WO2015152129A1 - Curable composition for dental use and method for producing same - Google Patents

Curable composition for dental use and method for producing same Download PDF

Info

Publication number
WO2015152129A1
WO2015152129A1 PCT/JP2015/059863 JP2015059863W WO2015152129A1 WO 2015152129 A1 WO2015152129 A1 WO 2015152129A1 JP 2015059863 W JP2015059863 W JP 2015059863W WO 2015152129 A1 WO2015152129 A1 WO 2015152129A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
calcium phosphate
particles
acid
curable composition
Prior art date
Application number
PCT/JP2015/059863
Other languages
French (fr)
Japanese (ja)
Inventor
周明 石原
憲司 畑中
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to JP2016511869A priority Critical patent/JP6501189B2/en
Publication of WO2015152129A1 publication Critical patent/WO2015152129A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/74Fillers comprising phosphorus-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61K6/889Polycarboxylate cements; Glass ionomer cements

Definitions

  • the present invention relates to a dental curable composition that has both an operation time and a curing time as compared with a conventional glass ionomer cement and has an effect of improving the remineralization ability of a tooth.
  • Glass ionomer cement is used by reacting a polymer acid mainly composed of an acid such as polycarboxylic acid and glass powder for glass ionomer cement in the presence of water and curing.
  • Glass ionomer cement has good affinity for living organisms, has excellent adhesion to dental materials such as enamel and dentin, and teeth made of fluorine contained in glass powder.
  • dental materials such as enamel and dentin, and teeth made of fluorine contained in glass powder.
  • Glass ionomer cement has excellent characteristics, but when clinical use is considered, ease of use, that is, operability is regarded as important.
  • the operability refers to the characteristics of the kneaded product from the start of kneading of the glass powder, polyalkenoic acid and water to a certain time, and is strongly influenced by the operating time defined by JIS and the curing time.
  • a cement is desired that is as long as possible in order to allow dental hygienists and doctors to perform their work with sufficient margins, while rapidly hardening when placed in the oral cavity.
  • Non-Patent Document 1 describes that by adding 15% ⁇ -TCP to glass ionomer cement powder, remineralization of enamel is promoted and acid resistance of the remineralization site is improved. Yes.
  • calcium phosphate is added for the purpose of remineralization, the acid resistance of the enamel that has come into contact with the cured product is improved, while the reactivity between calcium phosphate and polyalkenoic acid is high, and the reaction between them begins immediately after kneading.
  • a combination of calcium phosphate and polyalkenoic acid has a problem in that the curing time in the oral cavity is delayed because sufficient crosslinking reaction does not proceed.
  • Patent Document 1 describes a glass powder for glass ionomer cement containing apatite. According to this, compared with the case where the glass powder for conventional dental glass ionomer cement is used, the mechanical strength, particularly the three-point bending strength and the tensile strength are improved, which is insufficient in conventional dentistry. It is said that the glass ionomer cement can be applied to filling a cavity where a large load is applied. However, the operation time and setting time when preparing the cement are not necessarily in an appropriate range, and the remineralization ability may be insufficient, and improvement has been desired.
  • the present invention has been made in order to solve the above problems, and has an object to provide a dental curable composition having a long operation time, a fast curing time in the oral cavity, and excellent remineralization ability. It is.
  • the subject is a dental curable composition containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E).
  • the fluoroaluminosilicate glass particles (A) are contained in an amount of 35 to 75 parts by weight with respect to 100 parts by weight of the total amount of the dental curable composition, and the calcium phosphate particles (100 parts by weight with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A).
  • the calcium phosphate particles (B) include at least calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, and the Ca / P molar ratio of the calcium phosphate particles (B) is 0.8. It is preferable that it is -2.2. Moreover, it is suitable that it is a glass ionomer cement.
  • the said subject is a dental curable composition containing fluoroaluminosilicate glass particle (A), calcium phosphate particle (B), ethylenediaminetetraacetic acid or its salt (C), polyalkenoic acid (D), and water (E).
  • a method comprising the steps of comprising: fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) as essential components; and at least selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D)
  • the weight ratio (X / Y) of the powder material (X) to the liquid material (Y) containing the liquid material (Y) as an optional component is 1.0 to 5.0. It is solved by providing a method for producing a dental curable composition to be mixed as.
  • the powder (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) as essential components, and polyalkenoic acid (D) as an optional component; It is preferable to mix a liquid material (Y) containing polyalkenoic acid (D) and water (E) as essential components and ethylenediaminetetraacetic acid or a salt thereof (C) as optional components.
  • Fluoroaluminosilicate glass particles (A) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (P) is prepared by previously mixing fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C). It is preferable to have a process of obtaining. It is preferable that the composite (P) is obtained by heat-treating the fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C).
  • the composite (Q) is obtained by heat-treating calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C), and the composite (Q) contains calcium phosphate particles ( B) and ethylenediaminetetraacetic acid or a salt thereof (C) are preferably obtained by complexing mechanochemically.
  • the said subject is a dental curable composition kit which consists of a powder material (X) and a liquid material (Y), Comprising: A fluoroaluminosilicate glass particle (A) and a calcium phosphate particle (B) are included as an essential component.
  • the said subject is a dental curable composition kit which consists of a powder material (X) and a liquid material (Y), Comprising: A fluoroaluminosilicate glass particle (A), a calcium phosphate particle (B), and ethylenediaminetetraacetic acid or
  • the powder (X) containing the salt (C) as an essential component, the polyalkenoic acid (D) as an optional component, the polyalkenoic acid (D) and the water (E) as essential components, and ethylenediaminetetraacetic acid or a salt thereof
  • the liquid material (Y) containing (C) as an optional component is mixed so that the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) is 1.0 to 5.0. It is also solved by providing a dental curable composition kit characterized in that it is used.
  • a dental curable composition having a sufficient operation time, a fast curing time in the oral cavity, and excellent remineralization ability is provided.
  • the operation time is as long as possible.
  • the dental curable composition of the present invention is a dental containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E).
  • A fluoroaluminosilicate glass particles
  • B calcium phosphate particles
  • C ethylenediaminetetraacetic acid or a salt thereof
  • D polyalkenoic acid
  • E water
  • a curable composition for use comprising 35 to 75 parts by weight of fluoroaluminosilicate glass particles (A) with respect to 100 parts by weight of the total amount of the dental curable composition, and 100 parts by weight of fluoroaluminosilicate glass particles (A) 1 to 30 parts by weight of calcium phosphate particles (B), 0.1 to 10 parts by weight of ethylenediaminetetraacetic acid or a salt thereof (C), 10 to 40 parts by weight of polyalkenoic acid (D), and It contains 13 to 90 parts by weight of water (E).
  • the operation time is as long as possible, while it is possible to provide a material that hardens rapidly when inserted into the oral cavity, and the site affected by caries is cut as much as possible. Therefore, remineralization treatment can be performed in which the remaining caries-affected site is returned to the original state by the material.
  • the mechanism of action is not always clear, but the following mechanism is presumed.
  • ethylenediaminetetraacetic acid or a salt thereof (C) that is more reactive than polyalkenoic acid (D) with respect to calcium phosphate particles (B) is calcium.
  • the reaction time of the polyalkenoic acid (D) and the calcium phosphate particles (B) is delayed, so that it seems that sufficient operation time can be secured.
  • ethylenediaminetetraacetic acid or a salt thereof (C) chelates calcium ions and is thought to contribute to a crosslinking reaction, so that it eventually promotes curing and seems to accelerate the curing time in the oral cavity. .
  • the presence of calcium phosphate particles (B) can effectively release the ions of calcium and phosphorus, which are the main constituent elements of teeth, in addition to the sustained release of fluorine inherent in glass ionomer cement. It is possible to make it.
  • the dental curable composition of the present invention is a dental containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E). It is necessary that the fluoroaluminosilicate glass particles (A) are contained in an amount of 35 to 75 parts by weight with respect to 100 parts by weight of the total amount of the dental curable composition. When the content of fluoroaluminosilicate glass particles (A) is less than 35 parts by weight, sufficient machinery is sufficient because sufficient fluoroaluminosilicate glass particles (A) are insufficient to form a three-dimensional network structure by glass ionomer reaction.
  • the mechanical strength cannot be obtained, and it is preferably 40 parts by weight or more, more preferably 45 parts by weight or more.
  • the content of the fluoroaluminosilicate glass particles (A) exceeds 75 parts by weight, the unreacted fluoroaluminosilicate glass particles (A) are excessively present and sufficient strength to withstand clinical use cannot be secured. 70 parts by weight or less, and more preferably 65 parts by weight or less.
  • the average particle size of the fluoroaluminosilicate glass particles (A) used in the present invention is preferably 0.3 to 35 ⁇ m.
  • the average particle size of the fluoroaluminosilicate glass particles (A) is more preferably 0.5 ⁇ m or more, and particularly preferably 1 ⁇ m or more.
  • the paste properties may be unfavorable, for example, the paste obtained by mixing with the liquid material does not exhibit sufficient viscosity.
  • the feeling of roughness during kneading of the paste may be increased, and the operability may be impaired.
  • the patient when applied to the oral cavity, the patient may be given an impression that the touch is not good.
  • the average particle size of the fluoroaluminosilicate glass particles (A) is more preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the average particle diameter of the fluoroaluminosilicate glass particles (A) used in the present invention is measured and calculated using a laser diffraction particle size distribution measuring device.
  • the method for producing the fluoroaluminosilicate glass particles (A) used in the present invention is not particularly limited.
  • a commercially available fluoroaluminosilicate glass powder may be used as it is, or a commercially available product may be further pulverized.
  • a pulverizing apparatus such as a ball mill, a likai machine, or a jet mill can be used.
  • a glass raw material selected from aluminum, strontium fluoride, aluminum phosphate, calcium phosphate, strontium phosphate, sodium phosphate, etc. can be weighed, melted at a high temperature of 1000 ° C. or higher, cooled, and then pulverized to produce a fine powder. .
  • a pulverizing apparatus such as a ball mill, a likai machine, or a jet mill can be used.
  • the obtained glass body (frit) is pulverized by a pulverizing means such as a ball mill and, if necessary, subjected to classification treatment such as sieving so that glass having a desired average particle size and particle size distribution is obtained.
  • a powder can be obtained.
  • fluoroaluminosilicate glass particles (A) are prepared by pulverizing fluoroaluminosilicate glass raw material powder together with a liquid medium such as alcohol using a lykai machine, ball mill or the like, and drying the obtained slurry. You can also get A ball mill is preferably used as the pulverizer at this time, and alumina or zirconia is preferably used as the material of the pot and ball.
  • the dental curable composition of the present invention it is necessary to contain 1 to 30 parts by weight of calcium phosphate particles (B) with respect to 100 parts by weight of fluoroaluminosilicate glass particles (A).
  • the content of the calcium phosphate particles (B) is preferably 2 parts by weight or more, and particularly preferably 3 parts by weight or more.
  • the reaction between the polyalkenoic acid (D) and the calcium phosphate particles (B) is more than the reaction between the polyalkenoic acid (D) and the fluoroaluminosilicate glass particles (A). Since it is fast, there is a possibility that an appropriate operation time cannot be secured.
  • the content of the calcium phosphate particles (B) is preferably 20 parts by weight or less, and more preferably 10 parts by weight or less.
  • the calcium phosphate particles (B) include calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and / or calcium phosphate particles having a Ca / P molar ratio of less than 1.30. (B2).
  • the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention are not particularly limited, and octacalcium phosphate pentahydrate [Ca 8 H 2 (PO 4 ) 6 ⁇ 5H 2 O ] Particles, tricalcium phosphate [Ca 3 (PO 4 ) 2 ] particles, amorphous calcium phosphate [Ca 3 (PO 4 ) 2 xH 2 O] particles, hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] particles and at least one selected from the group consisting of tetracalcium phosphate [Ca 4 (PO 4 ) 2 O] particles.
  • tetracalcium phosphate [Ca 4 (PO 4 ) 2 O] particles are more preferably used from the viewpoint of remineralization ability.
  • the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention is preferably 0.3 to 35 ⁇ m. When the average particle diameter is less than 0.3 ⁇ m, the viscosity of the paste obtained by mixing with the liquid material becomes high and there is a possibility that the desired paste properties are not exhibited.
  • the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is more preferably 0.4 ⁇ m or more, and particularly preferably 0.5 ⁇ m or more.
  • the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is more preferably 30 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention is calculated in the same manner as the average particle diameter of the fluoroaluminosilicate glass particles (A). .
  • the method for producing calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention is not particularly limited.
  • Commercially available calcium phosphate particles having a Ca / P molar ratio of 1.30 or more may be used as they are, or may be used by appropriately pulverizing and adjusting the particle diameter.
  • As a pulverization method a method similar to the pulverization method of calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, which will be described later, can be employed.
  • the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 used in the present invention are not particularly limited, but are anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles, anhydrous calcium dihydrogen phosphate [Ca (H 2 PO 4 ) 2 ] particles, acidic calcium pyrophosphate [CaH 2 P 2 O 7 ] particles, calcium monohydrogen phosphate dihydrate [CaHPO 4 ⁇ 2H 2 O] particles, and calcium dihydrogen phosphate monohydrate It is preferably at least one selected from the group consisting of [Ca (H 2 PO 4 ) 2 .H 2 O] particles.
  • anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles anhydrous calcium dihydrogen phosphate [Ca (H 2 PO 4 ) 2 ] particles, and calcium monohydrogen phosphate dihydrate [CaHPO 4 .2H 2].
  • At least one selected from the group consisting of particles is more preferably used, and anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles and calcium monohydrogen phosphate dihydrate [CaHPO 4 .2H 2 O].
  • At least one selected from the group consisting of particles is more preferably used, and anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles are particularly preferably used from the viewpoint of remineralization ability.
  • the average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 used in the present invention is preferably 0.3 to 35 ⁇ m.
  • the viscosity of the paste obtained by mixing with the liquid material may be too high, more preferably 0.4 ⁇ m or more, and particularly preferably 0.5 ⁇ m or more.
  • the average particle size exceeds 35 ⁇ m, the paste properties such that the paste obtained by mixing with the liquid material does not exhibit sufficient viscosity may be unfavorable. Furthermore, the feeling of roughness when kneading the paste is increased, and the operability may be impaired.
  • the average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 is more preferably 30 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 is calculated in the same manner as the average particle diameter of the fluoroaluminosilicate glass particles (A).
  • the method for producing calcium phosphate particles (B2) having such an average particle diameter and having a Ca / P molar ratio of less than 1.30 is not particularly limited, and if a commercially available product is available, it may be used. It is often preferable to further grind the commercial product. In that case, a pulverizing apparatus such as a ball mill, a likai machine, or a jet mill can be used.
  • a slurry by pulverizing calcium phosphate raw material powder having a Ca / P molar ratio of less than 1.30 together with a liquid medium such as alcohol using a lykai machine, a ball mill or the like, and drying the obtained slurry It is also possible to obtain calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30.
  • a ball mill is preferably used as the pulverizer at this time, and alumina or zirconia is preferably used as the material of the pot and ball.
  • the Ca / P molar ratio is used.
  • the solubility balance between the two is improved. It becomes appropriate, and it becomes possible to maintain the pH in the composition in the vicinity of neutrality.
  • the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is at least twice the average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30. More preferably, it is more preferably 4 times or more, and particularly preferably 7 times or more.
  • the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is 35 times or less than the average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30.
  • the blending ratio is not particularly limited. From the viewpoint of promoting remineralization by precipitation of apatite, the total Ca / P ratio of calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30.
  • the dental curable composition of the present invention it is necessary to contain 0.1 to 10 parts by weight of ethylenediaminetetraacetic acid or a salt thereof (C) with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A).
  • the content of ethylenediaminetetraacetic acid or its salt (C) is less than 0.1 parts by weight, there is a possibility that sufficient operation time cannot be secured.
  • the content of ethylenediaminetetraacetic acid or a salt thereof (C) is preferably 0.2 parts by weight or more, and particularly preferably 0.3 parts by weight or more.
  • the content of ethylenediaminetetraacetic acid or a salt thereof (C) exceeds 10 parts by weight, the curing time in the oral cavity may be delayed.
  • the content of ethylenediaminetetraacetic acid or a salt thereof (C) is preferably 5 parts by weight or less, and more preferably 3.5 parts by weight or less.
  • such ethylenediaminetetraacetic acid or a salt thereof (C) may be added and blended as a powder, or may be blended by adding as a liquid material.
  • ethylenediaminetetraacetic acid and ethylenediaminetetraacetate may be blended simultaneously.
  • fluoroaluminosilicate glass particles (A) / ethylenediaminetetraacetic acid or a salt thereof (C) composite is prepared by previously mixing fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C).
  • the method of obtaining (P) is preferably employed. In that case, it is preferable that the composite (P) is obtained by mechanochemically combining the fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C).
  • a method using a dry pulverization apparatus such as a ball mill, a lycaic machine, a jet mill, etc., is preferably employed for fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C). Is done.
  • fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in water and dried to obtain fluoroaluminosilicate glass particles (A) / ethylenediaminetetraacetic acid or a salt thereof (C )
  • a complex (P) can also be obtained.
  • the composite (P) is preferably obtained by heat-treating fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C).
  • the heat treatment is preferably performed by mixing fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C) in water and then applying heat at 70 to 150 ° C. for drying.
  • a dryer is preferably used.
  • the heat treatment temperature is more preferably 75 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • the heat treatment temperature is more preferably 140 ° C. or less, and particularly preferably 130 ° C. or less.
  • the composite (Q) is obtained by mechanochemically combining the calcium phosphate particles (B) with ethylenediaminetetraacetic acid or a salt thereof (C).
  • a method for complexing mechanochemically a method in which the calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) are used in a dry pulverization apparatus such as a ball mill, a lykai machine, or a jet mill is preferably employed.
  • calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in water and dried to dry the calcium phosphate particles (B) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (Q). You can also get
  • the complex (Q) is preferably obtained by heat-treating calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C).
  • the heat treatment is preferably performed by mixing calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) in water and then applying heat at 70 to 250 ° C. for drying.
  • a dryer is preferably used.
  • the heat treatment temperature is more preferably 75 ° C. or higher, and particularly preferably 80 ° C. or higher.
  • ethylenediaminetetraacetic acid or its salt (C) itself may be decomposed, or ethylenediaminetetraacetic acid or its salt (C) is strongly bonded to the calcium phosphate particles (B).
  • the curing time of the dental curable composition may be delayed.
  • the heat treatment temperature is more preferably 200 ° C. or less, and particularly preferably 150 ° C. or less.
  • calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in advance, and calcium phosphate particles (B1) / ethylenediaminetetraacetic acid or a salt thereof ( C) A complex (Q) can be obtained.
  • calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in advance to obtain calcium phosphate particles (B2) / ethylenediaminetetraacetic acid or a salt thereof (C).
  • a complex (Q) can also be obtained.
  • Calcium phosphate particles (B1) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (Q) may be used in combination with calcium phosphate particles (B2) / ethylenediaminetetraacetic acid or a salt (C) complex (Q) thereof.
  • calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in advance to obtain calcium phosphate particles (B1) / ethylenediaminetetraacetic acid or a salt thereof (C).
  • Obtaining the complex (Q) is a preferred embodiment of the present invention.
  • the dental curable composition of the present invention it is necessary to contain 10 to 40 parts by weight of polyalkenoic acid (D) with respect to 100 parts by weight of fluoroaluminosilicate glass particles (A).
  • the content of the polyalkenoic acid (D) is less than 10 parts by weight, the three-dimensional network structure formed by the glass ionomer reaction cannot be sufficiently formed, so that sufficient mechanical strength may not be obtained.
  • the amount is more preferably 13 parts by weight or more, and particularly preferably 18 parts by weight or more.
  • polyalkenoic acid (D) exceeds 40 parts by weight, it exceeds the amount required to react with fluoroaluminosilicate glass particles (A) to form a glass ionomer to form a three-dimensional network structure.
  • New polyalkenoic acid (D) may cause poor curing.
  • the viscosity at the time of kneading may be too high and kneading may be difficult.
  • the blending amount of the polyalkenoic acid (D) is more preferably 30 parts by weight or less, and particularly preferably 27 parts by weight or less.
  • the polyalkenoic acid (D) used in the present invention is not particularly limited, and is a polymer of unsaturated monocarboxylic acid or unsaturated dicarboxylic acid, which is acrylic acid, methacrylic acid, 2-chloroacrylic acid, 2-cyanoacrylic acid.
  • Homopolymers such as acid, aconitic acid, mesaconic acid, maleic acid, itaconic acid, fumaric acid, glutaconic acid, citraconic acid, and uraconic acid, or copolymers of two or more of these unsaturated carboxylic acids, and these A copolymer of an unsaturated carboxylic acid and a copolymerizable monomer may be mentioned, and these may be used alone or in combination of two or more. From the viewpoint of improving the adhesive strength and mechanical strength of the tooth, at least one selected from the group consisting of a copolymer of acrylic acid and maleic acid and a copolymer of acrylic acid and itaconic acid is more preferable.
  • a copolymer of itaconic acid a polymer having a weight average molecular weight of 5,000 to 50,000 which does not contain a polymerizable ethylenically unsaturated double bond is preferred.
  • the weight average molecular weight is less than 5,000, the strength of the cured product is high. It tends to be low, and there is a possibility that the adhesive force to the tooth will be lowered, and it is more preferably 10,000 or more, and particularly preferably 35,000.
  • the weight average molecular weight exceeds 50,000, the viscosity at the time of kneading may be too high and kneading may be difficult, and it is more preferably 45,000 or less, particularly 40,000 or less. Preferably there is.
  • the production method of polyalkenoic acid (D) used in the present invention is not particularly limited, and it may be used as long as a commercially available product is available. In particular, when adding to the powder material, it is often preferable to further grind the commercial product. In that case, a pulverizing apparatus such as a ball mill, a likai machine, a jet mill, or a spray dryer can be used.
  • the polyalkenoic acid powder (D) can be obtained by pulverizing the polyalkenoic acid powder together with a liquid medium such as alcohol using a lykai machine, a ball mill or the like to prepare a slurry, and drying the obtained slurry.
  • a pulverizing apparatus at this time, it is preferable to use a spray dryer.
  • the polyalkenoic acid (D) used in the present invention may be added and blended in the form of powder, or may be blended in addition to the liquid material. In either case, a curable composition is formed. can do.
  • the polyalkenoic acid (D) added to both the powder material and the liquid material has a sufficient amount for securing the adhesiveness and mechanical strength while maintaining the liquid material at an appropriate viscosity. Since it becomes possible to mix
  • Water (E) used in the present invention is an indispensable component in the liquid material for obtaining the dental curable composition of the present invention. That is, the reaction in which the liquid material and the fluoroaluminosilicate glass particles (A), which are the main components of the powder material, are mixed and cured is a neutralization reaction between the fluoroaluminosilicate glass particles (A) and the polyalkenoic acid (D). Because it proceeds in the presence of water. Further, the dental glass ionomer cement has a property of adhering to the tooth surface in the presence of water, and it is necessary that water is present in the dental glass ionomer cement liquid according to the present invention.
  • the dental curable composition of the present invention it is necessary to contain 13 to 90 parts by weight of water (E) with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A).
  • the content of water (E) is less than 13 parts by weight, the three-dimensional network structure formed by the glass ionomer reaction cannot be sufficiently formed, and thus sufficient mechanical strength may not be obtained.
  • sufficient hydration reaction may not occur with the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30. More preferably, it is more than 15 parts by weight.
  • the content of water (E) exceeds 90 parts by weight, the fluoroaluminosilicate glass particles (A) in the paste after the powder liquid kneading, the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more. ) And Ca / P molar ratio of calcium phosphate particles (B2) having a molar ratio of less than 1.30, the cured product may not be obtained. Even when a cured product is formed, the strength of the cured product itself may be reduced.
  • the content of water (E) is more preferably 40 parts by weight or less, and particularly preferably 30 parts by weight or less.
  • the dental curable composition of the present invention preferably contains 0.3 to 10 parts by weight of tartaric acid with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A).
  • a predetermined amount of tartaric acid can be added for the purpose of adjusting (retarding) the curing reaction between the powder material and the acid component.
  • Preferable tartaric acid for this purpose includes D-tartaric acid, L-tartaric acid and DL-tartaric acid, and L-tartaric acid is particularly preferred from the viewpoint of the strength and aesthetics of the resulting cured product.
  • the tartaric acid content is less than 0.3 parts by weight, there is a possibility that sufficient operation time may not be ensured until the powder material and the liquid material are kneaded and adapted to the patient. Particularly preferred is 2 parts by weight or more.
  • the content of tartaric acid exceeds 10 parts by weight, the curing time is delayed and may not be cured in a clinically appropriate time, more preferably 7 parts by weight or less, and particularly preferably 5 parts by weight or less. It is preferable.
  • Such tartaric acid may be added and blended as a powder, or may be blended as a liquid material.
  • the fluoroaluminosilicate glass particles (A) have a Ca / P molar ratio of 1.30 or more.
  • the calcium phosphate particles (B1) and the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 can be blended by surface treatment.
  • the method for producing tartaric acid used in the present invention is not particularly limited and may be used as long as a commercially available product is available.
  • a pulverizing apparatus such as a ball mill, a likai machine, a jet mill, or a spray dryer can be used.
  • tartaric acid powder can be obtained by pulverizing tartaric acid powder together with a liquid medium such as alcohol by using a laika machine, a ball mill or the like to prepare a slurry, and drying the obtained slurry.
  • the dental curable composition of the present invention may contain an X-ray contrast agent as necessary. This is because it is possible to monitor the filling operation of the composition paste after kneading and follow the changes after filling.
  • the X-ray contrast agent include one selected from barium sulfate, bismuth carbonate, bismuth oxide, zirconium oxide, ytterbium fluoride, iodoform, barium apatite, barium titanate, lanthanum glass, barium glass, strontium glass, and the like. Or two or more are mentioned.
  • the X-ray contrast agent can be blended into the powder material, blended into the liquid material, or blended into the composition paste being kneaded.
  • the dental curable composition of the present invention may further contain a filler that can be expected to improve the fluidity of the powder material and improve the mechanical strength of the cured product.
  • a filler that can be expected to improve the fluidity of the powder material and improve the mechanical strength of the cured product.
  • One type of filler may be blended, or a plurality of types may be blended in combination.
  • minerals based on silica such as kaolin, clay, mica, mica; based on silica; Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , BaO, La 2 O 3
  • Examples include ceramics and glasses containing SrO, ZnO, CaO, P 2 O 5 , Li 2 O, Na 2 O and the like.
  • soda glass, lithium borosilicate glass, zinc glass, borosilicate glass, and bioglass are preferably used. Crystal quartz, alumina, titanium oxide, yttrium oxide, and aluminum hydroxide are also preferably used.
  • a pigment may be blended for the purpose of imparting a predetermined color tone to the dental curable composition of the present invention and improving its aesthetics.
  • the pigments to be blended include organic pigments (colored pigments) made of synthetic organic dyes or natural organic dyes, and inorganic pigments obtained from synthetic minerals or natural minerals. Discoloration due to hydrogen sulfide is noticeable when an inorganic pigment is blended, and is hardly recognized when an organic pigment is blended. Accordingly, the pigment is preferably an organic pigment that is not easily affected by hydrogen sulfide, which is considered to cause discoloration in the oral cavity.
  • organic pigments examples include New Coxin, Quinoline Yellow WS (trade name, manufactured by Red Fuji Chemical Industry Co., Ltd.), PV Fast Red BNP, Graphol Yellow 3GP (trade name, manufactured by Clariant Japan Co., Ltd.), Fast Green FCF (trade name, manufactured by Kanto Chemical Co., Ltd.), Blue No. 404 (trade name, manufactured by Daito Kasei Kogyo Co., Ltd.), Yellow 8 GNP, Yellow 3 GNP, Yellow GRP, Yellow 3 RLP, Red 2020, Red 2030, Red BRN, Red Examples include BRNP and Red BN (trade name, manufactured by Ciba Specialty Chemicals, Inc.).
  • an inorganic pigment may be blended together with the organic pigment in order to impart a deep color tone unique to the tooth to the restoration site of the tooth.
  • Inorganic pigments such as petals, zinc white, titanium dioxide, carbon, ultramarine, etc. are preferably non-toxic, and black inorganic pigments (such as iron oxide) are originally used to prevent black changes. May be.
  • Preferable inorganic pigments include KN-320, 100ED, YELLOW-48 (above, trade name, manufactured by Toda Kogyo Co., Ltd.) and the like.
  • the method for producing the dental curable composition of the present invention is not particularly limited.
  • Fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) are included as essential components, and at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) is included as an optional component
  • Liquid material (X), containing water (E) as essential components, and containing at least one selected from the group consisting of ethylenediaminetetraacetic acid or its salt (C) and polyalkenoic acid (D) as optional components ( Y) is mixed so that the weight ratio (X / Y) of the powder material (X) to the liquid material (Y) is 1.0 to 5.0, whereby a dental curable composition can be obtained.
  • a dental curable composition is obtained by mixing (Y) so that the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) is 1.0 to 5.0. Can do.
  • Powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or salts thereof (C) and polyalkenoic acid (D), and liquid material (Y) containing water (E) Can also be obtained by mixing the powder material (X) and the liquid material (Y) so that the weight ratio (X / Y) is 1.0 to 5.0. .
  • the dental curable composition is also prepared by mixing the liquid material (Y) containing the powder material (X) and the liquid material (Y) so that the weight ratio (X / Y) is 1.0 to 5.0. You can get things.
  • a method for producing a dental curable composition comprising an acid (D) and water (E) as essential components and a liquid material (Y) containing ethylenediaminetetraacetic acid or a salt thereof (C) as optional components is preferred.
  • Powder (X) containing particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D), and polyalkene (D) and the manufacturing method of the liquid material (Y) and dental curable composition to mix containing water (E) is employed more preferably.
  • the powder material (X) and the liquid material (Y) are mixed so that the weight ratio (X / Y) is 1.0 to 5.0. It is preferable that this makes it possible to develop performances such as powder liquid kneading property and mechanical strength sufficient as a glass ionomer cement.
  • the weight ratio (X / Y) of the powder material (X) to the liquid material (Y) is more preferably 1.5 to 4.5, and more preferably 1.8 to 3.8. More preferably, they are mixed.
  • the fluoroaluminosilicate glass particles (A) react with the polyalkenoic acid (D) to be cured, and the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more.
  • calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 hydroxyapatite is produced, so that the fluoroaluminosilicate glass particles (A) have a Ca / P molar ratio of 1.30.
  • the above calcium phosphate particles (B1), calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E) are mixed in advance. It cannot be stored as a dental curable composition. From such a point of view, at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) containing fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) as essential components.
  • Powder material (X) containing as optional components, water (E) as essential components, and at least one selected from the group consisting of ethylenediaminetetraacetic acid or its salt (C) and polyalkenoic acid (D) as optional components
  • the dental curable composition used by mixing the liquid material (Y) containing the powder material (X) and the liquid material (Y) so that the weight ratio (X / Y) is 1.0 to 5.0.
  • One of the embodiments of the present invention is a product kit.
  • X fluoroaluminosilicate glass particles
  • A calcium phosphate particles
  • C ethylenediaminetetraacetic acid or a salt thereof
  • Y polyalkene Liquid
  • Y containing acid (D) and water (E) as essential components and ethylenediaminetetraacetic acid or a salt thereof (C) as optional components
  • weight of powder (X) and liquid (Y)
  • One embodiment of the present invention is a dental curable composition kit used by
  • Fluoroaluminosilicate glass particles A
  • ethylenediaminetetraacetic acid or a salt thereof The powder material (X) containing C) and the liquid material (Y) containing polyalkenoic acid (D) and water (E), the weight ratio (X / Y) of the powder material (X) and the liquid material (Y)
  • One of the embodiments of the present invention is a dental curable composition kit used by mixing so as to be 1.0 to 5.0.
  • Fluoroaluminosilicate glass particles A
  • One of the embodiments of the present invention is a dental curable composition kit used by mixing so as to be 1.0 to 5.0.
  • Fluoroaluminosilicate glass particles A
  • ethylenediaminetetraacetic acid or a salt thereof C
  • One embodiment of the present invention is a dental curable composition kit used by mixing so that the ratio (X / Y) is 1.0 to 5.0.
  • fluoroaluminosilicate glass particles A
  • polyalkenoic acid D
  • Powder material (X) containing ethylenediaminetetraacetic acid or a salt thereof C
  • E powder material (X) and liquid material (Y)
  • One embodiment of the present invention is a dental curable composition kit that is used by mixing so that the weight ratio (X / Y) is 1.0 to 5.0.
  • the dental curable composition kit to be used is suitably employed, and the fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, and a Ca / P molar ratio of 1.30.
  • the powder material (X) and the liquid material (Y) are mixed and used so that the weight ratio (X / Y) is 1.0 to 5.0. It is preferable to perform this, and this makes it possible to develop performances such as powder-liquid kneading property and mechanical strength sufficient as a glass ionomer cement. More preferably, the powder material (X) and the liquid material (Y) are mixed and used so that the weight ratio (X / Y) is 1.5 to 4.5, and becomes 1.8 to 3.8. It is more preferable to use them in a mixed manner. Moreover, the dental curable composition of this invention is used suitably as a glass ionomer cement.
  • the average particle size of acetic acid or its salt (C), tartaric acid, and polyalkenoic acid (D) was measured using a laser diffraction particle size distribution analyzer (“SALD-2100 type” manufactured by Shimadzu Corporation), and the measurement results
  • SALD-2100 type manufactured by Shimadzu Corporation
  • Fluoroaluminosilicate glass particle (A) is a commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle diameter: 40.0 ⁇ m). Obtained by crushing.
  • Fluoroaluminosilicate glass particles The average particle size of 30 ⁇ m is obtained by pulverizing 100 g of commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle size of 40.0 ⁇ m) and 200 g of zirconia balls having a diameter of 20 mm from 400 ml of alumina. In addition to the pot (“Type A-3HD Pot Mill” manufactured by Nikkato Co., Ltd.), it was obtained by grinding for 5 hours at a rotational speed of 150 rpm.
  • Fluoroaluminosilicate glass particles The average particle size is 4 ⁇ m, and 100 g of commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle size 40.0 ⁇ m) and 200 g of zirconia balls having a diameter of 20 mm are pulverized from 400 ml of alumina. It was obtained by grinding in a pot (“Type A-3HD Pot Mill” manufactured by Nikkato Corporation) for 15 hours at a rotation speed of 150 rpm.
  • Fluoroaluminosilicate glass particles The average particle size of 0.5 ⁇ m is a commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle size of 40.0 ⁇ m) made of NanoJet Mizer (NJ-100 type, Aisin Nano Technologies) Manufactured), and the pulverization pressure conditions were as follows: the raw material supply pressure: 0.7 MPa / the pulverization pressure: 0.7 MPa, and the treatment amount condition of 8 kg / hr.
  • EDTA 2% mechanochemically treated fluoroaluminosilicate glass particles 100 g of fluoroaluminosilicate glass (A) having an average particle diameter of 4 ⁇ m, 2.0 g of commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.), and a diameter of It was obtained by adding 200 g of 20 mm zirconia balls into a 400 ml alumina crushing pot (“Type A-3HD pot mill” manufactured by Nikkato Co., Ltd.) and crushing at a rotational speed of 150 rpm for 5 hours.
  • A fluoroaluminosilicate glass having an average particle diameter of 4 ⁇ m
  • 2.0 g of commercially available sodium edetate hydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • a diameter of It was obtained by adding 200 g of 20 mm zirconia balls into a 400 ml alumina crushing pot (“Type A-3HD pot mill” manufactured by Nikkato Co.,
  • EDTA heat-treated fluoroaluminosilicate glass particles 100 g of fluoroaluminosilicate glass (A) having an average particle size of 0.5 ⁇ m, 4 ⁇ m, and 30 ⁇ m was added to 100 g of distilled water, stirred for 10 minutes, and then commercially available sodium edetate An aqueous solution prepared by dissolving 1.0 g (1% treatment), 2.0 g (2% treatment), and 4.0 g (4% treatment) of hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 40 g of distilled water. In addition, after stirring for 10 minutes, the obtained slurry was dried and heat-treated on a stainless steel vat with a dryer at 90 ° C. for 16 hours.
  • Tartaric acid heat-treated fluoroaluminosilicate glass particles 100 g of fluoroaluminosilicate glass (A) having an average particle size of 4 ⁇ m was added to 100 g of distilled water, stirred for 10 minutes, and then commercially available L-tartaric acid (manufactured by Iwata Chemical Industry Co., Ltd.). After adding an aqueous solution of 1.0 g (1% treatment) dissolved in 40 g of distilled water and stirring for 10 minutes, the resulting slurry was dried on a stainless steel vat with a dryer at 90 ° C. for 16 hours. It was obtained by heat treatment at 200 ° C.
  • Tetracalcium phosphate particles An average particle size of 30 ⁇ m is obtained by adding 100 g of crude tetracalcium phosphate and 200 g of zirconia balls having a diameter of 20 mm to a 400 ml alumina grinding pot (“Type A-3HD pot mill” manufactured by Nikkato Corporation) It was obtained by grinding for 5 hours at a rotational speed of 150 rpm.
  • Tetracalcium phosphate particles An average particle size of 19.0 ⁇ m is obtained by adding 100 g of crude tetracalcium phosphate and 200 g of zirconia balls having a diameter of 20 mm in a 400 ml alumina grinding pot (“Type A-3HD pot mill” manufactured by Nikkato Corporation). In addition, it was obtained by grinding for 15 hours at a rotational speed of 150 rpm.
  • Tetracalcium phosphate particles The average particle diameter is 5.0 ⁇ m. Crude tetracalcium phosphate is crushed with Nanojet Mizer (NJ-100 type, manufactured by Aisin Nano Technologies). The pressure was 0.7 MPa, the treatment amount condition was 8 kg / hr, and the treatment was performed once.
  • Tricalcium phosphate particles Commercially available ⁇ -tricalcium phosphate (manufactured by Taihei Chemical Industrial Co., Ltd.) was used as it was for an average particle size of 12 ⁇ m.
  • Anhydrous calcium monohydrogen phosphate particles (B2) used in this example are commercially available anhydrous calcium monohydrogen phosphate particles (Taipei It was obtained by pulverizing the chemical industry Co., Ltd. product, average particle size 15.0 ⁇ m) by the method shown below.
  • Anhydrous calcium monohydrogen phosphate particles The average particle size of 5.0 ⁇ m is 50 g of commercially available anhydrous calcium hydrogen phosphate particles (produced by Taihei Chemical Industrial Co., Ltd., average particle size of 15.0 ⁇ m), 95% ethanol (Wako Pure Chemical Industries, Ltd.) 120 g of “Ethanol (95)” manufactured by Co., Ltd.) and 240 g of zirconia balls having a diameter of 10 mm were added to a 400 ml alumina grinding pot (“Type A-3 HD pot mill” manufactured by Nikkato Co., Ltd.) at a rotational speed of 120 rpm.
  • the slurry obtained by performing the wet pulverization for 24 hours was obtained by evaporating ethanol with a rotary evaporator, drying at 60 ° C. for 6 hours, and further vacuum drying at 60 ° C. for 12 hours.
  • Anhydrous calcium monohydrogen phosphate particles The average particle size of 1.0 ⁇ m is 50 g of commercially available anhydrous calcium hydrogen phosphate particles (Taihei Chemical Industry Co., Ltd., average particle size of 15.0 ⁇ m), 95% ethanol (Wako Pure Chemical Industries, Ltd.) 120 g of “Ethanol (95)” manufactured by Co., Ltd.) and 240 g of zirconia balls having a diameter of 10 mm were added to a 400 ml alumina grinding pot (“Type A-3 HD pot mill” manufactured by Nikkato Co., Ltd.) at a rotational speed of 120 rpm.
  • the slurry obtained by performing wet pulverization for 24 hours was obtained by distilling off ethanol with a rotary evaporator, followed by drying at 60 ° C. for 6 hours and further vacuum drying at 60 ° C. for 24 hours.
  • Anhydrous calcium monohydrogen phosphate particles An average particle size of 0.5 ⁇ m is obtained by using commercially available anhydrous calcium hydrogen phosphate particles (manufactured by Taihei Chemical Sangyo Co., Ltd., average particle size of 15.0 ⁇ m) as a nanojet mizer (NJ-100 type Aisin Nano Technologies Co., Ltd.), and the pulverization pressure conditions were as follows: the raw material supply pressure: 0.7 MPa / the pulverization pressure: 0.7 MPa and the treatment amount condition of 8 kg / hr.
  • Anhydrous calcium dihydrogen phosphate particles Commercially available anhydrous calcium dihydrogen phosphate (manufactured by Taihei Chemical Industrial Co., Ltd.) was used as it was for an average particle size of 1 ⁇ m.
  • ethylenediaminetetraacetic acid or a salt thereof (C) commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used as it was. However, only when added to the powder material, an average particle size of 15 to 25 ⁇ m was obtained by pulverizing for about 1 hour in an agate mortar.
  • EDTA 12.5% mechanochemically treated calcium phosphate particles 100 g of tetracalcium phosphate particles having an average particle diameter of 19 ⁇ m, 2.0 g of commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconia having a diameter of 20 mm It was obtained by adding 200 g of a ball into a 400 ml alumina grinding pot (“Type A-3HD pot mill” manufactured by Nikkato Co., Ltd.) and grinding at a rotational speed of 150 rpm for 5 hours.
  • Type A-3HD pot mill manufactured by Nikkato Co., Ltd.
  • EDTA heat treated calcium phosphate particles 100 g of tetracalcium phosphate particles having an average particle size of 5.0 ⁇ m, 19.0 ⁇ m, and 30 ⁇ m, and tricalcium phosphate having an average particle size of 1.0 ⁇ m were added to 300 g of distilled water, After stirring for 10 minutes, 7.0 g (7% treatment), 12.5 g (12.5% treatment), and 14.0 g (14.0% treatment) of commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0% treatment) was added to each 300 g of distilled water and stirred for 10 minutes. The resulting slurry was dried on a stainless steel vat with a 90 ° C. dryer for 16 hours and heat-treated.
  • polyalkenoic acid (D) When polyalkenoic acid (D) is added to the liquid material, a commercially available polyalkenoic acid (manufactured by Nissei Chemical Industry Co., Ltd.) is used as it is. The pulverized one was used.
  • polyalkenoic acid manufactured by Nissei Chemical Industry Co., Ltd.
  • NanoJet Mizer NJ-100 type, manufactured by Aisin Nanotechnology Co., Ltd.
  • pulverizing pressure conditions raw material supply pressure: 0.7 MPa / grinding pressure: 0.7 MPa, throughput
  • the condition was 8 kg / hr, and it was obtained by processing once.
  • the average particle size of the obtained polyalkenoic acid powder was 3 ⁇ m.
  • the uppermost glass was moved about 2 mm, and a shearing force was applied. Whether or not the material was physically uniform was visually judged, and the time during which a uniform thin layer was formed twice in succession was defined as the operation time.
  • a Vicat needle 400 g, with a flat end with a diameter of 1 mm was dropped vertically onto the cement surface every 30 seconds and maintained for 5 seconds. The above operation was repeated at an interval of 30 seconds, and the time until no indentation could be confirmed was calculated as the curing time.
  • Operability 0.1 g of the powder material having the composition shown in Tables 1 to 4 is precisely weighed, and the liquid material having the composition shown in Tables 1 to 4 is further added to the powder liquid weight ratio shown in Tables 1 to 4.
  • the paste was prepared by adding and kneading for 30 seconds on kneaded paper (85 ⁇ 115 mm). About the paste property, operability was evaluated according to the following evaluation criteria.
  • Evaluation criteria A for operability Familiarity immediately after the start of kneading of the powder material and the liquid material is good, and a paste can be obtained by kneading for 20 seconds with a dental kneading rod. The resulting paste has good elongation and is not rough.
  • C Familiarity immediately after the start of kneading of the powder material and the liquid material is poor, and kneading with a dental kneading rod is required for 30 seconds to obtain a paste. The paste stretches well, but it may feel rough during some mixing.
  • D Familiarity immediately after the start of kneading of the powder material and the liquid material is poor, and kneading with a dental kneading rod is required for 30 seconds or more to obtain a paste, or kneading cannot be performed. When kneaded, the elongation of the paste is poor, and it hardens on the kneaded paper within 2 minutes, and the operation time cannot be secured. Also, there may be a feeling of roughness during kneading.
  • a to C are actual usage levels.
  • This bovine tooth is immersed in 150 ml of 50 mM demineralization solution diluted with acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) for 1 week, decalcified, and then washed with water for 30 minutes or more to remineralize the bovine teeth.
  • the bovine tooth used for was prepared.
  • Epoxy resin was prepared according to the Lucas method, and an epoxy resin and a curing agent were uniformly mixed and then an accelerator was added. Disposyringe with 100 ml disposable cup, 41 ml of Rubeak 812 (epoxy resin, manufactured by Nacalai Tesque), 31 ml of Rubeac MNA (curing agent, manufactured by Nacalai Tesque), and 10 ml of Rubeak DDSA (curing agent, manufactured by Nacalai Tesque) was added to a disposable cup and stirred for 10 minutes.
  • Rubeak 812 epoxy resin, manufactured by Nacalai Tesque
  • Rubeac MNA curing agent, manufactured by Nacalai Tesque
  • Rubeak DDSA curing agent, manufactured by Nacalai Tesque
  • a bovine tooth sample was put in a plastic container containing an epoxy resin, and a curing reaction was performed at 45 ° C. for 1 day and at 60 ° C. for 2 days.
  • the polyethylene container and the precision low speed cutter (BUEHLER, ISOMET1000) were cut in a direction perpendicular to the demineralized surface to obtain a section having a thickness of about 1 mm including the cross section of the test portion.
  • Hardness recovery rate (%) [(average hardness at 360 ⁇ m depth of remineralized part) ⁇ (average hardness at 360 ⁇ m depth of demineralized part)] / (health of healthy dentin (Average value) x 100
  • Examples 1-36 A dental curable composition having the composition shown in Tables 1 to 4 was prepared according to the procedure described above, and operability, operation time, curing time, and remineralization ability were evaluated. The obtained evaluation results are summarized in Tables 1 to 4.
  • hydroxyapatite particles 5 ⁇ m
  • commercially available hydroxyapatite HAP-100, manufactured by Taihei Chemical Industrial Co., Ltd.
  • Comparative Examples 1-11 A composition was prepared with the composition shown in Table 4 by the procedure shown above, and operability, operation time, curing time, and remineralization ability were evaluated. The evaluation results obtained are summarized in Table 4. As the hydroxyapatite particles (5 ⁇ m) used in Comparative Example 8, commercially available hydroxyapatite (HAP-100, manufactured by Taihei Chemical Industrial Co., Ltd.) was used as it was.
  • HAP-100 commercially available hydroxyapatite

Abstract

Provided is a curable composition for dental use, said composition containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D), and water (E), and being characterized by including 35-75 parts by weight of fluoroaluminosilicate glass particles (A) in relation to 100 parts by weight of the total quantity of the curable composition for dental use, and including 1-30 parts by weight of calcium phosphate particles (B), 0.1-10 parts by weight of ethylenediaminetetraacetic acid or a salt thereof (C), 10-40 parts by weight of polyalkenoic acid (D), and 13-90 parts by weight of water (E) in relation to 100 parts by weight of the fluoroaluminosilicate glass particles. The present invention thus provides a curable composition for dental use that has a long handling time, has a fast curing time in the oral cavity, and has excellent recalcification ability.

