나 보안등 같은 조명시설(이하 '가로등'을 대표로 칭함)은 비교적 넓은 영역에 많은 수가 설치되며, 각 가로등의 점등시간과 소등시간 관리 및 고장 상태 관리 등을 위해, 각 가로등들을 원격지의 관제서버와 연결하는 가로등 관리 네트워크를 형성한다. In general, a large number of lighting facilities such as street lights and security lamps (hereinafter referred to as 'street lights') are installed in a relatively large area, and each street lamp is used to manage lighting time, turn off time, and trouble management of each street light. The streetlight management network is connected to the remote control server.
한편, 각 가로등에 설치되어 해당 가로등을 관리 및 제어하는 가로등 제어기는 주변의 광량에 의하여 점소등되는 광전식으로부터 시작하여, 마이컴에 의하여 단순 점소등되는 타이머, 그리고 VHF(Very High Frequency)를 이용한 단방향 제어방식을 거쳐 오늘날에는 양방향으로 가로등의 상태를 감시할 수 있는 양방향 제어기가 등장하기에 이르렀다. Meanwhile, a street light controller installed in each street light and managing and controlling the street light starts with a photoelectric type that is turned on by the amount of ambient light, and a timer that is simply turned off by a microcomputer, and one-way using VHF (Very High Frequency). Today, two-way controllers have emerged that can monitor the status of street lights in both directions.
이러한 양방향 가로등 제어기는 전력선 통신(PLC) 방식을 이용하여 구현되기도 하지만, 최근 지그비(Zigbee) 무선통신기술을 이용한 가로등 제어 방식이 제안되었다. IEEE 802.15.4 표준을 기반으로 만들어진 지그비는 메시(mesh) 네트워크 방식을 이용, 여러 중간 노드를 거쳐 목적지까지 데이터를 전송함으로써 저전력임에도 불구하고 넓은 범위의 통신이 가능하다. 애드혹 네트워크적인 특성으로 인해 중심 노드가 따로 존재하지 않는 응용 분야에 적합하다. 지그비는 산업, 과학, 의학용 무선 주파수(ISM 밴드)에서 동작한다. 유럽에서는 868MHz, 미국 및 오스트레일리아에서는 915MHz, 그리고 세계 대부분 지역에서 2.45GHz 무선 주파수를 사용한다. 데이터 전송 속도는 868MHz 주파수 대역에서 초당 20 킬로바이트, 2.4GHz 주파수 대역에서 초당 250 킬로바이트 정도이다. 또한 지그비의 주파수별 채널 수를 보면, 800MHz에서 1 채널, 900MHz에서 10 채널, 2.4GHz에서 16 채널을 이용할 수 있다.Although the bidirectional street light controller is implemented using a power line communication (PLC) method, a street light control method using a Zigbee wireless communication technology has recently been proposed. ZigBee, which is based on the IEEE 802.15.4 standard, uses a mesh network to transmit data through multiple intermediate nodes to its destination, enabling a wide range of communication despite low power. Ad-hoc network characteristics make it suitable for applications where no central node exists. ZigBee operates on industrial, scientific and medical radio frequencies (ISM bands). It uses 868 MHz in Europe, 915 MHz in the US and Australia, and 2.45 GHz radio in most parts of the world. Data transfer rates are around 20 kilobytes per second in the 868 MHz frequency band and 250 kilobytes per second in the 2.4 GHz frequency band. In addition, the number of channels by ZigBee frequency can be used in 1 channel at 800MHz, 10 channels at 900MHz, 16 channels at 2.4GHz.
즉, 가로등 제어기에 지그비 통신 모듈을 탑재하고, 가로등 제어기는 지그비 네트워크를 통해 원격지의 중앙 관제 서버와 통신을 수행하여, 가로등의 온/오프 제어나, 가로등 고장에 대한 자동 통보 등을 수행한다. 제안된 지그비 무선통신기술을 이용한 가로등 원격 제어 방식은 가로등을 원격으로 제어하는 방식으로 AODV(Adhoc On-Demand Vector) 라우팅 방식과 트리 라우팅 방식을 사용하여 브로드캐스트를 수행한다. 이러한 지그비 무선통신기술을 이용한 가로등 제어 기술로는 국내 선출원된 특허 출원번호 제10-2009-0126253호(명칭: "가로등 지그비 네트워크의 브로드캐스트 방법", 출원인: 삼성전기주식회사, 발명자: 김지훈/서보일, 출원일: 2009년 12월 17일)에 개시된 바를 예로 들 수 있다. That is, the Zigbee communication module is mounted on the street lamp controller, and the street lamp controller communicates with a central control server at a remote location through the Zigbee network to perform on / off control of a street lamp or automatic notification of a street lamp failure. The proposed streetlight remote control method using ZigBee wireless communication technology is a remote control method for streetlights and performs broadcast using AODV (Adhoc On-Demand Vector) routing method and tree routing method. Such a street light control technology using the Zigbee wireless communication technology, the domestic patent application No. 10-2009-0126253 (name: "broadcasting method of the street light Zigbee network", Applicant: Samsung Electro-Mechanics, Inc., inventor: Ji-Hoon Kim / Seoboil , Application date: December 17, 2009).
