WO2015152109A1 - 焼結用造粒原料の製造装置 - Google Patents

焼結用造粒原料の製造装置 Download PDF

Info

Publication number
WO2015152109A1
WO2015152109A1 PCT/JP2015/059836 JP2015059836W WO2015152109A1 WO 2015152109 A1 WO2015152109 A1 WO 2015152109A1 JP 2015059836 W JP2015059836 W JP 2015059836W WO 2015152109 A1 WO2015152109 A1 WO 2015152109A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
moisture
sintering
stirring
granulated
Prior art date
Application number
PCT/JP2015/059836
Other languages
English (en)
French (fr)
Inventor
隆英 樋口
友司 岩見
一洋 岩瀬
山本 哲也
大山 伸幸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2015529951A priority Critical patent/JP5846402B1/ja
Priority to TR2016/13592T priority patent/TR201613592T1/tr
Publication of WO2015152109A1 publication Critical patent/WO2015152109A1/ja
Priority to PH12016501874A priority patent/PH12016501874A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating

Definitions

  • the present invention relates to a method for producing a granulating raw material for sintering used in a DL type sintering machine or the like.
  • Sintered ore consists of several brands of fine iron ore (generally called sinter feed of about 125-1000 ⁇ m), auxiliaries such as limestone, quartzite, and serpentine, dust, scale, return ore, etc.
  • Sinter-mixed raw material containing appropriate amounts of miscellaneous raw material and solid fuel such as powdered coke, mixed with water, granulated, and the resulting granulated raw material is charged into a sintering machine and fired. It is obtained by doing.
  • the blended raw materials are aggregated to become pseudo particles by containing moisture.
  • powdered iron ore for sintering has been prone to lower grades due to depletion of high-quality iron ore, such as an increase in slag components and pulverization, and due to an increase in alumina content and an increase in the fine powder ratio. Many of them have poor granulation properties.
  • sintered ore used in a blast furnace is required to have a low slag ratio, high reducibility, and high strength from the viewpoint of reducing hot metal production costs in the blast furnace and reducing CO 2 generation. Some improvement is needed.
  • Patent Literature 1 Japanese Patent Publication No. 2-4658 Patent Literature 2: Japanese Patent Publication No. 6-21297 Patent Literature 3: Japanese Patent Publication No. 6-21298 Patent Literature 4: Japanese Patent Publication No. 6-21299 Patent Literature 5: Japan Patent Publication No. 6-60358
  • an object of the present invention is that when granulated iron ore is used as a raw material for sinter ore production, coarse granulated particles (pseudo particles) with uneven bond sizes and weak bond strength are generated during granulation.
  • coarse granulated particles prseudo particles
  • weak bond strength are generated during granulation.
  • the present invention provides a granulation raw material for sintering composed of pseudo particles having a structure in which fine powders and fine particles are firmly aggregated or fine powders adhere around the core particles and the particle diameters are relatively uniform and the particle size distribution is small.
  • Proposing manufacturing equipment, and reducing the density of the raw material deposit layer formed when the granulated raw material for sintering obtained by such equipment is placed on the pallet of the sintering machine, and air permeability The purpose is to propose a technique for realizing a reduction in the firing time associated with the improvement of the process and thus improving the sintering productivity.
  • the present invention improves the strength and productivity of sintered ore by improving combustion efficiency and melt generation conditions by producing sintered ore using such a granulating raw material for sintering.
  • a technique is proposed that can reduce the hot metal production cost and the amount of CO 2 generated from the blast furnace.
  • the present invention is not only powdered iron ore (sinter feed), which is a conventional sintering raw material (average particle size: a particle size showing about 50 ⁇ m in cumulative frequency distribution is about 1000 ⁇ m), It is also a proposal to use as a sintering raw material a powdered iron ore (pellet feed) having an average particle size of about 40 to 100 ⁇ m and a particle size distribution of ultrafine iron ore (tailing ore) of 10 ⁇ m or less.
  • FIG. 4 is a comparative graph of the average particle diameter of such various iron ore powders.
  • a stirrer having a large stirring function is used on the upstream side of the granulator, and the stirring conditions of the stirrer are provided on the downstream side of the stirrer.
  • Feedback control is performed based on the particle size distribution and moisture distribution obtained by the second sampler provided downstream of the sampler and the granulator, respectively, to prevent preferential agglomeration between the fine and ultrafine iron ores, and the fine iron ore.
  • uniform dispersion is achieved for each of the water, and finally, the generation of coarse pseudo particles with low bond strength is prevented, and pseudo particles with relatively uniform particle size, small particle size distribution, and strong bond strength are produced.
  • a device was developed.
  • the present invention relates to an apparatus for producing a granulated raw material for sintering from a sintered blending raw material containing fine iron ore: a stirrer and disperser that uniformly disperses fine iron ore and moisture in the treated sintered blended raw material
  • a first measuring device that is provided on the downstream side of the stirrer and samples the sintered blended raw material after the stirrer and obtains the particle size distribution and moisture distribution; and on the downstream side of the first measuring device It is provided, and the sintered blending raw material after the stirring and unraveling treatment is stirred and mixed under water addition and granulated, and lime powder and powder coke are supplied from the rear end of the granulated raw material for sintering after granulation.
  • the present invention also relates to an apparatus for producing a granulated raw material for sintering from a sintered blending raw material containing fine iron ore: a stirrer that uniformly disperses fine iron ore and moisture in the treated sintered blending raw material A first measuring device that is provided on the downstream side of the stirrer and samples the sintered blended raw material after the stirrer and obtains the particle size distribution and moisture distribution; and on the downstream side of the first measuring device A first granulator provided and granulated by stirring and mixing the stirring blended raw material after stirring and unmixing with water; provided on the downstream side of the first granulator; The granulated raw material for sintering granulated by the granulator is further granulated, lime powder and powder coke are supplied from the rear end, and the surface of the granulated raw material for sintering after granulation is lime powder.
  • a second granulator for packaging the powder coke provided downstream of the second granulator And a second measuring device for sampling the granulated raw material for sintering after granulation and packaging to determine the particle size distribution and the moisture distribution; and the particle size distribution and the moisture distribution determined by the first measuring device; Based on the particle size distribution and moisture distribution obtained by the second measuring device, the stirring conditions of the stirring and unraveling machine, the presence or absence of water added to the stirring and unraveling machine, and the added moisture value in the first granulator are controlled.
  • This is an apparatus for producing a granulating raw material for sintering.
  • the present invention relates to an apparatus for producing a granulated raw material for sintering from a sintered blending raw material containing fine iron ore: a stirrer that disperses fine iron ore and moisture in the treated sintered blending raw material uniformly
  • a first measuring device that is provided on the downstream side of the stirrer and samples the sintered blended raw material after the stirrer and obtains the particle size distribution and moisture distribution; and on the downstream side of the first measuring device
  • a first granulator provided and granulated by stirring and mixing the stirring blended raw material after stirring and unmixing with water; provided on the downstream side of the first granulator;
  • a pelletizer that rolls and granulates the granulated raw material for sintering after granulation with a granulator; and further granulates the raw granulated material for sintering after rolling and granulation provided downstream of the pelletizer Then, supply coke breeze from the rear end and granulate raw material for sintering after gran
  • the sintered blending raw materials include 5-50 mass% pellet feed and fine iron ore, which is tailing ore, and fine iron ore with the balance being sinter feed. Being a raw material,
  • the stirring stirrer uses a high-speed stirrer for crushing that has a function of loosening accompanying crushing-dispersion of the non-uniformly solidified and coarsened sintered blending raw material.
