WO2015151150A1 - Plasma treatment device and coil used therein - Google Patents

Plasma treatment device and coil used therein Download PDF

Info

Publication number
WO2015151150A1
WO2015151150A1 PCT/JP2014/059432 JP2014059432W WO2015151150A1 WO 2015151150 A1 WO2015151150 A1 WO 2015151150A1 JP 2014059432 W JP2014059432 W JP 2014059432W WO 2015151150 A1 WO2015151150 A1 WO 2015151150A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
coil
generation space
plasma generation
outward
Prior art date
Application number
PCT/JP2014/059432
Other languages
French (fr)
Japanese (ja)
Inventor
利泰 速水
俊也 宮▲崎▼
Original Assignee
Sppテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sppテクノロジーズ株式会社 filed Critical Sppテクノロジーズ株式会社
Priority to JP2014534687A priority Critical patent/JP5638727B1/en
Priority to PCT/JP2014/059432 priority patent/WO2015151150A1/en
Priority to US14/897,423 priority patent/US20160358748A1/en
Priority to KR1020157005656A priority patent/KR101529498B1/en
Priority to EP14887912.5A priority patent/EP3128819A1/en
Publication of WO2015151150A1 publication Critical patent/WO2015151150A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a plasma processing apparatus for supplying a predetermined processing gas into a processing chamber to form plasma, and performing plasma processing on a substrate in the processing chamber using the plasma processing gas, and more particularly to a coil used in the plasma processing apparatus.
  • the present invention relates to a plasma processing apparatus that symmetrically converts a processing gas in a space into plasma and a coil used in the plasma processing apparatus.
  • Examples of the plasma treatment include a plasma etching treatment for etching a substrate (such as a silicon substrate or a silicon carbide substrate) by ions or radicals contained in the plasma-ized treatment gas, and a plasma CVD treatment for forming a thin film on the substrate.
  • a plasma etching treatment for etching a substrate (such as a silicon substrate or a silicon carbide substrate) by ions or radicals contained in the plasma-ized treatment gas
  • a plasma CVD treatment for forming a thin film on the substrate.
  • Various apparatuses have been proposed for use in performing these processes, and the applicant of the present application also employs a dielectric coupling type plasma etching apparatus used when performing a plasma etching process on a silicon substrate, for example. It has been proposed (Japanese Patent Laid-Open No. 2010-238847).
  • the plasma etching apparatus 100 has a cylindrical shape in which a processing space 102 is set in an inner lower region, and a plasma generation space 103 communicating with the processing space 102 is set above the processing space 102.
  • the high-frequency power is supplied to the processing chamber 101, the coil 104 disposed outside the portion of the processing chamber 101 where the plasma generation space 103 is set, the base 105 disposed in the processing space 102, and the coil 104.
  • a high frequency power having a predetermined frequency and magnitude is supplied to the coil 104 to generate an induction electric field and Supplying a process gas into Zuma generation space 103, the process gas into plasma by the induced electric field, a device for performing an etching process on the surface of the substrate K 'by the processing plasma gas.
  • the etching process using the plasma etching apparatus 100 it is preferable to perform the etching process as uniformly as possible on the entire surface of the substrate K ′ for the purpose of improving the yield. It is necessary to make the processing gas in the inside uniformly plasma, and to make the plasma processing gas uniformly act on the entire surface of the substrate K ′.
  • the inventors of the present invention have conducted intensive research in order to uniformly convert the processing gas in the plasma generation space 103 into plasma.
  • the density distribution of the plasma generated in the plasma generation space 103 depends on the distance S ′ (see FIG. 6) between the coil 104 and the plasma generation space 103, and the distance S ′ is a little.
  • the plasma density distribution in the plasma generation space 103 tends to be non-uniform.
  • MEMS micro electro mechanical system
  • the reason why the density distribution of the plasma generated in the plasma generation space 103 is non-uniform due to the presence of the slightly different distance S ′ is considered to be as follows. .
  • the plasma generation space 103 when plasma is generated, an electric current flows in the plasma, and electric power resulting from the plasma is absorbed by the plasma, and the plasma of the processing gas is increased to increase the density of the plasma.
  • the plasma density increases, in other words, when the number of electrons and ions in the plasma increases, the electrical resistance of the plasma decreases, the power absorbed by the plasma increases, and plasmaization progresses to increase the plasma density. Will further increase. That is, once the plasma is generated in the plasma generation space 103, the processing gas is accelerated into plasma.
  • the distance S ′ between the coil 104 and the plasma generation space 103 is shortened, the induced magnetic field acting on the processing gas is also strengthened. Therefore, even if the distance S ′ is slightly short, the distance S is short. Thus, it is considered that the plasma is generated at an accelerated rate before the other portions, and as a result, the density distribution of the plasma generated in the plasma generation space 103 becomes non-uniform.
  • the distance S ′ between the coil 104 and the plasma generation space 103 depends on the dimensions of the coil 104 and the processing chamber 101, but the dimensional accuracy is improved over the entire circumference and the distance S ′ is strictly aligned. Is extremely difficult.
  • the coil 104 must have two power introduction units 104a and 104b, one of which is connected to the coil power supply mechanism 106 and the other is connected to the ground, and between the two power introduction units 104a and 104b. Since there is a gap, the portion of the plasma generation space 103 corresponding to the gap between the two power introduction portions 104a and 104b inevitably becomes a singular point where the induced electric field becomes weak.
  • the present inventors have generated plasma so that the portion where the density is increased in the plasma generation space 103 is axially symmetric, so that the generated plasma reaches the substrate K ′.
  • the diffusion of the generated plasma proceeds uniformly, the in-plane density of the plasma is made uniform, and the plasma can finally be applied uniformly to the substrate K ′. .
