JPH078548A - Hardenable powder for living body - Google Patents

Hardenable powder for living body

Info

Publication number
JPH078548A
JPH078548A JP5175898A JP17589893A JPH078548A JP H078548 A JPH078548 A JP H078548A JP 5175898 A JP5175898 A JP 5175898A JP 17589893 A JP17589893 A JP 17589893A JP H078548 A JPH078548 A JP H078548A
Authority
JP
Japan
Prior art keywords
self
fluoride
calcium phosphate
magnesium compound
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5175898A
Other languages
Japanese (ja)
Inventor
Tatsuma Morokuma
辰馬 諸隈
Takao Tanaka
隆夫 田中
Toshihiko Nishitsuji
俊彦 西辻
Yoshihito Ochiai
良仁 落合
Koichi Saito
浩一 斉藤
Fumio Osato
文夫 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Mitsui Toatsu Chemicals Inc
Original Assignee
Lion Corp
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp, Mitsui Toatsu Chemicals Inc filed Critical Lion Corp
Priority to JP5175898A priority Critical patent/JPH078548A/en
Publication of JPH078548A publication Critical patent/JPH078548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

PURPOSE:To provide a hardenable powder for living bodies which hardly deteriorates even by the contact with the moisture in the air for a long period, stabilized in quality when formed into cement, and excellent in storing stability by incorporating a magnesium compound in a specified ratio to a self-hardening type potassium phosphate. CONSTITUTION:To a self hardening type potassium phosphate, 0.5-15wt.% of a magnesium compound is included. Otherwise, a hardly soluble fluoride is included in the self-hardening type potassium phosphate, and 0.5-15wt.% of the magnesium compound is further included. The self-hardening type potassium phosphate is alpha-type tricalcium phosphate. The hardenable biological powder material contains as an X-ray contrast medium one kind or more selected from the group consisting of barium sulfate, basic bismuth carbonate, and iodoform, and the hardly soluble fluoride is a fluoride of alkaline earth metal. Thus, the deterioration at storing can be suppressed, and the powder material can be stored for a long period even when the X-ray contrast medium is mixed thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は硬化性生体用粉材に関す
る。更に詳しくは、リン酸カルシウム粉体とマグネシウ
ム化合物を混合した硬化性生体用で、保存安定性に優れ
た粉材に関する。
FIELD OF THE INVENTION The present invention relates to a curable biomaterial. More specifically, the present invention relates to a powder material which is a mixture of a calcium phosphate powder and a magnesium compound and is used for a curable living body and has excellent storage stability.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自己硬
化型リン酸カルシウムは水と反応して硬化するものをい
う。このうち特に硬化した後ヒドロキシアパタイト(以
下、HAPと略する)を生じるものは該HAPが生体内
の歯、骨の主成分に近似することにより、歯、骨補填剤
等の医療用セメントとして近年注目されている。
2. Description of the Related Art Self-hardening calcium phosphate refers to one that hardens by reacting with water. Of these, those that produce hydroxyapatite (hereinafter, abbreviated as HAP) after being hardened particularly have recently been used as medical cements for teeth, bone filling agents, etc. because HAP approximates to the main components of teeth and bones in vivo. Attention has been paid.

【0003】自己硬化型リン酸カルシウムは水等の液剤
と練和してセメントとするが、その際の操作性を向上さ
せるためボールミル等で粉砕したものが用いられる。自
己硬化型リン酸カルシウムは水に反応して硬化すること
から分かるように水に対して活性であるため、空気中の
水分の吸着により経時変化を起こすことがある。例えば
自己硬化型リン酸カルシウムとして注目されているα型
リン酸三カルシウムでは、高温多湿下に保存した場合、
短時間にα型リン酸三カルシウムの一部が次第に塊状の
HAPへと変化する。そのため、使用時に液剤と練和し
てペースト状にするのに時間が掛かり、適用部位に挿
入、充填もしくは流し込むにしても操作が行い難くな
る。また、練和してもバラツキがなくならず良好なペー
スト状にならない等の現象が起きる場合がある。
The self-hardening calcium phosphate is kneaded with a liquid agent such as water to form a cement, which is crushed by a ball mill or the like to improve the operability at that time. Since self-curing calcium phosphate is active in water as it is hardened by reacting with water, it may change over time due to adsorption of water in the air. For example, α-type tricalcium phosphate, which is attracting attention as a self-hardening calcium phosphate, when stored under high temperature and high humidity,
In a short time, a part of α-tricalcium phosphate gradually changes into massive HAP. Therefore, it takes time to knead with the liquid agent to form a paste at the time of use, and it becomes difficult to perform the operation even if it is inserted, filled or poured into the application site. Further, even if the ingredients are kneaded, there may occur a phenomenon that the variation does not disappear and a good paste is not formed.

