WO2015151859A1 - 位置センサ - Google Patents

位置センサ Download PDF

Info

Publication number
WO2015151859A1
WO2015151859A1 PCT/JP2015/058469 JP2015058469W WO2015151859A1 WO 2015151859 A1 WO2015151859 A1 WO 2015151859A1 JP 2015058469 W JP2015058469 W JP 2015058469W WO 2015151859 A1 WO2015151859 A1 WO 2015151859A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
cladding layer
position sensor
optical waveguide
elastic modulus
Prior art date
Application number
PCT/JP2015/058469
Other languages
English (en)
French (fr)
Inventor
良真 吉岡
裕介 清水
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015151859A1 publication Critical patent/WO2015151859A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the present invention relates to a position sensor that optically detects a pressed position.
  • a position sensor that optically detects a pressed position has been proposed (see, for example, Patent Document 1).
  • a plurality of linear cores serving as optical paths are arranged in the vertical and horizontal directions, and a sheet-like optical waveguide is formed by covering the peripheral edge portions of the cores with a clad.
  • the light that has propagated through each core is detected by the light receiving element at the other end surface of each core.
  • the pressed part is recessed in the pressing direction and the core is crushed (the cross-sectional area of the core in the pressing direction is reduced).
  • the detection level of light at the light receiving element is lowered at the core of the pressing portion, the vertical and horizontal positions (coordinates) of the pressing portion can be detected.
  • a position sensor using an optical waveguide in order to increase the pressure detection sensitivity, it is necessary to form a thin core so that the core can be quickly crushed.
  • the core is thin, there is little light propagating in the core, and even if the light detection level at the light receiving element decreases due to pressing, the degree of the decrease is small, so the light receiving element cannot sense it and press May not be detected. That is, the conventional position sensor cannot sufficiently increase the pressure detection sensitivity.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a position sensor excellent in pressing detection sensitivity.
  • the position sensor of the present invention has a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores. Then, a sheet-like optical waveguide satisfying the following (A) and (B), a light emitting element connected to one end face of the core of the optical waveguide, and a light emitting element connected to the other end face of the core
  • a position sensor including a light receiving element that is emitted and reaches through a core, wherein a surface portion of an optical waveguide corresponding to the lattice-shaped core portion is formed in an input region, and a pressing point in the input region is It is configured to be specified by the attenuation of the received light intensity at the light receiving element due to the pressing.
  • the elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer, and in the pressed state of the surface of the sheet-like optical waveguide, The deformation rate of the cross section is smaller than the deformation rates of the cross sections of the over cladding layer and the under cladding layer.
  • the ratio (T / L) between the thickness (T) and the width (L) of the core is 2 or more.
  • the “deformation rate” in the above (A) is the ratio of the amount of change of each thickness at the time of pressing to the thickness before pressing of the core, the over cladding layer and the under cladding layer in the pressing direction.
  • the present inventors first conducted research on light propagation in the deformed portion of the core.
  • the core is not crushed by the above-mentioned pressing, rather than the core being crushed by the pressing as in the past. Therefore, the elastic modulus of the core was set to be larger than the elastic modulus of the under cladding layer and the over cladding layer. Then, the over clad layer was deformed so as to be crushed in the pressing direction, and the core was bent so as to sink into the under clad layer with almost no change in the cross-sectional shape (almost no crushed). And it was found that light leakage (scattering) from the core occurs due to the bending of the core.
  • the pressing position can be detected by increasing the elastic modulus of the core and preventing the core from being crushed by pressing so that the core is bent by pressing.
  • the present inventors conducted research on light leakage (scattering) at the portion where the core is bent as described above. As a result, it has been found that the thicker the core thickness (T), the easier it is for light to leak (easy to scatter).
  • the ratio (T / L) of the core thickness (T) to the width (L) is set to 2 or more, the core thickness (T) becomes relatively thick with respect to the width (L). Thus, it was found that light easily leaks (is easily scattered) at the portion where the core is bent as described above by pressing.
  • the pressure detection sensitivity can be increased.
  • the present invention was reached by finding that it is high.
  • the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer. Therefore, when the surface of the over clad layer of the optical waveguide is pressed, the deformation rate of the cross section of the core in the pressing direction is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer, and the core is almost crushed. And can be bent so as to sink into the undercladding layer. Since the ratio (T / L) of the core thickness (T) to the width (L) is set to 2 or more, the core thickness (T) is relatively set to the width (L). Light is easily leaked (scattered) at a thick portion where the core is bent as described above by pressing. Therefore, the position sensor of the present invention has excellent pressure detection sensitivity.
  • the core forming material is a resin composition prepared mainly with an epoxy resin containing 70 to 100% by weight of an epoxy resin having a softening point of 70 to 130 ° C. and an epoxy equivalent of 100 to 1200 g / eq.
  • the epoxy equivalent is as low as 100 to 1200 g / eq
  • the main component epoxy resin is an epoxy resin having a high softening point of 70 to 130 ° C. Since it is contained in a large amount of 70 to 100% by weight, the forming material hardly flows when the core is formed. Therefore, a core having a ratio (T / L) of 2 or more between the thickness (T) and the width (L) has an appropriate shape.
  • the 1st Embodiment of the position sensor of this invention is shown typically, (a) is the top view, (b) is the expanded sectional view. It is sectional drawing which shows the use condition of the said position sensor typically. (A), (b) is an expanded sectional view which shows typically the reflection angle of the light in the part where the core bent. (A)-(d) is explanatory drawing which shows the manufacturing method of an optical waveguide typically. It is an expanded sectional view showing typically a 2nd embodiment of a position sensor of the present invention. It is an expanded sectional view showing a 3rd embodiment of a position sensor of the present invention typically.
  • FIGS. 1 to (f) are enlarged plan views schematically showing a crossing form of lattice-like cores in the position sensor.
  • (A), (b) is an enlarged plan view which shows typically the course of the light in the cross
  • the position sensor of the present invention includes a sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores, A light emitting element connected to one end face of the core of the optical waveguide, and a light receiving element connected to the other end face of the core and emitted from the light emitting element and reaching through the core, and corresponding to the lattice-shaped core portion A surface portion of the optical waveguide is formed in the input region, and a pressing position in the input region is a position sensor specified by attenuation of received light intensity in the light receiving element by the pressing, and the optical waveguide has the following (A ) And (B) are satisfied.