Description

歯科用硬化性組成物及びその製造方法Dental curable composition and method for producing the same
 本発明は、従来のグラスアイオノマーセメントと比較して操作時間と硬化時間を両立するとともに歯質に対する再石灰化能を向上させる効果のある歯科用硬化性組成物に関する。 The present invention relates to a dental curable composition that has both an operation time and a curing time as compared with a conventional glass ionomer cement and has an effect of improving the remineralization ability of a tooth.
 グラスアイオノマーセメントはポリカルボン酸等の酸を主成分としたポリマー酸と、グラスアイオノマーセメント用ガラス粉末とを水の存在下で反応させ硬化させることで使用される。グラスアイオノマーセメントは生体に対する親和性が良好であること、エナメル質や象牙質等の歯質に対して優れた接着力を有していること、更にはガラス粉末中に含まれているフッ素による歯質再石灰化作用や抗齲蝕作用を有すること等の特性を有しているため、歯科分野では齲蝕窩洞の充填、クラウン・インレー・ブリッジや矯正用バンドの合着、窩洞の裏層、根管充填用シーラー、支台築造や予防填塞等に広く使用されている材料である。 Glass ionomer cement is used by reacting a polymer acid mainly composed of an acid such as polycarboxylic acid and glass powder for glass ionomer cement in the presence of water and curing. Glass ionomer cement has good affinity for living organisms, has excellent adhesion to dental materials such as enamel and dentin, and teeth made of fluorine contained in glass powder. In the dental field, filling of carious cavity, bonding of crown inlay bridge and orthodontic band, cavity back layer, root canal It is a material widely used for filling sealers, abutment construction and preventive filling.
 グラスアイオノマーセメントはすぐれた特徴を有するが、臨床での使用を考慮した場合、使い易さ、すなわち操作性が重要視される。操作性とはガラス粉末、ポリアルケン酸及び水を練和開始してからある一定の時間までの練和物の特性を言い、JISなどによって定義される操作時間、及び硬化時間に強く影響を受ける。実際の臨床では歯科衛生士や医師が余裕をもって作業を行うために操作時間が可能な限り長く、一方口腔内に装入した時点で急激に硬化するようなセメントが望まれている。 Glass ionomer cement has excellent characteristics, but when clinical use is considered, ease of use, that is, operability is regarded as important. The operability refers to the characteristics of the kneaded product from the start of kneading of the glass powder, polyalkenoic acid and water to a certain time, and is strongly influenced by the operating time defined by JIS and the curing time. In actual clinical practice, a cement is desired that is as long as possible in order to allow dental hygienists and doctors to perform their work with sufficient margins, while rapidly hardening when placed in the oral cavity.
 一方、80歳になっても20本以上自分の歯を保とうとする、いわゆる8020運動(口腔衛生の向上、歯質の保存(MI:Minimal Intervention))に伴い、う蝕に罹患した部位を極力削らず、残存したう蝕罹患部位を材料によってもとに戻す再石灰化治療が近年脚光を浴びている。再石灰化の有効成分として知られるフッ素イオンを徐放し歯質の切削量を低減できる可能性がある修復材料としてもまたグラスアイオノマーセメントは広く認知されている。しかしながら、エナメル質や象牙質の歯質の主要構成成分であるハイドロキシアパタイトは、カルシウムやリンから成る化合物であり、う蝕罹患部位の効率的な再石灰化は、歯質へのフッ素イオンのみの供給では十分に促進されない。 On the other hand, with the so-called 8020 exercise (improving oral hygiene, preserving the tooth quality (MI)) that tries to keep 20 or more teeth even after the age of 80, the site affected by caries is as much as possible. In recent years, remineralization treatment has been attracting attention, in which the remaining caries-affected site is restored to its original state without being cut. Glass ionomer cement is also widely recognized as a restorative material that may be able to reduce the amount of tooth cutting by gradually releasing fluorine ions known as an active ingredient of remineralization. However, hydroxyapatite, the main component of enamel and dentin teeth, is a compound composed of calcium and phosphorus. Efficient remineralization of caries-affected sites is only possible with fluoride ions in the teeth. Supply is not fully promoted.
 非特許文献1には、グラスアイオノマーセメント粉末に15%のβ―TCPを配合することで、エナメル質の再石灰化が促進され、また再石灰化部位の耐酸性が向上することが記載されている。しかしながら、再石灰化を目的にリン酸カルシウムを添加した場合、硬化物と接触したエナメル質の耐酸性が向上する一方、リン酸カルシウムとポリアルケン酸との反応性が高く、練和直後にお互いの反応が始まるために、十分な操作時間が確保されないという問題があった。また、リン酸カルシウムとポリアルケン酸の組み合わせでは十分な架橋反応が進まないため、口腔内における硬化時間が遅延するという問題もあった。 Non-Patent Document 1 describes that by adding 15% β-TCP to glass ionomer cement powder, remineralization of enamel is promoted and acid resistance of the remineralization site is improved. Yes. However, when calcium phosphate is added for the purpose of remineralization, the acid resistance of the enamel that has come into contact with the cured product is improved, while the reactivity between calcium phosphate and polyalkenoic acid is high, and the reaction between them begins immediately after kneading. In addition, there is a problem that sufficient operation time cannot be secured. In addition, a combination of calcium phosphate and polyalkenoic acid has a problem in that the curing time in the oral cavity is delayed because sufficient crosslinking reaction does not proceed.
 特許文献1には、アパタイトを含有させたグラスアイオノマーセメント用ガラス粉末が記載されている。これによれば、従来の歯科用グラスアイオノマーセメント用ガラス粉末を用いた場合と比較して機械的強度、特に3点曲げ強さ及び引張強さが向上し、従来の歯科においては不充分であるとされていた大きな負荷がかかる窩洞の充填等にもグラスアイオノマーセメントを適用することが出来るようになるとされている。しかしながら、セメントを調製する際の操作時間や硬化時間が必ずしも適性な範囲になく、再石灰化能も不十分な場合があり、改善が望まれていた。 Patent Document 1 describes a glass powder for glass ionomer cement containing apatite. According to this, compared with the case where the glass powder for conventional dental glass ionomer cement is used, the mechanical strength, particularly the three-point bending strength and the tensile strength are improved, which is insufficient in conventional dentistry. It is said that the glass ionomer cement can be applied to filling a cavity where a large load is applied. However, the operation time and setting time when preparing the cement are not necessarily in an appropriate range, and the remineralization ability may be insufficient, and improvement has been desired.
 上記先行文献に記載されているように、これまで従来の技術では、再石灰化能を向上させるためにリン酸カルシウムを添加した場合において、臨床で要求される操作性、及び硬化時間を両立できない課題があり、これらの問題点の改善が望まれていた。 As described in the above-mentioned prior literature, in the conventional technology so far, when calcium phosphate is added to improve the remineralization ability, there is a problem that the operability and the curing time required in the clinic cannot be achieved at the same time. Therefore, improvement of these problems has been desired.
特開2001-354509号公報JP 2001-354509 A
 本発明は上記課題を解決するためになされたものであり、操作時間が長く、口腔内における硬化時間が早く、再石灰化能に優れる歯科用硬化性組成物を提供することを目的とするものである。 The present invention has been made in order to solve the above problems, and has an object to provide a dental curable composition having a long operation time, a fast curing time in the oral cavity, and excellent remineralization ability. It is.
 上記課題は、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を含有する歯科用硬化性組成物であって、該歯科用硬化性組成物の全量100重量部に対し、フルオロアルミノシリケートガラス粒子(A)を35~75重量部含み、フルオロアルミノシリケートガラス粒子(A)100重量部に対し、リン酸カルシウム粒子(B)を1~30重量部含み、エチレンジアミン四酢酸又はその塩(C)を0.1~10重量部含み、ポリアルケン酸(D)を10~40重量部含み、かつ水(E)を13~90重量部を含むことを特徴とする歯科用硬化性組成物を提供することによって解決される。 The subject is a dental curable composition containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E). The fluoroaluminosilicate glass particles (A) are contained in an amount of 35 to 75 parts by weight with respect to 100 parts by weight of the total amount of the dental curable composition, and the calcium phosphate particles (100 parts by weight with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A). B) 1 to 30 parts by weight, ethylenediaminetetraacetic acid or a salt thereof (C) 0.1 to 10 parts by weight, polyalkenoic acid (D) 10 to 40 parts by weight, and water (E) 13 to This is solved by providing a dental curable composition comprising 90 parts by weight.
 このとき、リン酸カルシウム粒子(B)が、少なくともCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)を含むことが好適であり、リン酸カルシウム粒子(B)のCa/Pモル比が0.8~2.2であることが好適である。また、グラスアイオノマーセメントであることが好適である。 At this time, it is preferable that the calcium phosphate particles (B) include at least calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, and the Ca / P molar ratio of the calcium phosphate particles (B) is 0.8. It is preferable that it is -2.2. Moreover, it is suitable that it is a glass ionomer cement.
 また、上記課題は、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を含有する歯科用硬化性組成物の製造方法であって、フルオロアルミノシリケートガラス粒子(A)及びリン酸カルシウム粒子(B)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む粉材(X)と、水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合する歯科用硬化性組成物の製造方法を提供することによって解決される。 Moreover, the said subject is a dental curable composition containing fluoroaluminosilicate glass particle (A), calcium phosphate particle (B), ethylenediaminetetraacetic acid or its salt (C), polyalkenoic acid (D), and water (E). A method comprising the steps of comprising: fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) as essential components; and at least selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) Powder material (X) containing one kind as an optional component, water (E) as an essential component, and at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) The weight ratio (X / Y) of the powder material (X) to the liquid material (Y) containing the liquid material (Y) as an optional component is 1.0 to 5.0. It is solved by providing a method for producing a dental curable composition to be mixed as.
 このとき、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)及びエチレンジアミン四酢酸又はその塩(C)を必須成分として含み、ポリアルケン酸(D)を任意成分として含む粉材(X)と、ポリアルケン酸(D)及び水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)を任意成分として含む液材(Y)とを混合することが好適である。フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とを予め混合することにより、フルオロアルミノシリケートガラス粒子(A)/エチレンジアミン四酢酸又はその塩(C)複合体(P)を得る工程を有することが好適である。複合体(P)が、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とを熱処理することにより得られたものであることが好適であり、複合体(P)が、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とをメカノケミカル的に複合化することにより得られたものであることが好適である。リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを予め混合することにより、リン酸カルシウム粒子(B)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)を得る工程を有することが好適である。複合体(Q)が、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを熱処理することにより得られたものであることが好適であり、複合体(Q)が、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とをメカノケミカル的に複合化することにより得られたものであることが好適である。 At this time, the powder (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) as essential components, and polyalkenoic acid (D) as an optional component; It is preferable to mix a liquid material (Y) containing polyalkenoic acid (D) and water (E) as essential components and ethylenediaminetetraacetic acid or a salt thereof (C) as optional components. Fluoroaluminosilicate glass particles (A) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (P) is prepared by previously mixing fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C). It is preferable to have a process of obtaining. It is preferable that the composite (P) is obtained by heat-treating the fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C). It is preferable to be obtained by mechanochemically combining the fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C). Having a step of obtaining calcium phosphate particles (B) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (Q) by previously mixing calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C). Is preferred. It is preferable that the composite (Q) is obtained by heat-treating calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C), and the composite (Q) contains calcium phosphate particles ( B) and ethylenediaminetetraacetic acid or a salt thereof (C) are preferably obtained by complexing mechanochemically.
 また、上記課題は、粉材(X)と液材(Y)とからなる歯科用硬化性組成物キットであって、フルオロアルミノシリケートガラス粒子(A)及びリン酸カルシウム粒子(B)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む粉材(X)と、水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用することを特徴とする歯科用硬化性組成物キットを提供することによって解決される。また、上記課題は、粉材(X)と液材(Y)とからなる歯科用硬化性組成物キットであって、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)及びエチレンジアミン四酢酸又はその塩(C)を必須成分として含み、ポリアルケン酸(D)を任意成分として含む粉材(X)と、ポリアルケン酸(D)及び水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)を任意成分として含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用することを特徴とする歯科用硬化性組成物キットを提供することによっても解決される。 Moreover, the said subject is a dental curable composition kit which consists of a powder material (X) and a liquid material (Y), Comprising: A fluoroaluminosilicate glass particle (A) and a calcium phosphate particle (B) are included as an essential component. A powder material (X) containing at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) as optional components; water (E) as essential components; A liquid material (Y) containing at least one selected from the group consisting of acetic acid or a salt thereof (C) and polyalkenoic acid (D) as an optional component, and a weight ratio of the powder material (X) and the liquid material (Y) This can be solved by providing a dental curable composition kit characterized by being used by mixing so that (X / Y) is 1.0 to 5.0. Moreover, the said subject is a dental curable composition kit which consists of a powder material (X) and a liquid material (Y), Comprising: A fluoroaluminosilicate glass particle (A), a calcium phosphate particle (B), and ethylenediaminetetraacetic acid or The powder (X) containing the salt (C) as an essential component, the polyalkenoic acid (D) as an optional component, the polyalkenoic acid (D) and the water (E) as essential components, and ethylenediaminetetraacetic acid or a salt thereof The liquid material (Y) containing (C) as an optional component is mixed so that the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) is 1.0 to 5.0. It is also solved by providing a dental curable composition kit characterized in that it is used.
 本発明によれば、十分な操作時間を有し、口腔内での硬化時間が早く、再石灰化能に優れる歯科用硬化性組成物が提供される。このことにより、操作時間が可能な限り長く、一方、口腔内に装入した時点で急激に硬化する材料の提供が可能となるとともに、う蝕に罹患した部位を極力削らず、残存したう蝕罹患部位を材料によってもとに戻す再石灰化治療が可能となる。 According to the present invention, a dental curable composition having a sufficient operation time, a fast curing time in the oral cavity, and excellent remineralization ability is provided. As a result, the operation time is as long as possible. On the other hand, it is possible to provide a material that hardens rapidly when inserted into the oral cavity. Remineralization treatment can be performed in which the affected area is restored by the material.
 本発明の歯科用硬化性組成物は、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を含有する歯科用硬化性組成物であって、該歯科用硬化性組成物の全量100重量部に対し、フルオロアルミノシリケートガラス粒子(A)を35~75重量部含み、フルオロアルミノシリケートガラス粒子(A)100重量部に対し、リン酸カルシウム粒子(B)を1~30重量部含み、エチレンジアミン四酢酸又はその塩(C)を0.1~10重量部含み、ポリアルケン酸(D)を10~40重量部含み、かつ水(E)を13~90重量部を含むことを特徴とする。本発明の歯科用硬化性組成物により、操作時間が可能な限り長く、一方口腔内に装入した時点で急激に硬化する材料の提供が可能となるとともに、う蝕に罹患した部位を極力削らず、残存したう蝕罹患部位を材料によってもとに戻す再石灰化治療が可能となる。その作用機序は必ずしも明らかではないが、以下のようなメカニズムが推定される。 The dental curable composition of the present invention is a dental containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E). A curable composition for use, comprising 35 to 75 parts by weight of fluoroaluminosilicate glass particles (A) with respect to 100 parts by weight of the total amount of the dental curable composition, and 100 parts by weight of fluoroaluminosilicate glass particles (A) 1 to 30 parts by weight of calcium phosphate particles (B), 0.1 to 10 parts by weight of ethylenediaminetetraacetic acid or a salt thereof (C), 10 to 40 parts by weight of polyalkenoic acid (D), and It contains 13 to 90 parts by weight of water (E). With the dental curable composition of the present invention, the operation time is as long as possible, while it is possible to provide a material that hardens rapidly when inserted into the oral cavity, and the site affected by caries is cut as much as possible. Therefore, remineralization treatment can be performed in which the remaining caries-affected site is returned to the original state by the material. The mechanism of action is not always clear, but the following mechanism is presumed.
 酸塩基反応(グラスアイオノマー反応)を介して硬化するグラスアイオノマーセメントの出発原料であるフルオロアルミノシリケートガラス粒子(A)、ポリアルケン酸(D)及び水(E)において、リン酸カルシウム粒子(B)が存在すると、リン酸カルシウム粒子(B)に対するポリアルケン酸(D)の反応性が、フルオロアルミノシリケートガラス(A)に対する反応性よりも高いため、操作時間が十分に担保されず、また過剰なカルシウムイオンの存在により陰イオン(カルボキシル基、-COO)をもつポリアルケン酸(E)との反応が十分に追い込まれないと考えられる。一方、エチレンジアミン四酢酸又はその塩(C)が本系内に存在することにより、リン酸カルシウム粒子(B)に対しポリアルケン酸(D)よりも反応性の高いエチレンジアミン四酢酸又はその塩(C)がカルシウムイオンをキレートすることで、ポリアルケン酸(D)とリン酸カルシウム粒子(B)との反応時間が遅延するため、十分な操作時間が担保できるようである。また、エチレンジアミン四酢酸又はその塩(C)はカルシウムイオンをキレートするとともに、架橋反応にも寄与すると考えられるため、最終的に硬化を促進することとなり、口腔内おける硬化時間を促進するようである。リン酸カルシウム粒子(B)の存在は、本来グラスアイオノマーセメントが有するフッ素徐放性に加え、歯質の主要構成元素であるカルシウムやリンのイオンの放出を付与できることから、効果的な歯質の再石灰化についても可能となる。 When calcium phosphate particles (B) are present in fluoroaluminosilicate glass particles (A), polyalkenoic acid (D), and water (E), which are starting materials for glass ionomer cement that cures via an acid-base reaction (glass ionomer reaction). Since the reactivity of the polyalkenoic acid (D) to the calcium phosphate particles (B) is higher than the reactivity to the fluoroaluminosilicate glass (A), the operation time is not sufficiently secured, and the presence of excess calcium ions causes negative effects. It is considered that the reaction with polyalkenoic acid (E) having ions (carboxyl group, —COO ) is not driven sufficiently. On the other hand, since ethylenediaminetetraacetic acid or a salt thereof (C) is present in the system, ethylenediaminetetraacetic acid or a salt thereof (C) that is more reactive than polyalkenoic acid (D) with respect to calcium phosphate particles (B) is calcium. By chelating the ions, the reaction time of the polyalkenoic acid (D) and the calcium phosphate particles (B) is delayed, so that it seems that sufficient operation time can be secured. In addition, ethylenediaminetetraacetic acid or a salt thereof (C) chelates calcium ions and is thought to contribute to a crosslinking reaction, so that it eventually promotes curing and seems to accelerate the curing time in the oral cavity. . The presence of calcium phosphate particles (B) can effectively release the ions of calcium and phosphorus, which are the main constituent elements of teeth, in addition to the sustained release of fluorine inherent in glass ionomer cement. It is possible to make it.
 本発明の歯科用硬化性組成物において、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を含有する歯科用硬化性組成物であって、該歯科用硬化性組成物の全量100重量部に対し、フルオロアルミノシリケートガラス粒子(A)を35~75重量部含むことが必要である。フルオロアルミノシリケートガラス粒子(A)の含有量が35重量部未満の場合、グラスアイオノマー反応による3次元網目構造を形成するに十分なフルオロアルミノシリケートガラス粒子(A)が不足することから、十分な機械的強度が得られないおそれがあり、40重量部以上であることが好ましく、45重量部以上であることがより好ましい。一方、フルオロアルミノシリケートガラス粒子(A)の含有量が75重量部を超える場合、未反応のフルオロアルミノシリケートガラス粒子(A)が過剰に存在することとなり臨床に耐えうる強度が十分に確保できないため、70重量部以下であることが好ましく、65重量部以下であることがより好ましい。 The dental curable composition of the present invention is a dental containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E). It is necessary that the fluoroaluminosilicate glass particles (A) are contained in an amount of 35 to 75 parts by weight with respect to 100 parts by weight of the total amount of the dental curable composition. When the content of fluoroaluminosilicate glass particles (A) is less than 35 parts by weight, sufficient machinery is sufficient because sufficient fluoroaluminosilicate glass particles (A) are insufficient to form a three-dimensional network structure by glass ionomer reaction. There is a possibility that the mechanical strength cannot be obtained, and it is preferably 40 parts by weight or more, more preferably 45 parts by weight or more. On the other hand, when the content of the fluoroaluminosilicate glass particles (A) exceeds 75 parts by weight, the unreacted fluoroaluminosilicate glass particles (A) are excessively present and sufficient strength to withstand clinical use cannot be secured. 70 parts by weight or less, and more preferably 65 parts by weight or less.
 本発明で用いられるフルオロアルミノシリケートガラス粒子(A)の平均粒径は、0.3~35μmであることが好ましい。フルオロアルミノシリケートガラス粒子(A)の平均粒径が0.3μm未満である場合、平均粒径が小さすぎて製造が困難であり、更には、液材との混合により得られるペーストの粘度が高くなり過ぎるおそれがある。フルオロアルミノシリケートガラス粒子(A)の平均粒径は、0.5μm以上であることがより好ましく、特に、1μm以上であることが好ましい。一方、フルオロアルミノシリケートガラス粒子(A)の平均粒径が35μmを越える場合、液材との混合により得られるペーストが十分な粘性を示さないなどペースト性状が好ましくないおそれがある。また、ペースト練和時のざらつき感が大きくなり操作性が損なわれるおそれがあり、更には、口腔内に適用した場合、患者に舌触りが悪いとの印象を与えるおそれがある。フルオロアルミノシリケートガラス粒子(A)の平均粒径は、30μm以下であることがより好ましく、特に10μm以下であることが好ましい。ここで、本発明に使用するフルオロアルミノシリケートガラス粒子(A)の平均粒径とは、レーザー回折式粒度分布測定装置を用い測定し、算出したものである。 The average particle size of the fluoroaluminosilicate glass particles (A) used in the present invention is preferably 0.3 to 35 μm. When the average particle size of the fluoroaluminosilicate glass particles (A) is less than 0.3 μm, the average particle size is too small to produce, and furthermore, the paste obtained by mixing with the liquid material has a high viscosity. There is a risk of becoming too much. The average particle size of the fluoroaluminosilicate glass particles (A) is more preferably 0.5 μm or more, and particularly preferably 1 μm or more. On the other hand, when the average particle size of the fluoroaluminosilicate glass particles (A) exceeds 35 μm, the paste properties may be unfavorable, for example, the paste obtained by mixing with the liquid material does not exhibit sufficient viscosity. In addition, the feeling of roughness during kneading of the paste may be increased, and the operability may be impaired. Further, when applied to the oral cavity, the patient may be given an impression that the touch is not good. The average particle size of the fluoroaluminosilicate glass particles (A) is more preferably 30 μm or less, and particularly preferably 10 μm or less. Here, the average particle diameter of the fluoroaluminosilicate glass particles (A) used in the present invention is measured and calculated using a laser diffraction particle size distribution measuring device.