도 1은 일반적인 가로등 관리 네트워크의 개략적인 블록 구성도이다. 도 1을 참조하면, 가로등 관리 네트워크는 각각의 가로등(10-1, 10-2, ... 10-N)에 설치되어 해당 설치된 가로등을 제어하는 가로등 제어기(11-1, 11-2, ... 11-N)를 구비한다. 각 가로등 제어기(11-1, 11-2, ... 11-N)는 근거리 통신이 가능한 지그비 모듈을 탑재하여, 각 가로등 제어기(11-1, 11-2, ... 11-N)간에는 지그비 통신 네트워크를 형성하고, 각 가로등 제어기(11-1, 11-2, ... 11-N)의 데이터를 하나의 게이트웨이(14)로 수집할 수 있는 구조를 가진다. 여기서 이용되는 지그비 통신 네트워크는 개개의 가로등 제어기(11-1, 11-2, ... 11-N)가 지그비 라우터 역할을 수행하여 통신 거리를 1-hop 이상으로 확장할 수 있는 애드혹(Ad hoc) 네트워크를 구성한다는 점이 그 특징이며, 이에 따라 지그비 통신 거리 안에 위치한 가로등 제어기(11-1, 11-2, ... 11-N)들은 서로의 데이터를 송수신할 수 있다. 상기 각 가로등 제어기(11-1, 11-2, ... 11-N)와 실질적으로 동일한 구성에 추가적으로 예를 들어, CDMA 등의 공중파 통신모듈이나 유선 인터넷 백본 네트워크와 연결되는 통신 모듈이 탑재된 게이트웨이(14)는 각각의 가로등 제어기(11-1, 11-2, ... 11-N)의 상태 정보 등을 지그비 통신으로 전송받아 CDMA나 이동통신 등의 외부통신 네트워크(16)를 이용하여 가로등 관제 서버(40)로 전송함으로써, 관제 서버(40)와 연결되는 관리자 단말기(52)에서 관리자가 필요한 정보를 제공받을 수 있도록 한다. 가로등 관제 서버(40)로부터 송신되는 점등 제어 등의 명령신호는 게이트웨이(14)를 통해 각 가로등의 가로등 제어기(11-1, 11-2, ... 11-N)로 전달된다. 1 is a schematic block diagram of a general street light management network. 1, the street light management network is installed in each street light (10-1, 10-2, ... 10-N) street light controller (11-1, 11-2,. 11-N). Each of the street light controllers 11-1, 11-2, ... 11-N is equipped with a Zigbee module capable of short-range communication so that each street light controller 11-1, 11-2, ... 11-N It forms a Zigbee communication network, and has a structure capable of collecting data of each streetlight controller (11-1, 11-2, ... 11-N) to one gateway (14). The Zigbee communication network used here is an ad hoc in which individual street light controllers 11-1, 11-2, ... 11-N can serve as ZigBee routers to extend the communication distance beyond 1-hop. A characteristic of the network configuration is that the streetlight controllers 11-1, 11-2, ... 11-N located within the Zigbee communication distance can transmit and receive data with each other. In addition to the substantially same configuration as each of the streetlight controllers (11-1, 11-2, ... 11-N), for example, a communication module connected to the airwave communication module, such as CDMA or a wired Internet backbone network is mounted. The gateway 14 receives the state information of each streetlight controller 11-1, 11-2, ... 11-N through Zigbee communication, and uses an external communication network 16 such as CDMA or mobile communication. By transmitting to the street lamp control server 40, the manager terminal 52 is connected to the control server 40 so that the administrator can be provided with the necessary information. Command signals such as lighting control transmitted from the street lamp control server 40 are transmitted to the street lamp controllers 11-1, 11-2, ... 11-N of each street lamp through the gateway 14.
한편, 가로등들(10-1, 10-2, ... 10-N)은 통상적으로, 예를 들어, 특정 도로를 따라 수십 미터 간격을 두고 일렬로 설치된다. 이에 따라, 지그비 통신 네트워크의 관점에서 살펴보면, 게이트웨이(14)와 가장 인접한 가로등 제어기(도 1의 예에서는, 11-1)가 코디네이터(coordinator)의 역할을 하고, 나머지 가로등 제어기(도 1의 예에서는, 11-2, 11-N)는 선후단의 바로 인접한 가로등 제어기와 신호를 전달하는 라우터(router)의 역할을 수행한다. On the other hand, the street lights 10-1, 10-2, ... 10-N are typically installed in a line, for example, several tens of meters apart along a particular road. Accordingly, from the standpoint of the Zigbee communication network, the street light controller (11-1 in the example of FIG. 1) closest to the gateway 14 serves as a coordinator, and the remaining street light controller (in the example of FIG. 1). , 11-2, 11-N) serve as a router for transmitting a signal to a streetlight controller immediately adjacent to the rear end.
이와 같이, 가로등 제어기들(11-1, 11-2, ... 11-N)로 구성되는 지그비 통신 네트워크는 하나의 코디네이터에 다수의 라우터들이 순차적으로 연결되는 방식으로 구성되어, 단채널로 통신 채널이 형성되고 있다. 이러한 네트워크 구성 방식은 특히, 협소한 지역에 다수의 노드(라우터)들이 포함될 경우에 채널 자원 포화 상태가 야기되며, 통신 장애가 발생할 가능성이 커진다. As described above, the Zigbee communication network composed of street light controllers 11-1, 11-2, ... 11-N is configured in such a manner that a plurality of routers are sequentially connected to one coordinator, thereby communicating in a short channel. The channel is being formed. This network configuration method causes channel resource saturation, especially when a large number of nodes (routers) are included in a narrow area, and communication failure is more likely to occur.
또한, 2.4GHz ISM(Industrial, Science and Medial) Band를 사용하는 기술들로는 지그비 외에도, 와이파이(WiFi), 블루투스(Bluetooth) 등이 있으며, 이들은 WLAN(Wireless Local Area Network) 및 WPAN(Wireless Personal Area Network)를 구성하여 사용된다. 이러한 기술들은 무선 구간의 커버리지가 비교적 짧고, 소출력 무선 센서 네트워크를 구현하기 위해 고려한 기술들이다. 이러한 이유로WPAN과 WLAN은 동일한 영역에서 공존하는 경우가 많으며, 더욱이, 서로 사용하는 주파수 대역이 중첩되어 이들 간의 간섭으로 통신 장애가 많이 발생하고 있다. 따라서, 상기와 같이, 가로등 제어기들(11-1, 11-2, ... 11-N)로 구성되는 지그비 통신 네트워크에서도, 상기한 주파수 간섭 문제의 해결이 요구되고 있다. In addition to Zigbee, technologies that use the 2.4 GHz Industrial, Science and Medial (ISM) Band include Wi-Fi (WiFi) and Bluetooth (Bluetooth), which include Wireless Local Area Network (WLAN) and Wireless Personal Area Network (WPAN). It is used to construct. These technologies are relatively short coverage of the wireless section, and are considered to implement a low power wireless sensor network. For this reason, WPANs and WLANs often coexist in the same area, and moreover, frequency bands that overlap each other overlap, causing communication failures due to interference between them. Therefore, as described above, even in a Zigbee communication network composed of street light controllers 11-1, 11-2, ... 11-N, there is a need to solve the above-described frequency interference problem.
따라서, 본 발명의 목적은 채널 자원 포화 상태의 발생을 방지하며, 통신 장애가 발생을 줄일 수 있는 가로등 관리 시스템을 제공함에 있다. Accordingly, an object of the present invention is to provide a street light management system that can prevent the occurrence of channel resource saturation and reduce the occurrence of communication failure.
본 발명의 다른 목적은 주파수 간섭에 따른 통신 장애 발생에 효율적으로 대처할 수 있는 가로등 관리 시스템을 제공함에 있다. Another object of the present invention is to provide a street light management system that can effectively cope with the occurrence of communication failure caused by frequency interference.
본 발명의 또다른 목적은 하나의 등주에 복수의 램프를 구비하는 가로등에 구현되기에 적합한 가로등 관리 시스템을 제공함에 있다. Still another object of the present invention is to provide a street lamp management system suitable for being implemented in a street lamp having a plurality of lamps in one column.
