JPS63252913A - Hardenable material - Google Patents

Hardenable material

Info

Publication number
JPS63252913A
JPS63252913A JP62088546A JP8854687A JPS63252913A JP S63252913 A JPS63252913 A JP S63252913A JP 62088546 A JP62088546 A JP 62088546A JP 8854687 A JP8854687 A JP 8854687A JP S63252913 A JPS63252913 A JP S63252913A
Authority
JP
Japan
Prior art keywords
calcium phosphate
fluorine
acid
curing
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62088546A
Other languages
Japanese (ja)
Inventor
Shinji Iino
飯野 信二
Minoru Oshima
大嶋 稔
Yoshihito Ochiai
落合 良仁
Toshiyuki Saotome
早乙女 俊行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Mitsui Toatsu Chemicals Inc
Original Assignee
Lion Corp
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp, Mitsui Toatsu Chemicals Inc filed Critical Lion Corp
Priority to JP62088546A priority Critical patent/JPS63252913A/en
Publication of JPS63252913A publication Critical patent/JPS63252913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To obtain a hardenable material, consisting essentially of specific fluorine-containing self-hardenable calcium phosphate and having biocompatibility and crushing strength and useful as a dental cement. CONSTITUTION:A hardenable material obtained by firing a blend of a phosphorus compound, such as Ca(H2PO4)2.H2O or CaHPO4, with a calcium compound, such as CaO, Ca(OH)2 or Ca(COO)2, and a fluorine compound, such as CaF2 or NH4F, at 700-1,400 deg.C for 1-10hr to provide a fluorine-containing self- hardenable calcium phosphate (A), containing Ca and P at 1.4-1.6g atomic ratio (Ca/P) and F and P at 0.01-0.33g atomic ratio (F/P) and having 6/1-1/100 intensity ratio of the peak at 30.7+ or -0.2 deg. (2theta) to that at 31.9+ or -0.2 deg. (2theta) measured by X-ray diffractometry and blending >=40wt.% component (A) with a fluoride, such as an amine fluoride, (C) 2X10<-5>-1.2X10<-3>mol./g hardening accelerator (e.g. lactic acid) and (D) a powdery substance (e.g. silica).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自硬化性を有する硬化性材料に関し。[Detailed description of the invention] (Industrial application field) The present invention relates to a curable material having self-curing properties.

より詳しくはフッ化アパタイト硬化体を形成する、例え
ば生体代任及び充填用生体材料2特に口腔材料として有
用な硬化性材料に関する。
More specifically, the present invention relates to a curable material that forms a cured fluoroapatite body, such as a biomaterial for biological substitutes and fillings, particularly useful as an oral cavity material.

(従来の技術) リン酸カルシウムの1種であるカルシウム−リン系アパ
タイト(以下カルシウム−リン系アパタイトを単にアパ
タイトを記す)は理論式はCa  (P 04)6 X
2(XはOH−、C1−、F−O 等の陰イオンを示す)で示される。ここでCa/Pのグ
ラムアトム比は理論上はlO/6=1.67であるが、
実際にはCa / P比として1.3〜2.0の範囲で
アパタイト構造を取ることが可能とされている。従って
種々の一般式か提案されており1例えば Ca1O−x(H2O2)x(PO4)6−x X2−
xのように示される。
(Prior art) The theoretical formula for calcium-phosphorus apatite (hereinafter referred to simply as apatite), which is a type of calcium phosphate, is Ca (P 04) 6 X
2 (X represents an anion such as OH-, C1-, F-O, etc.). Here, the gram atom ratio of Ca/P is theoretically lO/6=1.67, but
In fact, it is said that an apatite structure can be formed with a Ca/P ratio in the range of 1.3 to 2.0. Therefore, various general formulas have been proposed, such as Ca1O-x(H2O2)x(PO4)6-x X2-
It is shown as x.

このアパタイトは歯や骨の無a賀成分の主成分であり、
生体内での親和性に優れ生体組織と容易に同化すること
から、アパタイト焼結体を人工歯根等の生体材料に利用
することが試みられている。さらに近年口腔内や生体内
でアパタイトに転化し得る自硬化性リン酸カルシウムを
用いて歯科修復材料などの生体材料を得る方法が種々提
案されている。
This apatite is the main component of the aga component of teeth and bones,
Since it has excellent in-vivo compatibility and is easily assimilated into living tissues, attempts have been made to use apatite sintered bodies as biomaterials such as artificial tooth roots. Furthermore, in recent years, various methods have been proposed for obtaining biomaterials such as dental restorative materials using self-hardening calcium phosphate that can be converted into apatite in the oral cavity or in vivo.

(発明が解決しようとする問題点) 本発明者らも特願昭61−240851号においてカル
シウムとリンをダラムアトム比として(:a/P=1.
3〜2.0の割合で含有する水和自硬化性のリン酸カル
シウムと、水に難溶性のフッ化物と、酸と、木とからな
る硬化性材料を提案している。同出願の発明によると生
体温度付近で比較的短時間のうちにアパタイト酸化体を
生成させることができ、しかも得られる硬化体のヌープ
硬度か硬化直後において12〜15 kg/am2と従
来技術によるものと比べてはるかに高硬度の硬化体か得
られる。しかもこの硬化体は硬化の際の収縮が小さく、
さらに硬化後に該硬化体を水や人工唾液中に保存しても
安定で、特に人工唾液中に保存したものは経時でヌープ
硬度が上昇し、経口30日で40 kg/am2まで上
昇するものも得られている。
(Problems to be Solved by the Invention) In Japanese Patent Application No. 61-240851, the present inventors also calculated calcium and phosphorus using the Durham atom ratio (:a/P=1.
We have proposed a curable material consisting of hydrated self-curing calcium phosphate contained in a ratio of 3 to 2.0, a fluoride that is sparingly soluble in water, an acid, and wood. According to the invention of the same application, an oxidized apatite can be generated in a relatively short period of time near the body temperature, and the Knoop hardness of the resulting cured product is 12 to 15 kg/am2 immediately after curing compared to the conventional technology. A cured product with much higher hardness can be obtained compared to the conventional method. Moreover, this cured product has little shrinkage during curing,
Furthermore, even if the cured product is stored in water or artificial saliva after hardening, it is stable; in particular, when stored in artificial saliva, the Knoop hardness increases over time, and in some cases, the hardness increases up to 40 kg/am2 after 30 days of oral administration. It has been obtained.