【0004】このように、空気中の水分の吸着により液
剤と練和してセメントとする場合に、硬化時間にバラツ
キを生じたり、練和性が悪くなる等の問題を生じ、品質
(操作性)が安定しないという問題がある。従って、自
己硬化型リン酸カルシウムの経時変化を防止するため
に、包装は水分を通さないガラス製等の容器に充填すれ
ばよいが、その場合でも、一度開封すると自己硬化型リ
ン酸カルシウム粉体は使用毎に空気中の水分を吸着して
経時変化を起こし、徐々に操作性が悪くなる等、保存安
定性に問題がある。
As described above, when a cement is prepared by kneading with a liquid agent by adsorbing water in the air, there are problems such as variations in curing time and deterioration of kneading property. ) Is not stable. Therefore, in order to prevent the time-dependent change of the self-hardening calcium phosphate, the packaging may be filled in a water-impermeable container such as glass, but even in that case, once opened, the self-hardening calcium phosphate powder is used every time. There is a problem in storage stability such that moisture in the air is adsorbed to cause a change over time and the operability gradually deteriorates.

【0005】また、X線造影剤である塩基性炭酸ビスマ
スを添加すると、自己硬化型リン酸カルシウムの経時変
化が加速されやすくなることを本発明者等は確認してい
る。このため、長期間空気中の水分と接触しても変質し
にくく、セメントとした場合に品質が安定な、保存安定
性に優れた、自己硬化型リン酸カルシウムからなる硬化
性生体用粉材の開発が強く望まれていた。
The present inventors have also confirmed that the addition of basic bismuth carbonate, which is an X-ray contrast agent, tends to accelerate the change with time of self-curing calcium phosphate. For this reason, the development of a hardenable biomaterial made of self-curing calcium phosphate, which does not easily change even if it comes into contact with moisture in the air for a long period of time, has stable quality when used as cement, and has excellent storage stability. It was strongly desired.

【0006】[0006]

【課題を解決するための手段】本発明者等はかかる状況
に鑑み、経時的に空気中の水分の吸着により変質し難く
保存安定性に優れたリン酸カルシウム含有の硬化性生体
用粉材について鋭意検討を重ねた結果、α型第三リン酸
カルシウムに対して反応阻害作用のある、マグネシウム
化合物を特定の割合で混合すれば保存安定性に優れ、か
つセメントとした場合の品質が安定な硬化性生体用粉材
が得られることを見出し、本発明を完成するに至ったも
のである。
In view of the above situation, the present inventors have diligently studied a curable biological powder material containing calcium phosphate, which does not easily deteriorate due to adsorption of moisture in the air over time and is excellent in storage stability. As a result, when mixed with a specific proportion of a magnesium compound, which has a reaction-inhibiting effect on α-type tribasic calcium phosphate, it has excellent storage stability, and the quality of the hardenable biomedical powder when used as cement The inventors have found that a material can be obtained and completed the present invention.

【0007】すなわち、(1)自己硬化型リン酸カルシ
ウムと、それに対する0.5〜15重量%のマグネシウ
ム化合物を含有することを特徴とする硬化性生体用粉
材、及び(2)自己硬化型リン酸カルシウムと難溶性フ
ッ化物を含有し、さらにマグネシウム化合物0.5〜1
5重量%を含有することを特徴とする硬化性生体用粉材
を提供するものである。
That is, (1) self-hardening calcium phosphate, and a hardenable biomaterial characterized by containing 0.5 to 15% by weight of magnesium compound, and (2) self-hardening calcium phosphate. Contains a sparingly soluble fluoride and further contains a magnesium compound 0.5 to 1
The present invention provides a curable biomedical powder material containing 5% by weight.