  • the present invention has been made on the basis of the above-mentioned new knowledge, and is a plasma capable of converting the processing gas in the plasma generation space into plasma so that the portion where the plasma density in the plasma generation space is high is axisymmetric. It is an object of the present invention to provide a processing apparatus and a coil used therefor.
  • the present invention for solving the above problems is as follows.
  • a processing gas is supplied to a plasma generation space set in the processing chamber, and a high-frequency power is supplied from a coil power supply mechanism to an annular coil wound outward of a portion of the processing chamber corresponding to the plasma generation space.
  • the coil is Two power introduction parts, one connected to the coil power supply mechanism, the other connected to the ground, and a gap formed between them; Having at least three inwardly extending portions that protrude toward the radially inward side of a reference circle set around the processing chamber corresponding to the plasma generation space;
  • the plasma processing apparatus includes the at least three inwardly extending portions formed at regular intervals along a circumferential direction of the reference circle.
  • the substrate is first placed on the base, and then the processing gas is supplied into the plasma generation space and the high frequency power is supplied to the coil.
  • the distance between the inward extending portion of the coil and the processing chamber is greater.
  • the distance between the processing chamber and the portion other than the inwardly protruding portion of the coil is shorter. For this reason, when high frequency power is supplied to the coil, the induced electric field acting on the part corresponding to the inward projecting part of the plasma generation space corresponds to a part other than the inward projecting part of the coil. It becomes stronger than the induction electric field that acts on the portion to be treated, and the plasma of the processing gas is likely to proceed in the portion corresponding to the inwardly extending portion, and the plasma density is increased.
  • the portions where the plasma density is increased are aligned at equal intervals in the plasma generation space. In other words, in other words, it is in an axially symmetrical state.
  • at least three inwardly extending portions are formed at equal intervals along the circumferential direction of the reference circle that at least three inwardly extending at the same angle from the center of the plasma generation space. It is a concept that naturally includes the fact that the portions are formed symmetrically, and the plasma is also formed by forming at least three inwardly extending portions at the same angle and at the same angle from the center of the plasma generation space. The portion where the density is high is in an axially symmetrical state.
  • the processing in the plasma generation space is performed so that the portion where the plasma density is increased is arranged in an axisymmetric manner by providing an inwardly extending portion that is closer to the processing chamber.
  • the part where the plasma density corresponding to the singular point is low can be almost ignored, and the generated plasma reaches the substrate from the part where the density is high. Since the diffusion of the plasma to the part where the density is relatively lower than the part where the density is high, the in-plane density is made uniform. Can act.
  • the coil in the plasma processing apparatus is formed with at least two outwardly protruding portions extending outward in the radial direction from the reference circle along the circumferential direction of the reference circle.
  • the gaps between the at least two outwardly extending portions, the at least three inwardly extending portions, and the power introducing portion are preferably arranged at equal intervals in the circumferential direction.
  • the plasma generation space since the distance between the outward projecting portion of the coil and the processing chamber, and the distance between the gap portion between the power introduction portion and the processing chamber in the coil, respectively, the plasma generation space, The state where the induced electric field acting on the portion corresponding to the gap portion between the at least two outward projecting portions and the power introduction portion is weakened, and the portions where the plasma density is low are arranged at equal intervals in the circumferential direction, It will be in the state of being arranged symmetrically about the axis. Accordingly, since the portion where the plasma density is high and the portion where the plasma density is low are alternately arranged, the plasma is more diffused from the portion where the plasma density is high to the portion where the plasma density is low. Smoothness is achieved and uniform density is promoted.
  • the state where the gaps between the at least two outward projecting portions and the power introduction portion are arranged at equal intervals in the circumferential direction of the reference circle are arranged at equal distances from the center of the plasma generation space and symmetrically at the same angle.
  • the part where the plasma density is lowered also by the fact that the gap between the at least two outward projecting parts and the power introducing part at the same angle and the same angle is formed symmetrically, including the state of course, at the same distance from the center of the plasma generation space Are in an axially symmetrical state.
  • the coil in the plasma processing apparatus forms a portion where the plasma density is high, and the plasma is uniformly distributed from the portion where the plasma density is high to the portion where the plasma density is low.
  • the coil is formed with the inwardly extending portion and the outwardly extending portion so as to protrude inward and outward along the radial direction of the reference circle.
  • the inwardly extending portion and the outwardly extending portion having the same angle are formed at the same distance from the center of the plasma generation space, the thickness in the height direction is made constant in the circumferential direction.
  • the coil can be made compact. Therefore, it can be particularly suitably used for a small plasma processing apparatus having a restriction in the height direction, such as a plasma processing apparatus for processing a substrate having a diameter of 1 inch or less.
  • a transition portion that is a transition portion is formed.
  • This transition part is a specific part of the coil.
  • the transition of the coil is performed only on a part of the plasma generation space corresponding to the winding part of the coil. There is a possibility that an induced electric field acts from the part.
  • the coil when the number of turns of the coil is 2 or more, the coil has a transition portion that shifts from the winding portion to the next winding portion in the gap between the power introduction portions. It is preferable that the transition portion is formed in the vicinity and projects outward in the radial direction from the reference circle.
  • the induction electric field acting on the portion corresponding to the transition portion of the plasma generation space is made as weak as possible.
  • the plasma gas density of the processing gas can be reduced, and the plasma density of only a part of the corresponding part between the coil winding parts increases in an unexpected manner. It is possible to prevent the occurrence of a problem that the balance of the plasma density is lost.
  • substrate in the present application, a substrate made of silicon, silicon carbide, sapphire, compound semiconductor, glass, resin, or the like can be exemplified.
  • the processing gas in the plasma generation space can be converted to plasma so that the portion where the plasma density in the plasma generation space is high is axisymmetric. .
  • FIG. 2 is an enlarged cross-sectional view taken along a line AA in FIG. It is sectional drawing which showed the plasma processing apparatus which concerns on other embodiment of this invention.