 本発明で用いられるフルオロアルミノシリケートガラス粒子(A)の製造方法は特に限定されない。市販されているフルオロアルミノシリケートガラス粉末をそのまま用いても良いし、市販品を更に粉砕しても良い。その場合、ボールミル、ライカイ機、ジェットミルなどの粉砕装置を使用することができる。また、従来から歯科用グラスアイオノマーセメントの粉末成分として使用されている公知のフルオロアルミノシリケートガラス粒子を用いても良い。例えば、硅石、アルミナ、水酸化アルミニウム、硅酸アルミニウム、ムライト、硅酸カルシウム、硅酸ストロンチウム、硅酸ナトリウム、炭酸アルミニウム、炭酸カルシウム、炭酸ストロンチウム、炭酸ナトリウム、フッ化ナトリウム、フッ化カルシウム、フッ化アルミニウム、フッ化ストロンチウム、リン酸アルミニウム、リン酸カルシウム、リン酸ストロンチウム、リン酸ナトリウムなどから選択したガラス原料を秤量し1000℃以上の高温で溶融し冷却後、粉砕して細粉を作製することができる。その場合、ボールミル、ライカイ機、ジェットミルなどの粉砕装置を使用することができる。また、冷却後、得られたガラス体(フリット)をボールミル等の粉砕手段で粉状化するとともに必要に応じて篩がけ等の分級処理を行うことによって、所望する平均粒径及び粒度分布のガラス粉末を得ることができる。また、フルオロアルミノシリケートガラス原料粉体をアルコールなどの液体の媒体と共にライカイ機、ボールミル等を用いて粉砕してスラリーを調製し、得られたスラリーを乾燥させることによりフルオロアルミノシリケートガラス粒子(A)を得ることもできる。このときの粉砕装置としては、ボールミルを用いることが好ましく、そのポット及びボールの材質としては、好適にはアルミナやジルコニアが採用される。 The method for producing the fluoroaluminosilicate glass particles (A) used in the present invention is not particularly limited. A commercially available fluoroaluminosilicate glass powder may be used as it is, or a commercially available product may be further pulverized. In that case, a pulverizing apparatus such as a ball mill, a likai machine, or a jet mill can be used. Moreover, you may use the well-known fluoroaluminosilicate glass particle conventionally used as a powder component of dental glass ionomer cement. For example, meteorite, alumina, aluminum hydroxide, aluminum oxalate, mullite, calcium oxalate, strontium oxalate, sodium oxalate, aluminum carbonate, calcium carbonate, strontium carbonate, sodium carbonate, sodium fluoride, calcium fluoride, fluoride A glass raw material selected from aluminum, strontium fluoride, aluminum phosphate, calcium phosphate, strontium phosphate, sodium phosphate, etc. can be weighed, melted at a high temperature of 1000 ° C. or higher, cooled, and then pulverized to produce a fine powder. . In that case, a pulverizing apparatus such as a ball mill, a likai machine, or a jet mill can be used. In addition, after cooling, the obtained glass body (frit) is pulverized by a pulverizing means such as a ball mill and, if necessary, subjected to classification treatment such as sieving so that glass having a desired average particle size and particle size distribution is obtained. A powder can be obtained. Also, fluoroaluminosilicate glass particles (A) are prepared by pulverizing fluoroaluminosilicate glass raw material powder together with a liquid medium such as alcohol using a lykai machine, ball mill or the like, and drying the obtained slurry. You can also get A ball mill is preferably used as the pulverizer at this time, and alumina or zirconia is preferably used as the material of the pot and ball.
 本発明の歯科用硬化性組成物において、フルオロアルミノシリケートガラス粒子(A)100重量部に対しリン酸カルシウム粒子(B)を1~30重量部含むことが必要である。リン酸カルシウム粒子(B)が1重量部未満の場合、十分な再石灰化を発現させるためのカルシウムイオンやリン酸イオンの放出量が十分でないおそれがある。リン酸カルシウム粒子(B)の含有量は、2重量部以上であることが好ましく、特に3重量部以上であることが好ましい。一方、リン酸カルシウム粒子(B)が30重量部を超える場合、ポリアルケン酸(D)とリン酸カルシウム粒子(B)との反応が、ポリアルケン酸(D)とフルオロアルミノシリケートガラス粒子(A)との反応よりも早いため、適度な操作時間を確保することができないおそれがある。リン酸カルシウム粒子(B)の含有量は、20重量部以下であることが好ましく、特に10重量部以下であることが更に好ましい。 In the dental curable composition of the present invention, it is necessary to contain 1 to 30 parts by weight of calcium phosphate particles (B) with respect to 100 parts by weight of fluoroaluminosilicate glass particles (A). When the amount of calcium phosphate particles (B) is less than 1 part by weight, the release amount of calcium ions and phosphate ions for causing sufficient remineralization may be insufficient. The content of the calcium phosphate particles (B) is preferably 2 parts by weight or more, and particularly preferably 3 parts by weight or more. On the other hand, when the calcium phosphate particles (B) exceed 30 parts by weight, the reaction between the polyalkenoic acid (D) and the calcium phosphate particles (B) is more than the reaction between the polyalkenoic acid (D) and the fluoroaluminosilicate glass particles (A). Since it is fast, there is a possibility that an appropriate operation time cannot be secured. The content of the calcium phosphate particles (B) is preferably 20 parts by weight or less, and more preferably 10 parts by weight or less.
 本発明の歯科用硬化性組成物において、リン酸カルシウム粒子(B)は、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)及び/又はCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)から構成される。 In the dental curable composition of the present invention, the calcium phosphate particles (B) include calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and / or calcium phosphate particles having a Ca / P molar ratio of less than 1.30. (B2).
 本発明で用いられるCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)としては特に限定されず、リン酸八カルシウム5水和物[Ca(PO・5HO]粒子、リン酸三カルシウム[Ca(PO]粒子、非晶性リン酸カルシウム[Ca(PO・xHO]粒子、ハイドロキシアパタイト[Ca10(PO(OH)]粒子、及びリン酸四カルシウム[Ca(POO]粒子からなる群から選択される少なくとも1種であることが好ましい。これらの中でも、リン酸三カルシウム[Ca(PO]粒子、非晶性リン酸カルシウム[Ca(PO・xHO]粒子、ハイドロキシアパタイト[Ca10(PO(OH)]粒子、及びリン酸四カルシウム[Ca(POO]粒子からなる群から選択される少なくとも1種がより好適に使用され、リン酸三カルシウム[Ca(PO]粒子、ハイドロキシアパタイト[Ca10(PO(OH)]粒子、及びリン酸四カルシウム[Ca(POO]粒子からなる群から選択される少なくとも1種が更に好適に使用され、特に再石灰化能の観点からリン酸四カルシウム[Ca(POO]粒子がより好適に使用される。 The calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention are not particularly limited, and octacalcium phosphate pentahydrate [Ca 8 H 2 (PO 4 ) 6 · 5H 2 O ] Particles, tricalcium phosphate [Ca 3 (PO 4 ) 2 ] particles, amorphous calcium phosphate [Ca 3 (PO 4 ) 2 xH 2 O] particles, hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] particles and at least one selected from the group consisting of tetracalcium phosphate [Ca 4 (PO 4 ) 2 O] particles. Among these, tricalcium phosphate [Ca 3 (PO 4 ) 2 ] particles, amorphous calcium phosphate [Ca 3 (PO 4 ) 2 xH 2 O] particles, hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) ) 2 ] particles and at least one selected from the group consisting of tetracalcium phosphate [Ca 4 (PO 4 ) 2 O] particles is more preferably used, and tricalcium phosphate [Ca 3 (PO 4 ) 2. And at least one selected from the group consisting of particles, hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] particles, and tetracalcium phosphate [Ca 4 (PO 4 ) 2 O] particles. In particular, tetracalcium phosphate [Ca 4 (PO 4 ) 2 O] particles are more preferably used from the viewpoint of remineralization ability.
 本発明で用いられるCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の平均粒径は、0.3~35μmであることが好ましい。平均粒径が0.3μm未満の場合、液材との混合により得られるペーストの粘性が高くなり所望のペースト性状を示さないおそれがある。Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の平均粒径は、0.4μm以上がより好ましく、特に0.5μm以上が好ましい。一方、平均粒径が35μmを超える場合、液材との混合により得られるペーストが十分な粘性を示さないなどのペースト性状が好ましくないおそれがある。更に、ペースト練和時のざらつき感が大きくなり操作性が損なわれるおそれがある。Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の平均粒径は、30μm以下であることがより好ましく、特に25μm以下であることが好ましい。ここで、本発明で使用するCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の平均粒径は、上記フルオロアルミノシリケートガラス粒子(A)の平均粒径と同様にして算出される。 The average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention is preferably 0.3 to 35 μm. When the average particle diameter is less than 0.3 μm, the viscosity of the paste obtained by mixing with the liquid material becomes high and there is a possibility that the desired paste properties are not exhibited. The average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is more preferably 0.4 μm or more, and particularly preferably 0.5 μm or more. On the other hand, when the average particle size exceeds 35 μm, the paste properties such that the paste obtained by mixing with the liquid material does not exhibit sufficient viscosity may be unfavorable. Furthermore, the feeling of roughness when kneading the paste is increased, and the operability may be impaired. The average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is more preferably 30 μm or less, and particularly preferably 25 μm or less. Here, the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention is calculated in the same manner as the average particle diameter of the fluoroaluminosilicate glass particles (A). .
 本発明で使用されるCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の製造方法は特に限定されない。市販されているCa/Pモル比が1.30以上のリン酸カルシウム粒子をそのまま用いてもよいし、適宜粉砕して粒径を整えて使用してもよい。粉砕方法としては、後に説明するCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の粉砕方法と同様の方法を採用できる。 The method for producing calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in the present invention is not particularly limited. Commercially available calcium phosphate particles having a Ca / P molar ratio of 1.30 or more may be used as they are, or may be used by appropriately pulverizing and adjusting the particle diameter. As a pulverization method, a method similar to the pulverization method of calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, which will be described later, can be employed.
 本発明で用いられるCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)としては特に限定されないが、無水リン酸一水素カルシウム[CaHPO]粒子、無水リン酸二水素カルシウム[Ca(HPO]粒子、酸性ピロリン酸カルシウム[CaH]粒子、リン酸一水素カルシウム2水和物[CaHPO・2HO]粒子、及びリン酸二水素カルシウム1水和物[Ca(HPO・HO]粒子からなる群から選択される少なくとも1種であることが好ましい。これらの中でも、無水リン酸一水素カルシウム[CaHPO]粒子、無水リン酸二水素カルシウム[Ca(HPO]粒子、及びリン酸一水素カルシウム2水和物[CaHPO・2HO]粒子からなる群から選択される少なくとも1種がより好適に使用され、無水リン酸一水素カルシウム[CaHPO]粒子、及びリン酸一水素カルシウム2水和物[CaHPO・2HO]粒子からなる群から選択される少なくとも1種が更に好適に使用され、特に再石灰化能の観点から無水リン酸一水素カルシウム[CaHPO]粒子が好適に使用される。 The calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 used in the present invention are not particularly limited, but are anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles, anhydrous calcium dihydrogen phosphate [Ca (H 2 PO 4 ) 2 ] particles, acidic calcium pyrophosphate [CaH 2 P 2 O 7 ] particles, calcium monohydrogen phosphate dihydrate [CaHPO 4 · 2H 2 O] particles, and calcium dihydrogen phosphate monohydrate It is preferably at least one selected from the group consisting of [Ca (H 2 PO 4 ) 2 .H 2 O] particles. Among these, anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles, anhydrous calcium dihydrogen phosphate [Ca (H 2 PO 4 ) 2 ] particles, and calcium monohydrogen phosphate dihydrate [CaHPO 4 .2H 2]. O] At least one selected from the group consisting of particles is more preferably used, and anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles and calcium monohydrogen phosphate dihydrate [CaHPO 4 .2H 2 O]. At least one selected from the group consisting of particles is more preferably used, and anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles are particularly preferably used from the viewpoint of remineralization ability.
 本発明で用いられるCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の平均粒径は、0.3~35μmであることが好ましい。平均粒径が0.3μm未満の場合、液材との混合により得られるペーストの粘度が高くなり過ぎるおそれがあり、0.4μm以上がより好ましく、特に0.5μm以上が好ましい。一方、平均粒径が35μmを超える場合、液材との混合により得られるペーストが十分な粘性を示さないなどのペースト性状が好ましくないおそれがある。更に、ペースト練和時のざらつき感が大きくなり操作性が損なわれるおそれがある。Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の平均粒径は、30μm以下がより好ましく、特に25μm以下が好ましい。Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の平均粒径は、上記フルオロアルミノシリケートガラス粒子(A)の平均粒径と同様にして算出される。 The average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 used in the present invention is preferably 0.3 to 35 μm. When the average particle size is less than 0.3 μm, the viscosity of the paste obtained by mixing with the liquid material may be too high, more preferably 0.4 μm or more, and particularly preferably 0.5 μm or more. On the other hand, when the average particle size exceeds 35 μm, the paste properties such that the paste obtained by mixing with the liquid material does not exhibit sufficient viscosity may be unfavorable. Furthermore, the feeling of roughness when kneading the paste is increased, and the operability may be impaired. The average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 is more preferably 30 μm or less, and particularly preferably 25 μm or less. The average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 is calculated in the same manner as the average particle diameter of the fluoroaluminosilicate glass particles (A).
 このような平均粒径を有するCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の製造方法は特に限定されず、市販品を入手できるのであればそれを使用してもよいが、市販品を更に粉砕することが好ましい場合が多い。その場合、ボールミル、ライカイ機、ジェットミルなどの粉砕装置を使用することができる。また、Ca/Pモル比が1.30未満のリン酸カルシウム原料粉体をアルコールなどの液体の媒体と共にライカイ機、ボールミル等を用いて粉砕してスラリーを調製し、得られたスラリーを乾燥させることによりCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)を得ることもできる。このときの粉砕装置としては、ボールミルを用いることが好ましく、そのポット及びボールの材質としては、好適にはアルミナやジルコニアが採用される。 The method for producing calcium phosphate particles (B2) having such an average particle diameter and having a Ca / P molar ratio of less than 1.30 is not particularly limited, and if a commercially available product is available, it may be used. It is often preferable to further grind the commercial product. In that case, a pulverizing apparatus such as a ball mill, a likai machine, or a jet mill can be used. Further, by preparing a slurry by pulverizing calcium phosphate raw material powder having a Ca / P molar ratio of less than 1.30 together with a liquid medium such as alcohol using a lykai machine, a ball mill or the like, and drying the obtained slurry It is also possible to obtain calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30. A ball mill is preferably used as the pulverizer at this time, and alumina or zirconia is preferably used as the material of the pot and ball.
 ここで、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、及びCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)を組み合わせて使用する場合において、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の平均粒径に比べてCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の平均粒径を大きくすることによって、両者の溶解度のバランスが適切となり、組成物内のpHを中性付近に維持することが可能となる。その結果、ヒドロキシアパタイトの析出が円滑となり、再石灰化効果を向上させることができる。具体的にはCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の平均粒径をCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の平均粒径の2倍以上とすることがより好ましく、4倍以上とすることが更に好ましく、7倍以上とすることが特に好ましい。一方、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の平均粒径をCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の平均粒径の35倍以下とすることがより好ましく、30倍以下とすることが更に好ましく、25倍以下とすることが特に好ましい。Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)とCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)を組み合わせて使用する場合、その配合割合は特に限定されないが、ヒドロキシアパタイト析出による再石灰化促進の観点からCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)とCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の総和のCa/P比が0.8~2.2となるような配合割合で使用されることが好ましく、1.10~1.95であることがより好ましく、1.30~1.80であることが更に好ましく、特に1.50~1.70であることが好ましい。このことにより、再石灰化効果の高い本発明の歯科用硬化性組成物を得ることができる。 Here, when the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 are used in combination, the Ca / P molar ratio is used. By increasing the average particle size of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more as compared with the average particle size of the calcium phosphate particles (B2) having a particle size of less than 1.30, the solubility balance between the two is improved. It becomes appropriate, and it becomes possible to maintain the pH in the composition in the vicinity of neutrality. As a result, the precipitation of hydroxyapatite becomes smooth and the remineralization effect can be improved. Specifically, the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is at least twice the average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30. More preferably, it is more preferably 4 times or more, and particularly preferably 7 times or more. On the other hand, the average particle diameter of the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more is 35 times or less than the average particle diameter of the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30. Is more preferably 30 times or less, and particularly preferably 25 times or less. When calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 are used in combination, the blending ratio is not particularly limited. From the viewpoint of promoting remineralization by precipitation of apatite, the total Ca / P ratio of calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30. Is preferably used at a blending ratio of 0.8 to 2.2, more preferably 1.10 to 1.95, still more preferably 1.30 to 1.80, In particular, it is preferably 1.50 to 1.70. By this, the dental curable composition of this invention with a high remineralization effect can be obtained.
 本発明の歯科用硬化性組成物において、フルオロアルミノシリケートガラス粒子(A)100重量部に対しエチレンジアミン四酢酸又はその塩(C)を0.1~10重量部含むことが必要である。エチレンジアミン四酢酸又はその塩(C)の含有量が0.1重量部未満の場合、十分な操作時間が確保できない恐れがある。エチレンジアミン四酢酸又はその塩(C)の含有量は、0.2重量部以上であることが好ましく、特に0.3重量部以上であることが好ましい。一方、エチレンジアミン四酢酸又はその塩(C)の含有量が10重量部を超える場合、口腔内における硬化時間が遅延する恐れがある。エチレンジアミン四酢酸又はその塩(C)の含有量は、5重量部以下であることが好ましく、特に3.5重量部以下であることが更に好ましい。なお、かかるエチレンジアミン四酢酸又はその塩(C)は粉体のまま加えて配合してもよいし、液材として加えて配合してもよい。さらにエチレンジアミン四酢酸、及びエチレンジアミン四酢酸塩は同時に配合されても良い。 In the dental curable composition of the present invention, it is necessary to contain 0.1 to 10 parts by weight of ethylenediaminetetraacetic acid or a salt thereof (C) with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A). When the content of ethylenediaminetetraacetic acid or its salt (C) is less than 0.1 parts by weight, there is a possibility that sufficient operation time cannot be secured. The content of ethylenediaminetetraacetic acid or a salt thereof (C) is preferably 0.2 parts by weight or more, and particularly preferably 0.3 parts by weight or more. On the other hand, when the content of ethylenediaminetetraacetic acid or a salt thereof (C) exceeds 10 parts by weight, the curing time in the oral cavity may be delayed. The content of ethylenediaminetetraacetic acid or a salt thereof (C) is preferably 5 parts by weight or less, and more preferably 3.5 parts by weight or less. In addition, such ethylenediaminetetraacetic acid or a salt thereof (C) may be added and blended as a powder, or may be blended by adding as a liquid material. Furthermore, ethylenediaminetetraacetic acid and ethylenediaminetetraacetate may be blended simultaneously.
 本発明では、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とを予め混合することにより、フルオロアルミノシリケートガラス粒子(A)/エチレンジアミン四酢酸又はその塩(C)複合体(P)を得る方法が好適に採用される。その場合、複合体(P)が、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とをメカノケミカル的に複合化することにより得られたものであることが好ましい。メカノケミカル的に複合化する方法としては、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とをボールミル、ライカイ機、ジェットミルなどの乾式粉砕装置を用いる方法が好適に採用される。 In the present invention, fluoroaluminosilicate glass particles (A) / ethylenediaminetetraacetic acid or a salt thereof (C) composite is prepared by previously mixing fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C). The method of obtaining (P) is preferably employed. In that case, it is preferable that the composite (P) is obtained by mechanochemically combining the fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C). As a mechanochemical compounding method, a method using a dry pulverization apparatus such as a ball mill, a lycaic machine, a jet mill, etc., is preferably employed for fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C). Is done.
 本発明では、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とを水中で混合し、乾燥することでフルオロアルミノシリケートガラス粒子(A)/エチレンジアミン四酢酸又はその塩(C)複合体(P)を得ることもできる。 In the present invention, fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in water and dried to obtain fluoroaluminosilicate glass particles (A) / ethylenediaminetetraacetic acid or a salt thereof (C ) A complex (P) can also be obtained.
 本発明では、複合体(P)が、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とを熱処理することにより得られたものであることが好ましい。熱処理としては、前述のように、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)を水中で混合した後、70~150℃の熱を加えて乾燥することが好ましい。乾燥する際には乾燥器が好適に用いられる。熱処理温度が70℃未満の場合、大量に乾燥を行う場合には非効率的であり内部の水分が十分に蒸発しない恐れがある。熱処理温度は、75℃以上がより好ましく、特に80℃以上が好ましい。一方、熱処理温度が150℃を超える場合、エチレンジアミン四酢酸又はその塩(C)がフルオロアルミノシリケートガラス粒子(A)に強固に結合し、得られる歯科用硬化性組成物の硬化時間が遅延する恐れがある。熱処理温度は、140℃以下がより好ましく、特に130℃以下が好ましい。 In the present invention, the composite (P) is preferably obtained by heat-treating fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C). As described above, the heat treatment is preferably performed by mixing fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C) in water and then applying heat at 70 to 150 ° C. for drying. When drying, a dryer is preferably used. When the heat treatment temperature is less than 70 ° C., it is inefficient when drying in large quantities, and the internal moisture may not evaporate sufficiently. The heat treatment temperature is more preferably 75 ° C. or higher, and particularly preferably 80 ° C. or higher. On the other hand, when the heat treatment temperature exceeds 150 ° C., ethylenediaminetetraacetic acid or a salt thereof (C) is strongly bonded to the fluoroaluminosilicate glass particles (A), and the curing time of the resulting dental curable composition may be delayed. There is. The heat treatment temperature is more preferably 140 ° C. or less, and particularly preferably 130 ° C. or less.