【0008】以下、本発明を更に詳細に説明する。本発
明でいう自己硬化型リン酸カルシウムとは、水もしくは
酸等の硬化促進剤を添加した水で練ったとき、水和によ
って硬化性を示すものであって、例示するとα型リン酸
三カルシウム、リン酸四カルシウム等の自己硬化型リン
酸カルシウムもしくはα型リン酸三カルシウムとリン酸
四カルシウムの混合物もしくはこれらとリン酸八カルシ
ウム、β型リン酸三カルシウム、リン酸水素カルシウム
等の非自己硬化型リン酸カルシウムとの混合物である。
The present invention will be described in more detail below. The self-curing calcium phosphate referred to in the present invention is one that exhibits curability by hydration when kneaded with water or water containing a curing accelerator such as an acid, and is exemplified by α-type tricalcium phosphate and phosphorus. Self-hardening calcium phosphate such as tetracalcium acid or a mixture of α-type tricalcium phosphate and tetracalcium phosphate or non-self-hardening calcium phosphate such as octacalcium phosphate, β-type tricalcium phosphate, calcium hydrogen phosphate Is a mixture of.

【0009】自己硬化型リン酸カルシウムにおいて、カ
ルシウムとリンの原子比は1.3〜2.0(Ca/P)
の範囲が好ましく、更に好ましくは、1.4〜1.8の
範囲である。この範囲を外れる組成のものはHAPの理
論組成のCa/P比との差が大きすぎるため、リン酸カ
ルシウムを酸等の硬化促進剤を含んだ水と練和しても硬
化してHAP構造に転化しにくく、良好な硬化体が得ら
れ難い。
In the self-hardening calcium phosphate, the atomic ratio of calcium to phosphorus is 1.3 to 2.0 (Ca / P).
Is preferable, and more preferably 1.4 to 1.8. If the composition is out of this range, the difference between the theoretical composition of HAP and the Ca / P ratio is too large. Therefore, even if calcium phosphate is kneaded with water containing a curing accelerator such as an acid, it is hardened and converted into a HAP structure. It is difficult to obtain a good cured product.

【0010】この自己硬化型リン酸カルシウムの調製方
法には特に制限はないが、例えばα型リン酸三カルシウ
ムの場合、リン酸第二カルシウムを約550℃で約2時
間加熱して得られたγ型ピロリン酸カルシウムを炭酸カ
ルシウムと混合して約1200℃で焼成、粉砕したもの
が特に好ましく、粒径は100μm以下、好ましくは2
0μm以下のものが好適に使用できる。本発明は自己硬
化型リン酸カルシウムに、マグネシウム化合物を0.5
〜15重量%(以下、重量%は特記しない限り%で表わ
す)、さらに好ましくは、5〜10%含有させる。マグ
ネシウム化合物の添加量が0.5%未満では自己硬化型
リン酸カルシウムの保存安定性の向上が十分ではない。
また、15%を越えると保存安定性は向上するが、溶剤
を混合しペースト状にした後流動性が低下し使用上、操
作性、作業性が悪化するので好ましくない。
The method for preparing this self-hardening calcium phosphate is not particularly limited. For example, in the case of α-type tricalcium phosphate, γ-type obtained by heating dicalcium phosphate at about 550 ° C. for about 2 hours. It is particularly preferable that calcium pyrophosphate is mixed with calcium carbonate and calcined at about 1200 ° C. and pulverized, and the particle size is 100 μm or less, preferably 2 μm.
Those having a thickness of 0 μm or less can be preferably used. In the present invention, a self-curing calcium phosphate is mixed with a magnesium compound at 0.5
-15% by weight (hereinafter,% by weight is represented by% unless otherwise specified), and more preferably 5-10%. If the addition amount of the magnesium compound is less than 0.5%, the storage stability of the self-curing calcium phosphate will not be sufficiently improved.
Further, if it exceeds 15%, the storage stability is improved, but the fluidity is lowered after mixing with a solvent to form a paste, and the operability and workability are deteriorated in use, which is not preferable.