  • the elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer, and in the pressed state of the surface of the sheet-like optical waveguide, The deformation rate of the cross section is smaller than the deformation rates of the cross sections of the over cladding layer and the under cladding layer.
  • the ratio (T / L) between the thickness (T) and the width (L) of the core is 2 or more.
  • FIG. 1 (a) is a plan view showing a first embodiment of the position sensor of the present invention
  • FIG. 1 (b) is an enlarged cross-sectional view of the central portion thereof.
  • the position sensor of this embodiment includes a rectangular sheet-shaped optical waveguide W in which a lattice-shaped core 2 is sandwiched between a rectangular sheet-shaped underclad layer 1 and an overcladding layer 3, and the lattice-shaped core 2.
  • a light emitting element 4 connected to one end face of the linear core 2 and a light receiving element 5 connected to the other end face of the linear core 2.
  • the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3.
  • the deformation rate of the cross section of the core 2 in the pressing direction is smaller than the deformation rate of the cross sections of the over cladding layer 3 and the under cladding layer 1. It is like that.
  • the ratio (T / L: aspect ratio) between the thickness (T) and the width (L) of the core is set to 2 or more.
  • the light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5.
  • the surface part of the over clad layer 3 corresponding to the part of the lattice-like core 2 is an input region.
  • the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2.
  • the number of cores 2 is omitted.
  • the arrow of Fig.1 (a) has shown the direction where light travels.
  • the elastic modulus of the core 2 is that of the under-cladding layer 1.
  • the elastic modulus and the elastic modulus of the over-cladding layer 3 are set to be larger than the elastic modulus.
  • the position sensor when the pressing position is detected by the position sensor, for example, as shown in a sectional view in FIG. 2, the position sensor is set so that the back surface of the under cladding layer 1 is in contact with the surface of a hard object such as a desk 30. Then, the portion of the input region of the over clad layer 3 is pressed with the pen tip 10a or the like. At this time, as described above, the core 2 bends so as to sink into the under-cladding layer 1 with almost no change in the cross-sectional shape (almost without being crushed). In the bent portion of the core 2, light leakage (scattering) from the core occurs due to the bending.
  • the light detection level at the light receiving element 5 is reduced, and the pressed position by the pen tip 10a or the like can be detected from the reduction in the light detection level.
  • the pressing position may be detected on the surface of the input area via a resin film, paper, or the like.
  • the elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. If the elastic modulus of the core 2 is too small, the core 2 may be crushed by the pressure of the pen tip 10a or the like due to the shape of the pen tip 10a or the like, and the position of the pen tip 10a or the like may not be detected properly. On the other hand, if the elastic modulus of the core 2 is too high, the core 2 may not bend sufficiently due to the pressure of the pen tip 10a or the like. Therefore, light leakage (scattering) from the core 2 does not occur, and the light detection level at the light receiving element 5 does not decrease, so that the position of the pen tip 10a may not be detected properly.
  • the elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa to less than 10 GPa, more preferably in the range of 1 MPa to less than 5 GPa. If the elastic modulus of the overcladding layer 3 is too small, the overcladding layer 3 is too soft and may be damaged by the pressure of the pen tip 10a due to the shape of the pen tip 10a or the like, and the core 2 cannot be protected. On the other hand, when the elastic modulus of the over clad layer 3 is too high, the core 2 is crushed and the position of the pen tip 10a or the like cannot be detected properly even if the pen tip 10a or the like is pressed.
  • the elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. If the elastic modulus of the underclad layer 1 is too small, the undercladding layer 1 is too soft and may not be continuously performed after being pressed with the pen tip 10a or the like and not returned to its original state. On the other hand, if the elastic modulus of the undercladding layer 1 is too high, even if the pen tip 10a or the like is pressed, it does not deform so as to be crushed.
  • the gap between the adjacent linear cores 2 can be set narrow. Furthermore, when the width (L) of the linear cores 2 is set to be thin, the arrangement density of the linear cores 2 can be increased, and the position accuracy of the detected pressed position can be increased.
  • the plurality of linear cores 2 includes a relay portion from the light emitting element 4 to the lattice portion, and a light receiving element from the lattice portion.
  • Up to 5 relay portions are arranged along the outer periphery of the lattice-like portion.
  • the gap between the adjacent linear cores 2 is set to be narrow and the width (L) of the core is set to be narrow, whereby the lattice shape is set.
  • the width of the relay part (frame-like part) arranged on the outer periphery of the part can be reduced, and the space of the position sensor can be saved.
  • the width of the relay portion in which 247 cores 2 are arranged in parallel from the lattice-shaped portion to the light receiving element 5 can be very narrow, about 3 cm in this embodiment.
  • the core 2 is thick (see the enlarged sectional view of FIG. 3A) and thin (see the enlarged sectional view of FIG. 3B). ]
  • the reflection angle ⁇ of the light shown by a chain line
  • the aspect ratio (T / L) between the thickness (T) and the width (L) of the core 2 is 2 or more as described above. Is set to This is also one of the major features of the present invention.
  • Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 having the above characteristics include photosensitive resin, thermosetting resin, and the like. From this point of view, it is preferable to use a photosensitive resin.
  • the refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3.
  • the refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • the material for forming the core 2 is, for example, an epoxy resin having a softening point in the range of 70 to 130 ° C. in the range of 70 to 100 from the viewpoint of facilitating formation of the aspect ratio of 2 or more as described above.
  • a resin composition containing an epoxy resin contained in the range of% by weight as the main component and having an epoxy equivalent in the range of 100 to 1200 g / eq is preferred. That is, when the epoxy equivalent is low in the range of 100 to 1200 g / eq, the forming material is rapidly cured during core formation, and the main component epoxy resin has a high softening point in the range of 70 to 130 ° C.
  • a more preferable material for forming the core 2 is mainly composed of an epoxy resin containing an epoxy resin having a softening point of 70 to 100 ° C. within a range of 80 to 100% by weight, and an epoxy equivalent of 100 to 400 g / eq. It is the resin composition prepared in the inside.
  • the said main component means the component which occupies the majority of the whole formation material of the core 2, and is the meaning including the case where the whole consists only of a main component.
  • a lattice-like core 2 is embedded in the surface portion of the sheet-like underclad layer 1, and the surface of the underclad layer 1 and the top surface of the core 2 face each other.