しかしなか歯科修復材料などの用途に対しては人工唾液
中に硬化物を保存した際の破砕抗力など、その物性につ
いてはさらに高水準のものが要求されている。
However, for applications such as dental restorative materials, even higher levels of physical properties are required, such as crush resistance when the cured product is stored in artificial saliva.

(問題点を解決するための手段) 本発明者らは上記の背景により検討を重ねた結果、リン
酸カルシウムの中にフッ素原子を配合するに当りそのフ
ッ素原子を極力微視的に見て、より均一にリン酸カルシ
ウム中に混合させることにより得られるフッ素含有自硬
化性リン酸カルシウムを主体とする硬化性材料を水和硬
化させると未発11者らの先に提案した発明によって得
られる硬化体と比較して、さらに高強度の硬化体が得ら
れることを見出し、この知見に基づき本発明をなすに至
った。
(Means for solving the problem) As a result of repeated studies based on the above background, the present inventors have found that when blending fluorine atoms into calcium phosphate, the fluorine atoms are observed as microscopically as possible to make them more uniform. In comparison with the cured material obtained by the invention previously proposed by the 11 undeveloped parties, when a curable material mainly composed of fluorine-containing self-curing calcium phosphate obtained by mixing it in calcium phosphate is hydrated and cured, Furthermore, it was discovered that a cured product with high strength could be obtained, and based on this knowledge, the present invention was completed.

すなわち本発明は、カルシウムとリンをダラムアトム比
としてCa/P=1.4〜1.6の割合で含有し、さら
にフッ素をリンとのダラムアトム比としてF/p=Q、
ot〜0.33の割合で含有すると共にx6回折による
20か30.7±0.2度と31.9±0.2度におけ
るピークの強度比が6/1〜l/100であるフッ素含
有自硬化性リン酸カルシウムを主体とする硬化性材料を
提供するものである。
That is, the present invention contains calcium and phosphorus in a duram atom ratio of Ca/P=1.4 to 1.6, and further contains fluorine in a duram atom ratio of F/p=Q,
Fluorine containing at a ratio of ot ~ 0.33 and the intensity ratio of the peaks at 20 or 30.7 ± 0.2 degrees and 31.9 ± 0.2 degrees by x6 diffraction is 6/1 to 1/100. The present invention provides a curable material mainly composed of self-curing calcium phosphate.

本発明に使用するフッ素含有自硬化性リン酸カルシウム
は上記のCa / PおよびF/Pの比率を満足し、し
かもX線回折による2θが30.7±0.2度と31.
9±0.2度におけるピークの強度比が6/1〜1/1
00であるものである。
The fluorine-containing self-hardening calcium phosphate used in the present invention satisfies the above Ca/P and F/P ratios, and also has a 2θ of 30.7 ± 0.2 degrees and 31.
The peak intensity ratio at 9±0.2 degrees is 6/1 to 1/1
00.

Ca / P比が1.4〜1.6の範囲外のリン酸カル
シウムを用いた場合は後述する硬化促進剤を用いても硬
化に長時間を要し、まだ本発明の硬化を発揮する硬化体
は得られない、またF/P比は0.01〜0.33の割
合とする必要があり、好ましくはO,OS〜0.25の
範囲である。F/P比か0.Olより少ないフッ素の含
有量では本発明の効果はほとんど見られない、またF/
P比が0.33を越える多量のフッ素を添加しても本発
明の効果は増大しない。この理由については次のように
考えられる。
When calcium phosphate with a Ca/P ratio outside the range of 1.4 to 1.6 is used, it takes a long time to cure even if a curing accelerator described below is used, and the cured product still exhibits the curing of the present invention. In addition, the F/P ratio must be in the range of 0.01 to 0.33, preferably in the range of O,OS to 0.25. F/P ratio 0. The effect of the present invention is hardly seen when the fluorine content is lower than that of O1;
Addition of a large amount of fluorine with a P ratio exceeding 0.33 does not increase the effect of the present invention. The reason for this can be considered as follows.

すなわち本発明の硬化体は硬化後フッ化アパタイトを形
成するものである。フッ化アパタイトの理論式は既述の
アパタイト理論式で示したようにCa 10 (P O
4)6 F 2であり、F/P=2/6=0.33とな
る。従ってF/P比か0.33を越すような多量のフッ
素を添加しても硬化体中でフッ素が過剰となるためと考
えられる。
That is, the cured product of the present invention forms fluorinated apatite after being cured. The theoretical formula for fluorinated apatite is Ca 10 (P O
4) 6 F 2, and F/P=2/6=0.33. Therefore, it is thought that even if a large amount of fluorine is added such that the F/P ratio exceeds 0.33, fluorine becomes excessive in the cured product.