 本発明では、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを予め混合することにより、リン酸カルシウム粒子(B)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)を得る方法が好適に採用される。その場合、複合体(Q)が、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とをメカノケミカル的に複合化することにより得られたものであることが好ましい。メカノケミカル的に複合化する方法としては、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とをボールミル、ライカイ機、ジェットミルなどの乾式粉砕装置を用いる方法が好適に採用される。 In the present invention, a method of obtaining calcium phosphate particles (B) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (Q) by previously mixing calcium phosphate particles (B) with ethylenediaminetetraacetic acid or a salt thereof (C). Is preferably employed. In that case, it is preferable that the composite (Q) is obtained by mechanochemically combining the calcium phosphate particles (B) with ethylenediaminetetraacetic acid or a salt thereof (C). As a method for complexing mechanochemically, a method in which the calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) are used in a dry pulverization apparatus such as a ball mill, a lykai machine, or a jet mill is preferably employed.
 本発明では、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを水中で混合し、乾燥することでリン酸カルシウム粒子(B)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)を得ることもできる。 In the present invention, calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in water and dried to dry the calcium phosphate particles (B) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (Q). You can also get
 本発明では、複合体(Q)が、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを熱処理することにより得られたものであることが好ましい。熱処理としては、前述のように、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを水中で混合した後、70~250℃の熱を加えて乾燥することが好ましい。乾燥する際には乾燥器が好適に用いられる。熱処理温度が70℃未満の場合、大量に乾燥を行う場合には非効率的であり内部の水分が十分に蒸発しない恐れがある。熱処理温度は、75℃以上がより好ましく、特に80℃以上が好ましい。一方、熱処理温度が250℃を超える場合、エチレンジアミン四酢酸又はその塩(C)自体が分解する恐れや、エチレンジアミン四酢酸又はその塩(C)がリン酸カルシウム粒子(B)に強固に結合し、得られる歯科用硬化性組成物の硬化時間が遅延する恐れがある。熱処理温度は、200℃以下がより好ましく、特に150℃以下が好ましい。 In the present invention, the complex (Q) is preferably obtained by heat-treating calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C). As described above, the heat treatment is preferably performed by mixing calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) in water and then applying heat at 70 to 250 ° C. for drying. When drying, a dryer is preferably used. When the heat treatment temperature is less than 70 ° C., it is inefficient when drying in large quantities, and the internal moisture may not evaporate sufficiently. The heat treatment temperature is more preferably 75 ° C. or higher, and particularly preferably 80 ° C. or higher. On the other hand, when the heat treatment temperature exceeds 250 ° C., ethylenediaminetetraacetic acid or its salt (C) itself may be decomposed, or ethylenediaminetetraacetic acid or its salt (C) is strongly bonded to the calcium phosphate particles (B). The curing time of the dental curable composition may be delayed. The heat treatment temperature is more preferably 200 ° C. or less, and particularly preferably 150 ° C. or less.
 本発明では、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)とエチレンジアミン四酢酸又はその塩(C)とを予め混合して、リン酸カルシウム粒子(B1)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)を得ることができる。また、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)とエチレンジアミン四酢酸又はその塩(C)とを予め混合して、リン酸カルシウム粒子(B2)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)を得ることもできる。複合体(Q)を得る方法としては、上記説明した方法が好適に採用される。リン酸カルシウム粒子(B1)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)と、リン酸カルシウム粒子(B2)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)とを併用しても構わない。中でも、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)とエチレンジアミン四酢酸又はその塩(C)とを予め混合して、リン酸カルシウム粒子(B1)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)を得ることが本発明の好適な実施態様である。 In the present invention, calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in advance, and calcium phosphate particles (B1) / ethylenediaminetetraacetic acid or a salt thereof ( C) A complex (Q) can be obtained. Further, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in advance to obtain calcium phosphate particles (B2) / ethylenediaminetetraacetic acid or a salt thereof (C). A complex (Q) can also be obtained. As a method for obtaining the complex (Q), the method described above is preferably employed. Calcium phosphate particles (B1) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (Q) may be used in combination with calcium phosphate particles (B2) / ethylenediaminetetraacetic acid or a salt (C) complex (Q) thereof. . Among them, calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and ethylenediaminetetraacetic acid or a salt thereof (C) are mixed in advance to obtain calcium phosphate particles (B1) / ethylenediaminetetraacetic acid or a salt thereof (C). Obtaining the complex (Q) is a preferred embodiment of the present invention.
 本発明の歯科用硬化性組成物において、フルオロアルミノシリケートガラス粒子(A)100重量部に対して、ポリアルケン酸(D)を10~40重量部含有することが必要である。ポリアルケン酸(D)の含有量が10重量部未満の場合、グラスアイオノマー反応によって形成される3次元網目構造を十分に形成することができないため、十分な機械的強度が得られないおそれがあり、13重量部以上であることがより好ましく、特に18重量部以上であることが好ましい。一方、ポリアルケン酸(D)の含有量が40重量部を超える場合、フルオロアルミノシリケートガラス粒子(A)とグラスアイオノマー反応し3次元網目構造を形成する必要量を上回り、結果として硬化に寄与しない余剰なポリアルケン酸(D)が硬化不良を招くおそれがある。また、練和時の粘度が高過ぎて練和が難しくなるおそれがある。ポリアルケン酸(D)の配合量は30重量部以下であることがより好ましく、特に27重量部以下であることが好ましい。 In the dental curable composition of the present invention, it is necessary to contain 10 to 40 parts by weight of polyalkenoic acid (D) with respect to 100 parts by weight of fluoroaluminosilicate glass particles (A). When the content of the polyalkenoic acid (D) is less than 10 parts by weight, the three-dimensional network structure formed by the glass ionomer reaction cannot be sufficiently formed, so that sufficient mechanical strength may not be obtained. The amount is more preferably 13 parts by weight or more, and particularly preferably 18 parts by weight or more. On the other hand, when the content of polyalkenoic acid (D) exceeds 40 parts by weight, it exceeds the amount required to react with fluoroaluminosilicate glass particles (A) to form a glass ionomer to form a three-dimensional network structure. New polyalkenoic acid (D) may cause poor curing. Moreover, the viscosity at the time of kneading may be too high and kneading may be difficult. The blending amount of the polyalkenoic acid (D) is more preferably 30 parts by weight or less, and particularly preferably 27 parts by weight or less.
 本発明に用いられるポリアルケン酸(D)としては特に限定されず、不飽和モノカルボン酸又は不飽和ジカルボン酸の重合体であって、アクリル酸、メタクリル酸、2-クロロアクリル酸、2-シアノアクリル酸、アコニチン酸、メサコン酸、マレイン酸、イタコン酸、フマル酸、グルタコン酸、シトラコン酸、ウトラコン酸等の単独重合体、又はこれらの不飽和カルボン酸の2種以上の共重合体、及びこれらの不飽和カルボン酸と共重合可能な単量体との共重合体が挙げられ、これらは、単独で又は2種以上組み合わせて用いることができる。歯質接着強さ及び機械的強度向上の観点から、アクリル酸及びマレイン酸の共重合体及びアクリル酸及びイタコン酸の共重合体からなる群から選択される少なくとも1種が更に好ましく、特にアクリル酸及びイタコン酸の共重合体であることが好ましい。更に、重合可能なエチレン性不飽和二重結合を含まない重量平均分子量5,000~50,000の重合体であるものが好ましく、重量平均分子量が5,000未満の場合は硬化体の強度が低くなり易く、また歯質への接着力も低下するおそれがあり、10,000以上であることがより好ましく、特に35,000であることが好ましい。また、重量平均分子量が50,000を超える場合には、練和時の粘度が高過ぎて練和が難しくなるおそれがあり、45,000以下であることがより好ましく、特に40,000以下であることが好ましい。 The polyalkenoic acid (D) used in the present invention is not particularly limited, and is a polymer of unsaturated monocarboxylic acid or unsaturated dicarboxylic acid, which is acrylic acid, methacrylic acid, 2-chloroacrylic acid, 2-cyanoacrylic acid. Homopolymers such as acid, aconitic acid, mesaconic acid, maleic acid, itaconic acid, fumaric acid, glutaconic acid, citraconic acid, and uraconic acid, or copolymers of two or more of these unsaturated carboxylic acids, and these A copolymer of an unsaturated carboxylic acid and a copolymerizable monomer may be mentioned, and these may be used alone or in combination of two or more. From the viewpoint of improving the adhesive strength and mechanical strength of the tooth, at least one selected from the group consisting of a copolymer of acrylic acid and maleic acid and a copolymer of acrylic acid and itaconic acid is more preferable. And a copolymer of itaconic acid. Further, a polymer having a weight average molecular weight of 5,000 to 50,000 which does not contain a polymerizable ethylenically unsaturated double bond is preferred. When the weight average molecular weight is less than 5,000, the strength of the cured product is high. It tends to be low, and there is a possibility that the adhesive force to the tooth will be lowered, and it is more preferably 10,000 or more, and particularly preferably 35,000. Further, when the weight average molecular weight exceeds 50,000, the viscosity at the time of kneading may be too high and kneading may be difficult, and it is more preferably 45,000 or less, particularly 40,000 or less. Preferably there is.
 本発明で用いられるポリアルケン酸(D)の製造方法は特に限定されず、市販品を入手できるのであればそれを使用してもよい。特に、粉材に加える場合については市販品を更に粉砕することが好ましい場合が多い。その場合、ボールミル、ライカイ機、ジェットミル、スプレードライヤーなどの粉砕装置を使用することができる。また、ポリアルケン酸粉体をアルコールなどの液体の媒体と共にライカイ機、ボールミル等を用いて粉砕してスラリーを調製し、得られたスラリーを乾燥させることによりポリアルケン酸(D)を得ることもできる。このときの粉砕装置としては、スプレードライヤーを用いることが好ましい。 The production method of polyalkenoic acid (D) used in the present invention is not particularly limited, and it may be used as long as a commercially available product is available. In particular, when adding to the powder material, it is often preferable to further grind the commercial product. In that case, a pulverizing apparatus such as a ball mill, a likai machine, a jet mill, or a spray dryer can be used. Alternatively, the polyalkenoic acid powder (D) can be obtained by pulverizing the polyalkenoic acid powder together with a liquid medium such as alcohol using a lykai machine, a ball mill or the like to prepare a slurry, and drying the obtained slurry. As a pulverizing apparatus at this time, it is preferable to use a spray dryer.
 更に本発明で用いられるポリアルケン酸(D)は、粉体のまま加えて配合してもよいし、液材に加えて配合してもよく、いずれの場合であっても硬化性組成物を形成することができる。本発明では、ポリアルケン酸(D)を、粉材及び液材の両方に加えた方が、液材を適度な粘度に保ちつつ、歯質接着性や機械的強度を確保するための十分量を配合することが可能となるため好ましい。 Furthermore, the polyalkenoic acid (D) used in the present invention may be added and blended in the form of powder, or may be blended in addition to the liquid material. In either case, a curable composition is formed. can do. In the present invention, the polyalkenoic acid (D) added to both the powder material and the liquid material has a sufficient amount for securing the adhesiveness and mechanical strength while maintaining the liquid material at an appropriate viscosity. Since it becomes possible to mix | blend, it is preferable.
 本発明に用いられる水(E)は、本発明の歯科用硬化性組成物を得るための液材において必要不可欠な成分である。すなわち、液材と、粉材の主成分であるフルオロアルミノシリケートガラス粒子(A)とを混合して硬化させる反応は、フルオロアルミノシリケートガラス粒子(A)とポリアルケン酸(D)との中和反応が水の存在下で進行するからである。また、歯科用グラスアイオノマーセメントは、水の存在下で歯の表面と接着する性質を持ち、本発明に係る歯科用グラスアイオノマーセメント液中に水が存在していることが必要である。 Water (E) used in the present invention is an indispensable component in the liquid material for obtaining the dental curable composition of the present invention. That is, the reaction in which the liquid material and the fluoroaluminosilicate glass particles (A), which are the main components of the powder material, are mixed and cured is a neutralization reaction between the fluoroaluminosilicate glass particles (A) and the polyalkenoic acid (D). Because it proceeds in the presence of water. Further, the dental glass ionomer cement has a property of adhering to the tooth surface in the presence of water, and it is necessary that water is present in the dental glass ionomer cement liquid according to the present invention.
 本発明の歯科用硬化性組成物において、フルオロアルミノシリケートガラス粒子(A)100重量部に対して、水(E)を13~90重量部含有することが必要である。水(E)の含有量が13重量部未満の場合、グラスアイオノマー反応によって形成される3次元網目構造を十分に形成することができないため、十分な機械的強度が得られないおそれがあり、またCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)及びCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)との十分な水和反応を起こすことができないおそれがあり、14重量部以上であることがより好ましく、特に15重量部以上であることが好ましい。一方、水(E)の含有量が90重量部を超える場合、粉液練和後のペースト中のフルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)及びCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の含有量が低下し、硬化物を得ることができないおそれがある。また硬化物を形成した場合でも硬化物自体の強度が低下するおそれもある。水(E)の含有量は、40重量部以下であることがより好ましく、特に30重量部以下であることが好ましい。 In the dental curable composition of the present invention, it is necessary to contain 13 to 90 parts by weight of water (E) with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A). When the content of water (E) is less than 13 parts by weight, the three-dimensional network structure formed by the glass ionomer reaction cannot be sufficiently formed, and thus sufficient mechanical strength may not be obtained. There is a possibility that sufficient hydration reaction may not occur with the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more and the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30. More preferably, it is more than 15 parts by weight. On the other hand, when the content of water (E) exceeds 90 parts by weight, the fluoroaluminosilicate glass particles (A) in the paste after the powder liquid kneading, the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more. ) And Ca / P molar ratio of calcium phosphate particles (B2) having a molar ratio of less than 1.30, the cured product may not be obtained. Even when a cured product is formed, the strength of the cured product itself may be reduced. The content of water (E) is more preferably 40 parts by weight or less, and particularly preferably 30 parts by weight or less.
 本発明の歯科用硬化性組成物において、フルオロアルミノシリケートガラス粒子(A)100重量部に対して、酒石酸を0.3~10重量部含有することが好ましい。本発明では、上記粉末材料と酸成分との硬化反応を調整する(遅延させる)ことを目的として所定量の酒石酸を添加することができる。この目的に好ましい酒石酸としては、D-酒石酸、L-酒石酸及びDL-酒石酸が挙げられるが、得られる硬化物の強度、審美性向上などの点からL-酒石酸が特に好ましい。酒石酸の含有量が0.3重量部未満の場合、粉材及び液材を練和し、患者に適応するまでの十分な操作時間が確保できないおそれがあり、1重量部以上であることがより好ましく、特に2重量部以上であることが好ましい。一方、酒石酸の含有量が10重量部を超える場合、硬化時間が遅延され、臨床上適切な時間で硬化しないおそれがあり、7重量部以下であることがより好ましく、特に5重量部以下であることが好ましい。なお、かかる酒石酸は粉体のまま加えて配合してもよいし、液材として加えて配合してもよく、更にはフルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)及びCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)に対して表面処理を行うことで配合することも可能である。 The dental curable composition of the present invention preferably contains 0.3 to 10 parts by weight of tartaric acid with respect to 100 parts by weight of the fluoroaluminosilicate glass particles (A). In the present invention, a predetermined amount of tartaric acid can be added for the purpose of adjusting (retarding) the curing reaction between the powder material and the acid component. Preferable tartaric acid for this purpose includes D-tartaric acid, L-tartaric acid and DL-tartaric acid, and L-tartaric acid is particularly preferred from the viewpoint of the strength and aesthetics of the resulting cured product. When the tartaric acid content is less than 0.3 parts by weight, there is a possibility that sufficient operation time may not be ensured until the powder material and the liquid material are kneaded and adapted to the patient. Particularly preferred is 2 parts by weight or more. On the other hand, when the content of tartaric acid exceeds 10 parts by weight, the curing time is delayed and may not be cured in a clinically appropriate time, more preferably 7 parts by weight or less, and particularly preferably 5 parts by weight or less. It is preferable. Such tartaric acid may be added and blended as a powder, or may be blended as a liquid material. Furthermore, the fluoroaluminosilicate glass particles (A) have a Ca / P molar ratio of 1.30 or more. The calcium phosphate particles (B1) and the calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 can be blended by surface treatment.
 本発明で用いられる酒石酸の製造方法は特に限定されず、市販品を入手できるのであればそれを使用してもよい。特に、粉材に加える場合については市販品を更に粉砕することが好ましい場合が多い。その場合、ボールミル、ライカイ機、ジェットミル、スプレードライヤーなどの粉砕装置を使用することができる。また、酒石酸粉体をアルコールなどの液体の媒体と共にライカイ機、ボールミル等を用いて粉砕してスラリーを調製し、得られたスラリーを乾燥させることにより酒石酸を得ることもできる。 The method for producing tartaric acid used in the present invention is not particularly limited and may be used as long as a commercially available product is available. In particular, when adding to the powder material, it is often preferable to further grind the commercial product. In that case, a pulverizing apparatus such as a ball mill, a likai machine, a jet mill, or a spray dryer can be used. In addition, tartaric acid powder can be obtained by pulverizing tartaric acid powder together with a liquid medium such as alcohol by using a laika machine, a ball mill or the like to prepare a slurry, and drying the obtained slurry.
 本発明の歯科用硬化性組成物は、必要に応じてX線造影剤を含んでも良い。これは粉液練和後の組成物ペーストの充填操作のモニタリングや充填後の変化を追跡することができるからである。X線造影剤としては、例えば、硫酸バリウム、次炭酸ビスマス、酸化ビスマス、酸化ジルコニウム、フッ化イッテルビウム、ヨードホルム、バリウムアパタイト、チタン酸バリウム、ランタンガラス、バリウムガラス、ストロンチウムガラス等から選択される1つ又は2つ以上が挙げられる。X線造影剤は、粉材に配合したり、液材に配合したり、又は混練中の組成物ペーストに配合することができる。 The dental curable composition of the present invention may contain an X-ray contrast agent as necessary. This is because it is possible to monitor the filling operation of the composition paste after kneading and follow the changes after filling. Examples of the X-ray contrast agent include one selected from barium sulfate, bismuth carbonate, bismuth oxide, zirconium oxide, ytterbium fluoride, iodoform, barium apatite, barium titanate, lanthanum glass, barium glass, strontium glass, and the like. Or two or more are mentioned. The X-ray contrast agent can be blended into the powder material, blended into the liquid material, or blended into the composition paste being kneaded.
 本発明の歯科用硬化性組成物は、更に粉材の流動性改質や硬化物の機械的強度の向上が期待できるフィラーを配合してもよい。フィラーは、1種単独を配合してもよく、複数種類を組み合わせて配合してもよい。フィラーとしては、カオリン、クレー、雲母、マイカ等のシリカを基材とする鉱物;シリカを基材とし、Al、B、TiO、ZrO、BaO、La、SrO、ZnO、CaO、P、LiO、NaOなどを含有するセラミックス及びガラス類が例示される。ガラス類としては、ソーダガラス、リチウムボロシリケートガラス、亜鉛ガラス、ホウ珪酸ガラス、バイオガラスが好適に用いられる。結晶石英、アルミナ、酸化チタン、酸化イットリウム、水酸化アルミニウムも好適に用いられる。 The dental curable composition of the present invention may further contain a filler that can be expected to improve the fluidity of the powder material and improve the mechanical strength of the cured product. One type of filler may be blended, or a plurality of types may be blended in combination. As the filler, minerals based on silica such as kaolin, clay, mica, mica; based on silica; Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , BaO, La 2 O 3 , Examples include ceramics and glasses containing SrO, ZnO, CaO, P 2 O 5 , Li 2 O, Na 2 O and the like. As the glass, soda glass, lithium borosilicate glass, zinc glass, borosilicate glass, and bioglass are preferably used. Crystal quartz, alumina, titanium oxide, yttrium oxide, and aluminum hydroxide are also preferably used.
 本発明の歯科用硬化性組成物に所定の色調を付与し、その審美性を改善する目的で顔料を配合してもよい。配合する顔料には、合成の有機色素又は天然の有機色素からなる有機顔料(着色顔料)と、合成の鉱物又は天然の鉱物から得られる無機顔料とがある。硫化水素による変色は、無機顔料を配合した場合に顕著に認められ、有機顔料を配合した場合には殆ど認められない。したがって、顔料としては、口腔内における変色の原因と考えられる硫化水素の作用を受けにくい有機顔料が好ましい。 A pigment may be blended for the purpose of imparting a predetermined color tone to the dental curable composition of the present invention and improving its aesthetics. The pigments to be blended include organic pigments (colored pigments) made of synthetic organic dyes or natural organic dyes, and inorganic pigments obtained from synthetic minerals or natural minerals. Discoloration due to hydrogen sulfide is noticeable when an inorganic pigment is blended, and is hardly recognized when an organic pigment is blended. Accordingly, the pigment is preferably an organic pigment that is not easily affected by hydrogen sulfide, which is considered to cause discoloration in the oral cavity.
 有機顔料としては、ニューコクシン、キノリンエローWS(以上、紅不二化学工業株式会社製、商品名)、PV Fast Red BNP、Graphtol Yellow 3GP(以上、クラリアントジャパン株式会社製、商品名)、ファストグリーンFCF(関東化学株式会社製、商品名)、青色404号(大東化成工業株式会社製、商品名)、Yellow 8GNP、Yellow 3GNP、Yellow GRP、Yellow 3RLP、Red 2020、Red 2030、Red BRN、Red BRNP、Red BN(以上、チバ・スペシャルティ・ケミカルズ社製、商品名)等が例示される。 Examples of organic pigments include New Coxin, Quinoline Yellow WS (trade name, manufactured by Red Fuji Chemical Industry Co., Ltd.), PV Fast Red BNP, Graphol Yellow 3GP (trade name, manufactured by Clariant Japan Co., Ltd.), Fast Green FCF (trade name, manufactured by Kanto Chemical Co., Ltd.), Blue No. 404 (trade name, manufactured by Daito Kasei Kogyo Co., Ltd.), Yellow 8 GNP, Yellow 3 GNP, Yellow GRP, Yellow 3 RLP, Red 2020, Red 2030, Red BRN, Red Examples include BRNP and Red BN (trade name, manufactured by Ciba Specialty Chemicals, Inc.).
 変色を招かない程度の量であれば、歯質独特の深みのある色調を歯牙の修復部位に付与するために、有機顔料とともに無機顔料を配合してもよい。無機顔料としては、例えば弁柄、亜鉛華、二酸化チタン、炭素、群青(ウルトラマリン)等の無毒のものが好ましく、黒変化を防止するために、もともと黒色の無機顔料(酸化鉄など)を用いてもよい。好ましい無機顔料としては、KN-320、100ED、YELLOW-48(以上、戸田工業株式会社製、商品名)等が挙げられる。 If the amount does not cause discoloration, an inorganic pigment may be blended together with the organic pigment in order to impart a deep color tone unique to the tooth to the restoration site of the tooth. Inorganic pigments such as petals, zinc white, titanium dioxide, carbon, ultramarine, etc. are preferably non-toxic, and black inorganic pigments (such as iron oxide) are originally used to prevent black changes. May be. Preferable inorganic pigments include KN-320, 100ED, YELLOW-48 (above, trade name, manufactured by Toda Kogyo Co., Ltd.) and the like.