  • the sheet-like over clad layer 3 is formed in a state where the surface of the under clad layer 1 and the top surface of the core 2 are covered. Since the optical waveguide W having such a structure can make the over clad layer 3 have a uniform thickness, it is easy to detect the pressing position in the input region.
  • the thickness of each layer is set, for example, in the range of 10 to 500 ⁇ m for the under cladding layer 1, in the range of 5 to 100 ⁇ m for the core 2, and in the range of 1 to 200 ⁇ m for the over cladding layer 3.
  • the over clad layer 3 is formed into a sheet having a uniform thickness.
  • the core 2 is formed in a predetermined pattern on the upper surface of the over clad layer 3 in a protruding state.
  • the under cladding layer 1 is formed on the upper surface of the over cladding layer 3 so as to cover the core 2.
  • the obtained structure is turned upside down so that the under cladding layer 1 is on the lower side and the over cladding layer 3 is on the upper side. In this way, the optical waveguide W is obtained.
  • the under cladding layer 1, the core 2 and the over cladding layer 3 are produced by a manufacturing method corresponding to each forming material.
  • FIG. 5 is an enlarged view of the cross section of the central portion of the second embodiment of the position sensor of the present invention.
  • the structure of the optical waveguide W is upside down with respect to the first embodiment shown in FIG. That is, the surface of the under-cladding layer 1 having a uniform thickness is formed in a predetermined pattern with the core 2 protruding, and the over-cladding layer is formed on the surface of the under-cladding layer 1 with the core 2 covered. 3 is formed.
  • the other parts are the same as those of the first embodiment shown in FIG. 1B, and the same reference numerals are given to the same parts.
  • the position sensor of this embodiment also has the same operations and effects as those of the first embodiment shown in FIG.
  • an elastic layer R such as a rubber layer may be provided on the lower surface of the under cladding layer 1.
  • the under-cladding layer 1, the core 2 and the over-cladding layer 3 recover not only to their own restoring force but also to the original shape by utilizing the elastic force of the elastic layer R. can do.
  • the under clad layer 1 may be made of the same material as that of the elastic layer R, and a laminate including the under clad layer 1 and the elastic layer R may be handled as one layer.
  • each intersection of the lattice-like core 2 is normally formed in a state where all four intersecting directions are continuous, as shown in an enlarged plan view in FIG.
  • the gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3.
  • the width d of the gap G exceeds 0 (it is sufficient if the gap G is formed) and is usually set to 20 ⁇ m or less.
  • two intersecting directions are discontinuous. As shown in FIG.
  • the three intersecting directions may be discontinuous, or as shown in FIG. 7 (f), all the four intersecting directions may be discontinuous. It may be discontinuous.
  • the light crossing loss can be reduced. That is, as shown in FIG. 8 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 8 (a)] is focused, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface is large [two points in FIG. (See chain line arrow). Such light transmission also occurs in the direction opposite to the above intersecting direction (downward in FIG. 8A). On the other hand, as shown in FIG.
  • Component a 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Ingredient b 70 weight part of epoxy resins (the Daicel company make, EHPE3150).
  • Component c 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
  • Component d 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
  • the softening point was determined by the ring and ball method using an automatic softening point tester (Tanaka Kagaku Kogyo Seisakusho, ASP-5).
  • the epoxy equivalent after preparation was determined by potentiometric titration using a potentiometric titrator (AT-610, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • [Formation material of under cladding layer] Component e: 75 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.). Component f: 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007). Component g: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K). Component h: 50 parts by weight of ethyl lactate (Wako Pure Chemical Industries, Ltd.) By mixing these components e to h, a material for forming the under cladding layer was prepared.
  • an epoxy resin Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.
  • Component f 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
  • Component g 4 parts by weight of a photoacid generator (manufactured by Sun Apro
  • optical waveguide First, an over clad layer was formed on the surface of a glass substrate by spin coating using the over clad forming material. Next, a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material. Next, an under clad layer was formed on the upper surface of the over clad layer by spin coating using the under clad forming material so as to cover the core. And the said over clad layer was peeled from the said glass-made base materials. Next, the under cladding layer was bonded to the surface of the aluminum plate via an adhesive. In this manner, optical waveguides of Examples 1 to 3 and Comparative Examples 1 and 2 having the dimensions and elastic modulus shown in Table 1 below were produced on the surface of an aluminum plate via an adhesive.
  • a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of the optical waveguide, and a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core.
  • a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core.
  • the width (L) of the linear core is actually less than 20 ⁇ m
  • the gap between adjacent cores is less than 20 ⁇ m
  • the core thickness (T) and width (L) An optical waveguide having a high core arrangement density with an aspect ratio (T / L) of 2 or more can be produced.
  • the formation state of the core was confirmed with an optical microscope after the core was formed. Note that the arrangement density of the cores of Comparative Examples 1 and 2 is lower than that of Examples 1 to 3.
  • Example 3 when the results of the detection sensitivity in Table 1 are compared between Example 3 and Comparative Example 1, the pressed position can be detected in Example 3 even though the width of the core is substantially the same. In 1, the pressed position could not be detected. It can be seen that the difference in the results depends on the thickness of the core.
  • the materials 2 to 7 shown in Table 2 below may be used as the core forming material.
  • Example 1 to 3 the pressure detection sensitivity was evaluated in a state where paper was placed on the surface of the input region of the position sensor via the PET film, but the PET film and paper were not placed. Even in the state, evaluation results showing the same tendency as in Examples 1 to 3 were obtained.
  • the optical waveguide is shown in a sectional view in FIG. 1B.
  • the optical waveguide is shown in the sectional view in FIG. 4 as in the first to third embodiments.
  • An evaluation result showing the tendency was obtained.
  • evaluation results showing the same tendency as in Examples 1 to 3 were obtained even when a rubber elastic layer was provided on the lower surface of the under cladding layer of these optical waveguides.
  • the position sensor of the present invention can be used when detecting the pressed position to increase the position accuracy of the detected pressed position and also increase the pressure detection sensitivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 検知する押圧位置の位置精度に優れているとともに、押圧の検知感度にも優れている位置センサを提供する。この位置センサは、格子状のコア2が四角形シート状のアンダークラッド層1とオーバークラッド層3とで挟持された四角形シート状の光導波路Wと、上記格子状のコア2を構成する線状のコア2の一端面に接続された発光素子4と、上記線状のコア2の他端面に接続された受光素子5とを備えている。そして、コア2の弾性率が、アンダークラッド層1およびオーバークラッド層2よりも大きく、コア2の厚みと幅との比が2以上に設定されている。