本発明に使用するフッ素含有自硬化性リン酸カルシウム
はX線回折による2θが30.7±0.2度(α−Ca
3(PO2)2の主ピークに相当)と31.9±0.2
度(Ca lo (P O4)6 F zの主ピークに
相当)における2つのピークを有し、該ピークの強度比
が6/1〜l/100であるものである。すなわち見掛
は上、フッ素含有自硬化性リン酸カルシウムはα−Ca
 3(P O4)2とCa ro (P O,s ) 
a F zの混合結晶がその主体となっているようなも
のであると考えられる。このようなフッ素を含有するフ
ッ素含有自硬化性リン酸カルシウムを調製する手法とし
ては焼成したa  Ca :l(P O4)ZとCa 
to (P O4)6 F 2を各別に準備し、これを
、例えばボールミルやライカイ機などを用いて緊密に混
合し、もしくはメカノケミカル的に反応せしめたもので
もよい。ここで得られるフッ素含有リン酸カルシウムは
そのなかのフッ素原子が可71な限り微視的に見て、よ
り均一に分布し、場合によっては分子レベルもしくは結
晶格子レベルで均一に分布している方が本発明の目的を
達成するために好ましい。
The fluorine-containing self-hardening calcium phosphate used in the present invention has a 2θ of 30.7±0.2 degrees (α-Ca
3(corresponding to the main peak of PO2)2) and 31.9±0.2
It has two peaks at 50°C (corresponding to the main peak of Calo(P04)6Fz), and the intensity ratio of the peaks is 6/1 to 1/100. In other words, the appearance is good, and the fluorine-containing self-hardening calcium phosphate is α-Ca.
3(P O4)2 and Caro (P O,s )
It is thought that the main component is a mixed crystal of a F z. A method for preparing such fluorine-containing self-hardening calcium phosphate is to prepare calcined a Ca :l (P O4)Z and Ca
to (P O4) 6 F 2 may be prepared separately and then intimately mixed using, for example, a ball mill or a laikai machine, or reacted mechanochemically. In the fluorine-containing calcium phosphate obtained here, the fluorine atoms in it are microscopically distributed as uniformly as possible, and in some cases, it is better that the fluorine atoms are uniformly distributed at the molecular level or crystal lattice level. Preferred for achieving the purpose of the invention.

従って上記のCa / PおよびF/PとなるようにC
a (H2PO4)2−Hz0.CaHPO4、CaH
PO4・2H20,Ca2P2O7゜Ca  H(P 
O)   ・5 Hz O1Ca    (PO)OH
(但し、X=0.4to−x    46  2−2x 〜2.0)等のリン化合物、CaO1 Ca (OH)  、Ca (Coo)2、Ca (N
 03 ) 2 、有機酸のカルシウム11!等のカル
シウム化合物、Ca F  、 N H4F )I F
 。
Therefore, C so that the above Ca / P and F / P become
a (H2PO4)2-Hz0. CaHPO4, CaH
PO4・2H20, Ca2P2O7゜Ca H(P
O) ・5 Hz O1Ca (PO)OH
(However, phosphorus compounds such as
03 ) 2, organic acid calcium 11! Calcium compounds such as CaF, NH4F)IF
.

NH4F等のフッ素化合物を配合してこれを焼成するこ
とにより調製することがより好ましい。
It is more preferable to prepare by blending a fluorine compound such as NH4F and firing the mixture.

すなわち本発明に使用するフッ素含有自硬化性リン酸カ
ルシウムは1記配合物を700℃〜1400°C1好ま
しくは900℃〜1300℃の温度で1時間〜lO時間
、好ましくは2時間〜4時間程度焼成したものが好まし
い、なお上記の範囲外の条件で焼成したリン酸カルシウ
ムを用いる場合は硬化速度が遅くなりあまり好ましくな
い。
That is, the fluorine-containing self-hardening calcium phosphate used in the present invention is obtained by baking the formulation described in 1 at a temperature of 700°C to 1400°C, preferably 900°C to 1300°C, for about 1 hour to 10 hours, preferably about 2 hours to 4 hours. However, if calcium phosphate calcined under conditions outside the above range is used, the curing speed will be slow and this is not so preferred.

本発明の硬化性材料は、このフッ素含有自硬化性リン酸
カルシウムを、40fii%以上含有するのが好ましい
The curable material of the present invention preferably contains 40 fii% or more of this fluorine-containing self-curing calcium phosphate.

本発明の硬化性材料は水と練和することによりノ^本的
に水和硬化するものである。なおこの硬化反応を生体温
度付近で比較的短時間のうちに進行させるために硬化促
進剤として有機または無機の酸を用いることが好ましい
The curable material of the present invention essentially hydrates and hardens when mixed with water. It is preferable to use an organic or inorganic acid as a curing accelerator in order to allow this curing reaction to proceed in a relatively short period of time near the body temperature.

本発明の実施に用いる有機酸類としては4ギ酸、酢酸、
プロピオン酸等の低級−塩基脂肪酸;りんご酸、グリコ
ール酸、乳酸、クエン酸、糖酸、アスコルビン酸等ヒド
ロキシカルボン酸;グルタミン酸、アスパラギン酸等の
酸性アミノ酸:シュウ酸、マロン酸、コハク酸、ゲルタ
ール酸。
Organic acids used in the practice of the present invention include tetraformic acid, acetic acid,
Lower-basic fatty acids such as propionic acid; hydroxycarboxylic acids such as malic acid, glycolic acid, lactic acid, citric acid, sugar acid, and ascorbic acid; acidic amino acids such as glutamic acid and aspartic acid: oxalic acid, malonic acid, succinic acid, and geltaric acid .