  • the loosening function associated with the crushing-dispersing is a function of uniformly dispersing the particle size and moisture by using a stirring blade that rotates at high speed in a mixer.
  • the peripheral speed of the stirring blade for the crushing-dispersing function is 1 to 50 m / s, (5)
  • the crushing-dispersing is performed by a crusher disposed facing the surface layer portion of the blended raw material rolling layer staying in the pelletizer, and the crusher is perpendicular to the bottom surface of the pelletizer. Can be moved up and down in the direction, Can be considered.
  • the equipment column in the apparatus for producing a granulated raw material for sintering of the present invention it is possible to use a large amount of hardly granulated fine iron ore such as pellet feed as iron ore for the sintered raw material. At the same time, it is possible to advantageously produce a granulated raw material for sintering having a uniform particle size and a small particle size distribution and high strength.
  • the equipment row in the apparatus for producing a granulated raw material for sintering of the present invention it is possible to effectively achieve uniform dispersion of fine iron ore and moisture during the stirring and mixing of the sintered blended raw material. The amount of binder used at the time of granulation can be reduced.
  • the density of the raw material deposited layer can be reduced when it is charged, and the material is breathable. It is possible to shorten the firing time associated with the improvement and improve the sintering productivity.
  • 5 (a) to 5 (d) are diagrams for comparing equipment rows in the apparatus for producing a granulated raw material for sintering, respectively,
  • (a) is an example of equipment rows according to the conventional example,
  • (b) is an example of equipment rows according to the conventional example,
  • (C) has each shown an example of the installation line which concerns on the example of this invention.
  • iron ore powder and auxiliary raw material powder cut out from the mixing tank are first mixed in the drum mixer 1 as a mixing step, and then mixed after mixing.
  • the raw material is sent to a granulator such as a bread-type pelletizer 2 as a granulation process and granulated.
  • a granulator such as a bread-type pelletizer 2
  • a granulation process and granulated In the mixing step and the granulating step, about 1 to 2 mass% of water is added, and the humidity is adjusted to obtain predetermined granulated moisture, and predetermined pseudo particles are manufactured.
  • 3 of illustration is a drum mixer for the exterior
  • FIGS. 3A and 3B are schematic diagrams showing the structural features of pseudo particles, which are granulation raw materials for sintering.
  • the coarse particles present in the yard are reliably crushed and then introduced into the granulator.
  • the inventors ensured that the coarse particles in which fine powders are aggregated are surely collapsed by shearing force, and that water and fine powder are redistributed to the entire raw material, so that the uniform particles consisting of core particles and an adhesion layer are formed.
  • a device hereinafter referred to as a high-speed stirrer
  • a blade-type container capable of mixing raw materials and a blade rotating at high speed.
  • the apparatus for producing a granulated raw material for sintering of the present invention to uniformly disperse the moisture and fine powder unevenly distributed in the raw material throughout the raw material before humidity control by the granulator. is there. Therefore, the high-speed stirrer is located on the upstream side of the granulator. Further, in order to realize an appropriate stirring condition under any raw material conditions, a sampler capable of sampling the raw material and measuring the particle size distribution and moisture distribution is installed on the downstream side of the high-speed stirrer.
  • an apparatus including a particle size distribution measuring instrument and a moisture measuring instrument can be exemplified, but the apparatus is not limited to these as long as the particle size and moisture can be measured.
  • An example of the apparatus for producing a granulation raw material for sintering according to the present invention shown in FIG. 5B is an agitator 11 as an agitating and loosening machine that uniformly disperses fine iron ore and moisture in the processed sintered blending raw material.
  • a first sampler (a1) provided on the downstream side of the stirrer 11 and serving as a first measuring instrument for sampling the sintered blended raw material after the stirring and unraveling processing to obtain the particle size distribution and moisture distribution; 1 is provided on the downstream side of the sampler (a1), and the agglomerated sinter-blended raw material is agitated and mixed with moisture added thereto, granulated, and lime powder and coke breeze are supplied from the rear end thereof.
  • a mixer 12 as a granulator for sheathing lime powder and powder coke on the surface of the granulated raw material for sintering after granulation; provided downstream of the mixer 12 for granulation and sintering after sheathing Sampling the granulation raw material
  • a second sampler (a2) as a second measuring instrument for determining the water distribution, and the particle size distribution and water distribution determined by the first sampler (a1) and the second sampler (a2). Based on the particle size distribution and the moisture distribution, the stirring conditions of the stirrer 11, the presence or absence of added water to the stirrer 11, and the added moisture value in the mixer 12 are controlled.
  • FIG. 5 (c) Another example of the apparatus for producing a granulated raw material for sintering according to the example of the present invention shown in FIG. 5 (c) is as an agitating and loosening machine that uniformly disperses fine iron ore and moisture in the processed sintered blending raw material.
  • a stirrer 11 a first sampler (a1) provided on the downstream side of the stirrer 11 as a first measuring device for sampling the sintered blended raw material after the stirring and unraveling treatment to obtain the particle size distribution and moisture distribution;
  • a primary mixer 13 as a first granulator which is provided on the downstream side of the first sampler (a2) and stirs and mixes the granulated raw material after the stirring and unraveling treatment while adding water; ; Further granulating the granulation raw material for sintering provided on the downstream side of the primary mixer 13 and granulated by the primary mixer 13, supplying lime powder and powder coke from the rear end, and after granulation Lime powder on the surface of granulated raw material for sintering
  • a secondary mixer 14 as a second granulator for sheathing the powder coke; provided on the downstream side of the secondary mixer 14, sampling the granulation raw material for sintering after granulation and sheathing,
  • a second sampler (a2) as a second measuring instrument for determining the
  • the apparatus for producing a granulation raw material for sintering includes an agitator 11 as an agitating and loosening machine that uniformly disperses fine iron ore and moisture in the processed sintered blending raw material; A first sampler (a1) which is provided on the downstream side of the stirrer 11 and samples the sintered blended raw material after the stirring and unraveling processing to obtain a particle size distribution and a moisture distribution; A primary mixer 13 as a first granulator provided on the downstream side of the sampler (a1), which stirs and mixes the sintered blended raw material after the stirring and unraveling treatment while adding water; A pelletizer 15 provided on the downstream side of the mixer 13 for rolling and granulating the raw material for sintering after granulation in the primary mixer 13 together with moisture; and provided on the downstream side of the pelletizer 15 for rolling and granulation Subsequent granulation raw material for sintering A secondary mixer 14 as a second granulator for granulating
  • the lime powder and powder coke are packaged on the granulated particles, and in the apparatus shown in FIG. 5 (d), powder coke is packaged. Limestone and powder coke or powder coke is coated on the surface of the granulated particles.
  • the introduction of the high-speed agitator 11 makes the particle size distribution of the granulated particles sharp, and the moisture and components are uniformly distributed. Layered particles can be obtained.
  • the equipment row of the conventional apparatus for producing a granulated raw material for sintering which comprises a mixing process using a drum mixer and a granulating process using a pan pelletizer
  • the equipment row of the conventional apparatus for producing a granulated raw material for sintering which comprises a mixing process using a drum mixer and a granulating process using a pan pelletizer
  • the mixer 12 before the mixer 12 as a granulator
  • the primary mixer 13 before the primary mixer 13 as a granulator
  • fine iron ore is uniformly dispersed (diffused) and moisture is uniformly dispersed using a high-speed stirrer 11 such as an Eirich mixer.
