JPS63255210A - Production of dental restoration material - Google Patents

Production of dental restoration material

Info

Publication number
JPS63255210A
JPS63255210A JP62088547A JP8854787A JPS63255210A JP S63255210 A JPS63255210 A JP S63255210A JP 62088547 A JP62088547 A JP 62088547A JP 8854787 A JP8854787 A JP 8854787A JP S63255210 A JPS63255210 A JP S63255210A
Authority
JP
Japan
Prior art keywords
powder
calcium phosphate
fluoride
calcium
dentine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62088547A
Other languages
Japanese (ja)
Inventor
Yoshihito Ochiai
落合 良仁
Toshiyuki Saotome
早乙女 俊行
Shinji Iino
飯野 信二
Minoru Oshima
大嶋 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Mitsui Toatsu Chemicals Inc
Original Assignee
Lion Corp
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp, Mitsui Toatsu Chemicals Inc filed Critical Lion Corp
Priority to JP62088547A priority Critical patent/JPS63255210A/en
Publication of JPS63255210A publication Critical patent/JPS63255210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)

Abstract

PURPOSE:To obtain the titled restoration material having short cure time and high crushing strength, harmless to dentine and firmly adhesive to the deficient part of dentine, by curing and crushing uncured calcium phosphate powder and mixing the crushed product with uncured calcium phosphate powder. CONSTITUTION:A calcium phosphate material (e.g. alpha- or beta-tricalcium phosphate and tetracalcium phosphate) is cured by hydration reaction under acidic condition and the produced calcium hydrate apatite is crushed to powder for seed crystal (having an average particle diameter of 3-100mum). The obtained powder is added to uncured calcium phosphate powder in an amount of 15-30wt.% based on the whole composition. The restoration material produced by the above process is preferably used in combination with a fluoride (preferably acidic calcium fluoride) at a Ca/F gram-atom ratio of 4.2-60. The formation of secondary dentine and the prevention of secondary caries can be expected by the combined use of the fluoride.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は歯科用修復材の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of manufacturing a dental restorative material.

(従来の技術) 歯科用修復材としては従来からリン酸亜鉛セメント等の
合着セメント、ポリカルボキシレートセメントやグラス
アイオノマーセメントに見られる表装にも応用可能なセ
メント、そして根管治療を目的とした根管充填材等が提
案されている。しかし、いずれの材料も歯牙とは性質か
明らかに異質て歯質への馴染みに欠けるため歯質と修復
物(充填材)の間に間隙が発生しやすく、修復物の脱落
(剥離)、破折が起き易く二次う蝕になる可能性か極め
て高い、またこれらの材料は生体への為害性(歯髄刺激
性など)及び操作性の面からも不十分であった。
(Conventional technology) Dental restorative materials have traditionally included luting cements such as zinc phosphate cement, cements that can be applied to surfaces such as polycarboxylate cements and glass ionomer cements, and cements for root canal treatment. Root canal filling materials and the like have been proposed. However, the properties of these materials are clearly different from that of teeth, and they do not blend well with the tooth structure, so gaps are likely to form between the tooth structure and the restoration (filling material), causing the restoration to fall off (peeling off) and break. These materials are prone to breakage and have an extremely high possibility of secondary caries.Furthermore, these materials are insufficient in terms of toxicity to living organisms (pulp irritation, etc.) and operability.

一方、リン酸カルシウム系材料を酸で練和して得られる
ものは歯質に近い材料ということで材料としては好まし
いが、単に酸で練和したたけでは強度的に200 kg
f/c■2程度しか得られず、甚だ不十分である。
On the other hand, the material obtained by kneading calcium phosphate materials with acid is preferable as a material because it is close to tooth structure, but the strength of the material obtained by simply kneading it with acid is 200 kg.
Only about f/c 2 can be obtained, which is extremely insufficient.

そこで生体親和性と強度の両者の改善を目的としてアパ
タイト、α−リン酸三カルシウムなどの無機系材料に硬
化剤としての不飽和カルボン酸の重合物を組合わせた歯
科用修復材料が開発されている(特開昭58−8360
5号、同61−83107号)。
Therefore, with the aim of improving both biocompatibility and strength, dental restorative materials have been developed that combine inorganic materials such as apatite and α-tricalcium phosphate with a polymer of unsaturated carboxylic acid as a hardening agent. (Unexamined Japanese Patent Publication No. 58-8360
No. 5, No. 61-83107).