상기한 목적을 달성하기 위하여 본 발명은 적어도 하나 이상의 램프가 하나의 등주에 설치된 복수 가로등의 관리 시스템에 있어서; 상기 램프에 설치되며, 지그비 통신 모듈을 구비하여 지그비 통신 네트워크를 형성하는 가로등 제어기와; 상기 가로등 제어기와 상기 지그비 통신 네트워크를 통해 연결되며, 상기 가로등 제어기의 정보를 외부통신 네트워크를 이용하여 가로등 관제 서버로 전송하며, 상기 가로등 관제 서버로부터 송신되는 상기 가로등 제어기의 제어 정보를 상기 지그비 통신 네트워크를 통해 상기 가로등 제어기로 전달하는 게이트웨이를 포함하며; 상기 복수 가로등의 램프에 설치된 가로등 제어기는 설정에 따라 코디네이터와 라우터로 구분되며, 상기 게이트웨이는 복수의 코디네이터와 연결되고, 각 코디네이터는 라우터 그룹과 연결되며; 상기 라우터 그룹은 복수의 라우터가 상호 직렬로 연결되고 상기 게이트웨이와 각 코디네이터는 서로 다른 무선 채널을 통해 통신하는 것을 특징으로 한다. In order to achieve the above object, the present invention provides a management system for a plurality of street lamps, at least one lamp is installed in one column; A street light controller installed in the lamp and having a Zigbee communication module to form a Zigbee communication network; The street lamp controller is connected to the Zigbee communication network, and transmits the information of the street lamp controller to a street lamp control server using an external communication network, and transmits the control information of the street lamp controller transmitted from the street lamp control server to the Zigbee communication network. A gateway for transmitting to the street lamp controller through; A street lamp controller installed in the lamps of the plurality of street lamps is divided into a coordinator and a router according to a setting, the gateway is connected to a plurality of coordinators, and each coordinator is connected to a router group; The router group is characterized in that a plurality of routers are connected in series with each other, and the gateway and each coordinator communicate through different wireless channels.
상기한 바와 같이, 본 발명에 따른 가로등 관리 시스템은 하나의 등주에 복수의 램프를 구비하는 가로등에 구현되기에 적합하며, 채널 자원 포화 상태의 발생을 방지하며, 통신 장애 발생을 줄일 수 있다. 또한, 주파수 간섭에 따른 통신 장애 발생에 효율적으로 대처할 수 있다. As described above, the street lamp management system according to the present invention is suitable to be implemented in a street lamp having a plurality of lamps in one column, prevent the occurrence of channel resource saturation, and reduce the occurrence of communication failure. In addition, it is possible to effectively cope with the occurrence of communication failure due to frequency interference.
도 1은 일반적인 가로등 관리 네트워크의 개략적인 블록 구성도 1 is a schematic block diagram of a typical streetlight management network
도 2는 본 발명의 일 실시예에 따른 가로등 관리 네트워크의 개략적인 블록 구성도 2 is a schematic block diagram of a streetlight management network according to an embodiment of the present invention;
도 3은 도 2 중 가로등 제어기의 상세 블록 구성도 3 is a detailed block diagram of a streetlight controller of FIG.
도 4는 도 2의 지그비 통신 네트워크 상에서의 연결 관계 구성도 4 is a configuration diagram of a connection relationship on the Zigbee communication network of FIG.
도 5는 본 발명의 다른 실시예에 따른 가로등 관리 네트워크에서 채널 회피 동작 수행을 개략적으로 나타낸 예시도 5 is an exemplary view schematically showing a channel avoidance operation performed in a streetlight management network according to another embodiment of the present invention.
이하 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, specific details such as specific components are shown, which are provided to help a more general understanding of the present invention, and it is understood that these specific details may be changed or changed within the scope of the present invention. It is self-evident to those of ordinary knowledge in Esau.
도 2는 본 발명의 일 실시예에 따른 가로등 관리 네트워크의 개략적인 블록 구성도로서, 도 2의 예에서는 도시의 편의를 위해, 2개의 제1 및 제2 가로등(20-1, 20-2)이 도시되고 있지만, 이외에 많은 수의 가로등이 구비되어 가로등 관리 네트워크를 형성할 수 있음을 이해할 것이다. 지그비의 주파수별 채널 수는 800MHz에서 1 채널, 900MHz에서 10 채널, 2.4GHz에서 16 채널을 이용할 수 있는데, 본 발명은 지그비 2.4GHz에서 적어도 2개 이상 최대 총 16 개의 채널을 이용함으로써 복수의 가로등을 제어할 수 있다. 특히 16개 채널을 이용할 때 최다수의 가로등을 제어할 수 있으므로 본 발명의 효과를 극대화할 수 있다. 또한, 도 2에 도시된 가로등(20-1. 20-2)은 2이상 복수의 가로등 램프가 하나의 등주에 설치되는 구성을 나타내기 위한 예시도인데, 도 2에서는 예를 들어, 하나의 등주에 6개의 램프가 설치되는 6등형 가로등이 도시되고 있다. FIG. 2 is a schematic block diagram of a streetlight management network according to an embodiment of the present invention. In the example of FIG. 2, two first and second streetlights 20-1 and 20-2 are provided for convenience of illustration. While this is shown, it will be appreciated that a number of other street lights may be provided to form a street light management network. The number of channels for each frequency of ZigBee can use 1 channel at 800 MHz, 10 channels at 900 MHz, and 16 channels at 2.4 GHz. The present invention uses a plurality of street lights by using a total of 16 channels at least two or more in Zigbee 2.4 GHz. Can be controlled. In particular, when using 16 channels can control the maximum number of street lights can maximize the effect of the present invention. In addition, the street lamp 20-1. 20-2 shown in Figure 2 is an exemplary view for showing a configuration in which two or more street lamps are installed in one column, in Figure 2, for example, one column A six-lamp street light is shown in which six lamps are installed.
도 2를 참조하면, 본 발명의 일 실시예에 따른 가로등 관리 네트워크는 각각의 6등형 가로등(20-1, 20-2)에 6개씩 설치되어, 해당 설치된 가로등의 램프를 제어하는 가로등 제어기(21-1, 21-2, 21-3, 21-4, 21-5, 21-6, 22-1, 22-2, 22-3, 22-4, 22-5, 22-6)를 구비한다. 각각의 가로등 제어기(21-1, ... 22-6)는 근거리 통신이 가능한 지그비 모듈을 탑재하여, 각 가로등 제어기(21-1, ... 22-6)간에는 지그비 통신 네트워크를 형성하고, 각 가로등 제어기(21-1, ... 22-N)의 데이터를 하나의 게이트웨이(14)에서 수집할 수 있는 구조를 갖는다. 2, the streetlight management network according to an embodiment of the present invention is installed in each of the six-lamp streetlight (20-1, 20-2) by six, streetlight controller 21 for controlling the lamp of the installed streetlight -1, 21-2, 21-3, 21-4, 21-5, 21-6, 22-1, 22-2, 22-3, 22-4, 22-5, 22-6) . Each street light controller 21-1, ... 22-6 is equipped with a Zigbee module capable of short-range communication, and forms a Zigbee communication network between each street light controller 21-1, ... 22-6, It has a structure that can collect the data of each street light controller (21-1, ... 22-N) in one gateway (14).