  • the sintered blending raw material that contains a large amount of fine iron ore such as the pellet feed and tailing ore (referred to as fine fine iron ore including super fine tailing ore).
  • fine fine iron ore including super fine tailing ore the sintered blending raw material that contains a large amount of fine iron ore such as the pellet feed and tailing ore
  • agglomerates and coarse quasi-particles are unavoidable because only fine raw materials gather together. It is known to form.
  • a mixer 12 as a granulator is used for a sintered blended raw material containing 5% by mass to 50% by mass of such fine iron ore.
  • the high-speed stirrer 11 is previously subjected to a process for uniformly dispersing fine iron ore and moisture. The reason is that it was considered effective to carry out a uniform dispersion treatment of raw materials and moisture in advance at least before the granulation treatment.
  • the sintered blending raw material according to the present invention includes returned ore, silica, and lime. It is preferably made of other sintered raw materials such as quicklime.
  • the purpose of the high-speed stirrer 11 is to break up agglomerates of fine powder that become seeds of coarse granulated particles before granulation in order to suppress the formation of coarse granulated particles. is there. From the microscopic viewpoint, it is effective to exfoliate the fine powder directly by applying a shearing force to the aggregate itself in order to efficiently break the fine powder aggregate.
  • the high-speed stirrer 11 for crushing for example, an Eirich mixer (manufactured by Nihon Eirich), a peregia mixer (manufactured by Kitagawa Tekko), a pro-shear mixer (Pacific Kiko) can be used.
  • the Eirich mixer is known as a “high-speed stirring granulation” machine, and is a facility that also has a granulation function accompanying the aggregation and growth of particles by liquid crosslinking.
  • the equipment configuration that emphasizes the high-speed stirring function of the Eirich mixer is used. That is, the high-speed stirrer suitable for the present invention has a stirring blade arranged at a position slightly deviated in the radial direction with respect to the rotation center of the mixing pan, and the raw material is removed while preventing the stirring blade and the raw material from rotating.
  • the pulverization action of the sintered compounding raw material and the generated particles was strengthened rather than the granulation action, so that uniform dispersion of fine iron ore and uniform dispersion of water were achieved. Is.
  • the speed of the stirring blade can be freely changed from a high speed that exhibits a high shearing force to a low speed at which granulation is performed by gentle stirring. It is characterized in that the equipment configuration is such that agitation of fine iron ore, uniform diffusion of water, dispersion and mixing, and generation of particles (something that becomes granulated) are promoted. In addition, it is considered that when the stirring blade is operated at a medium to low speed side, grain growth and sizing is promoted, and the raw material crushing action is somewhat sacrificed.
  • the peripheral speed of the stirring blade is 1 to 50 m / s, preferably 2 to 40 m / s, more preferably 5 to 30 m / s. Recommended. This is because a slow peripheral speed of less than 1 m / s is not preferable because the stirring effect cannot be obtained.
  • the rotation speed of the mixing pan is operated at a constant speed of about 15 rpm in any case, and the usual number of stirring blades is about 8 to 32. Is done.
  • the mixing pan is a rotary mixing container that moves the entire raw material, so that all the raw materials in the mixer are constantly flowing.
  • a scraper is usually installed in the high-speed stirrer. This scraper is located above the mixing pan, and has a role of peeling off the raw material which is to remain on the inner wall or bottom surface of the mixing pan and continuously feeding the raw material to the stirring blade.
  • the raw material to be retained at the bottom is also peeled off by a bottom scraping tip attached to the lowermost end of the stirring blade, but functions together with the scraper.
  • the target particle size ranges widely from 125 ⁇ m to 8 mm. It is difficult to simply evaluate the variation between samples. Therefore, the inventors have collected samples with the sampler (a1) or (a2) in order to evaluate the microscopic variation in moisture and particle size for each granulated particle size, and a device such as a vibration sieving machine. Then, the particle size distribution was measured using, and the moisture for each particle size was measured using a device such as an infrared moisture meter to evaluate the variation.
  • the average moisture of the raw material sampled in the yard was 4.7 mass%, but the moisture of particles having a sieve mesh of 4.8 mm or more greatly exceeded the average moisture.
  • the water content of the particles having a sieve mesh of less than 4.8 mm was lower than the average water content, and the water distribution was different for each particle size.
  • the particle size distribution it was found that coarse particles were present.
  • the yard raw material is introduced into a high-speed stirrer, the stirring blade is 250 rpm (circumferential speed 5 m / s), the container pan rotation speed is 28 rpm, and the water distribution and particle size distribution are the same for the raw material stirred for 10 seconds for 300 seconds. Measured.
  • the stirring time increased, the water content of the coarse particles decreased and the water content of the intermediate particle size increased. Even when stirring for 300 seconds or more, the water distribution was not significantly different from that of 300 seconds.
  • the particle size distribution As for the particle size distribution, as the stirring time increased, the ratio of coarse particles decreased and the ratio of intermediate particle sizes increased.
  • the coarse particles before high-speed stirring had a thick layer of fine particles adhering around the core particles, and the intermediate particles had particles or nuclei aggregated only with fine particles. It was seen that it existed only with particles. It was observed that the granulated particles after stirring had a uniform two-layer structure in which fine powder adhered to the periphery of the core particles. That is, it was suggested that the high moisture fine powder adhering layer was peeled off from the core particles and the fine powder aggregates were crushed and redistributed uniformly throughout the particles by the stirring operation.
  • the degree of mixing was defined from the moisture value for each stirring time and each particle size.
  • the variation ⁇ was defined based on the moisture distribution after stirring blade 500 rpm (circumferential speed 9 m / s) and stirring time 600 seconds.
  • the coefficient was determined by fitting an exponential function from 0 seconds to 60 seconds at the beginning of stirring.
  • the water dispersion ⁇ t at time t was defined by the following equation (1), and the water mixing degree M was calculated by the following (2).
  • the sample particle diameter: x (mm) the moisture ratio in the sample with the particle diameter ⁇ : C (x) (mass%), the weight ratio of the sample with the particle diameter ⁇ : f (x) (mass%), number of samples: m (interval).
  • the stirring conditions for achieving a mixing degree of 95% were arranged by uniform mixing time, peripheral speed, and scale of the stirring device.
  • the uniform mixing time was determined from the change over time in the mixing degree.
  • the scale of the stirring device used the diameter of the stirring vessel as a representative diameter. As a result of the analysis, it was found that the uniform mixing time is well organized at the peripheral speed regardless of the device diameter. Further, it was found that the uniform mixing time decreases as the moisture content of the raw material increases, and the uniform mixing time increases as the fine powder ratio in the raw material increases.
  • the equipment row in the apparatus for producing a granulated raw material for sintering it is possible to uniformly disperse moisture and fine powder in the raw material and obtain uniform granulated particles having a uniform particle size distribution. Therefore, sintering is performed using the obtained granulation raw material for sintering, thereby improving the sinter strength and productivity through improvement of combustion efficiency and melt generation conditions. It is possible to obtain a technique capable of reducing the manufacturing cost and the amount of CO 2 generated from the blast furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】造粒時に、粒径の不揃いな結合強度の弱い粗大な造粒粒子が発生するのを阻止し、均一な大きさの擬似粒子を造粒する装置を提案する。 【解決手段】被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機と;攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器と;攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒し、その後端から石灰粉および粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に石灰粉と粉コークスを外装する造粒機と;造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器と;を備え、第1の測定器で求めた粒度分布および水分分布と第2の測定器で求めた粒度分布および水分分布とに基づき、攪拌ほぐし機の攪拌条件、攪拌ほぐし機への添加水の有無、造粒機での添加水分値を制御する。