アジピン酸、マレイン酸、フマル酸、ムコン酸等の二1
1!基酸;ピルビン酸、アセト酢酸、レブリン酸等のケ
ト酸;サリチル酸、安息香酸、桂皮酸、フタル酸等の芳
香族カルボン酸類および、そのアルカリ金属、アルカリ
土類金属、またはアンモニウム塩等の塩および加水分解
により容易にカルボン酸基を生成する上記有a酸の誘導
体、例えば、酸無水物や酸塩化物等があげられる。
21 such as adipic acid, maleic acid, fumaric acid, muconic acid, etc.
1! Base acids; keto acids such as pyruvic acid, acetoacetic acid, and levulinic acid; aromatic carboxylic acids such as salicylic acid, benzoic acid, cinnamic acid, and phthalic acid; and their salts such as alkali metal, alkaline earth metal, or ammonium salts; Derivatives of the above-mentioned aerobic acids that easily generate carboxylic acid groups by hydrolysis include acid anhydrides, acid chlorides, and the like.

また、無機酸類としては、リン酸、塩醜、硝酸、硫酸お
よびそのアルカリ金属、アルカリ土類金属もしくはアン
モニウム塩等の塩があげられる。これらのうち有機酸類
が特に好ましい。
In addition, examples of inorganic acids include phosphoric acid, chlorinated acid, nitric acid, sulfuric acid, and their salts such as alkali metal, alkaline earth metal, or ammonium salts. Among these, organic acids are particularly preferred.

これらの酸類は本発明の硬化性材料が硬化するまでの硬
化時間の短縮及び硬度増加の効果を与える。硬化速度か
あまりにも長時間を必要としたり逆にあまりにも短いと
実用上操作性に問題を生ずる。従って使用目的に応じて
硬化時間をコントロールすることが好ましい。本発明の
硬化性材料は酸類の添加量やそのPHを調整することに
より数分間から数時間程度の範囲で硬化時間を変化させ
ることか可能である。具体的には使用する酸類の種類に
よって異なるが、自硬化性リン酸カルシウムに併用する
酸類の量は約2xlO−5■ol/g〜1 、2 X 
10−3sol/gの範囲で用イルコトが一般的である
。また酸類のPHについてはそれを1mol水溶液とし
た場合に2.0〜6.0の範囲か好ましく、特に3.0
〜5.0程度が好都合である。
These acids have the effect of shortening the curing time and increasing the hardness of the curable material of the present invention. If the curing speed is too long or too short, problems will arise in practical operability. Therefore, it is preferable to control the curing time depending on the purpose of use. The curing time of the curable material of the present invention can be varied from several minutes to several hours by adjusting the amount of acid added and its pH. Specifically, it varies depending on the type of acid used, but the amount of acid used in combination with self-curing calcium phosphate is about 2xlO-5■ol/g ~ 1.2X
It is generally used within the range of 10-3 sol/g. In addition, the pH of the acid is preferably in the range of 2.0 to 6.0, especially 3.0 when it is made into a 1 mol aqueous solution.
~5.0 is convenient.

また本発明の硬化性材料には該自硬化性フッ素含有リン
酸カルシウムと併用して金属フッ化物、アンモニウムフ
ッ化物、アミンフロライト等の無機有機のフッ化物を用
いてもよい、これらのフッ化物をフッ素含有自硬化性リ
ン酸カルシウムと併用することにより硬化性材料の硬化
速度の促進硬化時の寸法安定性の増加、硬度の増加など
のさらなる効果が得られる。これらのフッ化物を併用す
る場合は、硬化性材料中の全フッ素含有量と全リン含有
量がグラムアトム比F/P=0.33以下とすることが
好ましい。
Further, in the curable material of the present invention, inorganic and organic fluorides such as metal fluorides, ammonium fluorides, and amine fluorites may be used in combination with the self-curing fluorine-containing calcium phosphate. When used in combination with the self-curing calcium phosphate contained therein, additional effects such as accelerating the curing rate of the curable material, increasing dimensional stability during curing, and increasing hardness can be obtained. When these fluorides are used together, it is preferable that the total fluorine content and total phosphorus content in the curable material be at most gram atom ratio F/P=0.33.

本発明に用いることのできるフッ化物とじては、フッ化
カリウム、フッ化マグネシウム、フッ化ベリリウム、フ
ッ化ストロンチウム、フッ化バリウム、フッ化チタニウ
ム、フッ化コバルト、フッ化スズ、フッ化アルミニウム
、フッ化ナトリウム、フッ化リチウム、フッ化カリウム
、フッ化セシウム、フッ化第−鉄、フッ化第二鉄、フッ
化ルビジウムなどの金属フッ化物、フッ化アンモニウム
、酸性フッ化アンモニウム、セチルアミンハイドロクロ
ライド、ジェタノールアミノプロピル−N−エタノール
オクタデシルアミンージハイドロフロライドなどのアン
モニアやアミンのフッ化物などがあげられる。
Fluorides that can be used in the present invention include potassium fluoride, magnesium fluoride, beryllium fluoride, strontium fluoride, barium fluoride, titanium fluoride, cobalt fluoride, tin fluoride, aluminum fluoride, and fluoride. Metal fluorides such as sodium chloride, lithium fluoride, potassium fluoride, cesium fluoride, ferrous fluoride, ferric fluoride, rubidium fluoride, ammonium fluoride, acidic ammonium fluoride, cetylamine hydrochloride, Examples include fluorides of ammonia and amines such as jetanolaminopropyl-N-ethanoloctadecylamine-dihydrofluoride.