상기한 구조에서, 게이트웨이(14)와 가장 인접한, 즉, 해당 게이트웨이(14)가 설치되는 제1 가로등(20-1)에 설치되는 6개의 가로등 제어기들(21-1, ... 21-6)은 게이트웨이(14)와의 신호 세기가 가장 강하므로, 코디네이터의 역할을 수행하게 되는데, 본 발명의 특징에 따라 각각의 가로등 제어기(21-1, ... 21-6)는 미리 설정된 서로 다른 채널 상에서 코디네이터 역할을 수행한다. 일반적인 지그비 통신 방식에서는 동일 채널에서 상호간 경쟁을 통해 코디네이터의 역할이나 라우터 역할이 정해지게 되나, 본 발명의 특징에 따라 각각의 하나의 가로등에 설치되는 복수의 가로등 제어기들은 각각 서로 다른 동작 채널이 할당되며, 해당 채널에서 코디네이터 또는 라우터의 역할을 수행한다. 지그비 통신 규격에는 2.45GHz 대역에서 16개의 채널을 지원하도록 규정되어 있는데, 상기 6개의 가로등 제어기(21-1, ... 21-6) 각각은 예를 들어, 제1 내지 제6 채널이 할당될 수 있다. In the above structure, the six streetlight controllers 21-1, 21-6, which are installed closest to the gateway 14, that is, the first streetlight 20-1 in which the gateway 14 is installed, are provided. Since the signal strength with the gateway 14 is the strongest, the coordinator serves as a coordinator. Each street lamp controller 21-1, ... Act as coordinator on the In the general Zigbee communication method, the coordinator role or the router role is determined through mutual competition in the same channel. However, according to the feature of the present invention, a plurality of street light controllers installed in each street light are assigned different operating channels. It acts as a coordinator or router on the channel. The Zigbee communication standard stipulates to support 16 channels in the 2.45 GHz band. Each of the six streetlight controllers 21-1, ... 21-6 can be allocated with, for example, first to sixth channels. Can be.
한편, 게이트웨이(14)가 설치되지 않으면서, 제1 가로등(20-1)과 인접한 제2 가로등(20-2)에 설치되는 6개의 가로등 제어기들(22-1, ... 22-6)은 게이트웨이(14)와의 신호 강도 세기에 따라 라우터의 역할을 수행하게 되는데, 마찬가지로, 본 발명의 특징에 따라 제2 가로등(20-2)에 설치되는 각각의 가로등 제어기(22-1, ... 22-6)도 예를 들어, 제1 내지 제6 채널이 할당된다. Meanwhile, six street light controllers 22-1, ... 22-6 installed in the second street light 20-2 adjacent to the first street light 20-1 without the gateway 14 installed. Is to act as a router according to the signal strength strength with the gateway 14, similarly, each of the street light controller 22-1, ... 22-6) are also allocated, for example, first to sixth channels.
상기한 구조를 가지므로, 초기 네트워크 연결시에, 예를 들어, 제1 가로등(20-1)에서 제1 채널이 할당된 가로등 제어기(21-1)는 해당 제1 채널의 코디네이터 역할을 하며, 제2 가로등(20-2)에서 제1 채널이 할당된 가로등 제어기(22-1)는 상기 제1 가로등(20-1)의 제1 채널의 코디네이터인 가로등 제어기(21-1)에 연결되는 라우터의 역할을 한다. 마찬가지로, 제1 가로등(20-1)의 제2 내지 제6 채널의 코디네이터인 가로등 제어기(21-2, ... 21-6)에 제2 가로등(20-2)의 제2 내지 제6 채널의 라우터인 가로등 제어기(22-2, ... 22-6)이 각각 연결된다. 이와 유사하게, 제2 가로등(20-2)에 인접한 제3 가로등(미도시)의 가로등 제어기들도 라우터로서, 상기 제2 가로등(20-2)의 제1 내지 제6 채널의 가로등 제어기(22-1, .... 22-6)에 각각 연결된다. 물론 이러한 구성에서 코디네이터 역할을 하는 가로등 제어기는 자신에게 연결된 라우터 역할을 하는 가로등 제어기의 식별 정보(주소)를 획득한다. Since the above structure, for example, at the time of initial network connection, the street light controller 21-1 to which the first channel is allocated in the first street light 20-1 serves as a coordinator of the corresponding first channel. The streetlight controller 22-1 to which the first channel is allocated in the second streetlight 20-2 is connected to the streetlight controller 21-1, which is a coordinator of the first channel of the first streetlight 20-1. Plays a role. Similarly, the second to sixth channels of the second streetlight 20-2 to the streetlight controllers 21-2, ... 21-6, which are coordinators of the second to sixth channels of the first streetlight 20-1. The streetlight controllers 22-2, ... 22-6, which are routers, are respectively connected. Similarly, streetlight controllers of a third streetlight (not shown) adjacent to the second streetlight 20-2 are also routers, and streetlight controllers 22 of the first to sixth channels of the second streetlight 20-2. -1, .... 22-6) respectively. Of course, in this configuration, the street light controller acting as a coordinator obtains identification information (address) of the street light controller serving as a router connected to it.
이러한 구성 방식을 통해, 결과적으로, 게이트웨이(14)는 각각 서로 다른 무선 채널을 사용하는 복수의 코디네이터와 연결되며, 각 코디네이터는 각각의 라우터 그룹과 연결되는 구조를 가진다. 각각의 라우터 그룹은 서로 직렬로 연결된 복수의 라우터로 형성된다. 상기한 동작에서, 가로등 제어기들간의 연결 동작은, 초기 지그비 네트워크 형성시, 코디네이터 역할을 하는 가로등 제어기에서 비컨(beacon) 신호를 송출하고, 송출된 비컨 신호를 감지한 가로등 제어기가 해당 네트워크에 가입(join)함으로써, 수행될 수 있다. 상기와 같이, 가로등 제어기들간의 연결 동작이 완료된 후, 코디네이터 역할을 하는 가로등 제어기는 주기적으로 폴링(polling) 메시지를 송출하여 연결하여 라우터 역할을 하는 가로등 제어기의 연결 상태를 확인할 수 있다. 이때, 라우터 역할을 하는 가로등 제어기들은 해당 폴링 메시지를 확인하여 중복 여부를 판단하고, 중복이 아닐 경우에는 다른 연결된 라우터 역할의 가로등 제어기로 전달하며, 중복이면 무시하는 동작을 수행할 수 있다. 상기한 바와 같이, 본 발명의 일 실시예에 따른 가로등 관리 네트워크가 구성될 수 있으며, 이러한 네트워크 구성은 다수의 채널을 사용하므로, 협소한 지역에서 좀더 원활한 통신이 가능할 수 있다. 또한 다수의 채널을 사용하므로 중앙에서 제어하는 노드(node; 가로등 제어기)의 수량을 늘일 수 있다. 예를 들어, 하나의 채널당 200개의 노드 수로 운영하며, 최대 16채널이므로 [16채널 x 200노드 = ] 3200개의 노드 수를 구현할 수 있다. Through this configuration, as a result, the gateway 14 is connected to a plurality of coordinators each using a different radio channel, and each coordinator has a structure connected to each router group. Each router group is formed of a plurality of routers connected in series with each other. In the above operation, the connection operation between the street light controllers, when the initial Zigbee network is formed, the street light controller that acts as a coordinator sends a beacon (beacon) signal, the street light controller that detects the transmitted beacon signal joins the network ( by joining). As described above, after the connection operation between the street lamp controllers is completed, the street lamp controller serving as the coordinator may check the connection state of the street lamp controller serving as a router by periodically sending a polling message. At this time, the street lamp controllers acting as routers may check the polling message to determine whether there is a duplicate, and if not, transfer the street controllers to another street lamp controller connected to the other router, and ignore the duplicated controller. As described above, the street lamp management network according to an embodiment of the present invention can be configured, and since such a network configuration uses a plurality of channels, more smooth communication can be possible in a narrow area. In addition, since a plurality of channels are used, the number of nodes (street controllers) that are centrally controlled can be increased. For example, it operates with 200 nodes per channel, and can be implemented as [16 channels x 200 nodes =] 3200 nodes because up to 16 channels.