Description

焼結用造粒原料の製造装置
 本発明は、DL式焼結機などで用いられる焼結用造粒原料の製造方法に関する。
 焼結鉱は、複数銘柄の粉鉄鉱石(一般に、125~1000μm程度のシンターフィードと呼ばれているもの)に、石灰石や珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料と、粉コークス等の固体燃料とを適量ずつ配合した焼結配合原料に、水分を添加して混合・造粒し、得られた造粒原料を焼結機に装入して焼成することによって得られる。前記造粒時、配合原料は、水分を含むことで互いに凝集して擬似粒子となる。この擬似粒子化した焼結用造粒原料を焼結機に装入することにより、焼結機上では良好な通気を確保することができ、円滑な焼結が進むようになる。
 ところで、焼結用の粉鉄鉱石は、近年、高品質鉄鉱石の枯渇による低品位化、例えばスラグ成分の増加や微粉化の傾向が顕著であり、アルミナ含有量の増大、微粉比率の増大による造粒性の悪いものが多くなっている。その一方で、高炉で使用する焼結鉱としては、高炉での溶銑製造コストの低減やCO発生量の低減という観点から低スラグ比、高被還元性、高強度のものが求められており、何らかの改善が必要となっている。
 焼結用鉄鉱石を取り巻くこのような環境の中で、ペレットフィードと呼ばれるペレット用などの難造粒性の微粉鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS法」という)がある。この技術は、ペレットフィードのような微粉鉄鉱石を多量に含む焼結配合原料をドラムミキサーとペレタイザーとを使って造粒することにより、低スラグ比・高被還元性の焼結鉱を製造しようというものである(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。
 特許文献1:特公平2-4658号公報
 特許文献2:特公平6-21297号公報
 特許文献3:特公平6-21298号公報
 特許文献4:特公平6-21299号公報
 特許文献5:特公平6-60358号公報
 しかしながら、ペレットフィードなどの微粉鉄鉱石を多量に含む焼結配合原料を、従来の前記HPS法を用いて造粒した場合、図1に示すように、細粒(0.5mm未満)のみならず、粗粒(10mm超)の擬似粒子が増加することがわかった。これは、ペレットフィードのような微粉鉄鉱石は、濡れ性が同じであれば、比表面積の大きい細粒ほど水分を吸収しやすく、かつ粉体間に多くの水分を保持しやすいため、個々の微粉鉄鉱石が水分を優先的に吸収し、微粉どうしが単に凝集しただけにすぎないものや、核粒子のまわりに微粉が付着した形態の粒径の不揃いな粗大な擬似粒子が生成したためと考えられる。
 この点については、発明者らの行なった下記の実験からも明らかである。
 まず、ペレットフィードなどの難造粒性の微粉鉄鉱石として、バナジウムを多く含む(40mass%)配合原料を使用して造粒した後、生成した造粒(擬似)粒子の粒度分布とペレットフィードの粒度分布を計測した。その結果を図2に示す。まず、図2(a)に示すように、配合原料中のペレットフィードを多量に含むと、ペレットフィードを含まない場合に比べて粗粒(8mm超)になる割合が高くなり、その重量割合は75mass%程度となることがわかった。また、造粒粒子中のペレットフィードの(粒度)分布(図2(b))も、造粒粒子の粒度分布と同様の傾向を示し、粗粒中のペレットフィードの割合が80mass%程度と高く、ペレットフィードの殆どが粗粒の部分に偏在していることがわかった。このことから、粗大な擬似粒子というのは、ペレットフィードどうしが凝集し合うことで形成さていることが確認できた。さらに、造粒した擬似粒子の水分量を測定したところ(図2(b))、粗粒領域における水分量が高いこともわかった。このことから、水分はペレットフィードが優先して吸収し、そのためにペレットフィードどうしで凝集し合って粗大な擬似粒子中に多く吸収されて偏在していると考えられる。
 このようにペレットフィード等の微粉鉄鉱石を多く含む配合原料を造粒すると、どうしても粒径が不揃いになって粒度分布も大きくなり、しかも、結合強度の弱い微粉が単に凝集したにすぎないものとなって粗大な擬似粒子が多数生成することになる。そのため、この粒子を焼結機のパレット上に装入して堆積させると、図3(a)に示すように密な堆積構造となり、かさ密度が大きくなる。しかも、このような粗大な擬似粒子は、焼結機のパレット上に一定の層厚で堆積させると、該擬似粒子に荷重(圧縮力)が加わり圧壊されやすいため、空隙率が低下し、ひいては通気性の悪化を招いて焼結機操業の阻害要因になり、焼結時間が長くなったり、焼結鉱の歩留低下を招いて生産性が低下したりするおそれがある。さらには、造粒に用いられるバインダーである生石灰の使用量を増加せざるを得なくなり、焼結鉱製造コストの増大を招くことや、後工程において粉コークス等の固体燃料を被覆する際に、焼結原料全体としての粉コークス等の賦存状態が不均一となり、燃焼や着熱が不均一となって焼成速度が低下するという問題もあった。
 そこで、本発明の目的は、微粉鉄鉱石を焼結鉱製造用原料として使用する場合において、造粒時に、粒径の不揃いな結合強度の弱い粗大な造粒粒子(擬似粒子)が発生するのを阻止し、均一な大きさの擬似粒子を造粒する装置を提案することにある。
 即ち、本発明は、微粉や細粒同士が強固に凝集または核粒子のまわりに微粉が付着した構造の、粒径が比較的揃って粒度分布が小さい擬似粒子からなる焼結用造粒原料の製造装置を提案するものであって、こうした装置によって得られた焼結用造粒原料を、焼結機のパレット上に装入したときに形成される原料堆積層の密度の低減や、通気性の向上に伴う焼成時間の短縮を実現し、ひいては焼結生産性を向上させる技術を提案することを目的とする。
 さらに、本発明は、このような焼結用造粒原料を用いて焼結鉱を製造することにより、燃焼効率や融液生成条件の改善を通じて、焼結鉱強度の向上や生産性を向上させ、このことによって、溶銑製造コストの低減や高炉からのCO発生量の低減を図ることができる技術を提案する。
 本発明は、前述のとおり、従来の焼結原料である粉鉄鉱石(シンターフィード)(平均粒径:積算頻度分布で50%を示す粒径が約1000μm程度のもの)だけでなく、さらに、平均粒径が40~100μm程度の微粉鉄鉱石(ペレットフィード)、10μm以下の超微粉の鉄鉱石(テーリング鉱)の粒度分布を示すものをも焼結原料として用いるための提案である。なお、図4は、こうした各種鉄鉱石粉の平均粒子径の比較グラフである。
 前述したように、ペレットフィードのような難造粒性の微粉鉄鉱石(平均粒径40~100μm)などを含む配合原料を造粒する場合、粉や微粉、超微粉どうしが水分を介して互いに優先的に凝集して結合強度の弱い粗大な擬似粒子が生成しやすくなる。しかも、このような擬似粒子は、大きな粒度分布をもつことが多く、焼結機の操業時に、パレット上の原料堆積(充填)層が図3(a)に示すようになって通気性を悪化させる。
 そこで、このような問題を克服できる技術として、本発明では、造粒機の上流側に、攪拌機能の大きい攪拌機を用いるとともに、その攪拌機の攪拌条件を、攪拌機の下流側に設けた第1のサンプラーおよび造粒機の下流側に設けた第2のサンプラーによりそれぞれ求めた粒度分布および水分分布に基づきフィードバック制御して、微粉・超微粉鉄鉱石どうしの優先的凝集を防いで、該微粉鉄鉱石ならびに水分それぞれについて均一分散を図り、最終的に結合強度の弱い粗大な擬似粒子が発生するのを阻止して、粒径が比較的揃って粒度分布が小さくかつ結合強度の強い擬似粒子を製造する装置を開発した。
 即ち、本発明は、微粉鉄鉱石を含有する焼結配合原料から焼結用造粒原料を製造する装置において:被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機と;この攪拌ほぐし機の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器と;この第1の測定器の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒し、その後端から石灰粉および粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に石灰粉と粉コークスを外装する造粒機と;この造粒機の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器と;を備え、前記第1の測定器で求めた粒度分布および水分分布と前記第2の測定器で求めた粒度分布および水分分布とに基づき、前記攪拌ほぐし機の攪拌条件、攪拌ほぐし機への添加水の有無、造粒機での添加水分値を制御することを特徴とする焼結用造粒原料の製造装置である。
 また、本発明は、微粉鉄鉱石を含有する焼結配合原料から焼結用造粒原料を製造する装置において:被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機と;この攪拌ほぐし機の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器と;この第1の測定器の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒する第1の造粒機と;この第1の造粒機の下流側に設けられ、第1の造粒機により造粒された焼結用造粒原料をさらに造粒し、その後端から石灰粉および粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に石灰粉と粉コークスを外装する第2の造粒機と;この第2の造粒機の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器と;を備え、前記第1の測定器で求めた粒度分布および水分分布と前記第2の測定器で求めた粒度分布および水分分布とに基づき、前記攪拌ほぐし機の攪拌条件、攪拌ほぐし機への添加水の有無、第1の造粒機での添加水分値を制御することを特徴とする焼結用造粒原料の製造装置である。