Description

位置センサ
 本発明は、押圧位置を光学的に検知する位置センサに関するものである。
 従来より、押圧位置を光学的に検知する位置センサが提案されている(例えば、特許文献1参照)。このものは、光路となる複数の線状のコアを縦横方向に配置し、それらコアの周縁部をクラッドで覆うことによりシート状の光導波路を形成し、上記各コアの一端面に発光素子からの光を入射させ、各コア内を伝播してきた光を、各コアの他端面で受光素子により検出するようになっている。そして、上記コアの縦横配置部分に対応する、光導波路の表面の一部をペン先等で押圧すると、その押圧部分が押圧方向に凹んでコアがつぶれ(押圧方向のコアの断面積が小さくなり)、その押圧部分のコアでは、上記受光素子での光の検出レベルが低下することから、上記押圧部分の縦横位置(座標)を検知できるようになっている。
特開平8-234895号公報
 上記のような光導波路を用いた位置センサにおいて、押圧の検知感度を高くするためには、すぐにコアがつぶれるよう、コアを薄く形成する必要がある。しかしながら、コアが薄いと、コア内を伝播する光が少なく、押圧により受光素子での光の検出レベルが低下しても、その低下の度合が小さいため、受光素子がそれを感知できず、押圧を検知できないことがある。すなわち、上記従来の位置センサでは、押圧の検知感度を充分に高めることができない。
 本発明は、このような事情に鑑みなされたもので、押圧の検知感度に優れている位置センサの提供をその目的とする。
 上記の目的を達成するため、本発明の位置センサは、格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有し、下記の(A)および(B)を満たしているシート状の光導波路と、この光導波路のコアの一端面に接続された発光素子と、上記コアの他端面に接続され上記発光素子から発せられコアを経て到達する光の受光素子とを備えている位置センサであって、上記格子状のコア部分に対応する光導波路の表面部分が入力領域に形成され、その入力領域における押圧個所がその押圧による上記受光素子での受光強度の減衰により特定されるという構成をとる。
(A)上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状の光導波路の表面の押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている。
(B)上記コアの厚み(T)と幅(L)との比(T/L)が2以上である。
 なお、本発明において、上記(A)の「変形率」とは、押圧方向における、コア,オーバークラッド層およびアンダークラッド層の押圧前の各厚みに対する、押圧時の各厚みの変化量の割合をいう。
 本発明者らは、押圧の検知感度を高めるべく、まず、コアの変形部分での光伝播について、研究を重ねた。その研究の過程で、従来のように、押圧でコアがつぶれるようにするのではなく、逆に、上記押圧でコアがつぶれないようにすることを着想した。そこで、コアの弾性率を、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定した。すると、オーバークラッド層は、押圧方向につぶれるように変形し、コアは、断面形状を殆ど変化させることなく(殆どつぶれることなく)、アンダークラッド層に沈むように曲がった。そして、そのコアの曲がりが原因で、コアからの光の漏れ(散乱)が発生することがわかった。すなわち、押圧部分のコアでは、光の漏れ(散乱)により、受光素子での光の検出レベル(受光量)が低下し、この光の検出レベルの低下から、押圧位置を検知することができるのである。このように、コアの弾性率を大きくし、押圧でコアがつぶれないようにしても、押圧でコアが曲がるようにすることにより、押圧位置を検知できることを突き止めた。
 ついで、本発明者らは、上記のようにコアが曲がった部分の光の漏れ(散乱)について、研究を重ねた。その結果、コアの厚み(T)が厚い程、光が漏れ易く(散乱し易く)なることを突き止めた。そして、コアの厚み(T)と幅(L)との比(T/L)が2以上となるように設定すると、コアの厚み(T)が幅(L)に対し相対的に厚くなることから、押圧によりコアが上記のように曲がった部分では、光が漏れ易く(散乱し易く)なることを突き止めた。
 このように、線状のコアの弾性率を、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定し、さらに、線状のコアを厚く形成することにより、押圧の検知感度が高くなることを見出し、本発明に到達した。
 本発明の位置センサは、コアの弾性率が、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定されている。そのため、光導波路のオーバークラッド層の表面を押圧したときに、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなり、コアを、殆どつぶさないようにして、アンダークラッド層に沈むように曲げることができる。そして、コアの厚み(T)と幅(L)との比(T/L)が2以上となるように設定されているため、コアの厚み(T)が幅(L)に対し相対的に厚く、押圧によりコアが上記のように曲がった部分では、光が漏れ(散乱し)易くなっている。そのため、本発明の位置センサは、押圧の検知感度に優れたものとなっている。
 特に、上記コアの形成材料が、軟化点70~130℃のエポキシ樹脂を70~100重量%含有するエポキシ樹脂を主成分とし、エポキシ当量が100~1200g/eqに調製された樹脂組成物である場合には、エポキシ当量が100~1200g/eqと低いことから、コア形成時に、その形成材料の硬化が速く、しかも、主成分のエポキシ樹脂が、軟化点が70~130℃と高いエポキシ樹脂を70~100重量%と多く含有することから、コア形成時に、その形成材料が殆ど流動しない。そのため、上記厚み(T)と幅(L)との比(T/L)が2以上のコアが、適正な形状となっている。
本発明の位置センサの第1の実施の形態を模式的に示し、(a)はその平面図であり、(b)はその拡大断面図である。 上記位置センサの使用状態を模式的に示す断面図である。 (a),(b)は、コアの曲がった部分での光の反射角度を模式的に示す拡大断面図である。 (a)~(d)は、光導波路の製法を模式的に示す説明図である。 本発明の位置センサの第2の実施の形態を模式的に示す拡大断面図である。 本発明の位置センサの第3の実施の形態を模式的に示す拡大断面図である。 (a)~(f)は、上記位置センサにおける格子状のコアの交差形態を模式的に示す拡大平面図である。 (a),(b)は、上記格子状のコアの交差部における光の進路を模式的に示す拡大平面図である。