(発明が解決しようとする問題点) しかしながら上記の不飽和カルボン酸の重合物を利用し
た歯科用修復材でも、用途によっては生体為害性が不十
分で重要な課題となり、さらに比較的多量の重合物を必
要とするため重合時の収縮の問題、操作余裕時間が短い
、唾液により物性が劣化する等の問題が残されていた。
(Problems to be Solved by the Invention) However, even with dental restorative materials using polymers of unsaturated carboxylic acids as described above, depending on the application, biotoxicity is insufficient, which poses an important problem, and furthermore, a relatively large amount of polymerization may occur. Because it requires materials, there remain problems such as shrinkage during polymerization, short operating time, and deterioration of physical properties due to saliva.

また、アパタイトを使用する場合には物性(破砕強度な
ど)の低下は避けられなかった。
Furthermore, when apatite is used, a decrease in physical properties (such as crushing strength) is unavoidable.

(問題点を解決するための手段) 本発明者らは上記の歯科用セメント組成物の欠点を克服
するため鋭意研究を重ねた結果、リン酸カルシウム系材
料、例えばα−リン酸三カルシウムにフッ化物を添加し
酸で硬化させたものをいったん粉砕し、これを種結晶と
してα−リン酸玉カルシウム粉末を硬化させることによ
り硬化時間を短縮でき、破砕強度を著しく高めることが
できることを見出し、この知見に基づき本発明をなすに
至った。
(Means for Solving the Problems) As a result of extensive research in order to overcome the drawbacks of the above-mentioned dental cement compositions, the present inventors found that fluoride was added to calcium phosphate-based materials, such as α-tricalcium phosphate. We discovered that by curing the α-calcium phosphate powder that had been added and hardened with acid, and using this as a seed crystal to harden the powder, we were able to shorten the hardening time and significantly increase the crushing strength. Based on this, the present invention has been completed.

すなわち本発明は、未硬化リン酸カルシウム粉末を酸水
溶液で硬化させ、この硬化物の粉砕品と未硬化リン酸カ
ルシウム粉末を混合することを特徴とする歯科用修復材
の製造方法を提供するものである。
That is, the present invention provides a method for producing a dental restorative material, which comprises curing unhardened calcium phosphate powder with an acid aqueous solution, and mixing a pulverized product of the hardened product with the unhardened calcium phosphate powder.

本発明方法において、リン酸カルシウム系材料をまず、
酸性条件下で水利反応により硬化させ、水酸化カルシウ
ムアパタイトを生成させ、これを種結晶用の粉体とする
In the method of the present invention, the calcium phosphate material is first
It is hardened by a water utilization reaction under acidic conditions to produce calcium hydroxide apatite, which is used as a powder for seed crystals.

このリン酸カルシウム系材料としてはα及びβ−リン酸
三カルシウム、リン酸二カルシウム、リン酸化カルシウ
ム、リン酸化カルシウム等が用いられる。
As the calcium phosphate material, α- and β-tricalcium phosphate, dicalcium phosphate, calcium phosphate, calcium phosphate, etc. are used.

このリン酸カルシウム系材料には好ましくはフッ化物が
併用される。このようなフッ化物としては、フッ化ナト
リウム、フッ化リチウム、フッ化カリウム、フッ化セシ
ウム、フッ化ルビジュウム等のフッ酸のアルカリ金属塩
、フッ化アンモニウム、酸性フッ化アンモニウム(NH
4F−HFなと)、フッ化カルシウム、フッ化チタニウ
ム、フッ化スズなどがあり、難溶性フッ化物も用いるこ
とができ、さらに異種金属のフッ化物も好ましく用いら
れるが、特にフッ化カルシウムや酸性フッ化アンモニウ
ムが好ましく用いられる。
Fluoride is preferably used in combination with this calcium phosphate material. Such fluorides include alkali metal salts of hydrofluoric acid such as sodium fluoride, lithium fluoride, potassium fluoride, cesium fluoride, and rubidium fluoride, ammonium fluoride, and acidic ammonium fluoride (NH
4F-HF), calcium fluoride, titanium fluoride, tin fluoride, etc. Slightly soluble fluorides can also be used, and fluorides of different metals are also preferably used, but especially calcium fluoride and acidic fluorides can be used. Ammonium fluoride is preferably used.