 さらに、本発明は、微粉鉄鉱石を含有する焼結配合原料から焼結用造粒原料を製造する装置において:被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機と;この攪拌ほぐし機の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器と;この第1の測定器の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒する第1の造粒機と;この第1の造粒機の下流側に設けられ、第1の造粒機で造粒後の焼結用造粒原料を水分とともに転動造粒するペレタイザーと;このペレタイザーの下流側に設けられ、転動造粒後の焼結用造粒原料をさらに造粒し、その後端から粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に粉コークスを外装する第2の造粒機と;この第2の造粒機の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器と;を備え、前記第1の測定器で求めた粒度分布および水分分布と前記第2の測定器で求めた粒度分布および水分分布とに基づき、前記攪拌ほぐし機の攪拌条件、攪拌ほぐし機への添加水の有無、第1の造粒機での添加水分値を制御することを特徴とする焼結用造粒原料の製造装置である。
 また、本発明のより好ましい解決手段としては、
(1)前記焼結配合原料は、5~50mass%のペレットフィードやテーリング鉱である微粉鉄鉱石と、残部がシンターフィードである粉鉄鉱石の他、返鉱、珪石、石灰、生石灰の如き焼結原料であること、
(2)前記攪拌ほぐし機は、不均一に固化し粗粒化した焼結配合原料の解砕-分散に伴うほぐし機能をもつ解砕用高速攪拌機を用いること、
(3)前記解砕-分散に伴うほぐし機能は、ミキサー内で高速回転する攪拌羽根を用いることによって粒度と水分とを均一に分散させる機能であること、
(4)前記解砕-分散機能のための攪拌羽根の周速を、1~50m/sとすること、
(5)前記解砕-分散は、ペレタイザー内に滞留する配合原料転動層の表層部に面して配設されている解砕機にて行ない、該解砕機はペレタイザーの底面に対して垂直な方向に昇降可能であること、
が考えられる。
(1)本発明の焼結用造粒原料の製造装置における設備列によれば、ペレットフィードなどの難造粒性微粉鉄鉱石などを焼結原料用鉄鉱石として多量に使用することができるようになると共に、それでも粒径が揃って粒度分布小さく、高強度の焼結用造粒原料を有利に製造することができる。
(2)また、本発明の焼結用造粒原料の製造装置における設備列によれば、焼結配合原料の攪拌混合時に微粉鉄鉱石や水分の均一分散を効果的に果すことができるので造粒時に使用されるバインダーの量を削減することができる。
(3)本発明によって製造された焼結用造粒原料をDL焼結機に用いると、これが装入されたときに原料堆積層の密度の低減を図ることができ、ひていは通気性の向上に伴う焼成時間の短縮ならびに焼結生産性の向上を図ることができる。
微粉鉄鉱石配合の有無における擬似粒子の粒度分布の比較グラフである。 擬似(造粒)粒子の粒径ごとのペレットフィードの分布と水分の分散状況を示すグラフである。 従来の造粒粒子堆積層(a)と本発明の造粒粒子堆積層(b)の比較図である。 粉鉱石、微粉鉱石、超微粉鉱石の平均粒子径の比較グラフである。 (a)~(d)はそれぞれ焼結用造粒原料の製造装置における設備列を比較するための図である。
<本発明の焼結用造粒原料の製造装置における特徴事項について>
 図5(a)~(d)はそれぞれ焼結用造粒原料の製造装置における設備列を比較するための図であり、(a)は従来例に係る設備列の一例を、(b)、(c)、(d)は本発明例に係る設備列の一例を、それぞれ示している。図5(a)に示す従来例に係る設備列の一例では、配合槽から切り出された鉄鉱石粉や副原料粉を、まず、混合工程としてドラムミキサー1にて混合し、次いで、混合後の配合原料を造粒工程としてパン型ペレタイザー2等の造粒機に送給して造粒処理する。なお、混合工程および造粒工程では、それぞれ1~2mass%程度の水添加が行なわれ、所定の造粒水分になるように加湿調整されて所定の擬似粒子が製造される。なお、図示の3は、粉コークスや副原料の外装用のドラムミキサーである。また、図3(a)、(b)は、焼結用造粒原料である擬似粒子の構造的特徴を模式図として示したものである。
 本発明では、ヤードで存在する粗大粒子を確実に壊砕し、その後に造粒機に導入することが重要である。発明者らは、従来の造粒機の前において、微粉の凝集した粗大粒子を、せん断力により確実に崩壊せしめ、かつ原料全体に水分と微粉を再分配させ、核粒子と付着層からなる均一な二層構造の粒子構造を実現するために、高速で回転する羽根と、原料を混合可能なパン型容器からなる装置(今後、高速撹拌機と呼ぶ)の導入を想起した。
 以上のことから、本発明の焼結用造粒原料の製造装置は、造粒機での調湿前に、原料中に偏在した水分と微粉を、原料全体に均一に分散させることが重要である。したがって、高速攪拌機の設置位置は、造粒機よりも上流側に有ることが特徴となる。また、いかなる原料条件においても、適正な攪拌条件を実現するために、高速撹拌機の下流側には、原料をサンプリングし、粒度分布および水分分布を測定できるサンプラーを設置することが特徴となる。ここで、サンプラーの一例として、粒度分布測定機器と水分測定機器とからなる装置を例示することができるが、粒度および水分を測定できれば、これらに限定されるものではない。
 図5(b)に示す本発明例に係る焼結用造粒原料の製造装置の一例は、被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機としての攪拌機11と;この攪拌機11の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器としての第1のサンプラー(a1)と;この第1のサンプラー(a1)の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒し、その後端から石灰粉および粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に石灰粉と粉コークスを外装する造粒機としてのミキサー12と;このミキサー12の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器としての第2のサンプラー(a2)と;を備え、第1のサンプラー(a1)で求めた粒度分布および水分分布と第2のサンプラー(a2)で求めた粒度分布および水分分布とに基づき、攪拌機11の攪拌条件、攪拌機11への添加水の有無、ミキサー12での添加水分値を制御している。
 図5(c)に示す本発明例に係る焼結用造粒原料の製造装置の他の例は、被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機としての攪拌機11と;この攪拌機11の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器としての第1のサンプラー(a1)と;この第1のサンプラー(a2)の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒する第1の造粒機としての1次ミキサー13と;この1次ミキサー13の下流側に設けられ、1次ミキサー13により造粒された焼結用造粒原料をさらに造粒し、その後端から石灰粉および粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に石灰粉と粉コークスを外装する第2の造粒機としての2次ミキサー14と;この2次ミキサー14の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器としての第2のサンプラー(a2)と;を備え、第1のサンプラー(a1)で求めた粒度分布および水分分布と第2のサンプラー(a2)で求めた粒度分布および水分分布とに基づき、攪拌機11の攪拌条件、攪拌機11への添加水の有無、1次ミキサー13での添加水分値を制御している。
 図5(d)に示す本発明例に係る焼結用造粒原料の製造装置は、被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機としての攪拌機11と;この攪拌機11の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器としての第1のサンプラー(a1)と;この第1のサンプラー(a1)の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒する第1の造粒機としての1次ミキサー13と;この1次ミキサー13の下流側に設けられ、1次ミキサー13で造粒後の焼結用造粒原料を水分とともに転動造粒するペレタイザー15と;このペレタイザー15の下流側に設けられ、転動造粒後の焼結用造粒原料をさらに造粒し、その後端から粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に粉コークスを外装する第2の造粒機としての2次ミキサー14と;この2次ミキサー14の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器としての第2のサンプラー(a2)と;を備え、第1のサンプラー(a1)で求めた粒度分布および水分分布と第2のサンプラー(a2)で求めた粒度分布および水分分布とに基づき、攪拌機11の攪拌条件、攪拌機11への添加水の有無、1次ミキサー13での添加水分値を制御している。
 本発明に係る、図5(b)および図5(c)に示す装置では石灰粉および粉コークスを造粒粒子に外装し、図5(d)に示す装置では粉コークスを外装することで、造粒の完了した粒子の表面に、石灰石および粉コークスが、または、粉コークスが被覆される。本発明では、高速撹拌機11の導入により、造粒粒子の粒度分布はシャープとなり、水分・成分ともに均一分布であるため、外装後の造粒粒子も、核粒子・微粉・外装材といった、3層構造の粒子を得ることが出来る。
<本発明の特徴事項のうちの攪拌機について>