한편, 상기에서 게이트웨이(14)는 종래와 유사하게 예를 들어, CDMA 등의 공중파 통신모듈이 탑재되며, 각각의 가로등 제어기들의 상태 정보 등을 코디네이터 역할을 하는 가로등 제어기를 통해 지그비 통신으로 전송받아 CDMA나 이동통신 등의 외부통신 네트워크를 이용하여 가로등 관제 서버로 전송한다. 또한, 가로등 관제 서버로부터 송신되는 각각의 채널별 또는 각 개별 램프의 점등 제어 등의 명령신호를 수신하여 코디네이터 역할을 하는 가로등 제어기로 전달하여, 이를 통해 전체 가로등 제어기로 전파되도록 한다. On the other hand, the gateway 14 is equipped with an airwave communication module, such as CDMA, for example, similar to the prior art, and receives the state information, etc. of each streetlight controller via Zigbee communication through the streetlight controller acting as a coordinator CDMA Or by using external communication network such as mobile communication. In addition, it receives a command signal for each channel or the lighting control of each individual lamp transmitted from the streetlight control server, and transmits the command signal to the streetlight controller acting as a coordinator, thereby propagating to the entire streetlight controller.
도 3은 도 2 중 가로등 제어기의 상세 블록 구성도로서, 상기 도 2에 도시된 가로등 제어기들 모두에 동일하게 적용될 수 있는 구성이다. 도 2를 참조하여, 가로등 제어기의 구성을 보다 상세히 살펴보면, 가로등 제어기는 크게 지그비 통신 동작 및 제어 동작을 담당하는 지그비 모듈과, 전원 제공 동작을 담당하는 전원 모듈로 구분할 수 있다. 지그비 모듈은 지그비 통신부(110)와 제어부(101)를 포함하며, 전원 모듈은 상태 감지부(120), 전원부(130), 점소등 스위치(140)를 포함한다.FIG. 3 is a detailed block diagram of the street lamp controller of FIG. 2, and may be equally applied to all of the street lamp controllers shown in FIG. 2. Referring to FIG. 2, in more detail, the street lamp controller may be classified into a Zigbee module that is in charge of a Zigbee communication operation and a control operation and a power module that is in charge of a power supply operation. The Zigbee module includes a Zigbee communication unit 110 and a control unit 101, and the power module includes a state sensing unit 120, a power supply unit 130, and a light switch 140.
보다 상세히 설명하면, 가로등 제어기는, 지그비 통신 모듈을 구비하여, 주변의 다른 가로등 제어기 또는 게이트웨이와 통신하여, 해당 가로등 램프에 대한 동작 지시 정보를 수신하며 해당 가로등 제어기의 상태 정보를 송신하는 지그비 통신부(110)와; 램프의 고장 상태, 전원 이상 상태 등을 비롯한 해당 가로등 제어기의 동작 상태 및 주변 상태를 감지하는 상태 감지부(120)와; 상기 상태 감지부(120)에서 감지된 상태 정보를 상기 지그비 통신부(110)를 통해 전달하며, 가로등 관제 서버로부터 전송되어진 해당 가로등 램프에 대한 동작 지시 정보를 수신하여 해당 가로등 램프(150)의 점, 소등 등을 제어하는 제어부(101)와; 상기 제어부(101)의 점, 소등 제어신호에 의해 가로등 램프(150)를 점등 또는 소등하도록 스위칭하는 점소등 스위치(140)와; SMPS(Switching Mode Power Supply) 등의 회로를 구비하여, 외부의 상용 AC 전원을 공급받아 상기 제어부(101)를 비롯한 상기 각 기능부들의 동작 전원을 발생하는 전원부(130)를 포함하여 구성된다. In more detail, the street lamp controller includes a Zigbee communication module, and communicates with other street lamp controllers or gateways in the vicinity, and receives a ZigBee communication unit for receiving operation instruction information on the corresponding lamp lamp and transmitting status information of the lamp controller. 110); A state detection unit 120 for detecting an operation state and a peripheral state of a corresponding street light controller including a failure state of a lamp, a power abnormality state, and the like; The state information detected by the state detection unit 120 is transmitted through the Zigbee communication unit 110, and receives the operation instruction information for the corresponding street lamp lamp transmitted from the street light control server, the point of the corresponding street lamp lamp 150, A control unit 101 for controlling the lights out; A turn-on / off switch 140 for switching on or off the street lamp 150 by a point-off control signal of the control unit 101; A circuit including a switching mode power supply (SMPS) and the like is configured to include a power supply unit 130 that receives external commercial AC power and generates operating power for each of the functional units including the control unit 101.
상기에서, 상태 감지부(120)는 포토커플러 등을 사용하여 램프의 고장상태를 감지하는 램프고장 감지센서나, AC전원의 전압이나 전류의 흐름을 감지하여 정전상태를 감지하는 정전 감지센서, 가로등 주변의 온도 및 습도를 감지하는 온도센서 및 습도 센서, 조도를 감지하는 조도 센서 등을 포함할 수 있다. In the above, the state detection unit 120 is a lamp failure detection sensor for detecting a failure state of the lamp using a photocoupler or the like, a power failure detection sensor for detecting a power failure state by detecting the flow of voltage or current of AC power It may include a temperature sensor and humidity sensor for detecting the ambient temperature and humidity, an illumination sensor for detecting the illuminance.