  • A is the top view which showed the coil in the plasma processing apparatus which concerns on other embodiment of this invention,
  • B is the figure seen from the arrow B direction in (a).
  • FIG. 7 is an enlarged cross-sectional view taken along the line CC in FIG. 6.
  • the plasma processing apparatus of this example is a plasma etching apparatus, and performs a plasma etching process on the substrate.
  • the plasma etching apparatus 1 of this example has a cylindrical processing chamber in which a processing space 3 is set below an internal space and a plasma generation space 4 is set above the processing space 3. 2, a processing gas supply mechanism 15 for supplying a processing gas to the plasma generation space 4, a coil 20 wound so as to surround an outer peripheral surface of a portion of the processing chamber 2 where the plasma generation space 4 is set, A coil power supply mechanism 25 that supplies high-frequency power to the coil 20, a base 30 that is disposed in the processing space 3 and on which the substrate K is placed, and a base that supplies high-frequency power to the base 30 A power supply mechanism 40 and an exhaust device 45 for exhausting the gas in the processing chamber 2 are provided.
  • the processing chamber 2 is composed of a lower body portion 5, an upper body portion 6, a bottom plate 7, an intermediate plate 8, a top plate 9, and a support column 10, and the lower body portion 5 has a bottom plate 7 fixed to a lower end portion thereof.
  • an intermediate plate 8 is fixed to the upper end, and the processing space 3 is formed by the lower body portion 5, the bottom plate 7 and the intermediate plate 8.
  • the upper body 6 has a lower end fixed to the upper surface of the intermediate plate 8 and a top 9 fixed to the upper end.
  • the upper body 6, the intermediate plate 8, and the top 9 make plasma.
  • a generation space 4 is formed. Note that an opening 8a is formed in the intermediate plate 8, and the processing space 3 and the plasma generation space 4 communicate with each other through the opening 8a.
  • a plurality of support columns 10 are provided between the intermediate plate 8 and the top plate 9.
  • the upper body portion 6 is made of quartz or the like, and is shaped so that the inner diameter (in other words, the outer diameter of the plasma generation space) is 15 mm or more and 50 mm or less, which is a size corresponding to the substrate K having a diameter of 1 inch or less. ing.
  • the lower body 6 is formed with an exhaust port 5a for exhausting the gas in the processing space 3, and the exhaust device 45 is connected to the exhaust port 5a. The gas in 2 is exhausted.
  • the processing gas supply mechanism 15 is connected to an etching gas supply unit 16 that supplies an etching gas such as SF 6 gas, and one end connected to a plurality of discharge ports provided in an annular shape on the lower surface of the top plate 9, and the other end.
  • a supply pipe 17 connected to the etching gas supply unit 16 is provided, and an etching gas is supplied from the etching gas supply unit 16 into the plasma generation space 4 through the supply pipe 17.
  • the etching gas is not limited to SF 6 gas, and other fluorine-based gases such as CF 4 , NF 3 , and IF 5 can be used.
  • the coil 20 is wound around the outer surface of the upper body 6 on the outer side of the upper body 6, and a coil power supply mechanism 25, which will be described later, is provided at one end.
  • the power introduction portion 20a connected to the power supply portion 20a is formed so as to be drawn out radially outward, and at the other end, the power introduction portion 20b connected to the ground is similarly formed so as to be drawn out radially outward. Yes.
  • the two power introduction portions 20a and 20b are drawn from positions facing each other, and a gap is formed between them.
  • the coil 20 in the plasma etching apparatus 1 of the present example has a single coplanar shape with one winding, which makes it possible to make the coil 20 compact and to reduce the magnetic field. Uniform plasma can be generated with the same orientation.
  • the coil 20 is bent or radially inward of a reference circle (hereinafter referred to as “pitch circle”) P set outside the portion of the processing chamber 2 corresponding to the plasma generation space 4.
  • pitch circle a reference circle
  • Six inwardly-extending portions 21 that are curved and projecting, and five outward-side projecting portions 22 that are bent or curved outward in the radial direction from the pitch circle P are continuously formed.
  • the gap portions between the six inwardly extending portions 21, the five outwardly extending portions 22 and the power introducing portions 20a and 20b are alternately arranged along the circumferential direction of the pitch circle P, etc.
  • the six inward projecting portions 21 and the five inward projecting portions 22 are equidistant from the center of the upper body 6 (the center of the plasma generation space 4) and at the same angle. Are alternately arranged symmetrically.
  • the coil 20 is supported so as to be positioned approximately in the middle of the upper trunk portion 6 by a plurality of support members 23 attached to the upper surface of the intermediate plate 8.
  • the coil power supply mechanism 25 includes an impedance matching unit 26 connected to the power introduction unit 20a of the coil 20 and a high-frequency power source 27 connected to the impedance matching unit 26. This is a mechanism for supplying high-frequency power.
  • the base 30 is composed of an upper member 31 on which the substrate K is placed and a lower member 32 to which an elevating cylinder 33 is connected.
  • the base 30 is supported by the support base 34 so as to be able to advance and retract in the vertical direction. It is disposed in the space 3 and is moved up and down by the lifting cylinder 33.
  • the space between the outer peripheral edge of the lower surface of the lower member 32 and the upper surface of the support base 34 is covered with a bellows 35 so that the airtightness of the processing space 3 is ensured.
  • the base power supply mechanism 40 includes an impedance matching unit 41 connected to the base 30 and a high frequency power source 42 connected to the impedance matching unit 41, and supplies a high frequency power to the base 30. It is.
  • the exhaust device 45 includes a vacuum pump 46 that exhausts gas, and an exhaust pipe 47 that has one end connected to the vacuum pump 46 and the other end connected to the exhaust port 5a of the lower body 5. 45 exhausts the gas in the processing chamber 2 by the vacuum pump 46 through the exhaust pipe 47 to maintain the inside of the processing chamber 2 at a predetermined pressure.