さらに本発明の硬化性材料には既述のフッ素含有自己硬
化性リン酸カルシウムを主体とじフッ化物および硬化促
進剤たる酸の他に骨材として有用な粉末物質例えばシリ
カ粉末、自硬化性を有しないアパタイト粉末、アパタイ
ト焼結体の粉砕品などをさらに併用して硬化体の諸物性
を調整することももちろん可能である。
Furthermore, the curable material of the present invention mainly contains the above-mentioned fluorine-containing self-hardening calcium phosphate, and in addition to fluoride and acid as a hardening accelerator, powder materials useful as aggregates, such as silica powder, and apatite, which does not have self-hardening properties, are used. Of course, it is also possible to further adjust the various physical properties of the hardened body by further using powder, pulverized apatite sintered body, etc.

上記のように該フッ素含有自硬化性すン酸カルシフムに
かかる第3r&分を併用する場合は硬化性材料中に上記
のごとき特定のフッ素含有自硬化性リン酸カルシウムが
少なくとも40重量%以り含有されていることが好まし
い。
As mentioned above, when the 3rd r&minutes related to the fluorine-containing self-curing calcium phosphate are used together, the curable material contains at least 40% by weight of the above-mentioned specific fluorine-containing self-curing calcium phosphate. Preferably.

本発明の硬化性材料は上記のごとき各成分の組合せから
なり外観は粉末状を呈したものである。
The curable material of the present invention is composed of a combination of the above-mentioned components and has a powder-like appearance.

その実際的な使用態様としては適当量の水と練和して硬
化せしめるものであるが、既述のように実用上は硬化促
進剤として酸類な用いることか好ましい、使用する硬化
性材料と酸類な各別に準備し、水と練和する際にそれぞ
れを混合して用いてもよい、また特に酸類が粉末状であ
れば便宜りは゛硬化性材料と酸類な予め配合した粉体な
作り使用時に水のみを加えて練和することが勧められる
The practical way to use it is to mix it with an appropriate amount of water and harden it, but as mentioned above, in practice it is preferable to use acids as hardening accelerators, depending on the curable material used and the acids. It is also possible to prepare each separately and mix them together when kneading with water. In particular, if the acid is in powder form, it is convenient to prepare the curable material and the acid in powder form beforehand. It is recommended to mix by adding only water.

また酸類が水に可溶性のものであれば本発明の硬化性材
料と酸類水溶液を予め準備し、使用時に練和する方法を
とってもよい0以上のような粉体部と液体部を組合わせ
る場合が代表的であるか、もちろんこれに限られるもの
ではない。
In addition, if the acid is soluble in water, a method may be used in which the curable material of the present invention and the acid aqueous solution are prepared in advance and kneaded before use. This is representative, but of course not limited to this.

かかる粉体成分と液体成分は重量比として、10.0:
2.0ないしto、O:5.oの割合で混合使用するの
が好ましい。
The weight ratio of the powder component and liquid component is 10.0:
2.0 to O:5. It is preferable to mix and use them at a ratio of o.

液体成分がこれより少ないと、粉体成分と液体成分を混
合した練和物の流動性が不足であり所望の形に成形しが
たく、これより多いと練和物の流動性が過剰になって特
定の形を保持しがたくなり、いずれも好ましくない。
If the liquid component is less than this, the fluidity of the kneaded mixture of the powder component and the liquid component will be insufficient and it will be difficult to mold it into the desired shape, and if it is more than this, the fluidity of the kneaded product will be excessive. This makes it difficult to maintain a specific shape, both of which are undesirable.

(発明の意義及び作用効果) 本発明の硬化性材料を適当な手段で水和硬化させること
により高強度のフッ化アパタイトの硬化体を形成するこ
とができる。本発明の硬化性材料に用いるフッ素含有自
硬化性リン酸カルシウムはフッ素原子を含有するもので
あって、しかもそのフッ素原子が微視的に見て極めて均
=−にリン酸カルシウム中に分散しているものである。
(Significance and Effects of the Invention) By hydrating and curing the curable material of the present invention by an appropriate means, a cured body of fluorinated apatite with high strength can be formed. The fluorine-containing self-curing calcium phosphate used in the curable material of the present invention contains fluorine atoms, and moreover, the fluorine atoms are microscopically dispersed extremely uniformly in the calcium phosphate. be.