이외에도, 가로등 제어기는 정전시 백업전원을 공급하는 백업 배터리 등을 구비할 수 있다. In addition, the street light controller may include a backup battery for supplying backup power in case of power failure.
도 4는 도 2의 지그비 통신 네트워크 상에서의 연결 관계 구성도이다. 도 4를 참조하면, 게이트웨이에 제1 내지 제6 채널별로 코디네이터 노드([C])가 각각 연결되며, 제1 내지 제6 채널의 각 코디네이터 노드에 해당 채널별 각각의 라우터 노드([R])가 순차적으로 연결되어, 전체적인 지그비 통신 네트워크를 형성한다. 여기서 널 지그비 모뎀(Null Zigbee Modem)이 코디네이터 노드 간의 연결을 위해 사용될 수 있다. 이러한 네트워크 구성에서, 각 코디네이터 노드는 상기 도 2에 도시된 제1 가로등(20-1)에 구비되는 6개의 가로등 제어기에 해당하며, 각 코디네이터 노드에 곧바로 연결되는 라우터 노드들은 상기 도 2에 도시된 제2 가로등(20-2)에 구비되는 6개의 가로등 제어기에 해당함을 이해할 것이다. 이러한 방식은, 상기 게이트웨이, 코디네이터 및 라우터에 의해 적어도 3뎁스(depth) 이상 네트워크를 갖는 것임을 알 수 있다. 한편, 상기 도 4의 설명에서는, 도 2에 도시된 바와 같은 6등형 가로등의 네트워크 상에서 제1 내지 제6 채널의 지그비 통신 네트워크의 연결 관계가 도시되고 있으나, 본 발명의 다른 실시예에서는 예를 들어, 7등형 이상의 다양한 구조의 가로등 네트워크 상에서 예를 들어 7채널 이상의 지그비 통신 네트워크를 형성하는 것이 가능할 수 있다.4 is a configuration diagram of a connection relationship on a Zigbee communication network of FIG. 2. Referring to FIG. 4, a coordinator node [C] is connected to each gateway for each of the first to sixth channels, and each router node [R] for each channel is connected to each coordinator node of the first to sixth channels. Are sequentially connected to form an overall Zigbee communication network. Here, a null Zigbee Modem may be used for the connection between the coordinator nodes. In this network configuration, each coordinator node corresponds to six street light controllers provided in the first street light 20-1 shown in FIG. 2, and router nodes directly connected to each coordinator node are shown in FIG. It will be understood that it corresponds to six streetlight controllers provided in the second streetlight 20-2. It can be seen that this approach has at least three depths of network by the gateway, coordinator and router. On the other hand, in the description of FIG. 4, although the connection relationship of the ZigBee communication network of the first to sixth channel is shown on the network of the six-lamp street light as shown in FIG. 2, in another embodiment of the present invention, for example For example, it may be possible to form, for example, a Zigbee communication network of 7 channels or more on a streetlight network having various structures of 7 or more types.
예를 들어, 본 발명의 다른 실시예에서는, 상기 도 4에 도시된 방식과 유사하게, 게이트웨이에 인접한 복수의 가로등에 설치된 가로등 제어기들이 각기 다른 채널이 할당되는 코디네이터 역할을 하도록 구성할 수 있다. 예를 들어, 사거리에서 각 방향의 도로별로 설치되는 가로등은 4개의 가로등 램프를 구비하는 4등용 가로등일 수 있으며, 각각의 가로등은 4개의 가로등 제어기를 구비할 수 있다. 이러한 경우에, 제1 방향 도로에 설치되는 가로등의 가로등 제어기들은 제1 내지 제4 채널이 할당되며, 제2 방향 도로에 설치되는 가로등의 가로등 제어기들은 제5 내지 제8 채널이 할당되며, 마찬가지로 제3 및 제4 방향 도로에 설치되는 가로등의 가로등 제어기들은 제9 내지 제12 채널 및 제13 내지 제6 채널이 할당될 수 있다. 또한 사거리의 중앙 위치에 게이트웨이가 설치되어, 제1 내지 제4 방향 도로별로 게이트웨이와 가장 인접한 각각의 가로등들의 가로등 제어기들이 전체적으로 제1 내지 제16 채널의 코디네이터 역할을 하도록 구성할 수 있다. For example, in another embodiment of the present invention, similar to the scheme shown in FIG. 4, streetlight controllers installed in a plurality of streetlights adjacent to the gateway may be configured to serve as coordinators to which different channels are assigned. For example, a street lamp installed in each direction of the road at the crossroad may be a four-light street lamp having four street lamps, and each street lamp may include four streetlight controllers. In this case, the street light controllers of the street lamps installed on the first direction road are assigned first to fourth channels, and the street light controllers of the street lamps installed on the second direction road are allocated the fifth to eighth channels. Street light controllers of the street lamps installed on the third and fourth directions roads may be allocated to the ninth through twelfth channels and the thirteenth through sixth channels. In addition, the gateway is installed at the central position of the crossroad, so that the streetlight controllers of the respective streetlights closest to the gateway for each of the first to fourth direction roads may be configured to act as coordinators of the first to sixteenth channels as a whole.
도 5는 본 발명의 다른 실시예에 따른 가로등 관리 네트워크에서 채널 회피 동작 수행을 개략적으로 나타낸 예시도로서, 도 5에서는 하나의 등주에 2개의 가로등 램프가 설치되는 2등형 가로등들 간의 가로등 관리 네트워크가 형성된 상태가 도시되고 있다. 또한 도5의 (a)에는 초기 통신 연결 상태가 도시되며, 도 5의 (b)에는 주파수 간섭 등에 따른 통신 장애가 발생한 상태가 도시되며, 도 5의 (c)에서는 통신 장애 문제를 해결하기 위한 장애 채널을 회피하는 상태가 개시되고 있다. FIG. 5 is an exemplary view schematically illustrating a channel avoidance operation in a street lamp management network according to another exemplary embodiment of the present invention. In FIG. 5, a street lamp management network between two lamp street lamps in which two street lamps are installed in one column is provided. The formed state is shown. In addition, Figure 5 (a) shows the initial communication connection state, Figure 5 (b) shows a state where a communication failure occurs due to frequency interference, etc., Figure 5 (c) shows a failure to solve the communication failure problem The state of avoiding a channel is disclosed.