  • the substrate K having a mask with a predetermined pattern formed thereon is placed on the base 30 at the lowered position, and then the base 30 is moved up to the processing position by the lift cylinder 33, and then the exhaust device 45 is placed.
  • the processing chamber 2 is set to a negative pressure.
  • high-frequency power is supplied from the high-frequency power source 27 to the coil 20 to generate an induction electric field in the plasma generation space 4.
  • the etching gas supply unit 16 supplies the coil 20 in the plasma generation space 4. Etching gas is supplied.
  • the high frequency power supplied to the coil 20 is preferably set to a frequency of 100 kHz or more and a size of 50 W or less.
  • the coil 20 is formed with an inwardly extending portion 21 and an outwardly extending portion 22, and the inwardly extending portion 21 and the outward side of the coil 20 are formed.
  • the overhang portions 22 and the gap portions between the power introduction portions 20a and 20b are alternately arranged. Since the distance S1 from the inward projecting portion 21 to the plasma generating space 4 is shorter than the distance S2 from the outer projecting portion 22 to the plasma generating space 4, the plasma generating space 4
  • the induced electric field acting on the portion corresponding to the inwardly extending portion 21 is the portion corresponding to the outwardly extending portion 22 (in FIG. 2).
  • the induced electric field acting on the portion corresponding to the side projecting portion 22 is the induced electric field acting on the portion corresponding to the gap portion between the power introducing portions 20a and 20b (the portion R3 surrounded by the one-dot chain line in FIG. 2). Be stronger than for this reason, in the plasma generation space 4, the portion corresponding to the inwardly extending portion 21 is more than the portion corresponding to the gap portion between the outwardly extending portion 22 and the power introducing portions 20a and 20b. Plasma is easily generated.
  • the plasma density in the portion corresponding to the inward extending portion 21 is relatively high, while the distance between the outward extending portion 22 and the power introduction portions 20a and 20b is increased.
  • the plasma density of the portion corresponding to the gap portion is relatively low, and the high plasma density portion and the low plasma density portion are alternately arranged at equal intervals along the circumferential direction, in other words, the high plasma density portion is axisymmetric. It will be in the state arranged in.
  • the plasma-etched etching gas in which high density portions and low density portions are alternately arranged at equal intervals falls in the process of descending into the processing space 3 through the openings 8a of the intermediate plate 8.
  • the plasma-ized etching gas reaches the substrate K in a state where the in-plane density is uniformized, and acts uniformly on the entire surface of the substrate K. .
  • the surface of the substrate K is etched, and an etching structure is formed on the surface of the substrate K.
  • the high plasma density portion and the low plasma density portion are alternately arranged at equal intervals, in other words, the high plasma density portion.
  • the plasma can be diffused smoothly and plasma with uniform in-plane density can be applied to the substrate K.
  • the coil 20 is formed with six inwardly extending parts 21 and five outwardly extending parts 22, but the inwardly extending part 21 and the outwardly extending part
  • the number of the protruding portions 22 is not limited to this, and may be appropriately designed according to the size of the coil.
  • the shape of the coil 20 is a shape in which the inwardly extending portion 21 and the outwardly extending portion 22 are continuously formed.
  • the shape is not limited to such a shape.
  • three inwardly extending portions 51 and two outwardly extending portions 52 are formed with a space therebetween, and the three inwardly extending portions 51, 2
  • positioned the clearance gap part between the two outward side protrusion parts 52 and the two electric power introduction parts 50a and 50b alternately at equal intervals along the circumferential direction of the pitch circle P may be sufficient.
  • the plasma density in the portion of the plasma generation space 4 corresponding to the inward extending portion 51 is relatively increased, and the gap between the outward extending portion 52 and the power introducing portions 50a and 50b is increased.
  • the plasma density of the portion corresponding to the portion is relatively lowered to create a state in which the high plasma density portion and the low plasma density portion are alternately arranged at equal intervals along the circumferential direction in the plasma generation space 4. be able to.
  • the number of turns of the coil 20 is set to 1, the thickness in the height direction is constant in the circumferential direction, and the coil itself is made compact, thereby etching the substrate having a diameter of 1 inch or less.
  • a small plasma etching apparatus 1 having a restriction in the height direction such as a plasma etching apparatus, a remarkable effect is achieved.
  • the number of turns of the coil is 2 or more.
  • a transition portion that is a specific portion that transitions from the first winding portion to the second winding portion may be formed.
  • an induction electric field is generated from the transition part only in a part of the plasma generation space located between the first stage winding part and the second stage winding part. May act, and the balance of the plasma density in the plasma generation space may be easily lost.
  • a transition portion 63 of the coil 60 is formed in the vicinity of the gap between the two power introduction portions 60a and 60b, and the transition is performed. It is preferable that the part 63 has a shape projecting radially outward from the pitch circle P. In this way, the induction electric field acting from the transition portion can be weakened as much as possible to the portion of the plasma generation space 4 corresponding to the winding portion of the coil 60, and the plasma density in the plasma generation space 4 can be reduced. It is possible to suppress the occurrence of problems such as an unbalanced balance.
  • the plasma processing apparatus is embodied as a plasma etching apparatus.
  • the present invention is not limited to this.
  • a plasma CVD apparatus used when forming a thin film on a substrate is used.
  • it may be embodied as a plasma ashing device used when removing the resist.
  • Plasma etching apparatus Processing chamber 3 Processing space 4 Plasma generation space 5 Lower trunk

Abstract

A plasma etching device is provided with: a chamber that is configured so as to comprise a treatment space and a plasma generation space (4); a coil (20) that is wrapped around a treatment chamber (2); and the like. Six inwardly protruding sections (21) that protrude farther inward in the radial direction than a pitch circle (P) that is set on the outside of a part of the treatment chamber (2) that corresponds to the plasma generation space and five outwardly protruding sections (22) that protrude farther outward in the radial direction than the pitch circle (P) are continuously formed in the coil (20). The six inwardly protruding sections (21), the five outwardly protruding sections (22), and a gap section between power introduction sections (20a) and (20b) are arranged at equal intervals in an alternating manner along the circumferential direction of the pitch circle (P).