このようにフッ化物を用いる場合Ca / Fをグラム
アトム比で4.2〜60となるように添加するのが好ま
しい。
When using fluoride in this way, it is preferable to add Ca/F so that the gram atom ratio is 4.2 to 60.

このリン酸カルシウム系材料の粉体の硬化に用いる練和
液はpH3,5〜6.5が好ましい、練和液としては例
えばpH5にアンモニア木で調整した1Mクエン酸溶液
が用いられるがグリコール酸、リン酸、りんご酸等の水
溶性の酸でもよい。
The pH of the kneading solution used to harden the powder of this calcium phosphate material is preferably 3.5 to 6.5. As the kneading solution, for example, a 1M citric acid solution adjusted to pH 5 with ammonia wood is used, but glycolic acid, phosphorus A water-soluble acid such as acid or malic acid may be used.

この際、粉体(P)/混和液(L)を、重量比で3.1
〜4.0の範囲で行うのが好ましい、粉体と練和液とは
穏やかに反応し、練和直後のpHは中性となり結晶成長
が見られる。このものは、フッ化物を併用した場合8時
間後には、フッ素アパタイトに転移していることが判明
した。
At this time, the weight ratio of powder (P)/mixture (L) was 3.1.
It is preferable to carry out the reaction in the range of ~4.0. The powder and the kneading liquid react gently, and the pH immediately after kneading becomes neutral and crystal growth is observed. It was found that this substance had been transformed into fluoroapatite after 8 hours when fluoride was used in combination.

このようにして得られたアパタイトの結晶を粉砕し、粒
径を統一し、リン酸カルシウム粉体に混合して本発明の
歯科用修復材の粉部となす。
The apatite crystals thus obtained are crushed to uniform particle size and mixed with calcium phosphate powder to form the powder part of the dental restorative material of the present invention.

この混合物からなる粉部においてアパタイトの結晶を粉
砕して硬化させた粉体の粒度は特に制限はないが平均粒
径で3〜loopmであり、その含量は混合物中0.1
〜50重量%、好ましくは15〜30重量%とする。
The particle size of the powder obtained by crushing and hardening apatite crystals in the powder part made of this mixture is not particularly limited, but the average particle size is 3 to loop pm, and the content is 0.1 in the mixture.
~50% by weight, preferably 15-30% by weight.

またこのアパタイトの結晶を粉砕して得られたものを種
結晶として硬化させるリン酸カルシウムとしては、上記
のアパタイトの結晶の調製に用いたと同様のものを用い
ることができる。
Further, as the calcium phosphate obtained by crushing this apatite crystal and hardening it as a seed crystal, the same calcium phosphate as used in the preparation of the above-mentioned apatite crystal can be used.

こうして得られるリン酸カルシウムの粉体混合物には、
酸化亜鉛、酸化カルシウム、酸化ケイ素、酸化マグネシ
ウムなどを加えてもよい、特に酸化亜鉛は流動性の改良
に効果があり、根管充填等流動性を期待する部位には微
量の酸化亜鉛を添加することにより自由に稠度な変える
ことができる。
The powder mixture of calcium phosphate thus obtained contains:
Zinc oxide, calcium oxide, silicon oxide, magnesium oxide, etc. may be added. Zinc oxide is particularly effective in improving fluidity, and a small amount of zinc oxide is added to areas where fluidity is expected such as root canal filling. This allows you to change the consistency at will.

次にこのようにして得られたリン酸カルシウムの粉体混
合物を常法に従って練和し歯科用修復に使用することが
できる。
The calcium phosphate powder mixture thus obtained can then be kneaded in a conventional manner and used for dental restorations.

この場合、種結晶の作成の時と同様にフッ化物を併用す
るのが好ましい、また練和液としては上記の種結晶を調
製するのに用いたと同じ酸を用いるのが好ましく、P/
L=3.1〜6の範囲で、上記種結晶入り組成物を練和
する。練和してできた硬化体は時間とともにフッ素アパ
タイトに転移していくことが判明した。
In this case, it is preferable to use fluoride in combination as in the case of preparing the seed crystals, and it is preferable to use the same acid used to prepare the seed crystals as the kneading liquid.
The above seed crystal-containing composition is kneaded so that L=3.1 to 6. It was found that the hardened material created by kneading transforms into fluoroapatite over time.