 本発明では、図5(a)に示す従来例のような、ドラムミキサーによる混合工程及びパンペレタイザーによる造粒工程からなる従来の焼結用造粒原料の製造装置の設備列に代えて、図5(b)に示す例では造粒機としてのミキサー12の前に、図5(c)および図5(d)に示す例では造粒機としての1次ミキサー13の前に、微粉鉄鉱石を含む焼結配合原料をまず、アイリッヒミキサーの如き高速攪拌機11を使って、該微粉鉄鉱石の均一分散(拡散)ならびに水分の均一分散処理を行っている。
 このように、シンターフィードである通常の粉鉄鉱石の他、前記ペレットフィードやテーリング鉱の如き微粉鉄鉱石(超微粉のテーリング鉱を含めて微粉鉄鉱石と言う)を多く含む焼結配合原料の場合、船からの荷降し、原料ヤードへの荷揚げ、数種類の粉・微粉鉄鉱石の混合処理であるベッティングの際に、微粉原料どうしが集まったにすぎない凝集体や粗大擬似粒子が不可避に形成されることが知られている。これをそのまま(直ちに)、ドラムミキサーに供給して混合処理や引き続きペレタイザー2にて造粒処理すると、結合強度の弱い粗大な凝集粒子や擬似粒子が不可避に発生し、粒径が不揃いで粒度分布幅の大きい焼結用造粒原料となる。
 そこで、本発明では、こうした微粉鉄鉱石を5mass%以上~50mass%以下含む焼結配合原料については、これを図5(b)~図5(d)に示す如く、造粒機としてのミキサー12または1次ミキサー13による造粒の前に、予め高速攪拌機11で微粉鉄鉱石と水分の均一分散を図る処理を施すことにしたのである。その理由は、少なくとも造粒処理の前段階で予め原料と水分の均一分散処理を行なうことが有効だと考えられたからである。なお、本発明に係る焼結配合原料には、上述した5~50mass%のペレットフィードやテーリング鉱である微粉鉄鉱石と、残部がシンターフィードである粉鉄鉱石の他、返鉱、珪石、石灰、生石灰などのその他の焼結原料とからなることが好ましい。
 以上説明したように、高速撹拌機11の目的は、粗大な造粒粒子の生成を抑止するために、粗大な造粒粒子の種となる微粉の凝集体を造粒前に壊砕することにある。微粉の凝集体を効率的に壊砕するためには、ミクロ的には、凝集体自身に、せん断力を加えて、直接微粉を剥離させることが有効である。
 解砕用高速攪拌機11の一例としては、たとえば、アイリッヒミキサー(日本アイリッヒ製)、ペレガイアミキサー(北川鉄工製)、プロシェアミキサー(太平洋機工)などを用いることができる。このうちアイリッヒミキサーは、「高速攪拌造粒」機として知られ、液体架橋による粒子の凝集、成長に伴う造粒機能を併せもつ設備である。
 ただし、本発明では、このアイリッヒミキサーの高速攪拌機能をより強調した設備構成のものを用いることにした。即ち、本発明に適合する高速攪拌機は、混合パンの回転中心に対し半径方向に少し偏心した位置に攪拌羽根を配置したものであって、該攪拌羽根と原料との供回りを防ぎながら原料を効率良く攪拌混合する際に、造粒作用よりもむしろ焼結配合原料および生成粒子の解砕作用を強化したものとすることによって、微粉鉄鉱石の均一分散、水分の均一分散が図れるようにしたものである。そのために、前記攪拌羽根の速度は、本来、高剪断力を発揮する高速から緩やかな攪拌によって造粒を図る低速まで自在に変更可能であるところ、特に本発明では、高速にして原料の解砕、微粉鉄鉱石の攪拌、水分の均一な拡散、分散と混合、一部で粒子(造粒のとなるもの)生成を促す等を行なうようにした設備構成にした点に特徴がある。なお、攪拌羽根を中~低速側で運転すると粒の成長、整粒が助長され、原料解砕作用が多少犠牲になると考えられるものである。
 本発明に特有な高速攪拌による解砕機能の強化の為に、前記攪拌羽根の周速は1~50m/s、好ましくは2~40m/s、さらに好ましくは5~30m/sにすることが推奨される。それは1m/s未満の遅い周速では攪拌効果が得られず好ましくないからである。なお、この場合において前記混合パンの回転速度については、いずれの場合であっても略15rpm程度の定速で運転され、攪拌羽根の枚数についても、8枚~32枚程度の通常のものが適用される。
 なお、前記混合パンは、原料全体を動かす回転式混合容器で、これによりミキサー内の全ての原料を常に流動させている。その他、この高速攪拌機には、スクレーパが設置されるのが普通である。このスクレーパは混合パンの上方に位置し、混合パンの内壁あるいは底面付近に留まろうとする原料を引き剥がし、絶えず攪拌羽根へと原料を送り込む役割を担っている。とくに、底部で滞留しようとする原料は、攪拌羽根最下端に取り付けられた底掻きチップによっても引き剥がされるが、前記スクレーパと併せて機能するようになっている。
 これに対し、前記攪拌羽根の周速を1m/s未満とし、攪拌羽根数8個としたアイリッヒミキサーを用いたケースでは、粗大な擬似粒子の発生が多く観察され、その擬似粒子の平均径は4.5mm程度と大きく、擬似粒子の重量割合は13%程度と、従来方法と差がなかった。
<本発明の特徴事項のうちのサンプラーについて>
 以下、図5(b)~(d)における、第1のサンプラー(a1)および第2のサンプラー(a2)について説明する。
 撹拌性能を正確に評価するためには、撹拌後の原料を統計学的に有意な標本数だけ採取する必要があるが、対象とする原料粒子のサイズは125μmから8mm程度まで幅広く存在しており、単純に標本同士のバラツキを工程評価するのは困難である。そこで、発明者らは、造粒粒子の粒度毎に及ぶ水分や粒度のミクロなバラツキを評価するために、サンプラー(a1)または(a2)にてサンプルを採取し、振動篩機のような装置を用いて粒度分布を測定し、さらに、赤外水分計のような装置を用いて粒度毎の水分を測定し、バラツキの評価を行った。
 その結果、ヤードでサンプリングした原料の平均水分は4.7mass%であったが、篩目4.8mm以上の粒子の水分は、平均水分を大きく上回った。一方、篩目4.8mm未満の粒子の水分は、平均水分を下回り、粒度毎に水分の分布が異なることが判った。一方、粒度分布に関しても、粗大な粒子が存在していることがわかった。
 次に、ヤード原料を高速撹拌機に導入し、撹拌羽根を250rpm(周速5m/s)、容器パン回転数を28rpmとして、10秒間、300秒間撹拌した原料について、水分分布、粒度分布を同様に測定した。
 その結果、撹拌時間の増加にともない、粗大粒子の水分が低下し、中間粒度の水分が増加した。300秒間以上撹拌した場合も、水分の分布は300秒間のものと大きな差は見られなかった。粒度分布に関しては、攪拌時間の増加にともない、粗大粒子の比率が低下し、中間粒度の比率が増加した。粗大粒子および中間粒子の断面構造を観察したところ、高速撹拌前の粗大粒子では、核粒子の周囲に微粉の層が厚く付着しており、中間粒子では、微粉のみで凝集している粒子や核粒子のみで存在している様子が見られた。撹拌後の造粒粒子においては、核粒子の周囲に薄く微粉が付着する、均一な二層構造を成していることが観察された。すなわち、撹拌操作により、高水分の微粉付着層が核粒子から剥離、および、微粉凝集体が壊砕され、粒子全体に均一に再分配されていることが示唆された。
 次に、水分のばらつきを評価するために、撹拌時間毎、各粒度毎の水分値より、混合度を定義した。撹拌羽根500rpm(周速9m/s)、撹拌時間600秒後の水分分布を基準として、バラツキσを定義した。つぎに、バラツキσの経時変化のグラフにおいて、撹拌初期の0秒から60秒までを指数関数でフィッティングし、係数を決定した。
 なお、時間tにおける水分の分散度σtを以下の式(1)で定義して、水分の混合度Mを以下(2)で算出した。また、M=100は均一混合を示し、M=0は不均一混合を示す。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
 なお、式(1)および式(2)において、サンプル粒子径: x(mm)、粒子径χのサンプル中の水分割合:C(x) (mass%)、粒子径χのサンプルの重量割合: f (x) (mass%)、サンプル数:m(区間)である。
 解析の結果、撹拌時間の増加にともない、バラツキは指数関数的に減少し、撹拌羽根の回転数が増加すると、混合速度も増加することがわかった。混合度90%、95%、99%となる撹拌時間において、その後ドラムミキサーで300秒間造粒したところ、混合度90%に比べて、95%、99%では造粒粒子径が増加し、95%と99%では造粒粒子径に大きな差は見られなかった。したがって、混合度95%を到達目標混合度として、撹拌機の条件を設定することが好ましいことがわかった。
つぎに、混合度95%を達成するための攪拌条件を、均一混合時間、周速、撹拌装置のスケールで整理した。均一混合時間は、上記の混合度の経時変化より求めた。撹拌装置のスケールは、代表径として撹拌容器の直径を用いた。解析の結果、均一混合時間は、装置径によらず、周速で良く整理されることがわかった。また、原料の水分が増加すると、均一混合時間は低下し、原料中の微粉比率が増加すると、均一混合時間は増加することがわかった。
 以上の事から、適正な攪拌条件を実現するためには、撹拌後サンプルの水分分布、粒子分布を測定して混合度を評価し、最終的な造粒粒子の水分分布、粒子分布の良否と比較しながら、撹拌羽根の回転数、撹拌時間を制御すればよいことが示唆された。それを実行するために、本発明では、図5(b)~図5(d)に示すように、所定の位置に第1のサンプラー12および第2のサンプラー13を設け、それらのサンプラーで求めた粒度分布および水分分布に基づき、攪拌装置11の攪拌条件をフィードバック制御することとした。
 本発明に係る焼結用造粒原料の製造装置における設備列によれば、原料中の水分および微粉を均一に分散させ、かつ、粒度分布の揃った均一な造粒粒子を得ることができる。そのため、得られた焼結用造粒原料を用いて焼結を行うことで、燃焼効率や融液生成条件の改善を通じて、焼結鉱強度の向上や生産性を向上させ、このことによって、溶銑製造コストの低減や高炉からのCO発生量の低減を図ることができる技術を得ることができる。
1 ドラムミキサー
2 パン型ペレタイザー
3 ドラムミキサー
11 攪拌機
12 ミキサー
13 1次ミキサー
14 2次ミキサー
(a1) 第1のサンプラー
(a2) 第2のサンプラー