Description

プラズマ処理装置及びこれに用いられるコイルPlasma processing apparatus and coil used in the same
 本発明は、処理チャンバ内に所定の処理ガスを供給してプラズマ化し、プラズマ化した処理ガスによって処理チャンバ内の基板にプラズマ処理を施すプラズマ処理装置及びこれに用いられるコイルに関し、特に、プラズマ生成空間内の処理ガスを対称的にプラズマ化するプラズマ処理装置及びこれに用いられるコイルに関する。 The present invention relates to a plasma processing apparatus for supplying a predetermined processing gas into a processing chamber to form plasma, and performing plasma processing on a substrate in the processing chamber using the plasma processing gas, and more particularly to a coil used in the plasma processing apparatus. The present invention relates to a plasma processing apparatus that symmetrically converts a processing gas in a space into plasma and a coil used in the plasma processing apparatus.
 上記プラズマ処理としては、プラズマ化した処理ガスに含まれるイオンやラジカルによって、基板(シリコン基板や炭化ケイ素基板など)をエッチングするプラズマエッチング処理や基板に薄膜を形成するプラズマCVD処理などがある。そして、これらの処理を行う際に用いられる装置については、様々な装置が提案されており、本出願人も、例えばシリコン基板にプラズマエッチング処理を施す際に用いられる誘電結合型のプラズマエッチング装置を提案している(特開2010-238847号公報)。 Examples of the plasma treatment include a plasma etching treatment for etching a substrate (such as a silicon substrate or a silicon carbide substrate) by ions or radicals contained in the plasma-ized treatment gas, and a plasma CVD treatment for forming a thin film on the substrate. Various apparatuses have been proposed for use in performing these processes, and the applicant of the present application also employs a dielectric coupling type plasma etching apparatus used when performing a plasma etching process on a silicon substrate, for example. It has been proposed (Japanese Patent Laid-Open No. 2010-238847).
 図5に示すように、上記プラズマエッチング装置100は、内部の下部領域に処理空間102が設定され、当該処理空間102の上方に、処理空間102と連通したプラズマ生成空間103が設定された円筒状の処理チャンバ101、当該処理チャンバ101の、プラズマ生成空間103が設定された部分の外方に配設されたコイル104、処理空間102に配設された基台105、コイル104に高周波電力を供給するコイル電力供給機構106、プラズマ生成空間103にエッチングガスや保護膜形成ガスなどの処理ガスを供給する処理ガス供給機構107、処理チャンバ101内の気体を排気する排気機構108などを備えており、所定の周波数且つ大きさの高周波電力をコイル104に供給して誘導電界を生じさせるとともに、プラズマ生成空間103に処理ガスを供給して、この処理ガスを誘導電界によってプラズマ化し、プラズマ化された処理ガスによって基板K’の表面にエッチング処理を施す装置である。 As shown in FIG. 5, the plasma etching apparatus 100 has a cylindrical shape in which a processing space 102 is set in an inner lower region, and a plasma generation space 103 communicating with the processing space 102 is set above the processing space 102. The high-frequency power is supplied to the processing chamber 101, the coil 104 disposed outside the portion of the processing chamber 101 where the plasma generation space 103 is set, the base 105 disposed in the processing space 102, and the coil 104. A coil power supply mechanism 106, a processing gas supply mechanism 107 for supplying a processing gas such as an etching gas and a protective film forming gas to the plasma generation space 103, an exhaust mechanism 108 for exhausting the gas in the processing chamber 101, and the like. A high frequency power having a predetermined frequency and magnitude is supplied to the coil 104 to generate an induction electric field and Supplying a process gas into Zuma generation space 103, the process gas into plasma by the induced electric field, a device for performing an etching process on the surface of the substrate K 'by the processing plasma gas.
特開2010-238847号公報JP 2010-238847 A
 ところで、上記プラズマエッチング装置100を用いたエッチング処理においては、歩留まりを向上させることを目的として、基板K’全面に対して極力均一にエッチング処理を施すことが好ましく、そのためには、プラズマ生成空間103内の処理ガスを均一にプラズマ化し、当該プラズマ化された処理ガスを基板K’全面に対して一様に作用させる必要がある。 By the way, in the etching process using the plasma etching apparatus 100, it is preferable to perform the etching process as uniformly as possible on the entire surface of the substrate K ′ for the purpose of improving the yield. It is necessary to make the processing gas in the inside uniformly plasma, and to make the plasma processing gas uniformly act on the entire surface of the substrate K ′.
 本発明者らは、プラズマ生成空間103内の処理ガスを均一にプラズマ化させるため、鋭意研究を行った。その結果、プラズマ生成空間103内に生成されるプラズマの密度分布が、コイル104とプラズマ生成空間103との間の距離S’(図6参照)に依存することが分かり、前記距離S’が僅かでも異なる部分が存在すると、プラズマ生成空間103内のプラズマの密度分布が不均一になり易くなることが分かった。特に、高精度の垂直加工が要求されるMEMS(微小電気機械システム)のシリコン深掘りエッチングにおいては、そのエッチングの均一性が問題となる場合があった。 The inventors of the present invention have conducted intensive research in order to uniformly convert the processing gas in the plasma generation space 103 into plasma. As a result, it can be seen that the density distribution of the plasma generated in the plasma generation space 103 depends on the distance S ′ (see FIG. 6) between the coil 104 and the plasma generation space 103, and the distance S ′ is a little. However, it has been found that if there are different portions, the plasma density distribution in the plasma generation space 103 tends to be non-uniform. In particular, in the silicon deep etching of MEMS (micro electro mechanical system) that requires high-precision vertical processing, the uniformity of the etching sometimes becomes a problem.