【0011】本発明で使用するマグネシウム化合物の具
体的な例としては、無機系の化合物として、ケイ酸マグ
ネシウム、ケイ化マグネシウム、ケイ酸マグネシウムカ
ルシウム、メタケイ酸マグネシウムカルシウム、酸化マ
グネシウム、水酸化マグネシウム、炭酸マグネシウム、
塩基性炭酸マグネシウム及び亜リン酸マグネシウム、リ
ン酸マグネシウム等のリン酸塩類、ホウ酸マグネシウム
等のホウ酸塩類,硫酸マグネシウム等の硫酸塩類などが
あげられ、、又有機系の化合物としては、クエン酸マグ
ネシウム、リンゴ酸マグネシウム、ステアリン酸マグネ
シウム、安息香酸マグネシウム、ギ酸マグネシウム等の
脂肪酸塩類があげられ、これらは単独でも複数の混合物
としても用いてもよい。
Specific examples of the magnesium compound used in the present invention include inorganic compounds such as magnesium silicate, magnesium silicide, magnesium calcium silicate, magnesium calcium metasilicate, magnesium oxide, magnesium hydroxide and carbonic acid. magnesium,
Examples thereof include basic magnesium carbonate and magnesium phosphate, phosphates such as magnesium phosphate, borates such as magnesium borate, sulfates such as magnesium sulfate, and the like. Organic compounds include citric acid. Examples thereof include fatty acid salts such as magnesium, magnesium malate, magnesium stearate, magnesium benzoate, and magnesium formate, which may be used alone or as a mixture of two or more.

【0012】また、本発明の自己硬化型リン酸カルシウ
ムとマグネシウム化合物を添加した混合物に、更に必要
に応じて、難溶性フッ化物を含有させることができる。
該混合物に難溶性フッ化物を添加するとセメントとした
場合にフッ化アパタイトになることが確認されている。
このフッ化アパタイトはアパタイトの中でも特に安定な
形態として知られ、このセメントは生体内または口腔内
で優れた安定性を示すことが容易に理解できる。
If desired, the mixture of the self-curing calcium phosphate and magnesium compound of the present invention may further contain a poorly soluble fluoride.
It has been confirmed that when a poorly soluble fluoride is added to the mixture, it becomes fluorapatite when it is used as a cement.
This fluorapatite is known as a particularly stable form among apatites, and it can be easily understood that this cement exhibits excellent stability in the living body or the oral cavity.

【0013】難溶性フッ化物の量は、フッ素がアパタイ
トに取り込まれるにはCa/F(グラムアトム比)が少
なくとも4.2以上であり、硬化時間が数時間以内であ
るためにはCa/Fは60以下が好ましい。難溶性フッ
化物の具体的な例としてはフッ化カルシウム、フッ化マ
グネシウム、フッ化ストロンチウム、フッ化バリウムの
アルカリ土類金属フッ化物、フッ化リチウム、フッ化ク
ロム、フッ化鉛、フッ化ニッケル、フッ化鉄、フッ化ア
ルミニウムなどの金属フッ化物、ケイフッ化ナトリウ
ム、ケイフッ化カリウム、ケイフッ化カルシウム、ケイ
フッ化バリウム等があげられ、これらは単独でも複数の
混合物として用いてもよい。
The amount of the sparingly soluble fluoride is such that Ca / F (gram atom ratio) is at least 4.2 in order for fluorine to be incorporated into apatite, and Ca / F is required for curing time within several hours. Is preferably 60 or less. Specific examples of the poorly soluble fluoride include calcium fluoride, magnesium fluoride, strontium fluoride, an alkaline earth metal fluoride of barium fluoride, lithium fluoride, chromium fluoride, lead fluoride, nickel fluoride, Examples thereof include metal fluorides such as iron fluoride and aluminum fluoride, sodium silicofluoride, potassium silicofluoride, calcium silicofluoride, and barium silicofluoride, which may be used alone or as a mixture of a plurality thereof.