 本発明の歯科用硬化性組成物を製造する方法は特に限定されない。フルオロアルミノシリケートガラス粒子(A)及びリン酸カルシウム粒子(B)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む粉材(X)と、水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合することによって歯科用硬化性組成物を得ることができる。例えば、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、及びエチレンジアミン四酢酸又はその塩(C)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合することによって歯科用硬化性組成物を得ることができる。フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合することによっても歯科用硬化性組成物を得ることができる。フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合することによっても歯科用硬化性組成物を得ることができる。 The method for producing the dental curable composition of the present invention is not particularly limited. Fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) are included as essential components, and at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) is included as an optional component Liquid material (X), containing water (E) as essential components, and containing at least one selected from the group consisting of ethylenediaminetetraacetic acid or its salt (C) and polyalkenoic acid (D) as optional components ( Y) is mixed so that the weight ratio (X / Y) of the powder material (X) to the liquid material (Y) is 1.0 to 5.0, whereby a dental curable composition can be obtained. it can. For example, a powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), and ethylenediaminetetraacetic acid or a salt thereof (C), and a liquid material containing polyalkenoic acid (D) and water (E) A dental curable composition is obtained by mixing (Y) so that the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) is 1.0 to 5.0. Can do. Powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or salts thereof (C) and polyalkenoic acid (D), and liquid material (Y) containing water (E) Can also be obtained by mixing the powder material (X) and the liquid material (Y) so that the weight ratio (X / Y) is 1.0 to 5.0. . A powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D), polyalkenoic acid (D) and water (E) The dental curable composition is also prepared by mixing the liquid material (Y) containing the powder material (X) and the liquid material (Y) so that the weight ratio (X / Y) is 1.0 to 5.0. You can get things.
 中でも、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)及びエチレンジアミン四酢酸又はその塩(C)を必須成分として含み、ポリアルケン酸(D)を任意成分として含む粉材(X)と、ポリアルケン酸(D)及び水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)を任意成分として含む液材(Y)とを混合する歯科用硬化性組成物の製造方法が好適に採用される。具体的には、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを混合する歯科用硬化性組成物の製造方法、又は、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)及びエチレンジアミン四酢酸又はその塩(C)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを混合する歯科用硬化性組成物の製造方法が好適に採用され、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを混合する歯科用硬化性組成物の製造方法がより好適に採用される。 Among them, powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) as essential components, and polyalkenoic acid (D) as optional components, and polyalkenes A method for producing a dental curable composition comprising an acid (D) and water (E) as essential components and a liquid material (Y) containing ethylenediaminetetraacetic acid or a salt thereof (C) as optional components is preferred. Adopted. Specifically, a powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D), polyalkenoic acid (D) and A method for producing a dental curable composition in which a liquid material (Y) containing water (E) is mixed, or fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), and ethylenediaminetetraacetic acid or a salt thereof (C ) And a liquid material (Y) containing polyalkenoic acid (D) and water (E) are preferably employed, and a fluoroaluminosilicate glass is suitably employed. Powder (X) containing particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D), and polyalkene (D) and the manufacturing method of the liquid material (Y) and dental curable composition to mix containing water (E) is employed more preferably.
 ここで、本発明の歯科用硬化性組成物の製造方法において、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合することが好ましく、このことにより、グラスアイオノマーセメントとして十分な粉液練和性及び機械的強度などの性能を発現させることができる。粉材(X)と液材(Y)の重量比(X/Y)は、1.5~4.5となるように混合することがより好ましく、1.8~3.8となるように混合することが更に好ましい。 Here, in the method for producing a dental curable composition of the present invention, the powder material (X) and the liquid material (Y) are mixed so that the weight ratio (X / Y) is 1.0 to 5.0. It is preferable that this makes it possible to develop performances such as powder liquid kneading property and mechanical strength sufficient as a glass ionomer cement. The weight ratio (X / Y) of the powder material (X) to the liquid material (Y) is more preferably 1.5 to 4.5, and more preferably 1.8 to 3.8. More preferably, they are mixed.
 ここで、水(E)の存在下では、フルオロアルミノシリケートガラス粒子(A)とポリアルケン酸(D)とが反応して硬化し、またCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)とCa/Pモル比が1.30未満のリン酸カルシウム粒子(B2)との水和反応によってヒドロキシアパタイトが生成されるため、フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を予め混合して歯科用硬化性組成物として保存しておくことができない。かかる観点から、フルオロアルミノシリケートガラス粒子(A)及びリン酸カルシウム粒子(B)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む粉材(X)と、水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットであることが本発明の実施態様の一つである。また、フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)及びエチレンジアミン四酢酸又はその塩(C)を必須成分として含み、ポリアルケン酸(D)を任意成分として含む粉材(X)と、ポリアルケン酸(D)及び水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)を任意成分として含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットであることも本発明の実施態様の一つである。 Here, in the presence of water (E), the fluoroaluminosilicate glass particles (A) react with the polyalkenoic acid (D) to be cured, and the calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more. ) And calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, hydroxyapatite is produced, so that the fluoroaluminosilicate glass particles (A) have a Ca / P molar ratio of 1.30. The above calcium phosphate particles (B1), calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E) are mixed in advance. It cannot be stored as a dental curable composition. From such a point of view, at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) containing fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) as essential components. Powder material (X) containing as optional components, water (E) as essential components, and at least one selected from the group consisting of ethylenediaminetetraacetic acid or its salt (C) and polyalkenoic acid (D) as optional components The dental curable composition used by mixing the liquid material (Y) containing the powder material (X) and the liquid material (Y) so that the weight ratio (X / Y) is 1.0 to 5.0. One of the embodiments of the present invention is a product kit. Further, a powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C) as essential components, and polyalkenoic acid (D) as an optional component, and polyalkene Liquid (Y) containing acid (D) and water (E) as essential components and ethylenediaminetetraacetic acid or a salt thereof (C) as optional components, and weight of powder (X) and liquid (Y) One embodiment of the present invention is a dental curable composition kit used by mixing so that the ratio (X / Y) is 1.0 to 5.0.
 フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)及びエチレンジアミン四酢酸又はその塩(C)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットであることが本発明の実施態様の一つである。フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットであることが本発明の実施態様の一つである。フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットであることが本発明の実施態様の一つである。また、フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、ポリアルケン酸(D)を含む粉材(X)と、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットであることが本発明の実施態様の一つである。 Fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, and ethylenediaminetetraacetic acid or a salt thereof ( The powder material (X) containing C) and the liquid material (Y) containing polyalkenoic acid (D) and water (E), the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) One of the embodiments of the present invention is a dental curable composition kit used by mixing so as to be 1.0 to 5.0. Fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, ethylenediaminetetraacetic acid or a salt thereof ( C) and powder material (X) containing polyalkenoic acid (D) and liquid material (Y) containing water (E), weight ratio (X / Y) of powder material (X) and liquid material (Y) One of the embodiments of the present invention is a dental curable composition kit used by mixing so as to be 1.0 to 5.0. Fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, ethylenediaminetetraacetic acid or a salt thereof ( C) The powder material (X) containing polyalkenoic acid (D) and the liquid material (Y) containing polyalkenoic acid (D) and water (E), the weight of the powder material (X) and the liquid material (Y) One embodiment of the present invention is a dental curable composition kit used by mixing so that the ratio (X / Y) is 1.0 to 5.0. Further, fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, polyalkenoic acid (D) Powder material (X) containing ethylenediaminetetraacetic acid or a salt thereof (C), liquid material (Y) containing polyalkenoic acid (D) and water (E), powder material (X) and liquid material (Y) One embodiment of the present invention is a dental curable composition kit that is used by mixing so that the weight ratio (X / Y) is 1.0 to 5.0.
 中でも、フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キット、又は、フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)及びエチレンジアミン四酢酸又はその塩(C)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットが好適に採用され、フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)を含む粉材(X)と、ポリアルケン酸(D)及び水(E)を含む液材(Y)とを、粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用する歯科用硬化性組成物キットがより好適に採用される。 Among them, fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, ethylenediaminetetraacetic acid or its Powder material (X) containing salt (C) and polyalkenoic acid (D), liquid material (Y) containing polyalkenoic acid (D) and water (E), powder material (X) and liquid material (Y) The dental curable composition kit used by mixing so that the weight ratio (X / Y) is 1.0 to 5.0, or fluoroaluminosilicate glass particles (A), and the Ca / P molar ratio is 1. Calcium phosphate particles (B1) of 1.30 or more, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, and powder (X) containing ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid ( ) And the liquid material (Y) containing water (E) are mixed so that the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) is 1.0 to 5.0. The dental curable composition kit to be used is suitably employed, and the fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, and a Ca / P molar ratio of 1.30. Less than calcium phosphate particles (B2), ethylenediaminetetraacetic acid or a salt thereof (C) and a polyalkenoic acid (D) powder material (X), and a polyalkenoic acid (D) and a liquid material (Y) containing water (E) Is used more suitably for dental curable composition kits that are used by mixing so that the weight ratio (X / Y) of powder material (X) to liquid material (Y) is 1.0 to 5.0 Is done.
 ここで、本発明の歯科用硬化性組成物キットにおいて、粉材(X)と液材(Y)を重量比(X/Y)が1.0~5.0となるように混合して使用することが好ましく、このことにより、グラスアイオノマーセメントとして十分な粉液練和性及び機械的強度などの性能を発現させることができる。粉材(X)と液材(Y)を重量比(X/Y)が1.5~4.5となるように混合して使用することがより好ましく、1.8~3.8となるように混合して使用することが更に好ましい。また、本発明の歯科用硬化性組成物は、グラスアイオノマーセメントとして好適に用いられる。 Here, in the dental curable composition kit of the present invention, the powder material (X) and the liquid material (Y) are mixed and used so that the weight ratio (X / Y) is 1.0 to 5.0. It is preferable to perform this, and this makes it possible to develop performances such as powder-liquid kneading property and mechanical strength sufficient as a glass ionomer cement. More preferably, the powder material (X) and the liquid material (Y) are mixed and used so that the weight ratio (X / Y) is 1.5 to 4.5, and becomes 1.8 to 3.8. It is more preferable to use them in a mixed manner. Moreover, the dental curable composition of this invention is used suitably as a glass ionomer cement.
 以下、実施例を用いて本発明を具体的に説明する。本実施例において、フルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、エチレンジアミン四酢酸又はその塩(C)、酒石酸、及びポリアルケン酸(D)の平均粒径はレーザー回折式粒度分布測定装置(株式会社島津製作所製「SALD-2100型」)を用いて測定し、測定の結果から算出されるメディアン径を平均粒径とした。 Hereinafter, the present invention will be specifically described with reference to examples. In this example, fluoroaluminosilicate glass particles (A), calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30, ethylenediamine tetra The average particle size of acetic acid or its salt (C), tartaric acid, and polyalkenoic acid (D) was measured using a laser diffraction particle size distribution analyzer (“SALD-2100 type” manufactured by Shimadzu Corporation), and the measurement results The median diameter calculated from the above was defined as the average particle diameter.
[グラスアイオノマーセメント用粉材及び液材の調製]
(1)フルオロアルミノシリケートガラス粒子(A)の調製
 フルオロアルミノシリケートガラス粒子(A)は、市販のフルオロアルミノシリケートガラス(G018-117、SCHOTT社製、平均粒径40.0μm)を、以下示す方法によって粉砕することで得た。
[Preparation of powder and liquid materials for glass ionomer cement]
(1) Preparation of fluoroaluminosilicate glass particle (A) Fluoroaluminosilicate glass particle (A) is a commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle diameter: 40.0 μm). Obtained by crushing.
 フルオロアルミノシリケートガラス粒子:平均粒径30μmは、市販のフルオロアルミノシリケートガラス(G018-117、SCHOTT社製、平均粒径40.0μm)100g、及び直径が20mmのジルコニアボール200gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「TypeA-3HDポットミル」)中に加え、150rpmの回転速度で5時間粉砕することで得た。 Fluoroaluminosilicate glass particles: The average particle size of 30 μm is obtained by pulverizing 100 g of commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle size of 40.0 μm) and 200 g of zirconia balls having a diameter of 20 mm from 400 ml of alumina. In addition to the pot (“Type A-3HD Pot Mill” manufactured by Nikkato Co., Ltd.), it was obtained by grinding for 5 hours at a rotational speed of 150 rpm.
 フルオロアルミノシリケートガラス粒子:平均粒径4μmは、市販のフルオロアルミノシリケートガラス(G018-117、SCHOTT社製、平均粒径40.0μm)100g、及び直径が20mmのジルコニアボール200gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「TypeA-3HDポットミル」)中に加え、150rpmの回転速度で15時間粉砕することで得た。 Fluoroaluminosilicate glass particles: The average particle size is 4 μm, and 100 g of commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle size 40.0 μm) and 200 g of zirconia balls having a diameter of 20 mm are pulverized from 400 ml of alumina. It was obtained by grinding in a pot (“Type A-3HD Pot Mill” manufactured by Nikkato Corporation) for 15 hours at a rotation speed of 150 rpm.
 フルオロアルミノシリケートガラス粒子:平均粒径0.5μmは、市販のフルオロアルミノシリケートガラス(G018-117、SCHOTT社製、平均粒径40.0μm)をナノジェットマイザー(NJ-100型、アイシンナノテクノロジーズ社製)で、粉砕圧力条件を原料供給圧:0.7MPa/粉砕圧:0.7MPa、処理量条件を8kg/hrとし、1回処理することにより得た。 Fluoroaluminosilicate glass particles: The average particle size of 0.5 μm is a commercially available fluoroaluminosilicate glass (G018-117, manufactured by SCHOTT, average particle size of 40.0 μm) made of NanoJet Mizer (NJ-100 type, Aisin Nano Technologies) Manufactured), and the pulverization pressure conditions were as follows: the raw material supply pressure: 0.7 MPa / the pulverization pressure: 0.7 MPa, and the treatment amount condition of 8 kg / hr.
(2)表面処理フルオロアルミノシリケートガラス(A)(複合体(P))
 フルオロアルミノシリケートガラス(A)に対する、エチレンジアミン四酢酸又はその塩(C)、及び酒石酸による処理は、以下に示す方法によって、実施した。
(2) Surface-treated fluoroaluminosilicate glass (A) (composite (P))
The fluoroaluminosilicate glass (A) was treated with ethylenediaminetetraacetic acid or a salt thereof (C) and tartaric acid by the following method.
 EDTA2%メカノケミカル処理フルオロアルミノシリケートガラス粒子:前記平均粒径4μmのフルオロアルミノシリケートガラス(A)100g、市販のエデト酸ナトリウム水和物(和光純薬工業株式会社製)2.0g、及び直径が20mmのジルコニアボール200gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「TypeA-3HDポットミル」)中に加え、150rpmの回転速度で5時間粉砕することで得た。 EDTA 2% mechanochemically treated fluoroaluminosilicate glass particles: 100 g of fluoroaluminosilicate glass (A) having an average particle diameter of 4 μm, 2.0 g of commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.), and a diameter of It was obtained by adding 200 g of 20 mm zirconia balls into a 400 ml alumina crushing pot (“Type A-3HD pot mill” manufactured by Nikkato Co., Ltd.) and crushing at a rotational speed of 150 rpm for 5 hours.
 EDTA熱処理フルオロアルミノシリケートガラス粒子:前記平均粒径0.5μm、4μm、及び30μmのフルオロアルミノシリケートガラス(A)100gをそれぞれ100gの蒸留水に投入し、10分間攪拌した後に、市販のエデト酸ナトリウム水和物(和光純薬工業株式会社製)1.0g(1%処理)、2.0g(2%処理)、及び4.0g(4%処理)をそれぞれ40gの蒸留水に溶解した水溶液を加え、10分間攪拌した後、得られたスラリーをステンレスバット上で90℃の乾燥機にて16時間乾燥、熱処理することで得た。 EDTA heat-treated fluoroaluminosilicate glass particles: 100 g of fluoroaluminosilicate glass (A) having an average particle size of 0.5 μm, 4 μm, and 30 μm was added to 100 g of distilled water, stirred for 10 minutes, and then commercially available sodium edetate An aqueous solution prepared by dissolving 1.0 g (1% treatment), 2.0 g (2% treatment), and 4.0 g (4% treatment) of hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in 40 g of distilled water. In addition, after stirring for 10 minutes, the obtained slurry was dried and heat-treated on a stainless steel vat with a dryer at 90 ° C. for 16 hours.
 酒石酸熱処理フルオロアルミノシリケートガラス粒子:前記平均粒径4μmのフルオロアルミノシリケートガラス(A)100gをそれぞれ100gの蒸留水に投入し、10分間攪拌した後に、市販のL-酒石酸(磐田化学工業株式会社製)1.0g(1%処理)を40gの蒸留水に溶解した水溶液を加え、10分間攪拌した後、得られたスラリーをステンレスバット上で90℃の乾燥機にて16時間乾燥、させた後200℃にて熱処理することで得た。 Tartaric acid heat-treated fluoroaluminosilicate glass particles: 100 g of fluoroaluminosilicate glass (A) having an average particle size of 4 μm was added to 100 g of distilled water, stirred for 10 minutes, and then commercially available L-tartaric acid (manufactured by Iwata Chemical Industry Co., Ltd.). After adding an aqueous solution of 1.0 g (1% treatment) dissolved in 40 g of distilled water and stirring for 10 minutes, the resulting slurry was dried on a stainless steel vat with a dryer at 90 ° C. for 16 hours. It was obtained by heat treatment at 200 ° C.
(3)Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)の調製
 本実施例で使用するCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)は、以下の通り調製した粗リン酸四カルシウムを粉砕することにより得た。市販の無水リン酸一水素カルシウム粒子(Product No.1430,J.T.Baker Chemical Co.,NJ)及び炭酸カルシウム(Product No.1288,J.T.Baker Chemical Co.,NJ)を等モルとなる様に水中に加え、1時間撹拝した後、ろ過・乾燥することで得られたケーキ状の等モル混合物を電気炉(FUS732PB,アドバンテック東洋(株)製)中で1500℃、24時間加熱し、その後デシケータ中で室温まで冷却することでリン酸四カルシウム塊を調製した。更に、乳鉢中で荒く砕き、その後篩がけを行うことで微粉ならびにリン酸四カルシウム塊を除き、0.5~3mmの範囲に粒度を整え、粗リン酸四カルシウムを得た。
(3) Preparation of calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more The calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more used in this example were prepared as follows. It was obtained by grinding crude tetracalcium phosphate. Commercially available anhydrous calcium monohydrogen phosphate particles (Product No. 1430, JT Baker Chemical Co., NJ) and calcium carbonate (Product No. 1288, JT Baker Chemical Co., NJ) and equimolar After adding to water and stirring for 1 hour, the cake-like equimolar mixture obtained by filtration and drying is heated in an electric furnace (FUS732PB, manufactured by Advantech Toyo Co., Ltd.) at 1500 ° C. for 24 hours. Then, the tetracalcium phosphate block was prepared by cooling to room temperature in a desiccator. Further, the mixture was roughly crushed in a mortar and then sieved to remove fine powder and tetracalcium phosphate lump, and the particle size was adjusted to a range of 0.5 to 3 mm to obtain crude tetracalcium phosphate.
 リン酸四カルシウム粒子:平均粒径30μmは、粗リン酸四カルシウム100g、及び直径が20mmのジルコニアボール200gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「TypeA-3HDポットミル」)中に加え、150rpmの回転速度で5時間粉砕することで得た。 Tetracalcium phosphate particles: An average particle size of 30 μm is obtained by adding 100 g of crude tetracalcium phosphate and 200 g of zirconia balls having a diameter of 20 mm to a 400 ml alumina grinding pot (“Type A-3HD pot mill” manufactured by Nikkato Corporation) It was obtained by grinding for 5 hours at a rotational speed of 150 rpm.
 リン酸四カルシウム粒子:平均粒径19.0μmは、粗リン酸四カルシウム100g、及び直径が20mmのジルコニアボール200gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「TypeA-3HDポットミル」)中に加え、150rpmの回転速度で15時間粉砕することで得た。 Tetracalcium phosphate particles: An average particle size of 19.0 μm is obtained by adding 100 g of crude tetracalcium phosphate and 200 g of zirconia balls having a diameter of 20 mm in a 400 ml alumina grinding pot (“Type A-3HD pot mill” manufactured by Nikkato Corporation). In addition, it was obtained by grinding for 15 hours at a rotational speed of 150 rpm.
 リン酸四カルシウム粒子:平均粒径5.0μmは、粗リン酸四カルシウムをナノジェットマイザー(NJ-100型、アイシンナノテクノロジーズ社製)で、粉砕圧力条件を原料供給圧:0.7MPa/粉砕圧:0.7MPa、処理量条件を8kg/hrとし、1回処理することにより得た。 Tetracalcium phosphate particles: The average particle diameter is 5.0 μm. Crude tetracalcium phosphate is crushed with Nanojet Mizer (NJ-100 type, manufactured by Aisin Nano Technologies). The pressure was 0.7 MPa, the treatment amount condition was 8 kg / hr, and the treatment was performed once.