 このように、前記距離S’が僅かでも異なる部分が存在することによって、プラズマ生成空間103内に生成されるプラズマの密度分布が不均一なものとなるのは、以下の理由によるものと考えられる。 As described above, the reason why the density distribution of the plasma generated in the plasma generation space 103 is non-uniform due to the presence of the slightly different distance S ′ is considered to be as follows. .
 プラズマ生成空間103内においては、プラズマが生じると、当該プラズマ中に電流が流れ、これに起因する電力がプラズマに吸収され、処理ガスのプラズマ化が進んでプラズマの密度が増加する。そして、プラズマの密度が増加する、言い換えれば、プラズマ中の電子やイオンが増加すると、プラズマの電気的抵抗が低下し、プラズマに吸収される電力が増えて、プラズマ化が進行してプラズマの密度が更に増加する。即ち、プラズマ生成空間103内で一旦プラズマが生成されると、処理ガスのプラズマ化が加速度的に進行する。 In the plasma generation space 103, when plasma is generated, an electric current flows in the plasma, and electric power resulting from the plasma is absorbed by the plasma, and the plasma of the processing gas is increased to increase the density of the plasma. When the plasma density increases, in other words, when the number of electrons and ions in the plasma increases, the electrical resistance of the plasma decreases, the power absorbed by the plasma increases, and plasmaization progresses to increase the plasma density. Will further increase. That is, once the plasma is generated in the plasma generation space 103, the processing gas is accelerated into plasma.
 したがって、コイル104とプラズマ生成空間103との間の距離S’が短くなると、処理ガスに作用する誘導磁界も強くなるため、一部分の距離S’が僅かに短いだけでも、この距離Sが短い部分で他の部分よりも先にプラズマが加速度的に生成されてしまい、結果的に、プラズマ生成空間103内に生成されたプラズマの密度分布が不均一なものになると考えられる。 Therefore, when the distance S ′ between the coil 104 and the plasma generation space 103 is shortened, the induced magnetic field acting on the processing gas is also strengthened. Therefore, even if the distance S ′ is slightly short, the distance S is short. Thus, it is considered that the plasma is generated at an accelerated rate before the other portions, and as a result, the density distribution of the plasma generated in the plasma generation space 103 becomes non-uniform.
 そして、コイル104とプラズマ生成空間103との間の距離S’は、コイル104や処理チャンバ101の寸法に依存するが、全周に渡って寸法精度を高め、距離S’を厳密に揃えるということは極めて困難である。また、コイル104には、一方がコイル電力供給機構106に接続され、他方がアースに接続される2つの電力導入部104a,104bが必ず必要となり、2つの電力導入部104a,104bの間には隙間が空けられているため、プラズマ生成空間103の、2つの電力導入部104a,104b間の隙間に対応する部分は、必然的に誘導電界が弱くなる特異点となってしまう。これらのことから、プラズマ生成空間103内の処理ガスを均一にプラズマ化することは極めて困難である。特に、小径の基板(例えば、直径1インチ以下の基板)に対してプラズマ処理を施す装置においては、装置サイズを基板の直径に合わせて設計すると、必然的にコイルのサイズも小さくなり、電力導入部間の隙間がコイル全体のサイズに対して相対的に大きくなるため、処理ガスを均一にプラズマ化することがより困難になる。 The distance S ′ between the coil 104 and the plasma generation space 103 depends on the dimensions of the coil 104 and the processing chamber 101, but the dimensional accuracy is improved over the entire circumference and the distance S ′ is strictly aligned. Is extremely difficult. In addition, the coil 104 must have two power introduction units 104a and 104b, one of which is connected to the coil power supply mechanism 106 and the other is connected to the ground, and between the two power introduction units 104a and 104b. Since there is a gap, the portion of the plasma generation space 103 corresponding to the gap between the two power introduction portions 104a and 104b inevitably becomes a singular point where the induced electric field becomes weak. For these reasons, it is extremely difficult to make the processing gas in the plasma generation space 103 into a uniform plasma. In particular, in a device that performs plasma processing on a small-diameter substrate (for example, a substrate having a diameter of 1 inch or less), if the device size is designed to match the substrate diameter, the coil size will inevitably become smaller, and power will be introduced. Since the gap between the portions becomes relatively large with respect to the size of the entire coil, it becomes more difficult to uniformly process the processing gas.
 そこで、本発明者らは更に研究を重ねた結果、プラズマ生成空間103内にあえて密度の高くなる部分が軸対称となるようにプラズマを生成させることにより、生成されたプラズマが基板K’に至るまでの間に、当該生成されたプラズマの拡散が均等に進行し、プラズマの平面内密度が均一化され、最終的に基板K’に対して一様にプラズマを作用させることができることを見出した。 Therefore, as a result of further research, the present inventors have generated plasma so that the portion where the density is increased in the plasma generation space 103 is axially symmetric, so that the generated plasma reaches the substrate K ′. In the meantime, it has been found that the diffusion of the generated plasma proceeds uniformly, the in-plane density of the plasma is made uniform, and the plasma can finally be applied uniformly to the substrate K ′. .
 本発明は上記新たな知見に基づきなされたものであり、プラズマ生成空間内におけるプラズマの密度が高くなる部分が軸対称となるように、プラズマ生成空間内の処理ガスをプラズマ化することができるプラズマ処理装置及びこれに用いられるコイルの提供を、その目的とする。 The present invention has been made on the basis of the above-mentioned new knowledge, and is a plasma capable of converting the processing gas in the plasma generation space into plasma so that the portion where the plasma density in the plasma generation space is high is axisymmetric. It is an object of the present invention to provide a processing apparatus and a coil used therefor.