【0014】また、本発明の自己硬化型リン酸カルシウ
ムでは、更に必要に応じて、X線造影剤を任意に含有さ
せることができる。X線造影剤としては、硫酸バリウ
ム、塩基性炭酸バリウム及びヨードホルムから成る群よ
り1種以上選択することができる。X線造影剤の添加量
は特に限定されないが、粉材中0.1〜30%であるの
が好ましい。
The self-curing calcium phosphate of the present invention may further contain an X-ray contrast agent, if desired. As the X-ray contrast agent, one or more kinds can be selected from the group consisting of barium sulfate, basic barium carbonate and iodoform. The amount of the X-ray contrast agent added is not particularly limited, but it is preferably 0.1 to 30% in the powder material.

【0015】[0015]

【実施例】以下、実施例により本発明を更に具体的に説
明する。 実施例1 α型リン酸三カルシウム(α−TCP)粉体100gと
酸化マグネシウム1gをミキサーを用いて2分間乾式混
合し、混合物を得た。該混合物を温度60℃、相対湿度
70%の恒温恒湿器内で2週間加速試験を行った。加速
試験後、α−TCPの水和率を測定した。
The present invention will be described in more detail with reference to the following examples. Example 1 100 g of α-type tricalcium phosphate (α-TCP) powder and 1 g of magnesium oxide were dry-mixed for 2 minutes using a mixer to obtain a mixture. The mixture was subjected to an acceleration test for 2 weeks in a thermo-hygrostat at a temperature of 60 ° C. and a relative humidity of 70%. After the acceleration test, the hydration rate of α-TCP was measured.

【0016】尚、α−TCPの水和率の測定は粉末X線
回析計により行った。水和試験前及び水和試験後のα型
リン酸三カルシウムと酸化マグネシウムの混合物にTi
2(ルチル型)を内部標準として20%添加し、α−
TCPの主ピークである30.8゜とTiO2 (ルチル
型)の主ピークである27.5゜のピーク高さとから、
次式でα−TCPの水和率を求めた。
The hydration rate of α-TCP was measured by a powder X-ray diffractometer. A mixture of α-type tricalcium phosphate and magnesium oxide before and after the hydration test was added with Ti.
O 2 (rutile type) was added as an internal standard at 20%, and α-
From 30.8 °, which is the main peak of TCP, and 27.5 °, which is the main peak of TiO 2 (rutile type),
The hydration rate of α-TCP was calculated by the following formula.

【0017】[0017]

【数1】 [Equation 1]

【0018】また、本発明で用いる稠度とは、加速試験
を行ったα型リン酸三カルシウムと酸化マグネシウムの
混合物からなる粉剤とクエン酸溶液(但し、アンモニア
水にてpH3.0に調製)なる液剤をJIST6602
に準じ練和し、その練和物をガラス板上に取る。次にこ
の練和物の上にガラス板を載せ、更にその上に重りを載
せ、その合計が120gになるようにした。練和を開始
してから10分経過した時点で重り及びガラス板を取り
除き、広がった練和物の平行線間の最大部及び最小部の
寸法(mm)を測定してその平均値を稠度としてセメン
トの練和性評価の指標とした。測定の結果、α−TCP
の水和率は20%と低く、またセメントの稠度も35m
mと練和性も良好であった。結果を表1に示す。
The consistency used in the present invention refers to a powdery agent comprising a mixture of α-type tricalcium phosphate and magnesium oxide subjected to an accelerated test and a citric acid solution (provided that the pH is adjusted to 3.0 with ammonia water). Liquid is JIST6602
Knead according to the above, and take the kneaded product on a glass plate. Then, a glass plate was placed on the kneaded product, and a weight was placed on the glass plate so that the total amount became 120 g. At 10 minutes after the kneading was started, the weight and the glass plate were removed, and the dimension (mm) of the maximum part and the minimum part between the parallel lines of the spread kneading was measured, and the average value was taken as the consistency. It was used as an index for evaluating the miscibility of cement. As a result of measurement, α-TCP
Has a low hydration rate of 20% and the cement consistency is 35m.
m was also well kneaded. The results are shown in Table 1.

【0019】実施例2〜4 実施例1の酸化マグネシウムを5、10、13gに変更
した以外は、実施例1と同一条件で行った。結果を表1
に示す。
Examples 2 to 4 The same conditions as in Example 1 were carried out except that the amount of magnesium oxide in Example 1 was changed to 5, 10, 13 g. The results are shown in Table 1.
Shown in.