Claims (8)

  1.  微粉鉄鉱石を含有する焼結配合原料から焼結用造粒原料を製造する装置において:
     被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機と;この攪拌ほぐし機の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器と;この第1の測定器の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒し、その後端から石灰粉および粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に石灰粉と粉コークスを外装する造粒機と;この造粒機の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器と;を備え、
     前記第1の測定器で求めた粒度分布および水分分布と前記第2の測定器で求めた粒度分布および水分分布とに基づき、前記攪拌ほぐし機の攪拌条件、攪拌ほぐし機への添加水の有無、造粒機での添加水分値を制御することを特徴とする焼結用造粒原料の製造装置。
  2.  微粉鉄鉱石を含有する焼結配合原料から焼結用造粒原料を製造する装置において:
     被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機と;この攪拌ほぐし機の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器と;この第1の測定器の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒する第1の造粒機と;この第1の造粒機の下流側に設けられ、第1の造粒機により造粒された焼結用造粒原料をさらに造粒し、その後端から石灰粉および粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に石灰粉と粉コークスを外装する第2の造粒機と;この第2の造粒機の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器と;を備え、
     前記第1の測定器で求めた粒度分布および水分分布と前記第2の測定器で求めた粒度分布および水分分布とに基づき、前記攪拌ほぐし機の攪拌条件、攪拌ほぐし機への添加水の有無、第1の造粒機での添加水分値を制御することを特徴とする焼結用造粒原料の製造装置。
  3.  微粉鉄鉱石を含有する焼結配合原料から焼結用造粒原料を製造する装置において:
     被処理焼結配合原料中の微粉鉄鉱石および水分を均一に分散させる攪拌ほぐし機と;この攪拌ほぐし機の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料をサンプリングして粒度分布および水分分布を求める第1の測定器と;この第1の測定器の下流側に設けられ、攪拌ほぐし処理後の焼結配合原料を水分添加の下で攪拌混合して造粒する第1の造粒機と;この第1の造粒機の下流側に設けられ、第1の造粒機で造粒後の焼結用造粒原料を水分とともに転動造粒するペレタイザーと;このペレタイザーの下流側に設けられ、転動造粒後の焼結用造粒原料をさらに造粒し、その後端から粉コークスを供給して、造粒後の焼結用造粒原料の粒子の表面に粉コークスを外装する第2の造粒機と;この第2の造粒機の下流側に設けられ、造粒、外装後の焼結用造粒原料をサンプリングして粒度分布および水分分布を求める第2の測定器と;を備え、
     前記第1の測定器で求めた粒度分布および水分分布と前記第2の測定器で求めた粒度分布および水分分布とに基づき、前記攪拌ほぐし機の攪拌条件、攪拌ほぐし機への添加水の有無、第1の造粒機での添加水分値を制御することを特徴とする焼結用造粒原料の製造装置。
  4.  前記焼結配合原料は、5~50mass%のペレットフィードやテーリング鉱である微粉鉄鉱石と、残部がシンターフィードである粉鉄鉱石の他、返鉱、珪石、石灰、生石灰の如き焼結原料であることを特徴とする請求項1~3のいずれか1項に記載の焼結用造粒原料の製造装置。
  5.  前記攪拌ほぐし機は、不均一に固化し粗粒化した焼結配合原料の解砕-分散に伴うほぐし機能をもつ解砕用高速攪拌機を用いることを特徴とする請求項1~4のいずれか1項に記載の焼結用造粒原料の製造装置。
  6.  前記解砕-分散に伴うほぐし機能は、ミキサー内で高速回転する攪拌羽根を用いることによって粒度と水分とを均一に分散させる機能であることを特徴とする請求項1~5いずれか1に記載の焼結用造粒原料の製造装置。
  7.  前記解砕―分散機能のための攪拌羽根の周速を、1~50m/sとすることを特徴とする請求項1~6のいずれか1項に記載の焼結用造粒原料の製造装置。
  8.  前記解砕-分散は、ペレタイザー内に滞留する配合原料転動層の表層部に面して配設されている解砕機にて行ない、該解砕機はペレタイザーの底面に対して垂直な方向に昇降可能であることを特徴とする請求項3~7のいずれか1項に記載の焼結用造粒原料の製造装置。
PCT/JP2015/059836 2014-04-01 2015-03-30 焼結用造粒原料の製造装置 WO2015152109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015529951A JP5846402B1 (ja) 2014-04-01 2015-03-30 焼結用造粒原料の製造装置
TR2016/13592T TR201613592T1 (tr) 2014-04-01 2015-03-30 Sinter için ham granüle malzeme üretim cihazı.
PH12016501874A PH12016501874A1 (en) 2014-04-01 2016-09-22 Apparatus for manufacturing raw granulated material for sinter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014075336 2014-04-01
JP2014-075336 2014-04-01