 上記課題を解決するための本発明は、
 処理チャンバ内に設定されたプラズマ生成空間に処理ガスを供給し、前記処理チャンバの、前記プラズマ生成空間に対応する部分の外方に捲回された環状のコイルに、コイル電力供給機構から高周波電力を供給して、プラズマ生成空間内の処理ガスをプラズマ化し、該プラズマ化された処理ガスによって基台上の基板をプラズマ処理するプラズマ処理装置において、
 前記コイルは、
 一方が前記コイル電力供給機構に接続され、他方がアースに接続され、両者の間に隙間が形成された2つの電力導入部と、
 前記プラズマ生成空間に対応する処理チャンバの周囲に設定された基準円よりも径方向内方側に向けて張り出した少なくとも3つの内方側張出部とを有し、
 前記少なくとも3つの内方側張出部が、前記基準円の周方向に沿って等間隔に形成されているプラズマ処理装置を含む。
The present invention for solving the above problems is as follows.
A processing gas is supplied to a plasma generation space set in the processing chamber, and a high-frequency power is supplied from a coil power supply mechanism to an annular coil wound outward of a portion of the processing chamber corresponding to the plasma generation space. In the plasma processing apparatus for converting the processing gas in the plasma generation space into plasma, and plasma processing the substrate on the base with the plasma processing gas,
The coil is
Two power introduction parts, one connected to the coil power supply mechanism, the other connected to the ground, and a gap formed between them;
Having at least three inwardly extending portions that protrude toward the radially inward side of a reference circle set around the processing chamber corresponding to the plasma generation space;
The plasma processing apparatus includes the at least three inwardly extending portions formed at regular intervals along a circumferential direction of the reference circle.
 本発明に係るプラズマ処理装置によれば、まず、基台上に基板を載置し、ついで、プラズマ生成空間内に処理ガスを供給するとともに、コイルに高周波電力を供給する。 According to the plasma processing apparatus of the present invention, the substrate is first placed on the base, and then the processing gas is supplied into the plasma generation space and the high frequency power is supplied to the coil.
 ここで、本発明に係るプラズマ処理装置においては、少なくとも3つの内方側張出部がコイルに形成されているため、コイルの内方側張出部と処理チャンバとの間の距離の方が、コイルの内方側張出部以外の部分と処理チャンバとの間の距離よりも短くなっている。このため、コイルに高周波電力を供給した際に、プラズマ生成空間の、内方側張出部と対応する部分に作用する誘導電界の方が、コイルの内方側張出部以外の箇所に対応する部分に作用する誘導電界よりも強くなり、当該内方側張出部と対応する部分で処理ガスのプラズマ化が進行し易くなって、プラズマの密度が高くなる。また、少なくとも3つの内方側張出部が基準円の周方向に沿って等間隔に形成されているため、プラズマ生成空間内において、プラズマ密度が高くなる部分が、周方向に等間隔に並んだ状態、言い換えれば、軸対称に配置された状態となる。尚、少なくとも3つの内方側張出部が基準円の周方向に沿って等間隔に形成されているとは、プラズマ生成空間の中心から等距離で同角度の少なくとも3つの内方側張出部が対称に形成されていることも当然に含む概念であり、プラズマ生成空間の中心から等距離で同角度の少なくとも3つの内方側張出部が対称に形成されていることによっても、プラズマ密度が高くなる部分が軸対称に配置された状態となる。 Here, in the plasma processing apparatus according to the present invention, since at least three inward extending portions are formed in the coil, the distance between the inward extending portion of the coil and the processing chamber is greater. The distance between the processing chamber and the portion other than the inwardly protruding portion of the coil is shorter. For this reason, when high frequency power is supplied to the coil, the induced electric field acting on the part corresponding to the inward projecting part of the plasma generation space corresponds to a part other than the inward projecting part of the coil. It becomes stronger than the induction electric field that acts on the portion to be treated, and the plasma of the processing gas is likely to proceed in the portion corresponding to the inwardly extending portion, and the plasma density is increased. In addition, since at least three inwardly extending portions are formed at equal intervals along the circumferential direction of the reference circle, the portions where the plasma density is increased are aligned at equal intervals in the plasma generation space. In other words, in other words, it is in an axially symmetrical state. Note that at least three inwardly extending portions are formed at equal intervals along the circumferential direction of the reference circle that at least three inwardly extending at the same angle from the center of the plasma generation space. It is a concept that naturally includes the fact that the portions are formed symmetrically, and the plasma is also formed by forming at least three inwardly extending portions at the same angle and at the same angle from the center of the plasma generation space. The portion where the density is high is in an axially symmetrical state.
 このように、あえて処理チャンバとの距離が近くなる内方側張出部を設けるようにして、プラズマ密度が高くなる部分が軸対称に配置された状態となるように、プラズマ生成空間内の処理ガスをプラズマ化することで、上記特異点に対応したプラズマ密度が低くなる部分をほぼ無視できるようになり、生成されたプラズマが基板に至るまでの過程で、密度の高くなっている部分から当該密度の高くなっている部分よりも相対的に密度の低くなっている部分へのプラズマの拡散が進行して、平面内密度の均一化が進むため、最終的に基板に対して一様にプラズマを作用させることができる。 In this way, the processing in the plasma generation space is performed so that the portion where the plasma density is increased is arranged in an axisymmetric manner by providing an inwardly extending portion that is closer to the processing chamber. By turning the gas into plasma, the part where the plasma density corresponding to the singular point is low can be almost ignored, and the generated plasma reaches the substrate from the part where the density is high. Since the diffusion of the plasma to the part where the density is relatively lower than the part where the density is high, the in-plane density is made uniform. Can act.
 尚、上記プラズマ処理装置におけるコイルは、前記基準円よりも径方向外方側に向けて張り出した少なくとも2つの外方側張出部が、前記基準円の周方向に沿って形成されており、該少なくとも2つの外方側張出部、前記少なくとも3つの内方側張出部、及び前記電力導入部間の隙間は、前記周方向に等間隔に配置されていることが好ましい。 The coil in the plasma processing apparatus is formed with at least two outwardly protruding portions extending outward in the radial direction from the reference circle along the circumferential direction of the reference circle. The gaps between the at least two outwardly extending portions, the at least three inwardly extending portions, and the power introducing portion are preferably arranged at equal intervals in the circumferential direction.