このようなフッ素含有自硬化性リン酸カルシウムを用い
た場合とフッ素を含有しない巾なる自硬化性リン酸カル
シウムを用い、これにフッ化物を別途添加して混合した
場合を比較すると両者とも水和硬化させるとフッ化アパ
タイトの硬化体が得られる点で共通する。しかしながら
、前者(本発明)の場合は後者と比較して高強度の硬化
体が得られる。後述の実施例および比較例の結果より明
らかなように前者に対応する実施例の結果は後者に対応
する比較例の結果と比較していずれも破砕抗力およびヌ
ープ硬度の値が優れている。特に硬化体な人工唾液中に
保存した場合に飛躍的に破砕抗力が上昇するものである
0本発明方法による硬化性材料を用いた硬化体はアパタ
イト特有の優れた生体親和性を保持し、しかも破砕強度
において巾なる自硬化性リン酸カルシウムにフッ化物を
添加混合した場合に比べはるかに高い値が得られる。従
って本発明の硬化性材料は特に歯科用セメント等に極め
て有用なものであるといえる。
Comparing the case where such fluorine-containing self-curing calcium phosphate is used and the case where fluorine-free self-curing calcium phosphate is used and fluoride is separately added and mixed, in both cases, when hydrated and cured, fluoride is removed. The common feature is that a hardened apatite product can be obtained. However, in the case of the former (the present invention), a cured product with higher strength can be obtained than in the latter. As is clear from the results of the Examples and Comparative Examples described below, the results of the Examples corresponding to the former are superior to the results of the Comparative Examples corresponding to the latter in terms of crushing drag and Knoop hardness. In particular, when the hardened material is stored in artificial saliva, the crushing resistance increases dramatically.The hardened material using the curable material according to the method of the present invention retains the excellent biocompatibility characteristic of apatite, and In terms of crushing strength, a much higher value can be obtained than when fluoride is added and mixed with self-hardening calcium phosphate. Therefore, it can be said that the curable material of the present invention is extremely useful especially for dental cement and the like.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 CaHPO27,2gt eaC038,5g。Example 1 CaHPO27.2gt eaC038.5g.

Ca F z  O,39gを乳鉢で十分に(約30分
間)混合して得た混合物を1200°Cで2時間焼成し
フッ素含有自己硬化性リン酸カルシウムを得た。
A mixture obtained by thoroughly mixing 39 g of Ca F z O in a mortar (about 30 minutes) was baked at 1200° C. for 2 hours to obtain fluorine-containing self-hardening calcium phosphate.

このリン酸カルシウムを分析したところCa / P=
l、45、F/P=0.05の結果を得た。また下記の
条件てX線回折を行った。その結果20が30.7度と
32.0度における回折強度比(XRD)は約471で
あった。
When this calcium phosphate was analyzed, Ca/P=
A result of 1,45, F/P=0.05 was obtained. Further, X-ray diffraction was performed under the following conditions. As a result, the diffraction intensity ratio (XRD) of 20 at 30.7 degrees and 32.0 degrees was about 471.

X線回折測定条件 対陰極       Cu フィルター      Ni 励起電圧      30Kv 電流        15■^ カウント費フル帝スケール 2000c/s時定数  
     1 sec 走査速度      2°/霞in チヤート・スピード 20 nm/sin発散角   
    l。
X-ray diffraction measurement conditions Anticathode Cu Filter Ni Excitation voltage 30Kv Current 15■^ Count cost Full imperial scale 2000c/s time constant
1 sec Scanning speed 2°/haze Chart speed 20 nm/sin Divergence angle
l.

受光スリット    0.15■■ 上記リン酸力ルシウムIgに対し、1molクエン酸溶
液(但し、アンモニア水にてpH3,0に調整)0.2
10m!を添加し十分練和した。得られた練和物につい
てJIS  T  6604に準じて凝結時間を測定し
た。またビカー針の跡がつかなくなるまでに要する時間
を硬化時間とした。その結果凝結時間は8分、硬化時間
は42分であった。また硬化24時間後の硬度は、ヌー
プ硬度19kg/−12であった。さらにこの練和物に
ついてJIS  7 6602に準じて破砕抗力を測定
した。その結果121 kg/−一であった。
Light reception slit 0.15 ■■ For the above lucium phosphate Ig, 1 mol citric acid solution (adjusted to pH 3.0 with ammonia water) 0.2
10m! was added and thoroughly kneaded. The coagulation time of the obtained kneaded product was measured according to JIS T 6604. The curing time was defined as the time required until the Vicat needle no longer left a mark. As a result, the setting time was 8 minutes and the curing time was 42 minutes. The hardness after 24 hours of curing was Knoop hardness 19 kg/-12. Furthermore, the crushing resistance of this kneaded product was measured according to JIS 76602. The result was 121 kg/-1.

さらに硬化物を37℃に保温した下記の人工唾液中に保
存しヌープ硬度、破砕抗力の変化を観察した。その結果
45日後のヌープ硬度は35kg/am2. 140後
の破砕抗力は735 kg/mm”であった。
Furthermore, the cured product was stored in the following artificial saliva kept at 37°C, and changes in Knoop hardness and crushing resistance were observed. As a result, the Knoop hardness after 45 days was 35 kg/am2. The crushing force after 140 mm was 735 kg/mm''.

これらの結果を後記の第1表に示した。These results are shown in Table 1 below.

人工唾液 A液 塩化アンモニウム(NH4FHF)    0−
466g塩化カリウム(KCl)        2.
124g第一リン酸カリウム(KH2PO,)    
0.708gNa5(C611207)2H200,0
208g208g第二リンウムNazllP 04  
0 、750g尿素(N11□)2Go       
    0.346gを水に溶解し1又とする。
Artificial saliva liquid A ammonium chloride (NH4FHF) 0-
466g potassium chloride (KCl) 2.
124g monopotassium phosphate (KH2PO,)
0.708gNa5(C611207)2H200,0
208g208g Phosphorus II NazllP 04
0, 750g urea (N11□)2Go
Dissolve 0.346g in water to make a monomer.

B液 塩化カルシウム2水塩(CaC旦2211□0)
0.420g 塩化マグネシウム(MgCJl 2)     0.0
4gを水に溶解し1iとする。
B solution Calcium chloride dihydrate (CaCtan2211□0)
0.420g Magnesium chloride (MgCJl2) 0.0
Dissolve 4g in water to make 1i.

使用時にA液とB液を容量比で1対1の割合で混合する
At the time of use, liquid A and liquid B are mixed at a volume ratio of 1:1.