 本発明の位置センサは、格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状の光導波路と、この光導波路のコアの一端面に接続された発光素子と、上記コアの他端面に接続され上記発光素子から発せられコアを経て到達する光の受光素子とを備え、上記格子状のコア部分に対応する光導波路の表面部分が入力領域に形成され、その入力領域における押圧個所がその押圧による上記受光素子での受光強度の減衰により特定される位置センサであって、上記光導波路が下記の(A)および(B)を満たしている。
(A)上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状の光導波路の表面の押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている。
(B)上記コアの厚み(T)と幅(L)との比(T/L)が2以上である。
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。
 図1(a)は、本発明の位置センサの第1の実施の形態を示す平面図であり、図1(b)は、その中央部の断面を拡大した図である。この実施の形態の位置センサは、格子状のコア2が四角形シート状のアンダークラッド層1とオーバークラッド層3とで挟持された四角形シート状の光導波路Wと、上記格子状のコア2を構成する線状のコア2の一端面に接続された発光素子4と、上記線状のコア2の他端面に接続された受光素子5とを備えている。そして、上記コア2の弾性率が、上記アンダークラッド層1の弾性率および上記オーバークラッド層3の弾性率よりも大きく設定されている。これにより、上記四角形シート状の光導波路Wの表面を押圧したときに、その押圧方向のコア2の断面の変形率が、オーバークラッド層3およびアンダークラッド層1の断面の変形率よりも小さくなるようになっている。また、上記コアの厚み(T)と幅(L)との比(T/L:アスペクト比)が2以上となるように設定されている。
 また、上記発光素子4から発光された光は、上記コア2の中を通り、上記受光素子5で受光されるようになっている。そして、格子状のコア2の部分に対応するオーバークラッド層3の表面部分が、入力領域となっている。なお、図1(a)では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示している。また、図1(a)では、コア2の数を略して図示している。そして、図1(a)の矢印は、光の進む方向を示している。
 上記のように、格子状のコア2がアンダークラッド層1およびオーバークラッド層3で挟持されたシート状の光導波路Wを有する位置センサにおいて、上記コア2の弾性率が、上記アンダークラッド層1の弾性率および上記オーバークラッド層3の弾性率よりも大きく設定されていることが、本発明の大きな特徴の一つである。このような光導波路Wを有することにより、上記入力領域の部分を押圧したときに、その押圧方向の断面では、弾性率の小さいオーバークラッド層3がつぶれるように変形し、弾性率の大きいコア2は、断面形状を殆ど変化させることなく(殆どつぶれることなく)、弾性率の小さいアンダークラッド層1に沈むように曲がるようになっている。
 すなわち、上記位置センサにより押圧位置を検知する際には、例えば、図2に断面図で示すように、位置センサを、アンダークラッド層1の裏面が机30等の硬い物の表面に接するようにして載置した状態で、オーバークラッド層3の入力領域の部分を、ペン先10a等で押圧する。このとき、上記のように、コア2は、断面形状を殆ど変化させることなく(殆どつぶれることなく)、アンダークラッド層1に沈むように曲がる。そのコア2の曲がった部分では、その曲がりが原因で、コアからの光の漏れ(散乱)が発生する。そのため、ペン先10a等で押圧されたコア2では、受光素子5での光の検出レベルが低下し、その光の検出レベルの低下から、ペン先10a等による押圧位置を検知することができる。なお、上記押圧位置の検知は、上記入力領域の表面に、樹脂フィルム,紙等を介して行ってもよい。
 上記コア2の弾性率は、1GPa~10GPaの範囲内であることが好ましく、より好ましくは、2GPa~5GPaの範囲内である。コア2の弾性率が小さすぎると、ペン先10a等の形状により、そのペン先10a等の押圧で、コア2がつぶれる場合があり、ペン先10a等の位置を適正に検知できないおそれがある。一方、コア2の弾性率が高すぎると、ペン先10a等の押圧で、コア2が充分に曲がらない場合がある。そのため、コア2からの光の漏れ(散乱)が発生せず、受光素子5での光の検出レベルが低下しなくなることから、ペン先10aの位置を適正に検知できないおそれがある。
 上記オーバークラッド層3の弾性率は、0.1MPa以上10GPa未満の範囲内であることが好ましく、より好ましくは、1MPa以上5GPa未満の範囲内である。オーバークラッド層3の弾性率が小さすぎると、柔らかすぎて、ペン先10a等の形状により、そのペン先10a等の押圧で、破損する場合があり、コア2を保護することができなくなる。一方、オーバークラッド層3の弾性率が高すぎると、ペン先10a等の押圧によっても、つぶれるように変形しなくなり、コア2がつぶれ、ペン先10a等の位置を適正に検知できないおそれがある。
 上記アンダークラッド層1の弾性率は、0.1MPa~1GPaの範囲内であることが好ましく、より好ましくは、1MPa~100MPaの範囲内である。アンダークラッド層1の弾性率が小さすぎると、柔らかすぎて、ペン先10a等で押圧した後、元の状態に戻らず、連続的に行えない場合がある。一方、アンダークラッド層1の弾性率が高すぎると、ペン先10a等の押圧によっても、つぶれるように変形しなくなり、コア2がつぶれ、ペン先10a等の位置を適正に検知できないおそれがある。
 ここで、上記のようにコア2の弾性率を大きくすることにより、押圧でコア2が殆どつぶれないことから、押圧でコア2は幅方向に殆ど広がらないようになる。そのため、この実施の形態では、隣り合う線状コア2の間の隙間を狭く設定することができる。さらに、線状のコア2の幅(L)を細く設定すると、線状のコア2の配置密度を高くすることができ、検知する押圧位置の位置精度を高めることができる。