도 5를 참조하면, 예를 들어, 2등형 제1 내지 제3 가로등(30-1, 30-2, 30-3)이 순차적으로 연결된 상태가 도시되고 있는데, 초기 연결시에는 도 5의 (a)에 도시된 바와 같이, 각각의 가로등(30-1, 30-2, 30-3)에 구비되는 제1 가로등 제어기(31-1, 32-1, 33-1)는 제1 채널이 할당되며, 제2 가로등 제어기(31-2, 32-2, 33-2)는 제4 채널이 할당된 상태가 도시되고 있다. 이러한 상태에서 주변 주파수 사용으로 인한 간섭 등의 영향을 받아 도 5의 (b)에 도시된 바와 같이, 제1 가로등(30-1)과 제2 가로등(30-2) 간의 제1 채널로 통신 장애가 발생할 수 있다. 그럴 경우에 제1 가로등(30-1)의 제2 가로등 제어기(31-2)는 미리 준비된 예비 채널, 예를 들어, 다음 노드의 통신 가능한 채널로 채널을 변경하여 데이터를 전송하게 된다. 도 5의(c)에서는 예를 들어, 제2 가로등 제어기들(31-2, 32-2, 33-2) 간에 제2 채널을 통해 통신을 수행하는 상태가 도시되고 있다. 또한 IEEE 802.15.4 표준에 따라 지그비 통신에서 한 채널이 간섭 등으로 인해 사용 불가할 경우에 예비 채널이 사용되는 기술이 그대로 적용될 수 있다.Referring to FIG. 5, for example, a state in which the second lamps 1 to 3 street lights 30-1, 30-2, and 30-3 are sequentially connected is illustrated. As shown in FIG. 1, the first streetlight controllers 31-1, 32-1, and 33-1 provided in each of the streetlights 30-1, 30-2, and 30-3 are assigned a first channel. In the second streetlight controllers 31-2, 32-2, and 33-2, a fourth channel is allocated. In this state, as shown in FIG. 5B due to interference due to the use of the surrounding frequency, communication failure occurs in the first channel between the first street light 30-1 and the second street light 30-2. May occur. In this case, the second streetlight controller 31-2 of the first streetlight 30-1 transmits data by changing a channel to a preliminary reserved channel, for example, a channel that can communicate with the next node. In FIG. 5C, for example, a state in which communication between the second streetlight controllers 31-2, 32-2, and 33-2 is performed through the second channel is illustrated. In addition, according to the IEEE 802.15.4 standard, when a channel is unavailable in Zigbee communication due to interference or the like, a technology in which a spare channel is used may be applied as it is.
즉, 상기 도 5에 도시된 본 발명의 실시예에서는, 각각의 가로등 제어기에 채널 할당 시 메인 채널 외에 미리 준비된 예비 채널(들)을 할당하며, 메인 채널을 통해 통신하는 중에 통신 장애가 발생하면, 예비 채널을 통해 통신을 수행하는 구성을 가진다. 예를 들어, 상기 도 5에 도시된 예시 외에도, 제 1 가로등 제어기는 제 1 채널이 메인 채널로 할당되고 복수의 예비 채널 (제 2 채널, 제 3 채널)이 할당될 수 있다. 또 제 2 가로등 제어기는 제 4 채널이 메인 채널로 할당되고 복수의 예비 채널(제5내지 제 7채널)이 할당될 수 있다. 물론 이 경우에, 각 가로등의 가로등 제어기간에는 채널 스캔 동작 등을 통해 가용 채널 확인 및 채널 변경 동작을 상호 협의한다. That is, in the embodiment of the present invention shown in FIG. 5, when the channel is allocated to each of the streetlight controllers, the reserved channel (s) prepared in addition to the main channel are allocated in advance, and when a communication failure occurs during communication through the main channel, Has a configuration that performs communication through the channel. For example, in addition to the example illustrated in FIG. 5, the first streetlight controller may be assigned a first channel as a main channel and a plurality of spare channels (second channel and third channel). In the second streetlight controller, a fourth channel may be allocated as a main channel and a plurality of spare channels (eg, fifth to seventh channels) may be allocated. In this case, of course, in the streetlight control period of each street light, the available channel check operation and the channel change operation are mutually negotiated through the channel scan operation.
상기와 같이 본 발명의 일 실시예에 따른 가로등 관리 시스템이 구성될 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다. 따라서 본 발명의 범위는 설명된 실시예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다. Street light management system according to an embodiment of the present invention can be configured as described above, while in the above description of the present invention has been described with respect to specific embodiments, various modifications can be carried out without departing from the scope of the present invention. . Therefore, the scope of the present invention should not be defined by the described embodiments, but by the claims and equivalents of the claims.

Claims (7)

  1. 적어도 하나 이상의 램프가 하나의 등주에 설치된 복수 가로등의 관리 시스템에 있어서,In the management system of a plurality of street lights, wherein at least one lamp is installed in one column
    상기 램프에 설치되며, 지그비 통신 모듈을 구비하여 지그비 통신 네트워크를 형성하는 가로등 제어기와; A street light controller installed in the lamp and having a Zigbee communication module to form a Zigbee communication network;
    상기 가로등 제어기와 상기 지그비 통신 네트워크를 통해 연결되며, 상기 가로등 제어기의 정보를 외부통신 네트워크를 이용하여 가로등 관제 서버로 전송하며, 상기 가로등 관제 서버로부터 송신되는 상기 가로등 제어기의 제어 정보를 상기 지그비 통신 네트워크를 통해 상기 가로등 제어기로 전달하는 게이트웨이를 포함하며; The street lamp controller is connected to the Zigbee communication network, and transmits the information of the street lamp controller to a street lamp control server using an external communication network, and transmits the control information of the street lamp controller transmitted from the street lamp control server to the Zigbee communication network. A gateway for transmitting to the street lamp controller through;
    상기 복수 가로등의 램프에 설치된 가로등 제어기는 설정에 따라 코디네이터와 라우터로 구분되며,The street lamp controller installed in the lamps of the plurality of street lamps is divided into a coordinator and a router according to a setting.
    상기 게이트웨이는 복수의 코디네이터와 연결되고,The gateway is connected to a plurality of coordinators,
    각 코디네이터는 라우터 그룹과 연결되며,Each coordinator is associated with a router group.
    상기 라우터 그룹은 복수의 라우터가 상호 직렬로 연결되고 상기 게이트웨이와 각 코디네이터는 서로 다른 무선 채널을 통해 통신하는 것을 특징으로 하는 가로등 관리 시스템.The router group is a plurality of routers are connected in series with each other, the gateway and each coordinator is characterized in that the communication via a different wireless channel.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 각각의 무선 채널은 메인 채널과 예비 채널을 가짐을 특징으로 하는 가로등 관리 시스템.Wherein each of the wireless channels has a main channel and a spare channel.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 게이트웨이, 코디네이터 및 라우터는 적어도 3뎁스(depth) 이상 네트워크를 갖는 것을 특징으로 하는 가로등 관리 시스템.And said gateway, coordinator and router have a network of at least three depths.
  4. 제 2 항에 있어서, The method of claim 2,
    상기 라우터 그룹은 적어도 200개 이상의 라우터로 구성된 것을 특징으로 하는 가로등 관리 시스템.The router group comprises at least 200 routers.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 지그비 통신 주파수는 2.4GHz이고 상기 무선 채널의 개수는 2개 이상인 것을 특징으로 하는 가로등 관리 시스템.The Zigbee communication frequency is 2.4GHz and the number of the radio channel is a streetlight management system, characterized in that more than two.