【0020】実施例5 酸化マグネシウムを水酸化マグネシウム10gに変更し
た以外は、実施例1と同一条件で行った。測定の結果、
α−TCPの水和率は低く、またセメントの稠度も34
mmと練和性も良好であった。結果を表1に示す。
Example 5 The same conditions as in Example 1 were carried out except that the magnesium oxide was changed to 10 g of magnesium hydroxide. As a result of the measurement,
The hydration rate of α-TCP is low, and the consistency of cement is 34
mm and kneadability was also good. The results are shown in Table 1.

【0021】実施例6 α−TCP粉体100g、酸化マグネシウム10g及び
難溶性フッ化物であるフッ化カルシウム2.5gをミキ
サーで2分間乾式混合した以外は、実施例1と同一条件
で行った。測定の結果、α−TCPの水和率は低く、ま
たセメントの稠度も33mmと練和性も良好であった。
結果を表1に示す。
Example 6 The same conditions as in Example 1 were carried out except that 100 g of α-TCP powder, 10 g of magnesium oxide, and 2.5 g of calcium fluoride which was a poorly soluble fluoride were dry-mixed for 2 minutes with a mixer. As a result of the measurement, the hydration rate of α-TCP was low, and the consistency of the cement was 33 mm, indicating good mixing.
The results are shown in Table 1.

【0022】実施例72α−TCP粉体100g、酸化
マグネシウム10g及び難溶性フッ化物であるフッ化カ
ルシウム2.5g及びX線造影剤である塩基性炭酸ビス
マス10gをミキサーで2分間混合した以外は、実施例
1と同一条件で行った。測定の結果、α−TCPの水和
率は低く、またセメントの稠度も34mmと練和性も良
好であった。結果を表1に示す。
Example 72 100 g of α-TCP powder, 10 g of magnesium oxide, 2.5 g of calcium fluoride which is a sparingly soluble fluoride, and 10 g of basic bismuth carbonate which is an X-ray contrast agent were mixed in a mixer for 2 minutes. It carried out on the same conditions as Example 1. As a result of the measurement, the hydration ratio of α-TCP was low, and the cement had a good consistency of 34 mm with a kneading property. The results are shown in Table 1.

【0023】比較例1 酸化マグネシウムを0.3gに変更した以外は、実施例
1と同一条件で行った。測定の結果、α−TCPの水和
率は高く、更にセメントの稠度は17mmと練和性も不
良であった。結果を表1に示す。
Comparative Example 1 The same conditions as in Example 1 were used except that the amount of magnesium oxide was changed to 0.3 g. As a result of the measurement, the hydration rate of α-TCP was high, and further, the cement had a consistency of 17 mm and was poor in miscibility. The results are shown in Table 1.

【0024】比較例2 酸化マグネシウムを20gに変更した以外は、実施例1
と同一条件で行った。測定の結果、α−TCPの水和率
は低いが、セメントの稠度は21mmと練和性が低下し
た。結果を表1に示す。
Comparative Example 2 Example 1 except that magnesium oxide was changed to 20 g.
The same conditions were used. As a result of the measurement, the hydration rate of α-TCP was low, but the cement had a consistency of 21 mm, which showed a decrease in miscibility. The results are shown in Table 1.

【0025】比較例3 酸化マグネシウムを0.3gに変更した以外は、実施例
6と同一条件で行った。測定の結果、α−TCPの水和
率が高く、セメントの稠度は15mmと練和性が低下し
た。結果を表1に示す。
Comparative Example 3 The procedure of Example 6 was repeated except that the amount of magnesium oxide was changed to 0.3 g. As a result of the measurement, the hydration rate of α-TCP was high, and the cement had a consistency of 15 mm, which showed a decrease in the miscibility. The results are shown in Table 1.