実施例2 Ca2P2O725,4g、CaCO38,7g、Ca
 F z  O09gを乳鉢で」−分に(約30分間)
混合して得た混合物を1200℃で2時間焼成した。得
られたフッ素含有自硬化性リン酸カルシウムのX線回折
強度比を第1表に示した。このフ・ン素含有自己硬化性
リン酸カルシウムIgに対し1Ilolクエン酸溶液(
但し、アンモニア水にてpH5,0に調整)o、zts
mgを添加し十分練和した。上記のリン酸カルシウムお
よび練和物について上記以外の条件は実施例1と同様に
して分析および評価を行いその結果をまとめて第1表に
示した。
Example 2 Ca2P2O725.4g, CaCO38.7g, Ca
9g of F z O in a mortar for about 30 minutes
The mixture obtained by mixing was baked at 1200° C. for 2 hours. Table 1 shows the X-ray diffraction intensity ratio of the obtained fluorine-containing self-curing calcium phosphate. For this fluorine-containing self-hardening calcium phosphate Ig, 1 lol citric acid solution (
However, adjust the pH to 5.0 with ammonia water) o, zts
mg was added and thoroughly kneaded. The above calcium phosphate and kneaded product were analyzed and evaluated in the same manner as in Example 1 except for the above conditions, and the results are summarized in Table 1.

実施例3 実施例2で調製したフッ素含有自己硬化性リン酸カルシ
ウム4gにNH4FHF O,17gと混合して得た粉
末1gに実施例2で用いたと同じクエン酸溶液0.20
1dを加え十分に練和した。得られた親和物について以
下実施例1と同様に分析・評価し、その結果を第1表に
まとめて示した。
Example 3 1 g of powder obtained by mixing 4 g of fluorine-containing self-curing calcium phosphate prepared in Example 2 with 17 g of NH4FHFO was mixed with 0.20 g of the same citric acid solution used in Example 2.
1d was added and thoroughly kneaded. The obtained affinities were analyzed and evaluated in the same manner as in Example 1, and the results are summarized in Table 1.

実施例4 実施例2で調製したフッ素含有自己硬化性リン酸カルシ
ウム8gにアパタイト焼結体の粉砕品(#200メツシ
ュ全通)2gとN)14FHFO,:14 gを均一に
混合して得た粉末1gに実施例2で用いたものと回じク
エン酸溶液0.216域を加え十分に練和した。得られ
た練和物について以下実施例1と同様に分析・評価し、
その結果を第1表にまとめて示した。
Example 4 1 g of powder was obtained by uniformly mixing 8 g of fluorine-containing self-hardening calcium phosphate prepared in Example 2 with 2 g of a crushed apatite sintered product (#200 mesh complete) and 14 g of N)14FHFO. A citric acid solution in the 0.216 range was added to the mixture used in Example 2 and thoroughly kneaded. The obtained kneaded product was analyzed and evaluated in the same manner as in Example 1,
The results are summarized in Table 1.

実施例5 Ca2P20,25.4 g、CaCO39,5g、C
a F 2 1.17 gを乳鉢で十分に(約30分間
)混合して得た混合物を1200℃で2時間焼成した。
Example 5 Ca2P20, 25.4 g, CaCO39.5 g, C
A mixture obtained by thoroughly mixing 1.17 g of aF 2 in a mortar (about 30 minutes) was fired at 1200° C. for 2 hours.

得られたリン酸カルシウムのX線回折強度比を第1表に
示した。このリン酸カルシウムIgに対し1molクエ
ン酸溶液(但し、アンモニア水にてpH5,0に調1)
o、zio摺を添加し、十分練和した。上記のリン酸カ
ルシウムおよび練和物について上記以外の条件は実施例
1と同様にして分析および評価を行い、その結果をまと
めて第1表に示した。
Table 1 shows the X-ray diffraction intensity ratio of the obtained calcium phosphate. 1 mol citric acid solution for this calcium phosphate Ig (however, the pH was adjusted to 5.0 with ammonia water)
o, zio suri was added and thoroughly kneaded. The above calcium phosphate and kneaded product were analyzed and evaluated in the same manner as in Example 1 except for the above conditions, and the results are summarized in Table 1.

比較例1 Ca  P  O27,2gとCaCO2lOgを乳鉢
で十分に(約30分間)混合して得られた混合物を12
00℃で2時間焼成し自己硬化性リン酸カルシウムとし
た。このリン酸カルシウムを実施例1の場合と同じ条件
でX線回折を行った。その結果20 30.7度に強い
回折ピークか現われたが、32.0±0.2度には回折
ピークは観察されなかった。上記のリン酸カルシウム、
31gに対してCa F z  I 、 8 gを乳鉢
て十分に(約30分間)混合して得た粉末1gに対し7
1molクエン酸溶液(但しアンモニア水にてpH5,
0に調整)0.215dを添加し十分に練和した。
Comparative Example 1 A mixture obtained by thoroughly mixing 7.2 g of Ca P O and 1 O g of CaCO in a mortar (about 30 minutes) was
The product was baked at 00°C for 2 hours to obtain self-hardening calcium phosphate. This calcium phosphate was subjected to X-ray diffraction under the same conditions as in Example 1. As a result, a strong diffraction peak appeared at 20-30.7 degrees, but no diffraction peak was observed at 32.0±0.2 degrees. Calcium phosphate as above,
7 for 1 g of powder obtained by thoroughly mixing 8 g of Ca F z I for 31 g in a mortar (about 30 minutes).
1 mol citric acid solution (pH 5 with ammonia water,
0.215d was added and thoroughly kneaded.