 リン酸三カルシウム粒子:平均粒径12μmは、市販のα-リン酸三カルシウム(太平化学産業株式会社製)をそのまま使用した。 Tricalcium phosphate particles: Commercially available α-tricalcium phosphate (manufactured by Taihei Chemical Industrial Co., Ltd.) was used as it was for an average particle size of 12 μm.
(4)Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)の調製
 本実施例で使用する無水リン酸一水素カルシウム粒子(B2)は、市販の無水リン酸一水素カルシウム粒子(太平化学産業株式会社製、平均粒径15.0μm)を、以下示す方法によって粉砕することで得た。
(4) Preparation of calcium phosphate particles (B2) having a Ca / P molar ratio of less than 1.30 Anhydrous calcium monohydrogen phosphate particles (B2) used in this example are commercially available anhydrous calcium monohydrogen phosphate particles (Taipei It was obtained by pulverizing the chemical industry Co., Ltd. product, average particle size 15.0 μm) by the method shown below.
 無水リン酸一水素カルシウム粒子:平均粒径5.0μmは、市販の無水リン酸一水素カルシウム粒子(太平化学産業株式会社製、平均粒径15.0μm)50g、95%エタノール(和光純薬工業株式会社製「Ethanol(95)」)を120g、及び直径が10mmのジルコニアボール240gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「Type A-3 HDポットミル」)中に加え120rpmの回転速度で24時間湿式粉砕を行うことで得られたスラリーをロータリーエバポレータでエタノールを留去した後、60℃で6時間乾燥させ、更に60℃で12時間真空乾燥することで得た。 Anhydrous calcium monohydrogen phosphate particles: The average particle size of 5.0 μm is 50 g of commercially available anhydrous calcium hydrogen phosphate particles (produced by Taihei Chemical Industrial Co., Ltd., average particle size of 15.0 μm), 95% ethanol (Wako Pure Chemical Industries, Ltd.) 120 g of “Ethanol (95)” manufactured by Co., Ltd.) and 240 g of zirconia balls having a diameter of 10 mm were added to a 400 ml alumina grinding pot (“Type A-3 HD pot mill” manufactured by Nikkato Co., Ltd.) at a rotational speed of 120 rpm. The slurry obtained by performing the wet pulverization for 24 hours was obtained by evaporating ethanol with a rotary evaporator, drying at 60 ° C. for 6 hours, and further vacuum drying at 60 ° C. for 12 hours.
 無水リン酸一水素カルシウム粒子:平均粒径1.0μmは、市販の無水リン酸一水素カルシウム粒子(太平化学産業株式会社製、平均粒径15.0μm)50g、95%エタノール(和光純薬工業株式会社製「Ethanol(95)」)を120g、及び直径が10mmのジルコニアボール240gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「Type A-3 HDポットミル」)中に加え120rpmの回転速度で24時間湿式粉砕を行なうことで得られたスラリーをロータリーエバポレータでエタノールを留去した後、60℃で6時間乾燥させ、更に60℃で24時間真空乾燥することで得た。 Anhydrous calcium monohydrogen phosphate particles: The average particle size of 1.0 μm is 50 g of commercially available anhydrous calcium hydrogen phosphate particles (Taihei Chemical Industry Co., Ltd., average particle size of 15.0 μm), 95% ethanol (Wako Pure Chemical Industries, Ltd.) 120 g of “Ethanol (95)” manufactured by Co., Ltd.) and 240 g of zirconia balls having a diameter of 10 mm were added to a 400 ml alumina grinding pot (“Type A-3 HD pot mill” manufactured by Nikkato Co., Ltd.) at a rotational speed of 120 rpm. The slurry obtained by performing wet pulverization for 24 hours was obtained by distilling off ethanol with a rotary evaporator, followed by drying at 60 ° C. for 6 hours and further vacuum drying at 60 ° C. for 24 hours.
 無水リン酸一水素カルシウム粒子:平均粒径0.5μmは、市販の無水リン酸一水素カルシウム粒子(太平化学産業株式会社製、平均粒径15.0μm)をナノジェットマイザー(NJ-100型、アイシンナノテクノロジーズ社製)で、粉砕圧力条件を原料供給圧:0.7MPa/粉砕圧:0.7MPa、処理量条件を8kg/hrとし、1回処理することにより得た。 Anhydrous calcium monohydrogen phosphate particles: An average particle size of 0.5 μm is obtained by using commercially available anhydrous calcium hydrogen phosphate particles (manufactured by Taihei Chemical Sangyo Co., Ltd., average particle size of 15.0 μm) as a nanojet mizer (NJ-100 type Aisin Nano Technologies Co., Ltd.), and the pulverization pressure conditions were as follows: the raw material supply pressure: 0.7 MPa / the pulverization pressure: 0.7 MPa and the treatment amount condition of 8 kg / hr.
 無水リン酸二水素カルシウム粒子:平均粒径1μmは、市販の無水リン酸二水素カルシウム(太平化学産業株式会社製)をそのまま使用した。 Anhydrous calcium dihydrogen phosphate particles: Commercially available anhydrous calcium dihydrogen phosphate (manufactured by Taihei Chemical Industrial Co., Ltd.) was used as it was for an average particle size of 1 μm.
 エチレンジアミン四酢酸又はその塩(C)は市販のエデト酸ナトリウム水和物(和光純薬工業株式会社製)をそのまま使用した。ただし、粉材に加える場合のみ、めのう乳鉢で約1時間粉砕し平均粒径15~25μmとしたものを使用した。 As ethylenediaminetetraacetic acid or a salt thereof (C), commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used as it was. However, only when added to the powder material, an average particle size of 15 to 25 μm was obtained by pulverizing for about 1 hour in an agate mortar.
(5)表面処理リン酸カルシウム粒子(B)(複合体(Q))
 リン酸カルシウム粒子(B)に対するエチレンジアミン四酢酸又はその塩(C)による処理は、以下に示す方法によって、実施した。
(5) Surface-treated calcium phosphate particles (B) (complex (Q))
The treatment with ethylenediaminetetraacetic acid or its salt (C) on the calcium phosphate particles (B) was carried out by the method shown below.
 EDTA12.5%メカノケミカル処理リン酸カルシウム粒子:前記平均粒径19μmのリン酸四カルシウム粒子100g、市販のエデト酸ナトリウム水和物(和光純薬工業株式会社製)2.0g、及び直径が20mmのジルコニアボール200gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「TypeA-3HDポットミル」)中に加え、150rpmの回転速度で5時間粉砕することで得た。 EDTA 12.5% mechanochemically treated calcium phosphate particles: 100 g of tetracalcium phosphate particles having an average particle diameter of 19 μm, 2.0 g of commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.), and zirconia having a diameter of 20 mm It was obtained by adding 200 g of a ball into a 400 ml alumina grinding pot (“Type A-3HD pot mill” manufactured by Nikkato Co., Ltd.) and grinding at a rotational speed of 150 rpm for 5 hours.
 EDTA熱処理リン酸カルシウム粒子:前記平均粒径5.0μm、19.0μm、及び30μmのリン酸四カルシウム粒子100g、及び前記平均粒径1.0μmのリン酸三カルシウムをそれぞれ300gの蒸留水に投入し、10分間攪拌した後に、市販のエデト酸ナトリウム水和物(和光純薬工業株式会社製)7.0g(7%処理)、12.5g(12.5%処理)、及び14.0g(14.0%処理)をそれぞれ300gの蒸留水に溶解した水溶液を加え、10分間攪拌した後、得られたスラリーをステンレスバット上で90℃の乾燥機にて16時間乾燥、熱処理することで得た。 EDTA heat treated calcium phosphate particles: 100 g of tetracalcium phosphate particles having an average particle size of 5.0 μm, 19.0 μm, and 30 μm, and tricalcium phosphate having an average particle size of 1.0 μm were added to 300 g of distilled water, After stirring for 10 minutes, 7.0 g (7% treatment), 12.5 g (12.5% treatment), and 14.0 g (14.0% treatment) of commercially available sodium edetate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0% treatment) was added to each 300 g of distilled water and stirred for 10 minutes. The resulting slurry was dried on a stainless steel vat with a 90 ° C. dryer for 16 hours and heat-treated.
(6)酒石酸の調製
 酒石酸は市販のL-酒石酸(磐田化学工業株式会社製)をそのまま使用した。ただし、粉材に加える場合のみ、めのう乳鉢で約1時間粉砕し平均粒径15~25μmとしたものを使用した。
(6) Preparation of tartaric acid Commercially available L-tartaric acid (manufactured by Iwata Chemical Industry Co., Ltd.) was used as it was. However, only when added to the powder material, an average particle size of 15 to 25 μm was obtained by pulverizing for about 1 hour in an agate mortar.
(7)ポリアルケン酸(D)の調製
 ポリアルケン酸(D)は液材に加える場合には市販のポリアルケン酸(日生化学工業社製)をそのまま使用し、粉材に加える場合には以下示す方法によって粉砕したものを使用した。
(7) Preparation of polyalkenoic acid (D) When polyalkenoic acid (D) is added to the liquid material, a commercially available polyalkenoic acid (manufactured by Nissei Chemical Industry Co., Ltd.) is used as it is. The pulverized one was used.
 市販のポリアルケン酸(日生化学工業社製)をナノジェットマイザー(NJ-100型、アイシンナノテクノロジーズ社製)で、粉砕圧力条件を原料供給圧:0.7MPa/粉砕圧:0.7MPa、処理量条件を8kg/hrとし、1回処理することにより得た。得られたポリアルケン酸粉末の平均粒径は3μmであった。 Commercially available polyalkenoic acid (manufactured by Nissei Chemical Industry Co., Ltd.) using NanoJet Mizer (NJ-100 type, manufactured by Aisin Nanotechnology Co., Ltd.), and pulverizing pressure conditions: raw material supply pressure: 0.7 MPa / grinding pressure: 0.7 MPa, throughput The condition was 8 kg / hr, and it was obtained by processing once. The average particle size of the obtained polyalkenoic acid powder was 3 μm.
(8)水(E)の調製
 水(E)は市販の日本薬局方精製水(高杉製薬株式会社製)をそのまま使用した。
(8) Preparation of water (E) As water (E), commercial Japanese Pharmacopoeia purified water (manufactured by Takasugi Pharmaceutical Co., Ltd.) was used as it was.
(9)粉材の調製
 表1~4に示す組成で秤量したフルオロアルミノシリケートガラス粒子(A)、Ca/Pモル比が1.30以上のリン酸カルシウム粒子(B1)、Ca/Pモル比が1.30未満のリン酸カルシウム粒子(B2)、及び必要に応じてエチレンジアミン四酢酸又はその塩(C)、酒石酸及びポリアルケン酸粉末(D)を高速回転ミル(アズワン株式会社製「SM-1」)中に加え、1000rpmの回転速度で3分間混合することで粉材を得た。
(9) Preparation of powder material Fluoroaluminosilicate glass particles (A) weighed with the compositions shown in Tables 1 to 4, calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more, and Ca / P molar ratio of 1 .. Less than 30 calcium phosphate particles (B2) and, if necessary, ethylenediaminetetraacetic acid or a salt thereof (C), tartaric acid and polyalkenoic acid powder (D) in a high-speed rotary mill (“SM-1” manufactured by ASONE Corporation) In addition, a powder material was obtained by mixing for 3 minutes at a rotational speed of 1000 rpm.
(10)液材の調製
 表1~4に示す組成で秤量した、エチレンジアミン四酢酸又はその塩(C)、L-酒石酸(磐田化学工業株式会社製)、ポリアルケン酸粉末(D)(日生化学株式会社製)、及び水(E)を24時間マグネティックスターラーにて攪拌することで、液材を調製した。
(10) Preparation of liquid material Ethylenediaminetetraacetic acid or a salt thereof (C), L-tartaric acid (manufactured by Iwata Chemical Co., Ltd.), polyalkenoic acid powder (D) (Nissei Chemical Co., Ltd.) weighed in the compositions shown in Tables 1 to 4 A liquid material was prepared by stirring water (E) for 24 hours with a magnetic stirrer.
[操作時間試験]
 表1~4に示す組成からなる粉材0.15gを精秤し、この上に表1~4に示す組成からなる液材を表1~4に示す粉液重量比になるよう加え混練することでペーストを調製した。ストップウォッチをスタートし、付属の練和棒を用い、粉末を2等分し、最初の区分に液を加えて混合し、さらに残りを加えて、合計30秒以内に均一に練り上げた。練和開始40秒までにガラス板の上に少量のペーストを約20mg乗せた後、もう一枚のガラスを押し当てた。練和開始90秒から15秒おきに一番上のガラスを約2mm動かし、せん断力を加えた。材料が物理的に均一であるか否か、目視判断し、2回連続で均一な薄層を生じる時間を操作時間とした。
[Operation time test]
0.15 g of the powder material having the composition shown in Tables 1 to 4 is precisely weighed, and then the liquid material having the composition shown in Tables 1 to 4 is added to the powder liquid weight ratio shown in Tables 1 to 4 and kneaded. A paste was prepared. The stopwatch was started, the powder was divided into two equal parts using the attached kneading stick, the liquid was added to the first section and mixed, and the rest was added, and kneaded uniformly within a total of 30 seconds. About 40 mg of a small amount of paste was placed on a glass plate by 40 seconds after the start of kneading, and another glass was pressed. Every 90 seconds from 90 seconds after the start of kneading, the uppermost glass was moved about 2 mm, and a shearing force was applied. Whether or not the material was physically uniform was visually judged, and the time during which a uniform thin layer was formed twice in succession was defined as the operation time.
[硬化時間試験]
 硬化時間の試験方法は、ISO9917-1に準拠した。表1~4に示す組成からなる粉材1.0gを精秤し、この上に表1~4に示す組成からなる液材を表1~4に示す粉液重量比になるよう加え混練することでペーストを調製した。ストップをウォッチをスタートさせ、ガラス板、アルミホイルの上の金型に、練和したセメントを充填した後、さらにアルミホイルを被せ、1分までに恒温恒湿機(37℃、湿度95%)に投入した。2分後に、アルミホイルを除去した。2分30秒後より30秒毎にビカー針(400g,直径1mmの平坦な末端をもつ)をセメント表面に垂直に落とし、5秒間維持した。30秒間隔で上記操作を繰り返し、圧痕が確認できなくなるまでの時間を算出し、硬化時間とした。
[Curing time test]
The curing time test method conformed to ISO9917-1. 1.0 g of the powder material having the composition shown in Tables 1 to 4 is precisely weighed, and then the liquid material having the composition shown in Tables 1 to 4 is added and kneaded so as to have the powder-liquid weight ratio shown in Tables 1 to 4. A paste was prepared. Stop the watch, start the glass plate and mold on the aluminum foil with the kneaded cement, and then cover it with aluminum foil, and keep the temperature and humidity (37 ° C, humidity 95%) by 1 minute. It was thrown into. After 2 minutes, the aluminum foil was removed. After 2 minutes and 30 seconds, a Vicat needle (400 g, with a flat end with a diameter of 1 mm) was dropped vertically onto the cement surface every 30 seconds and maintained for 5 seconds. The above operation was repeated at an interval of 30 seconds, and the time until no indentation could be confirmed was calculated as the curing time.
[操作性]
(1)操作性
 表1~4に示す組成からなる粉材0.1gを精秤し、この上に表1~4に示す組成からなる液材を表1~4に示す粉液重量比になるよう加え練和紙(85×115mm)上で30秒間練和することでペーストを調製した。そのペースト性状について、以下の評価基準に従い操作性を評価した。
[Operability]
(1) Operability 0.1 g of the powder material having the composition shown in Tables 1 to 4 is precisely weighed, and the liquid material having the composition shown in Tables 1 to 4 is further added to the powder liquid weight ratio shown in Tables 1 to 4. The paste was prepared by adding and kneading for 30 seconds on kneaded paper (85 × 115 mm). About the paste property, operability was evaluated according to the following evaluation criteria.
(2)操作性の評価基準
A:粉材と液材の練和開始直後のなじみが良く、歯科用練和棒による20秒間の練和によりペーストを得ることができる。得られたペーストの伸びは良く、ザラツキもない。
B:粉材と液材の練和開始直後のなじみが少し悪いが、歯科用練和棒による20秒間の練和によりペーストを得ることはできる。ペーストの伸びは良いが若干の練和中にザラツキを感じる場合がある。
C:粉材と液材の練和開始直後のなじみが悪く、ペーストを得るのに歯科用練和棒での練和を30秒間要する。ペーストの伸びは良いが若干の練和中にザラツキを感じる場合がある。
D:粉材と液材の練和開始直後のなじみが悪く、ペーストを得るのに歯科用練和棒での練和を30秒間以上要する、または練和することができない。練和できた場合、ペーストの伸びも悪く2分以内に練和紙上で硬化し操作時間を確保できない。また、練和中にザラツキを感じる場合がある。
 なお、A~Cが実使用レベルである。
(2) Evaluation criteria A for operability: Familiarity immediately after the start of kneading of the powder material and the liquid material is good, and a paste can be obtained by kneading for 20 seconds with a dental kneading rod. The resulting paste has good elongation and is not rough.
B: Although the familiarity immediately after the start of the kneading of the powder material and the liquid material is slightly worse, the paste can be obtained by kneading for 20 seconds with a dental kneading rod. The paste stretches well, but it may feel rough during some mixing.
C: Familiarity immediately after the start of kneading of the powder material and the liquid material is poor, and kneading with a dental kneading rod is required for 30 seconds to obtain a paste. The paste stretches well, but it may feel rough during some mixing.
D: Familiarity immediately after the start of kneading of the powder material and the liquid material is poor, and kneading with a dental kneading rod is required for 30 seconds or more to obtain a paste, or kneading cannot be performed. When kneaded, the elongation of the paste is poor, and it hardens on the kneaded paper within 2 minutes, and the operation time cannot be secured. Also, there may be a feeling of roughness during kneading.
A to C are actual usage levels.
[再石灰化用牛歯の調製]
 健全牛歯切歯の頬側中央を#80、#1000研磨紙を用いて回転研磨機により研磨し、象牙質を露出させた。この牛歯研磨面を更にラッピングフィルム(#1200、#3000、#8000、住友スリーエム社製)を用いて研磨し、平滑とした。この象牙質部分に歯に対して縦軸方向及び横軸方向に各7mm試験部分の窓を残し(以下、「象牙質窓」と称する)、周りをマニキュアでマスキングし、1時間風乾した。この牛歯を、酢酸(和光純薬工業株式会社製)を蒸留水で希釈した50mMの脱灰液150mlに1週間浸漬させ脱灰を行った後、30分以上水洗することで再石灰化試験に用いる牛歯を調製した。
[Preparation of bovine teeth for remineralization]
The center of the buccal side of the healthy bovine incisor was polished with a rotary polishing machine using # 80 and # 1000 polishing paper to expose the dentin. The polished surface of the bovine teeth was further polished using a lapping film (# 1200, # 3000, # 8000, manufactured by Sumitomo 3M Co., Ltd.) to make it smooth. This dentin part was left with a window of a 7 mm test part in each of the vertical axis direction and the horizontal axis direction with respect to the teeth (hereinafter referred to as “dentin window”), and the surroundings were masked with nail polish and air-dried for 1 hour. This bovine tooth is immersed in 150 ml of 50 mM demineralization solution diluted with acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) for 1 week, decalcified, and then washed with water for 30 minutes or more to remineralize the bovine teeth. The bovine tooth used for was prepared.
[擬似唾液の調製]
 塩化ナトリウム(8.77g、150mmol)、リン酸二水素カリウム(122mg、0.9mmol)、塩化カルシウム(166mg、1.5mmol)、Hepes(4.77g、20mmol)をそれぞれ秤量皿に量り取り、約800mlの蒸留水を入れた2000mlビーカーに撹拌下に順次加えた。溶質が完全に溶解したことを確認した後、この溶液の酸性度をpHメータ(F55、堀場製作所)で測定しながら、10%水酸化ナトリウム水溶液を滴下し、pH7.0とした。次にこの溶液を1000mlメスフラスコに加えてメスアップし、擬似唾液1000mlを得た。
[Preparation of simulated saliva]
Sodium chloride (8.77 g, 150 mmol), potassium dihydrogen phosphate (122 mg, 0.9 mmol), calcium chloride (166 mg, 1.5 mmol), Hepes (4.77 g, 20 mmol) were weighed into weighing pans, respectively. The mixture was sequentially added to a 2000 ml beaker containing 800 ml of distilled water with stirring. After confirming that the solute was completely dissolved, a 10% aqueous sodium hydroxide solution was added dropwise to measure pH 7.0 while measuring the acidity of this solution with a pH meter (F55, Horiba, Ltd.). Next, this solution was added to a 1000 ml volumetric flask and the volume was increased to obtain 1000 ml of simulated saliva.
[再石灰化試験]
 上記で調製した再石灰化用牛歯を蒸留水に浸漬し、30分間静置した後、象牙質窓の半分に対して粉材及び液材を練和紙上において表1~4に示す所定の粉液比で30秒間混和し得られたペーストを約0.1g塗布し、37℃、100%RH条件下で60分間インキュベートし硬化させた。その後、硬化物が再石灰化試験用牛歯に付着した状態を保ちつつ、擬似唾液中37℃で2週間保存した。また、擬似唾液は毎日交換した(n=5)。
[Remineralization test]
The remineralized bovine teeth prepared above are immersed in distilled water and allowed to stand for 30 minutes, and then the powder material and the liquid material for the half of the dentin window are shown in Tables 1 to 4 on the kneaded paper. About 0.1 g of paste obtained by mixing for 30 seconds at a powder / liquid ratio was applied, and cured by incubating at 37 ° C. and 100% RH for 60 minutes. Then, it preserve | saved at 37 degreeC in simulated saliva for 2 weeks, keeping the state which the hardened | cured material adhered to the bovine tooth for a remineralization test. The simulated saliva was changed every day (n = 5).
[再石灰化能評価]
(1)エポキシ樹脂の調製
 エポキシ樹脂の調製はLuft法に準じて行い、エポキシ樹脂、硬化剤を均一に混合した後、加速剤を添加する方法を用いた。100mlディスポカップに、ルベアック812(エポキシ樹脂、ナカライテスク株式会社製)41ml、ルベアックMNA(硬化剤、ナカライテスク株式会社製)31ml、ルベアックDDSA(硬化剤、ナカライテスク株式会社製)10mlをそれぞれディスポシリンジを用いて量り取りディスポカップに加え、10分間撹拝した。これにディスポシリンジで量り取ったルベアックDMP-30(加速剤、ナカライテスク株式会社製)1.2mlを撹拝しながら徐々に滴下し、添加後更に10分間撹拝することで調製した。
[Evaluation of remineralization ability]
(1) Preparation of Epoxy Resin Epoxy resin was prepared according to the Luft method, and an epoxy resin and a curing agent were uniformly mixed and then an accelerator was added. Disposyringe with 100 ml disposable cup, 41 ml of Rubeak 812 (epoxy resin, manufactured by Nacalai Tesque), 31 ml of Rubeac MNA (curing agent, manufactured by Nacalai Tesque), and 10 ml of Rubeak DDSA (curing agent, manufactured by Nacalai Tesque) Was added to a disposable cup and stirred for 10 minutes. To this, 1.2 ml of Rubeak DMP-30 (accelerator, manufactured by Nacalai Tesque Co., Ltd.) weighed with a disposable syringe was gradually dropped while stirring, and the mixture was stirred for 10 minutes after the addition.
(2)硬度測定用サンプルの作製
 擬似唾液から石灰化牛歯を取り出し、水洗した後、バイアル中の70%エタノール水溶液中に浸漬した。浸漬後、直ちにバイアルをデシケータ内に移し、10分間減圧条件下に置いた。この後、バイアルをデシケータから取り出し、低速撹拌機(TR-118、AS-ONE社製)に取り付け、約4rpmの回転速度で1時間撹拝した。同様の操作を、80%エタノール水溶液、90%エタノール水溶液、99%エタノール水溶液、100%エタノール(2回)を用いて行い、2回目の100%エタノールにはそのまま1晩浸漬した。翌日、プロピレンオキサイドとエタノールの1:1混合溶媒、プロピレンオキサイド100%(2回)についても順次同様の作業を行い、2回目のプロピレンオキサイドにそのまま1晩浸漬した。更に、エポキシ樹脂:プロピレンオキサイド=1:1混合溶液、エポキシ樹脂:プロピレンオキサイド=4:1混合溶液、エポキシ樹脂100%(2回)についても同様の作業を行った。これらについては浸漬時間を2時間とした。最後にエポキシ樹脂を入れたポリ容器に牛歯サンプルを入れ、45℃にて1日間、60℃にて2日間硬化反応を行った。硬化終了後、ポリエチレン製容器とともに精密低速切断機(BUEHLER、ISOMETl000)により脱灰面に対して垂直方向に切断し、試験部分の断面を含む厚さ約1mmの切片を得た。この切片をラッピングフィルム(#1200、#3000、#8000、住友スリーエム社製)を用いて研磨し、硬度測定用サンプルとした(n=5)。
(2) Preparation of hardness measurement sample Calcified bovine teeth were taken out from the simulated saliva, washed with water, and then immersed in a 70% aqueous ethanol solution in a vial. Immediately after immersion, the vial was transferred into a desiccator and placed under reduced pressure for 10 minutes. Thereafter, the vial was taken out from the desiccator, attached to a low speed stirrer (TR-118, manufactured by AS-ONE), and stirred at a rotational speed of about 4 rpm for 1 hour. The same operation was performed using an 80% aqueous ethanol solution, a 90% aqueous ethanol solution, a 99% aqueous ethanol solution, and 100% ethanol (twice), and was immersed in the second 100% ethanol as it was overnight. On the next day, a 1: 1 mixed solvent of propylene oxide and ethanol and 100% propylene oxide (twice) were sequentially subjected to the same operation and immersed in the second propylene oxide as it was overnight. Furthermore, the same operation was performed for epoxy resin: propylene oxide = 1: 1 mixed solution, epoxy resin: propylene oxide = 4: 1 mixed solution, and epoxy resin 100% (twice). For these, the immersion time was 2 hours. Finally, a bovine tooth sample was put in a plastic container containing an epoxy resin, and a curing reaction was performed at 45 ° C. for 1 day and at 60 ° C. for 2 days. After the curing, the polyethylene container and the precision low speed cutter (BUEHLER, ISOMET1000) were cut in a direction perpendicular to the demineralized surface to obtain a section having a thickness of about 1 mm including the cross section of the test portion. This section was polished using a wrapping film (# 1200, # 3000, # 8000, manufactured by Sumitomo 3M Limited) to obtain a sample for hardness measurement (n = 5).
(3)硬度測定
 ナノインデンター(ENT-1100a、株式会社エリオニクス社製)を用いて、脱灰部及び再石灰化部の断面について2mNの荷重で測定した。なお、測定は表層から深さ方向に40μm間隔で10点行う操作を、脱灰部及び再石灰化部のそれぞれについて3列について行い、各深さにおける硬さの平均を算出した。更にコントロールとして、脱灰していない深さ600μmの健全象牙質についても3点硬さを測定し、平均値を算出した。再石灰化能は硬度回復率として、以下に示す算式により数値化した。
 