このようにして得られる、歯科用修復材の練和後の硬化
時間は、種結晶を使用しない場合に比して1/2〜1/
4に、圧縮強度は2〜3倍に向上する。
The hardening time of the dental restorative material obtained in this way after kneading is 1/2 to 1/2 that of the case where seed crystals are not used.
4, the compressive strength is improved by 2 to 3 times.

(発明の効果) 本発明方法により得られる歯科用修復材料は硬化時間か
短く、硬化体の粉砕強度も700kgf/c■2程度ま
で高められており、歯質への為男性がなく、歯質の欠損
部へ緻密に接着し1時間とともに歯質に類似したアパタ
イトに転移するという優れた効果を奏する。
(Effects of the invention) The dental restorative material obtained by the method of the present invention has a short curing time, and the crushing strength of the hardened material has been increased to about 700 kgf/c2. It has the excellent effect of closely adhering to the defective area and metastasizing to apatite, which resembles tooth structure, within one hour.

また本発明方法により得られる歯科用修復材料は従来の
粉液タイプと異なり、粉体に練和硬化体の結晶種を添加
しているため硬化が早く結晶成長が速やかに進行し、本
歯科用修復材料と歯質とか結晶構造的に癒着し、同質化
する。そのため外部−刺激の遮断、細菌侵入の阻止が可
能となる。
In addition, the dental restorative material obtained by the method of the present invention is different from the conventional powder-liquid type, as crystal seeds of kneaded hardened material are added to the powder, so it hardens quickly and crystal growth progresses rapidly. The restorative material and tooth structure adhere to each other in a crystal structure and become homogeneous. Therefore, it is possible to block external stimuli and prevent bacterial invasion.

さらに本発明方法においては、修復材料中にフッ素を含
有させることにより二次象牙質の形成や二次う蝕の予防
が期待できる。さらに象牙細管浸出液1体液等(唾液)
で強度が向上する。
Furthermore, in the method of the present invention, the formation of secondary dentin and the prevention of secondary caries can be expected by incorporating fluorine into the restorative material. In addition, dentinal tubule exudate, 1 body fluid, etc. (saliva)
The strength is improved.

さらにまた、リン酸カルシウム粉末中に適宜微量の酸化
亜鉛等を添加することにより、操作性を向上させること
ができ、歯槽骨の修復材、1堤形成等、整形外科分野に
も広く応用てきる。
Furthermore, by appropriately adding a small amount of zinc oxide or the like to the calcium phosphate powder, the operability can be improved, and it can be widely applied to the field of orthopedics, such as alveolar bone repair materials and ridge formation.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 α−リン酸三カルシウム(α−TCP)l■ofにCa
 F20.13aol、NH4F−)(F O,20a
ol混合させた粉末1.0gを、アンモニア水でpH5
,0に調整した1、0+++ol濃度のクエン酸水溶液
0.23dlて硬化させた。この硬化生J&物を平均粒
径70ILmに粉砕し、α−TCP粉末1.Ogに対し
0.3gを混合し、アンモニア水でPH5,0に調整し
た1、Omolc度のクエン酸水溶液0.291T1[
iで練和し硬化させた。
Example 1 α-tricalcium phosphate (α-TCP) of Ca
F20.13aol,NH4F-)(FO,20a
1.0g of powder mixed with ol was adjusted to pH 5 with aqueous ammonia.
,0.23 dl of a citric acid aqueous solution having a concentration of 1,0+++ol adjusted to 0.0 was used for curing. This hardened raw material was pulverized to an average particle size of 70ILm, and α-TCP powder 1. Mix 0.3g to Og and adjust the pH to 5.0 with aqueous ammonia.
The mixture was kneaded and hardened with i.

実施例2 α−TCP粉末1.0gに対し、pH4,0にアンモニ
ア水で調整した1、5論o1gj度のグリコール酸水溶
液0.24dで硬化させた。この硬化生成物を平均粒径
TOgmに粉砕し、a−TCP粉末1.0gに対し0.
2g混合し、pH4,0にアンモニア水で調整した1、
5mol濃度のクエン酸水溶液o、z+mにて練和し硬
化させた。
Example 2 1.0 g of α-TCP powder was cured with 0.24 d of an aqueous glycolic acid solution of 1.5 mol/gj adjusted to pH 4.0 with aqueous ammonia. This hardened product was pulverized to an average particle size of TOgm, and 0.0 gm was obtained per 1.0 g of a-TCP powder.
1, which was mixed with 2g and adjusted to pH 4.0 with ammonia water.
The mixture was kneaded with a 5 mol aqueous citric acid solution o, z+m and hardened.