 また、この実施の形態では、図1(a)に示すように、複数の線状のコア2は、発光素子4から前記格子状の部分までの中継部分と、その格子状の部分から受光素子5までの中継部分とが、上記格子状の部分の外周に沿った状態で配置されている。このようなコア2の配置を有する位置センサでは、上記のように、隣り合う線状コア2の間の隙間を狭く設定するとともに、コアの幅(L)を細く設定することにより、上記格子状の部分の外周に配置された上記中継部分(枠状部分)の幅を狭くすることができ、位置センサの省スペース化を図ることができる。例えば、上記格子状の部分から受光素子5まで247本のコア2を並列させた上記中継部分の幅は、この実施の形態では約3cmと非常に狭くすることができる。
 また、上記コア2の曲がった部分での光の漏れ(散乱)について、コア2が厚い〔図3(a)の拡大断面図参照〕場合と薄い場合〔図3(b)の拡大断面図参照〕とを比較すると、コア2が厚い方が、光(鎖線で図示)の反射角度αが大きくなることから、光が漏れ易く(散乱し易く)なっている。すなわち、コア2が厚い方が、押圧を検知し易くなっている。そこで、この実施の形態では、押圧の検知感度を高めるために、先に述べたように、コア2の厚み(T)と幅(L)とのアスペクト比(T/L)が2以上となるように設定されている。このことも、本発明の大きな特徴の一つである。
 上記のような特性を有するコア2,アンダークラッド層1およびオーバークラッド層3の形成材料としては、例えば、感光性樹脂,熱硬化性樹脂等があげられ、なかでも、光導波路Wの作製容易性の観点から、感光性樹脂とすることが好ましい。コア2の屈折率は、アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。その屈折率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。
 特に、コア2の形成材料は、上記のようにアスペクト比が2以上となるように形成することが容易になる観点から、例えば、軟化点70~130℃の範囲内のエポキシ樹脂を70~100重量%の範囲内で含有するエポキシ樹脂を主成分とし、エポキシ当量が100~1200g/eqの範囲内に調製されている樹脂組成物であることが好ましい。すなわち、エポキシ当量が100~1200g/eqの範囲内と低いと、コア形成時に、その形成材料の硬化が速く、しかも、主成分のエポキシ樹脂が、軟化点が70~130℃の範囲内と高いエポキシ樹脂を70~100重量%と多く含有すると、コア形成時に、コア2の形成材料が殆ど流動しない。より好ましいコア2の形成材料は、軟化点70~100℃の範囲内のエポキシ樹脂を80~100重量%の範囲内で含有するエポキシ樹脂を主成分とし、エポキシ当量が100~400g/eqの範囲内に調製されている樹脂組成物である。なお、上記主成分とは、コア2の形成材料全体の過半を占める成分のことをいい、全体が主成分のみからなる場合も含める趣旨である。
 また、この実施の形態の光導波路Wは、シート状のアンダークラッド層1の表面部分に、格子状のコア2が埋設されて、上記アンダークラッド層1の表面とコア2の頂面とが面一に形成され、それらアンダークラッド層1の表面とコア2の頂面とを被覆した状態で、シート状のオーバークラッド層3が形成されたものとなっている。このような構造の光導波路Wは、オーバークラッド層3を均一厚みにすることができることから、上記入力領域における押圧位置を検知し易くなっている。各層の厚みは、例えば、アンダークラッド層1が10~500μmの範囲内、コア2が5~100μmの範囲内、オーバークラッド層3が1~200μmの範囲内に設定される。
 上記光導波路Wの製法の一例について説明する。まず、図4(a)に示すように、オーバークラッド層3を均一厚みのシート状に形成する。ついで、図4(b)に示すように、そのオーバークラッド層3の上面に、コア2を、突出した状態で所定パターンに形成する。つぎに、図4(c)に示すように、そのコア2を被覆するように、上記オーバークラッド層3の上面に、アンダークラッド層1を形成する。そして、図4(d)に示すように、その得られた構造体を上下逆にし、アンダークラッド層1を下側、オーバークラッド層3を上側にする。このようにして、上記光導波路Wが得られる。なお、上記アンダークラッド層1,コア2およびオーバークラッド層3は、それぞれの形成材料に応じた製法により作製される。
 図5は、本発明の位置センサの第2の実施の形態の中央部の断面を拡大した図である。この実施の形態では、光導波路Wの構造が、図1(b)に示す第1の実施の形態と上下逆になっている。すなわち、均一厚みのシート状のアンダークラッド層1の表面に、コア2が突出した状態で所定パターンに形成され、そのコア2を被覆した状態で、上記アンダークラッド層1の表面に、オーバークラッド層3が形成されたものとなっている。それ以外の部分は、図1(b)に示す第1の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、この実施の形態の位置センサも、図1(b)に示す第1の実施の形態と同様の作用・効果を奏する。
 また、図6に断面図に示すように、上記各実施の形態において、アンダークラッド層1の下面に、ゴム層等の弾性層Rを設けてもよい。この場合、押圧を解除した後、アンダークラッド層1,コア2およびオーバークラッド層3は、それ自体の復元力だけでなく、上記弾性層Rの弾性力をも利用して、元の形状に回復することができる。また、アンダークラッド層1を上記弾性層Rと同じ形成材料からなるものとし、それらアンダークラッド層1と弾性層Rとからなる積層体を一つの層として扱ってもよい。
 なお、上記各実施の形態において、格子状のコア2の各交差部は、通常、図7(a)に拡大平面図で示すように、交差する4方向の全てが連続した状態に形成されているが、他でもよい。例えば、図7(b)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよい。上記隙間Gは、アンダークラッド層1またはオーバークラッド層3の形成材料で形成されている。その隙間Gの幅dは、0を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。それと同様に、図7(c),(d)に示すように、交差する2方向〔図7(c)は対向する2方向、図7(d)は隣り合う2方向〕が不連続になっているものでもよいし、図7(e)に示すように、交差する3方向が不連続になっているものでもよいし、図7(f)に示すように、交差する4方向の全てが不連続になっているものでもよい。さらに、図7(a)~(f)に示す上記交差部のうちの2種類以上の交差部を備えた格子状としてもよい。すなわち、本発明において、複数の線状のコア2により形成される「格子状」とは、一部ないし全部の交差部が上記のように形成されているものを含む意味である。