 硬度回復率(%)=[(再石灰化部の深さ360μmにおける硬さの平均値)-(脱灰部の深さ360μmにおける硬さの平均値)]/(健全象牙質の硬さの平均値)×100
(3) Hardness measurement Using a nanoindenter (ENT-1100a, manufactured by Elionix Co., Ltd.), the cross section of the demineralized part and the remineralized part was measured with a load of 2 mN. In addition, measurement performed operation which performed 10 points | pieces by a 40 micrometer space | interval from the surface layer about 3 rows about each of a demineralization part and a remineralization part, and computed the average of the hardness in each depth. Further, as a control, three-point hardness was also measured for a healthy dentin having a depth of 600 μm which was not decalcified, and an average value was calculated. The remineralization ability was quantified by the following formula as a hardness recovery rate.

Hardness recovery rate (%) = [(average hardness at 360 μm depth of remineralized part) − (average hardness at 360 μm depth of demineralized part)] / (health of healthy dentin (Average value) x 100
実施例1~36
 上記示す手順により表1~4に示す組成で歯科用硬化性組成物を調製し、操作性、操作時間、硬化時間及び再石灰化能を評価した。得られた評価結果を表1~4にまとめて示す。なお、実施例35に用いたハイドロキシアパタイト粒子(5μm)は、市販のハイドロキシアパタイト(HAP-100、太平化学産業株式会社製)をそのまま用いた。
Examples 1-36
A dental curable composition having the composition shown in Tables 1 to 4 was prepared according to the procedure described above, and operability, operation time, curing time, and remineralization ability were evaluated. The obtained evaluation results are summarized in Tables 1 to 4. As the hydroxyapatite particles (5 μm) used in Example 35, commercially available hydroxyapatite (HAP-100, manufactured by Taihei Chemical Industrial Co., Ltd.) was used as it was.
比較例1~11
 上記示す手順により表4に示す組成で組成物を調製し、操作性、操作時間、硬化時間及び再石灰化能を評価した。得られた評価結果を表4にまとめて示す。なお、比較例8に用いたハイドロキシアパタイト粒子(5μm)は、市販のハイドロキシアパタイト(HAP-100、太平化学産業株式会社製)をそのまま用いた。
Comparative Examples 1-11
A composition was prepared with the composition shown in Table 4 by the procedure shown above, and operability, operation time, curing time, and remineralization ability were evaluated. The evaluation results obtained are summarized in Table 4. As the hydroxyapatite particles (5 μm) used in Comparative Example 8, commercially available hydroxyapatite (HAP-100, manufactured by Taihei Chemical Industrial Co., Ltd.) was used as it was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (14)