Publications (1)

Publication Number Publication Date
WO2015152109A1 true WO2015152109A1 (ja) 2015-10-08

Family

ID=54240432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059836 WO2015152109A1 (ja) 2014-04-01 2015-03-30 焼結用造粒原料の製造装置

Country Status (4)

Country Link
JP (1) JP5846402B1 (ja)
PH (1) PH12016501874A1 (ja)
TR (1) TR201613592T1 (ja)
WO (1) WO2015152109A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106886818A (zh) * 2015-12-16 2017-06-23 鞍钢股份有限公司 一种烧结混合料水分大小判定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018067367B1 (pt) * 2016-03-04 2022-05-03 Jfe Steel Corporation Método para fabricar minério sinterizado

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161281A (ja) * 1997-08-07 1999-03-05 Sumitomo Metal Ind Ltd 焼結原料の造粒方法
JP2013204058A (ja) * 2012-03-27 2013-10-07 Jfe Steel Corp 焼結鉱製造用擬似粒子の製造方法および焼結鉱の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161281A (ja) * 1997-08-07 1999-03-05 Sumitomo Metal Ind Ltd 焼結原料の造粒方法
JP2013204058A (ja) * 2012-03-27 2013-10-07 Jfe Steel Corp 焼結鉱製造用擬似粒子の製造方法および焼結鉱の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106886818A (zh) * 2015-12-16 2017-06-23 鞍钢股份有限公司 一种烧结混合料水分大小判定方法
CN106886818B (zh) * 2015-12-16 2020-09-01 鞍钢股份有限公司 一种烧结混合料水分大小判定方法

Also Published As

Publication number Publication date
TR201613592T1 (tr) 2017-02-21
JP5846402B1 (ja) 2016-01-20
PH12016501874A1 (en) 2017-01-09
JPWO2015152109A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP3902629B2 (ja) 焼結原料の事前処理方法
JP6508500B2 (ja) 焼結鉱の製造方法
JP6132114B2 (ja) 焼結用造粒原料の製造方法
JP2007247020A (ja) 微粉原料の混練方法
JP5846402B1 (ja) 焼結用造粒原料の製造装置
JP6256728B2 (ja) 焼結用造粒原料の製造装置
TWI596213B (zh) Sinter manufacturing method
JP2007077512A (ja) 焼結原料の事前処理方法
JP4786760B2 (ja) 焼結原料の事前処理方法
JP6468367B2 (ja) 焼結鉱の製造方法
JP4154914B2 (ja) 高炉用焼結鉱の製造方法
JP2014234545A (ja) 焼結用造粒原料の製造方法
JP6020823B2 (ja) 焼結用造粒原料の製造方法
JP2006312786A (ja) 焼結原料の事前処理方法
JP6954236B2 (ja) 炭材内装焼結鉱の製造方法及び製造設備
JP5979382B2 (ja) 焼結用造粒原料の製造方法およびその製造設備
WO2023233871A1 (ja) 焼結用造粒原料の製造方法および焼結鉱の製造方法
JP2009287122A (ja) 微粉原料の造粒方法
JPH06179928A (ja) 焼結原料の事前処理方法
JP2020015962A (ja) 焼結用原料の造粒方法
JPS5932532B2 (ja) 焼結原料の事前処理方法
JPH08295952A (ja) 焼結原料の事前処理方法
JP2007262454A (ja) 微粉原料の造粒方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015529951

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12016501874

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2016/13592

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15772584

Country of ref document: EP

Kind code of ref document: A1