得られた練和物について以下実施例1と同様に分析・評
価し、その結果を第1表にまとめて示した。
The obtained kneaded product was analyzed and evaluated in the same manner as in Example 1, and the results are summarized in Table 1.

比較例2 比較例2で合成した自己硬化性リン酸カルシウム31g
に対してCa F z  1.8gとNH4F)(FO
,57gを均一に混合して得た粉末1gに比較例1で用
いたものと同じクエン酸溶液0.216dを加え十分に
練和した。得られた練和物について以下実施例1と同様
に分析・評価し、その結果を第1表にまとめて示した。
Comparative Example 2 31 g of self-hardening calcium phosphate synthesized in Comparative Example 2
1.8 g of Ca F z and NH4F) (FO
, 57 g were uniformly mixed, and 0.216 d of the same citric acid solution as that used in Comparative Example 1 was added to 1 g of the powder and thoroughly kneaded. The obtained kneaded product was analyzed and evaluated in the same manner as in Example 1, and the results are summarized in Table 1.

Claims (1)

【特許請求の範囲】[Claims] 1)カルシウムとリンをグラムアトム比としてCa/P
=1.4〜1.6の割合で含有し、さらにフッ素をリン
とのグラムアトム比としてF/P=0.01〜0.33
の割合で含有すると共にX線回折による2θが30.7
±0.2度と31.9±0.2度におけるピークの強度
比が6/1〜1/100であるフッ素含有自硬化性リン
酸カルシウムを主体とする硬化性材料。
1) Calcium and phosphorus as gram atom ratio Ca/P
= 1.4 to 1.6, and the gram atom ratio of fluorine to phosphorus is F/P = 0.01 to 0.33.
2θ by X-ray diffraction is 30.7.
A curable material mainly composed of fluorine-containing self-curing calcium phosphate having a peak intensity ratio of 6/1 to 1/100 at ±0.2 degrees and 31.9±0.2 degrees.
JP62088546A 1987-04-10 1987-04-10 Hardenable material Pending JPS63252913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088546A JPS63252913A (en) 1987-04-10 1987-04-10 Hardenable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088546A JPS63252913A (en) 1987-04-10 1987-04-10 Hardenable material

Publications (1)

Publication Number Publication Date
JPS63252913A true JPS63252913A (en) 1988-10-20

Family

ID=13945851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088546A Pending JPS63252913A (en) 1987-04-10 1987-04-10 Hardenable material

Country Status (1)

Country Link
JP (1) JPS63252913A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256507A (en) * 1987-04-15 1988-10-24 Nichia Chem Ind Ltd Production of fluorine apatite
US5047031A (en) * 1988-04-20 1991-09-10 Norian Corporation In situ calcium phosphate minerals method
US5129905A (en) * 1988-04-20 1992-07-14 Norian Corporation Methods for in situ prepared calcium phosphate minerals
JPH06285146A (en) * 1993-04-02 1994-10-11 Nitta Gelatin Inc Cement to be hardened for medical or dental use
US5900254A (en) * 1988-04-20 1999-05-04 Norian Corporation Carbonated hydroxyapatite compositions and uses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256507A (en) * 1987-04-15 1988-10-24 Nichia Chem Ind Ltd Production of fluorine apatite
JPH0524856B2 (en) * 1987-04-15 1993-04-09 Nichia Kagaku Kogyo Kk
US5047031A (en) * 1988-04-20 1991-09-10 Norian Corporation In situ calcium phosphate minerals method
US5129905A (en) * 1988-04-20 1992-07-14 Norian Corporation Methods for in situ prepared calcium phosphate minerals
US5900254A (en) * 1988-04-20 1999-05-04 Norian Corporation Carbonated hydroxyapatite compositions and uses
US5962028A (en) * 1988-04-20 1999-10-05 Norian Corporation Carbonated hydroxyapatite compositions and uses
JPH06285146A (en) * 1993-04-02 1994-10-11 Nitta Gelatin Inc Cement to be hardened for medical or dental use

Similar Documents

Publication Publication Date Title
US4959104A (en) Self-hardenable material
US5092888A (en) Hardening material
EP0639366A1 (en) Hydroxyapatite cement as bone or tooth replacement
JPS59182263A (en) Production of calcium phosphate cement set body
JPS63252913A (en) Hardenable material
JP3987220B2 (en) Fast-setting calcium phosphate cement
JP2537121B2 (en) Curable composition
JPH078548A (en) Hardenable powder for living body
JPH0248479A (en) Hardening of hardenable composition
JP3965249B2 (en) Calcium phosphate cement and calcium phosphate cement composition
JPH02311340A (en) Hydraulic cement composition
JPH0369536A (en) Hydraulic calcium phosphate cement composition
JP3000719B2 (en) Hydraulic calcium phosphate cement
JPS63255209A (en) Self-curing material for living body
JPH0753204A (en) Calcium phosphate-based self-hardenable composition
JPS63123854A (en) Hardenable material
JP2644082B2 (en) Medical and dental curable materials
JP3634945B2 (en) Fast-hardening calcium phosphate cement and method for producing the same
JP3125016B2 (en) Curable material
JP4111418B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
WO2023119704A1 (en) Curable calcium phosphate composition, cured body manufacturing method, and cured body
JPH01166762A (en) Medical and dental curable material
JP2000169199A (en) Quick-hardening calcium phosphate cement
JPS63255210A (en) Production of dental restoration material
JP4111419B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body