  6. 제 3 항에 있어서, The method of claim 3, wherein
    상기 라우터는 폴링(polling) 메시지를 확인하여 중복 여부를 판단하고 중복이면 무시하는 것을 특징으로 하는 가로등 관리 시스템.The router determines a duplicate message by checking a polling message, and ignores the duplicated streetlight management system.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 게이트웨이와 거리상 가장 인접한 가로등 제어기를 상기 코디네이터로 설정하는 것을 특징으로 하는 가로등 관리 시스템.Street light management system, characterized in that for setting the street light controller closest to the gateway to the coordinator.
PCT/KR2015/002870 2014-03-31 2015-03-24 Streetlight management system WO2015152557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140037707A KR20150113570A (en) 2014-03-31 2014-03-31 Street light management system
KR10-2014-0037707 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152557A1 true WO2015152557A1 (en) 2015-10-08

Family

ID=54240817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002870 WO2015152557A1 (en) 2014-03-31 2015-03-24 Streetlight management system

Country Status (2)

Country Link
KR (1) KR20150113570A (en)
WO (1) WO2015152557A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873320A (en) * 2016-04-29 2016-08-17 东莞中科智城软件有限公司 Environment-friendly monitoring system based on street lamp Internet of Things
CN107105540A (en) * 2017-04-25 2017-08-29 句容市宝启电子科技有限公司 A kind of intelligent illuminating system
CN107205304A (en) * 2017-07-18 2017-09-26 欧阳培光 A kind of wisdom street lamp control system and its control method
CN112968831A (en) * 2021-02-23 2021-06-15 中电海康集团有限公司 Method and device for remotely configuring edge gateway through heterogeneous network

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170019581A (en) 2015-08-12 2017-02-22 삼성전자주식회사 Fingerprint sensor, electronic device having the same, and method of operating fingerprint sensor
KR101700209B1 (en) * 2016-02-04 2017-01-26 (주)이노비드 System, method, and computer-readable recording medium for controlling street lighting
KR102107392B1 (en) * 2018-02-28 2020-05-07 주식회사 노비스텍 Streetlight wireless remote monitoring and controlling system
US11844164B2 (en) * 2021-07-19 2023-12-12 Spireworks Llc Edge-based system architecture for building-scale interactive lighting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120143383A1 (en) * 2007-02-02 2012-06-07 Inovus Solar, Inc. Energy-efficient utility system utilizing solar-power
US20120286770A1 (en) * 2011-05-11 2012-11-15 Schreder Lighting systems
US20130010725A1 (en) * 2010-03-31 2013-01-10 The Hong Kong University Of Science And Technology Transmitting and/or receiving data in a side channel
US20130346229A1 (en) * 2012-06-12 2013-12-26 Sensity Systems Inc. Lighting Infrastructure and Revenue Model
US20140010137A1 (en) * 2007-03-14 2014-01-09 Amx, Llc System, method and computer readable medium for re-connecting to a zigbee network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120143383A1 (en) * 2007-02-02 2012-06-07 Inovus Solar, Inc. Energy-efficient utility system utilizing solar-power
US20140010137A1 (en) * 2007-03-14 2014-01-09 Amx, Llc System, method and computer readable medium for re-connecting to a zigbee network
US20130010725A1 (en) * 2010-03-31 2013-01-10 The Hong Kong University Of Science And Technology Transmitting and/or receiving data in a side channel
US20120286770A1 (en) * 2011-05-11 2012-11-15 Schreder Lighting systems
US20130346229A1 (en) * 2012-06-12 2013-12-26 Sensity Systems Inc. Lighting Infrastructure and Revenue Model

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105873320A (en) * 2016-04-29 2016-08-17 东莞中科智城软件有限公司 Environment-friendly monitoring system based on street lamp Internet of Things
CN107105540A (en) * 2017-04-25 2017-08-29 句容市宝启电子科技有限公司 A kind of intelligent illuminating system
CN107205304A (en) * 2017-07-18 2017-09-26 欧阳培光 A kind of wisdom street lamp control system and its control method
CN107205304B (en) * 2017-07-18 2019-09-13 欧阳培光 A kind of wisdom street lamp control system and its control method
CN112968831A (en) * 2021-02-23 2021-06-15 中电海康集团有限公司 Method and device for remotely configuring edge gateway through heterogeneous network
CN112968831B (en) * 2021-02-23 2022-06-21 中电海康集团有限公司 Method and device for remotely configuring edge gateway through heterogeneous network

Also Published As

Publication number Publication date
KR20150113570A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
WO2015152557A1 (en) Streetlight management system
ES2876402T3 (en) A centralized control system that controls interactions and cooperation between radio-operated devices operating in a mesh network that supports multiple radio communication protocols
EP3095295B1 (en) Dynamically-selectable multi-modal modulation in wireless multihop networks
CN101171800B (en) A method for multi-channel resource reservation in a wireless mesh network
US20140300293A1 (en) Led lighting device and an ledlighting network system
US20100177755A1 (en) High throughput features in 11s mesh networks
CN104717714A (en) Routing information sending and receiving method and device and routing information processing system
CN103765992B (en) For controlling equipment and the method for the node of wireless network
CN103209467B (en) Access the method and apparatus of multiple ZigBee-network
CN107920335B (en) Networking and communication method of intelligent street lamp
KR101110111B1 (en) Method for mesh networking of street lamp and apparatus thereof
US10470100B2 (en) Node equipment, data packet forwarding method and mesh network system thereof
KR100748094B1 (en) 802.15.4 wpan installation method and apparatus therefor
CN102348211B (en) Frequency spectrum detection and frequency allocation system and method
US20060045055A1 (en) Method and apparatus for deploying an ad-hoc network
CN103139073A (en) Cognitive routing method based on Ad Hoc network form
CN102547907A (en) Joint node network equipment used for mobile broadband multi-hop Ad Hoc network
CN102752827A (en) Communication method between a plurality of subnets in street lamp control system
KR20200118602A (en) System and method for establishing route path in a multiple hop newwork
Lin et al. An open-source wireless mesh networking module for environmental monitoring
KR20070028213A (en) Method for transmitting and receiving beacon information in wireless lan mesh network
US20090047927A1 (en) Method for Operating a Radio Network and Subscriber Device for Said Type of Network
CN105577555A (en) Wireless routing equipment and wireless networking method
EP1655895B1 (en) Radio communication method, radio communication terminal accommodating apparatus, and radio communication terminal
CN102711117B (en) Ad Hoc Network node wireless communication channel confirming method and implementation device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772277

Country of ref document: EP

Kind code of ref document: A1