  1.  フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を含有する歯科用硬化性組成物であって、
    該歯科用硬化性組成物の全量100重量部に対し、フルオロアルミノシリケートガラス粒子(A)を35~75重量部含み、
    フルオロアルミノシリケートガラス粒子(A)100重量部に対し、リン酸カルシウム粒子(B)を1~30重量部含み、エチレンジアミン四酢酸又はその塩(C)を0.1~10重量部含み、ポリアルケン酸(D)を10~40重量部含み、かつ水(E)を13~90重量部を含むことを特徴とする歯科用硬化性組成物。
    A dental curable composition containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E),
    35 to 75 parts by weight of fluoroaluminosilicate glass particles (A) with respect to 100 parts by weight of the total amount of the dental curable composition,
    1 to 30 parts by weight of calcium phosphate particles (B) and 0.1 to 10 parts by weight of ethylenediaminetetraacetic acid or a salt thereof (C) per 100 parts by weight of fluoroaluminosilicate glass particles (A), and polyalkenoic acid (D ) And 10 to 40 parts by weight of water (E), and 13 to 90 parts by weight of water (E).
  2.  リン酸カルシウム粒子(B)が、少なくともCa/Pモル比が1.30以上のリン酸カルシウム粒子(B1)を含む請求項1記載の歯科用硬化性組成物。 The dental curable composition according to claim 1, wherein the calcium phosphate particles (B) include calcium phosphate particles (B1) having a Ca / P molar ratio of 1.30 or more.
  3.  リン酸カルシウム粒子(B)のCa/Pモル比が0.8~2.2である請求項1記載の歯科用硬化性組成物。 The dental curable composition according to claim 1, wherein the Ca / P molar ratio of the calcium phosphate particles (B) is 0.8 to 2.2.
  4.  グラスアイオノマーセメントである請求項1~3のいずれか記載の歯科用硬化性組成物。 The dental curable composition according to any one of claims 1 to 3, which is a glass ionomer cement.
  5.  フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)、エチレンジアミン四酢酸又はその塩(C)、ポリアルケン酸(D)及び水(E)を含有する歯科用硬化性組成物の製造方法であって、
    フルオロアルミノシリケートガラス粒子(A)及びリン酸カルシウム粒子(B)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む粉材(X)と、
    水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む液材(Y)とを、
    粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合することを特徴とする請求項1~3のいずれか記載の歯科用硬化性組成物の製造方法。
    A method for producing a dental curable composition containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B), ethylenediaminetetraacetic acid or a salt thereof (C), polyalkenoic acid (D) and water (E). ,
    Fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) are included as essential components, and at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) is included as an optional component Powder material (X),
    A liquid material (Y) containing water (E) as an essential component, and containing at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) as an optional component,
    The dental material according to any one of claims 1 to 3, wherein the powder material (X) and the liquid material (Y) are mixed so that the weight ratio (X / Y) is 1.0 to 5.0. A method for producing a curable composition.
  6.  フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)及びエチレンジアミン四酢酸又はその塩(C)を必須成分として含み、ポリアルケン酸(D)を任意成分として含む粉材(X)と、ポリアルケン酸(D)及び水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)を任意成分として含む液材(Y)とを混合する請求項5記載の歯科用硬化性組成物の製造方法。 Powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) as essential components, and polyalkenoic acid (D) as an optional component, and polyalkenoic acid ( The method for producing a dental curable composition according to claim 5, wherein D and the liquid (Y) containing water (E) as essential components and ethylenediaminetetraacetic acid or a salt thereof (C) as optional components are mixed. .
  7.  フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とを予め混合することにより、フルオロアルミノシリケートガラス粒子(A)/エチレンジアミン四酢酸又はその塩(C)複合体(P)を得る工程を有する請求項5又は6記載の歯科用硬化性組成物の製造方法。 Fluoroaluminosilicate glass particles (A) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (P) is prepared by previously mixing fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C). The manufacturing method of the dental curable composition of Claim 5 or 6 which has a process to obtain.
  8.  複合体(P)が、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とを熱処理することにより得られたものである請求項7記載の歯科用硬化性組成物の製造方法。 8. The dental curable composition according to claim 7, wherein the composite (P) is obtained by heat-treating fluoroaluminosilicate glass particles (A) and ethylenediaminetetraacetic acid or a salt thereof (C). Method.
  9.  複合体(P)が、フルオロアルミノシリケートガラス粒子(A)とエチレンジアミン四酢酸又はその塩(C)とをメカノケミカル的に複合化することにより得られたものである請求項7記載の歯科用硬化性組成物の製造方法。 The dental hardening according to claim 7, wherein the composite (P) is obtained by mechanochemically combining the fluoroaluminosilicate glass particles (A) with ethylenediaminetetraacetic acid or a salt thereof (C). Method for producing a composition.
  10.  リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを予め混合することにより、リン酸カルシウム粒子(B)/エチレンジアミン四酢酸又はその塩(C)複合体(Q)を得る工程を有する請求項5~9のいずれか記載の歯科用硬化性組成物の製造方法。 A step of obtaining calcium phosphate particles (B) / ethylenediaminetetraacetic acid or a salt thereof (C) complex (Q) by previously mixing calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C). 10. A method for producing a dental curable composition according to any one of 5 to 9.
  11.  複合体(Q)が、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とを熱処理することにより得られたものである請求項10記載の歯科用硬化性組成物の製造方法。 The method for producing a dental curable composition according to claim 10, wherein the complex (Q) is obtained by heat-treating calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C).
  12.  複合体(Q)が、リン酸カルシウム粒子(B)とエチレンジアミン四酢酸又はその塩(C)とをメカノケミカル的に複合化することにより得られたものである請求項10記載の歯科用硬化性組成物の製造方法。 The dental curable composition according to claim 10, wherein the composite (Q) is obtained by mechanochemically combining calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C). Manufacturing method.
  13.  粉材(X)と液材(Y)とからなる歯科用硬化性組成物キットであって、
    フルオロアルミノシリケートガラス粒子(A)及びリン酸カルシウム粒子(B)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む粉材(X)と、
    水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)及びポリアルケン酸(D)からなる群から選択される少なくとも1種を任意成分として含む液材(Y)とを、
    粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用することを特徴とする歯科用硬化性組成物キット。
    A dental curable composition kit comprising a powder material (X) and a liquid material (Y),
    Fluoroaluminosilicate glass particles (A) and calcium phosphate particles (B) are included as essential components, and at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) is included as an optional component Powder material (X),
    A liquid material (Y) containing water (E) as an essential component, and containing at least one selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof (C) and polyalkenoic acid (D) as an optional component,
    A dental curable composition kit, which is used by mixing so that the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) is 1.0 to 5.0.
  14.  粉材(X)と液材(Y)とからなる歯科用硬化性組成物キットであって、
    フルオロアルミノシリケートガラス粒子(A)、リン酸カルシウム粒子(B)及びエチレンジアミン四酢酸又はその塩(C)を必須成分として含み、ポリアルケン酸(D)を任意成分として含む粉材(X)と、
    ポリアルケン酸(D)及び水(E)を必須成分として含み、エチレンジアミン四酢酸又はその塩(C)を任意成分として含む液材(Y)とを、
    粉材(X)と液材(Y)の重量比(X/Y)が1.0~5.0となるように混合して使用することを特徴とする歯科用硬化性組成物キット。
    A dental curable composition kit comprising a powder material (X) and a liquid material (Y),
    Powder material (X) containing fluoroaluminosilicate glass particles (A), calcium phosphate particles (B) and ethylenediaminetetraacetic acid or a salt thereof (C) as essential components, and polyalkenoic acid (D) as an optional component;
    A liquid material (Y) containing polyalkenoic acid (D) and water (E) as essential components, and containing ethylenediaminetetraacetic acid or a salt thereof (C) as optional components,
    A dental curable composition kit, which is used by mixing so that the weight ratio (X / Y) of the powder material (X) and the liquid material (Y) is 1.0 to 5.0.
PCT/JP2015/059863 2014-03-31 2015-03-30 Curable composition for dental use and method for producing same WO2015152129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016511869A JP6501189B2 (en) 2014-03-31 2015-03-30 Dental curable composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073050 2014-03-31
JP2014073050 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152129A1 true WO2015152129A1 (en) 2015-10-08

Family

ID=54240452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059863 WO2015152129A1 (en) 2014-03-31 2015-03-30 Curable composition for dental use and method for producing same

Country Status (2)

Country Link
JP (1) JP6501189B2 (en)
WO (1) WO2015152129A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059399A1 (en) * 2018-09-21 2020-03-26 株式会社トクヤマデンタル Photocurable composition, dental plate liner, and kit for preparing these
WO2023053787A1 (en) * 2021-09-30 2023-04-06 株式会社ジーシー Method for producing dental filler, dental filler, and dental composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500484A (en) * 1995-11-17 2000-01-18 ミネソタ マイニング アンド マニュファクチャリング カンパニー Use of metal fluoro complexes in dental compositions
JP2000290122A (en) * 1999-04-06 2000-10-17 Ngk Spark Plug Co Ltd Hydraulic calcium phosphate cement composition
JP2001354509A (en) * 2000-06-13 2001-12-25 Gc Corp Glass powder for glass ionomer cement
JP2010536848A (en) * 2007-08-23 2010-12-02 ドクサ アクティボラグ Dental cement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500484A (en) * 1995-11-17 2000-01-18 ミネソタ マイニング アンド マニュファクチャリング カンパニー Use of metal fluoro complexes in dental compositions
JP2000290122A (en) * 1999-04-06 2000-10-17 Ngk Spark Plug Co Ltd Hydraulic calcium phosphate cement composition
JP2001354509A (en) * 2000-06-13 2001-12-25 Gc Corp Glass powder for glass ionomer cement
JP2010536848A (en) * 2007-08-23 2010-12-02 ドクサ アクティボラグ Dental cement system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG,Y.W. ET AL.: "The effect of nano-sized beta- tricalcium phosphate on remineralization in glass ionomer dental luting", KEY ENGINEERING MATERIALS, 2008, pages 861 - 864, XP055228987 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059399A1 (en) * 2018-09-21 2020-03-26 株式会社トクヤマデンタル Photocurable composition, dental plate liner, and kit for preparing these
JP2020045459A (en) * 2018-09-21 2020-03-26 株式会社トクヤマデンタル Photocurable composition
RU2768151C1 (en) * 2018-09-21 2022-03-23 Токуяма Дентал Корпорейшн Photocurable composition, dental prosthesis repair material and kit for their production
WO2023053787A1 (en) * 2021-09-30 2023-04-06 株式会社ジーシー Method for producing dental filler, dental filler, and dental composition

Also Published As

Publication number Publication date
JPWO2015152129A1 (en) 2017-04-13
JP6501189B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6232671B2 (en) Dental curable composition and method for producing the same
JP5117194B2 (en) Dental glass composition
Lin et al. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement
US20150209251A1 (en) Dentinal tubule sealant and method for producing the same
JPS63201038A (en) Glass powder for glass ionomer cement for dental surgery
JP6501189B2 (en) Dental curable composition and method for producing the same
JP2023159376A (en) Glass ionomer cement composition for dental luting with good removability
JP2014181190A (en) Powder liquid-type dental resin-enriched glass ionomer cement
Nicholson The history and background to glass-ionomer dental cements
JP6348106B2 (en) Dental curable composition
JPH0248479A (en) Hardening of hardenable composition
JP2013040137A (en) Dental glass ionomer cement
Primus Bioactive ceramics for pediatric dentistry
EP2938316A1 (en) A novel glass-ionomer cement
JP6316296B2 (en) Hardening calcium phosphate composition for bone tissue repair, bone repair material and various dental materials
JP7042638B2 (en) Dental glass ionomer cement composition
JP7365776B2 (en) Glass ionomer cement composition for dental luting with good removability
KR100458705B1 (en) Calcium phosphate-based composite for promoting of tooth tissue regeneration
JP6114962B2 (en) Dental restoration kit
JPH07267617A (en) Production of tetracalcium phosphate, tetracalcium phosphate obtained by the same method and composition for cement containing the same tetracalcium phosphate
JPS63255210A (en) Production of dental restoration material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15774002

Country of ref document: EP

Kind code of ref document: A1