【0026】比較例4 酸化マグネシウムを20gに変更した以外は、実施例6
と同一条件で行った。測定の結果、α−TCPの水和率
は低いが、セメントの稠度は20mmと練和性が低下し
た。
Comparative Example 4 Example 6 except that the amount of magnesium oxide was changed to 20 g.
The same conditions were used. As a result of the measurement, the hydration rate of α-TCP was low, but the consistency of the cement was 20 mm and the miscibility was low.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、従来技術では達成され
なかった自己硬化型リン酸カルシウムの保存時の変質を
抑えることができる。即ち、従来の自己硬化型リン酸カ
ルシウムからなる粉材は保存時の変質防止が困難であ
り、セメントとした場合に操作性が悪い。これに対し、
本発明の材料は水分による変質が少なく、操作性を損な
うこともなく良好である。また、従来水分による変質を
加速していたX線造影剤を混合しても、長期保存するこ
とが可能であり、且つセメントとした場合の操作性も良
好である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to suppress deterioration of self-curing calcium phosphate during storage, which has not been achieved by the prior art. That is, it is difficult to prevent alteration of the conventional powder material made of self-curing calcium phosphate during storage, and the operability is poor when it is used as cement. In contrast,
The material of the present invention is not deteriorated by moisture and is good without impairing operability. Further, even if an X-ray contrast agent, which has conventionally been accelerated in deterioration due to water, is mixed, it can be stored for a long period of time, and the operability when used as a cement is also good.

フロントページの続き (72)発明者 西辻 俊彦 山口県下関市彦島迫町七丁目1番1号 三 井東圧化学株式会社内 (72)発明者 落合 良仁 神奈川県藤沢市本藤沢3−3−7 (72)発明者 斉藤 浩一 神奈川県中郡二宮町山西457 ライオン株 式会社二宮寮 (72)発明者 大里 文夫 神奈川県中郡二宮町山西457 ライオン株 式会社二宮寮Front page continued (72) Inventor Toshihiko Nishitsuji 7-1, 1-1 Hikoshimasako-cho, Shimonoseki-shi, Yamaguchi Prefecture Mitsui Toatsu Chemical Co., Ltd. (72) Yoshihito Ochiai 3-3-7 Fujisawa, Kanagawa Prefecture ( 72) Inventor Koichi Saito 457 Yamanishi, Ninomiya-cho, Naka-gun, Kanagawa Prefecture Ninomiya Dormitory (72) Inventor Fumio Osato 457 Yamanishi, Ninomiya-cho, Naka-gun, Kanagawa Prefecture Nyomiya Dormitory, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 自己硬化型リン酸カルシウムと、それに
対する0.5〜15重量%のマグネシウム化合物を含有
することを特徴とする硬化性生体用粉材。
1. A curable biomaterial, which comprises self-curing calcium phosphate and 0.5 to 15% by weight of a magnesium compound.
【請求項2】 自己硬化型リン酸カルシウムと難溶性フ
ッ化物を含有し、さらにマグネシウム化合物0.5〜1
5重量%を含有することを特徴とする硬化性生体用粉
材。
2. A self-curing calcium phosphate and a sparingly soluble fluoride are contained, and a magnesium compound 0.5 to 1 is further contained.
A curable biomedical powder comprising 5% by weight.
【請求項3】 自己硬化型リン酸カルシウムがα型リン
酸三カルシウムである請求項1又は2記載の硬化性生体
用粉材。
3. The curable biomedical powder material according to claim 1, wherein the self-curing calcium phosphate is α-type tricalcium phosphate.
【請求項4】 硬化性生体用粉材がX線造影剤として硫
酸バリウム、塩基性炭酸ビスマス及びヨードホルムから
成る群より選択される1種以上を含有する請求項1又は
2記載の硬化性生体用粉材。
4. The curable biomedical material according to claim 1, wherein the curable biomedical powder material contains at least one selected from the group consisting of barium sulfate, basic bismuth carbonate and iodoform as an X-ray contrast agent. Powder material.
【請求項5】 難溶性フッ化物がアルカリ土類金属のフ
ッ化物である請求項2記載の硬化性生体用粉材。
5. The curable biomedical powder material according to claim 2, wherein the poorly soluble fluoride is a fluoride of an alkaline earth metal.
JP5175898A 1993-06-24 1993-06-24 Hardenable powder for living body Pending JPH078548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5175898A JPH078548A (en) 1993-06-24 1993-06-24 Hardenable powder for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5175898A JPH078548A (en) 1993-06-24 1993-06-24 Hardenable powder for living body