比較例1 α−TCP粉末1.3gに対しp H5,0にアンモニ
ア水で調整した1、0mol 15度のクエン酸水溶液
0.29m1lで練和し硬化させた。
Comparative Example 1 1.3 g of α-TCP powder was kneaded with 0.29 ml of a 1.0 mol 15 degree citric acid aqueous solution adjusted to pH 5.0 with aqueous ammonia and hardened.

比較例2 a −T CP  1.osol  にCaF2 0.
13aol、N H4F−HF O,20aol混合さ
せた粉末1.3gをアンモニア水でpH5,0にrIi
整した1、(1■01濃度のクエン酸水溶液0.29d
にて練和し硬化させた。
Comparative Example 2 a-T CP 1. osol with CaF2 0.
1.3g of powder mixed with 13aol, N H4F-HFO, 20aol was adjusted to pH 5.0 with aqueous ammonia.
Prepared 1, (1■01 concentration citric acid aqueous solution 0.29d
The mixture was kneaded and hardened.

実施例1〜2、及び比較例1〜2で得られた硬化物の物
性及び凝固時間を測定し、その結果を下記第1表に示し
た。
The physical properties and solidification time of the cured products obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were measured, and the results are shown in Table 1 below.

第1表の結果より比較例1.2により得られたものに比
べ、実施例1.2により得られたものは、凝固時間が極
めて短く、接着力も良好で破砕強度、ヌープ硬度が著し
く高いことかわかる。
From the results in Table 1, compared to the one obtained in Comparative Example 1.2, the one obtained in Example 1.2 had an extremely short solidification time, good adhesive strength, and significantly higher crushing strength and Knoop hardness. I understand.

Claims (1)

【特許請求の範囲】[Claims] 未硬化リン酸カルシウム粉末を酸水溶液で硬化させ、こ
の硬化物の粉砕品と未硬化リン酸カルシウム粉末を混合
することを特徴とする歯科用修復材の製造方法。
A method for producing a dental restorative material, which comprises curing unhardened calcium phosphate powder with an acid aqueous solution, and mixing a pulverized product of the hardened product with the unhardened calcium phosphate powder.
JP62088547A 1987-04-10 1987-04-10 Production of dental restoration material Pending JPS63255210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088547A JPS63255210A (en) 1987-04-10 1987-04-10 Production of dental restoration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088547A JPS63255210A (en) 1987-04-10 1987-04-10 Production of dental restoration material

Publications (1)

Publication Number Publication Date
JPS63255210A true JPS63255210A (en) 1988-10-21

Family

ID=13945879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088547A Pending JPS63255210A (en) 1987-04-10 1987-04-10 Production of dental restoration material

Country Status (1)

Country Link
JP (1) JPS63255210A (en)

Similar Documents

Publication Publication Date Title
US6616742B2 (en) Process for preparing a paste from calcium phosphate cement
US4684673A (en) Surgical cement from amorphous tricalcium phosphate, poly(carboxylic acid) and water
JPH02307845A (en) Hardening material
US4677140A (en) Surgical cement containing α-tricalcium phosphate, poly(carboxylic acid) and water
GB2156824A (en) Surgical cements
JPS6272363A (en) Medical or dental cement composition
JPS59182263A (en) Production of calcium phosphate cement set body
JPH05168692A (en) Curable material for restoration of hard biotissue
JPS6283348A (en) Curable composition for medical use
JPH0639372B2 (en) Bioactive cement
JPH0248479A (en) Hardening of hardenable composition
JP6501189B2 (en) Dental curable composition and method for producing the same
JPS63255210A (en) Production of dental restoration material
JPH03174349A (en) Hydraulic calcium phosphate cement
JPS6212705A (en) Medical and dental cement composition
JPH0526503B2 (en)
JPH06172008A (en) Hardenable composition
JPH07114804B2 (en) Medical curable composition
JPS63252913A (en) Hardenable material
JPH0534300B2 (en)
JPS63255208A (en) Dental restoration composition
JPH01166763A (en) Medical and dental curable material
JP4116791B2 (en) Curing time control method of hydration hardening type calcium phosphate paste
JPH0763502B2 (en) Human hard tissue replacement composition
JP2644082B2 (en) Medical and dental curable materials