 なかでも、図7(b)~(f)に示すように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができる。すなわち、図8(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図8(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面での反射角度が大きいことから、コア2を透過する〔図8(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図8(a)では下方向〕でも発生する。これに対し、図8(b)に示すように、交差する1方向〔図8(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図8(a)においてコア2を透過する光の一部は、上記界面での反射角度が小さくなることから、透過することなく、その界面で反射し、コア2を進み続ける〔図8(b)の二点鎖線の矢印参照〕。このことから、先に述べたように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができるのである。
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。
〔オーバークラッド層の形成材料〕
 成分a:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
 成分b:エポキシ樹脂(ダイセル社製、EHPE3150)70重量部。
 成分c:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分d:乳酸エチル(和光純薬工業社製)100重量部。
 これら成分a~dを混合することにより、オーバークラッド層の形成材料を調製した。
〔コアの形成材料〕
 主成分として、エポキシ樹脂(新日鐵化学社製、KI-3000-4:エポキシ当量105g/eq、軟化点70℃)のみを準備し、その主成分100重量部と、乳酸エチル(和光純薬工業社製、溶剤)50重量部と、光酸発生剤(ADEKA社製、Sp-170)1重量部とを混合することにより、コアの形成材料を調製した。なお、上記軟化点は、自動軟化点試験器(田中科学機器製作社製、ASP-5)を用いて、環球法により求めた。また、調製後のエポキシ当量は、電位差滴定装置(京都電子工業社製、AT-610)を用いて、電位差滴定法により求めた。
〔アンダークラッド層の形成材料〕
 成分e:エポキシ樹脂(四日市合成社製、エポゴーセーPT)75重量部。
 成分f:エポキシ樹脂(三菱化学社製、JER1007)25重量部。
 成分g:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分h:乳酸エチル(和光純薬工業社製)50重量部。
 これら成分e~hを混合することにより、アンダークラッド層の形成材料を調製した。
〔光導波路の作製〕
 まず、ガラス製基材の表面に、上記オーバークラッドの形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。ついで、上記オーバークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、格子状のコアを形成した。つぎに、上記コアを被覆するように、上記オーバークラッド層の上面に、上記アンダークラッドの形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。そして、上記オーバークラッド層を上記ガラス製基材から剥離した。ついで、接着剤を介して、アルミニウム板の表面に、上記アンダークラッド層を接着した。このようにして、アルミニウム板の表面に、接着剤を介して、下記の表1に示す寸法および弾性率を有する実施例1~3および比較例1,2の光導波路を作製した。
〔位置センサの作製〕
 上記光導波路のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、コアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続し、実施例1~3および比較例1,2の位置センサを作製した。
〔位置センサの評価:押圧の検知感度〕
 上記各位置センサの入力領域の表面に、PETフィルム(厚み50μm)を介して紙(厚み80μm)を載置した。そして、その紙の表面に、先端直径0.5mmのボールペン先で0.7Nの荷重をかけた。その結果、押圧位置が検知できたものを、押圧の検知感度に優れていると評価し○を、押圧位置が検知できなかったものを、押圧の検知感度に劣ると評価し×を、下記の表1に示した。
Figure JPOXMLDOC01-appb-T000001
 上記実施例1~3のように、実際に、線状のコアの幅(L)が20μm未満で、隣り合うコアの間の隙間が20μm未満で、コアの厚み(T)と幅(L)とのアスペクト比(T/L)が2以上となる、コアの配置密度が高い光導波路を作製することができた。そのコアの形成状態は、コア形成後、光学顕微鏡にて確認した。なお、比較例1,2のコアの配置密度は、実施例1~3と比較すると、低くなっている。
 さらに、上記表1の検知感度の結果について、実施例3と比較例1とを比較すると、コアの幅は略同じであるにもかかわらず、実施例3では、押圧位置が検知でき、比較例1では、押圧位置が検知できなかった。その結果の違いは、コアの厚みに依存していることがわかる。
 また、コアの形成材料として、上記形成材料(下記の表2に材料1として示した)の他に、下記の表2に示す材料2~7を用いても、配置密度の高い格子状のコアを形成することができた。
Figure JPOXMLDOC01-appb-T000002
 さらに、上記実施例1~3では、位置センサの入力領域の表面に、PETフィルムを介して紙を載置した状態で、押圧の検知感度を評価したが、それらPETフィルムおよび紙を載置しない状態でも、上記実施例1~3と同様の傾向を示す評価結果が得られた。
 また、上記実施例1~3では、光導波路を図1(b)に断面図で示すものとしたが、光導波路を図4に断面図で示すものとしても、上記実施例1~3と同様の傾向を示す評価結果が得られた。さらに、それら光導波路のアンダークラッド層の下面に、ゴム製の弾性層を設けても、上記実施例1~3と同様の傾向を示す評価結果が得られた。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の位置センサは、押圧位置を検知する際に、その検知する押圧位置の位置精度を高めるとともに、押圧の検知感度も高める場合に利用可能である。
 W 光導波路
 1 アンダークラッド層
 2 コア
 3 オーバークラッド層
 4 発光素子
 5 受光素子