Publications (1)

Publication Number Publication Date
JPH078548A true JPH078548A (en) 1995-01-13

Family

ID=16004166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5175898A Pending JPH078548A (en) 1993-06-24 1993-06-24 Hardenable powder for living body

Country Status (1)

Country Link
JP (1) JPH078548A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006179A1 (en) * 2000-07-19 2002-01-24 Mitsubishi Materials Corporation Calcium phosphate cement
WO2002068357A1 (en) * 2001-02-28 2002-09-06 Mitsubishi Materials Corporation Calcium phosphate cement
JP2002291866A (en) * 2001-04-03 2002-10-08 Ngk Spark Plug Co Ltd Calcium phosphate cement powder and calcium phosphate cement
WO2002079112A1 (en) * 2001-03-28 2002-10-10 Mitsubishi Materials Corporation Kneaded product containing calcium phosphate cement and method for preparation thereof
JP2003516190A (en) * 1999-12-09 2003-05-13 ドクトル.ハー.ツェー.ロベルト マシーズ スティフツング Brushstone hydraulic cement stabilized with magnesium salts
JP2006524058A (en) * 2002-12-03 2006-10-26 カイフォン インコーポレイテッド Formulations for cement preparations as bone substitutes
US8632796B2 (en) 2001-05-02 2014-01-21 Biocomposites Limited Calcium phosphate/sulfate-based bone implant composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516190A (en) * 1999-12-09 2003-05-13 ドクトル.ハー.ツェー.ロベルト マシーズ スティフツング Brushstone hydraulic cement stabilized with magnesium salts
WO2002006179A1 (en) * 2000-07-19 2002-01-24 Mitsubishi Materials Corporation Calcium phosphate cement
WO2002068357A1 (en) * 2001-02-28 2002-09-06 Mitsubishi Materials Corporation Calcium phosphate cement
WO2002079112A1 (en) * 2001-03-28 2002-10-10 Mitsubishi Materials Corporation Kneaded product containing calcium phosphate cement and method for preparation thereof
JP2002291866A (en) * 2001-04-03 2002-10-08 Ngk Spark Plug Co Ltd Calcium phosphate cement powder and calcium phosphate cement
US8632796B2 (en) 2001-05-02 2014-01-21 Biocomposites Limited Calcium phosphate/sulfate-based bone implant composition
JP2006524058A (en) * 2002-12-03 2006-10-26 カイフォン インコーポレイテッド Formulations for cement preparations as bone substitutes

Similar Documents

Publication Publication Date Title
EP1945233B1 (en) Dual-phase cement precursor systems for bone repair
EP2266634B1 (en) Rapid-hardening calcium phosphate cement compositions
JP3773254B2 (en) Storage-stable partially neutralized acid composition and utilization
EP2421543B1 (en) Dual-phase calcium phosphate cement composition
US9259439B2 (en) Dual-phase cement precursor systems for bone repair
KR101898702B1 (en) Dental composition, and method for preparing the same
EP1560609A1 (en) Formulation for a cement preparation as bone substitute
US20100313791A1 (en) Calcium phosphate bone cement, precursor thereof and fabrication method thereof
JPH078548A (en) Hardenable powder for living body
JPH11335155A (en) Calcium phosphate cement and calcium phosphate cement composition
CN112843341A (en) Injectable calcium silicate-based self-curing biological ceramic, and preparation method and application thereof
EP1622843B1 (en) Premixed self-hardening bone graft pastes
JPH06199622A (en) Powder for curable material
JPH0244050A (en) Hydraulic pellet
JPH0513901B2 (en)
JPH06199623A (en) Powder for curable material
JPH0369536A (en) Hydraulic calcium phosphate cement composition
JPH03112843A (en) Hydraulic calcium phosphate cement composition
JPS63252913A (en) Hardenable material
JP2626811B2 (en) Curable glue root canal filling material
JPH0533635B2 (en)
JPH03128062A (en) Water-curable type calcium phosphate cement composition
JP3423951B2 (en) Calcium phosphate hardened powder
JPH04348755A (en) Hydraulic calcium phosphate cement
JP3125016B2 (en) Curable material