Claims (2)

  1.  格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有し、下記の(A)および(B)を満たしているシート状の光導波路と、
     この光導波路のコアの一端面に接続された発光素子と、
     上記コアの他端面に接続され上記発光素子から発せられコアを経て到達する光の受光素子と
    を備えている位置センサであって、
    上記格子状のコア部分に対応する光導波路の表面部分が入力領域に形成され、その入力領域における押圧個所がその押圧による上記受光素子での受光強度の減衰により特定される位置センサ。
    (A)上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状の光導波路の表面の押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている。
    (B)上記コアの厚み(T)と幅(L)との比(T/L)が2以上である。
  2.  上記コアの形成材料が、軟化点70~130℃のエポキシ樹脂を70~100重量%含有するエポキシ樹脂を主成分とし、エポキシ当量が100~1200g/eqに調製された樹脂組成物である請求項1記載の位置センサ。
PCT/JP2015/058469 2014-04-03 2015-03-20 位置センサ WO2015151859A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-076894 2014-04-03
JP2014076894A JP2015197879A (ja) 2014-04-03 2014-04-03 位置センサ

Publications (1)

Publication Number Publication Date
WO2015151859A1 true WO2015151859A1 (ja) 2015-10-08

Family

ID=54240189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058469 WO2015151859A1 (ja) 2014-04-03 2015-03-20 位置センサ

Country Status (3)

Country Link
JP (1) JP2015197879A (ja)
TW (1) TW201543308A (ja)
WO (1) WO2015151859A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694180B2 (ja) * 2016-01-29 2020-05-13 日東電工株式会社 光導波路形成用感光性エポキシ樹脂組成物および光導波路形成用感光性フィルム、ならびにそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1091348A (ja) * 1996-09-19 1998-04-10 Toshiba Corp 座標入力装置および液晶表示装置
JP2008181411A (ja) * 2007-01-25 2008-08-07 Nitto Denko Corp タッチパネル用光導波路
JP2013073276A (ja) * 2011-09-26 2013-04-22 Nitto Denko Corp 入力デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1091348A (ja) * 1996-09-19 1998-04-10 Toshiba Corp 座標入力装置および液晶表示装置
JP2008181411A (ja) * 2007-01-25 2008-08-07 Nitto Denko Corp タッチパネル用光導波路
JP2013073276A (ja) * 2011-09-26 2013-04-22 Nitto Denko Corp 入力デバイス

Also Published As

Publication number Publication date
JP2015197879A (ja) 2015-11-09
TW201543308A (zh) 2015-11-16

Similar Documents

Publication Publication Date Title
WO2015151858A1 (ja) 位置センサ
WO2015151859A1 (ja) 位置センサ
KR102452784B1 (ko) 광 도파로 및 이를 이용한 위치 센서
WO2015045571A1 (ja) 入力装置
WO2015151861A1 (ja) 位置センサ
WO2015049908A1 (ja) 入力装置
WO2016039166A1 (ja) 位置センサ
WO2016031601A1 (ja) 位置センサ
US20160070417A1 (en) Electronic underlay
WO2016056393A1 (ja) 位置センサ
JP2015201134A (ja) 位置センサおよびそれに用いるシート状光導波路
WO2015156112A1 (ja) 位置センサおよびそれに用いるシート状光導波路
WO2015151860A1 (ja) 位置センサ
WO2016043047A1 (ja) 位置センサ
JP2016045771A (ja) 位置センサ
WO2015170608A1 (ja) 位置センサ
WO2015045570A1 (ja) 入力装置
WO2016031539A1 (ja) 位置センサ
WO2015159754A1 (ja) 位置センサ
WO2016047448A1 (ja) 位置センサ
WO2015045572A1 (ja) 電子下敷き
JP2017004199A (ja) 位置センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773795

Country of ref document: EP

Kind code of ref document: A1