 この場合、コイルの外方側張出部と処理チャンバとの間の距離、及びコイルにおける前記電力導入部間の隙間部分と処理チャンバとの間の距離がそれぞれ長くなるため、プラズマ生成空間の、少なくとも2つの外方側張出部及び電力導入部間の隙間部分に対応する部分に作用する誘導電界が弱くなり、プラズマ密度が低くなる部分が、周方向に等間隔に並んだ状態、即ち、軸対称に配置された状態となる。したがって、プラズマ密度が高くなっている部分と低くなっている部分とが、交互に配置されるようになるため、プラズマ密度が高くなっている部分から低くなっている部分へのプラズマの拡散がよりスムーズに行われるようになり、密度の均一化が促進される。尚、少なくとも2つの外方側張出部及び電力導入部間の隙間が基準円の周方向に等間隔に並んだ状態とは、プラズマ生成空間の中心から等距離、同角度で対称に並んだ状態を当然に含み、プラズマ生成空間の中心から等距離、同角度の少なくとも2つの外方側張出部及び電力導入部間の隙間が対称に形成されることによっても、プラズマ密度が低くなる部分が軸対称に配置された状態となる。 In this case, since the distance between the outward projecting portion of the coil and the processing chamber, and the distance between the gap portion between the power introduction portion and the processing chamber in the coil, respectively, the plasma generation space, The state where the induced electric field acting on the portion corresponding to the gap portion between the at least two outward projecting portions and the power introduction portion is weakened, and the portions where the plasma density is low are arranged at equal intervals in the circumferential direction, It will be in the state of being arranged symmetrically about the axis. Accordingly, since the portion where the plasma density is high and the portion where the plasma density is low are alternately arranged, the plasma is more diffused from the portion where the plasma density is high to the portion where the plasma density is low. Smoothness is achieved and uniform density is promoted. In addition, the state where the gaps between the at least two outward projecting portions and the power introduction portion are arranged at equal intervals in the circumferential direction of the reference circle are arranged at equal distances from the center of the plasma generation space and symmetrically at the same angle. The part where the plasma density is lowered also by the fact that the gap between the at least two outward projecting parts and the power introducing part at the same angle and the same angle is formed symmetrically, including the state of course, at the same distance from the center of the plasma generation space Are in an axially symmetrical state.
 また、本発明に係るプラズマ処理装置におけるコイルは、巻き数が1であっても、プラズマ密度が高くなる部分を作り、プラズマ密度が高くなっている部分から低くなっている部分へのプラズマの均一な拡散を促すことができ、また、コイルには、基準円の径方向に沿って内方側及び外方側に張り出るように前記内方側張出部及び外方側張出部を形成する、或いは、プラズマ生成空間の中心から等距離で同角度の内方側張出部及び外方側張出部を形成するようにしているため、高さ方向の厚さを周方向において一定にして当該コイルをコンパクトなものにすることができる。したがって、直径1インチ以下の基板を処理するプラズマ処理装置のような、高さ方向に制限がある小型のプラズマ処理装置に特に好適に用いることができる。 Moreover, even if the number of turns is 1, the coil in the plasma processing apparatus according to the present invention forms a portion where the plasma density is high, and the plasma is uniformly distributed from the portion where the plasma density is high to the portion where the plasma density is low. The coil is formed with the inwardly extending portion and the outwardly extending portion so as to protrude inward and outward along the radial direction of the reference circle. Alternatively, since the inwardly extending portion and the outwardly extending portion having the same angle are formed at the same distance from the center of the plasma generation space, the thickness in the height direction is made constant in the circumferential direction. Thus, the coil can be made compact. Therefore, it can be particularly suitably used for a small plasma processing apparatus having a restriction in the height direction, such as a plasma processing apparatus for processing a substrate having a diameter of 1 inch or less.
 ここで、前記コイルの巻き数が2以上である場合には、1段目の捲回部から2段目の捲回部や、2段目の捲回部から3段目の捲回部へと移行する部分である移行部が形成される場合がある。この移行部は、コイルにおける特異的な部分であり、当該移行部が形成されている場合には、プラズマ生成空間の、コイルの捲回部間に対応する部分の一部にのみ、コイルの移行部から誘導電界が作用する可能性がある。 Here, when the number of turns of the coil is 2 or more, from the first-stage winding section to the second-stage winding section, or from the second-stage winding section to the third-stage winding section. In some cases, a transition portion that is a transition portion is formed. This transition part is a specific part of the coil. When the transition part is formed, the transition of the coil is performed only on a part of the plasma generation space corresponding to the winding part of the coil. There is a possibility that an induced electric field acts from the part.
 そこで、上記プラズマ処理装置において、前記コイルの巻き数が2以上である場合には、前記コイルは、捲回部から次の捲回部へと移行する移行部が前記電力導入部間の隙間の近傍に形成され、前記移行部は、前記基準円よりも径方向外方側に向けて張り出していることが好ましい。 Therefore, in the plasma processing apparatus, when the number of turns of the coil is 2 or more, the coil has a transition portion that shifts from the winding portion to the next winding portion in the gap between the power introduction portions. It is preferable that the transition portion is formed in the vicinity and projects outward in the radial direction from the reference circle.
 このように、移行部の形状を基準円よりも径方向外方側に向けて張り出した形状とすることにより、プラズマ生成空間の、移行部に対応する部分に作用する誘導電界を極力弱くして、処理ガスのプラズマ化に対して与える影響を小さくすることができ、予期せぬ形でコイルの捲回部間に対応する部分の一部のみのプラズマ密度が高くなってしまい、プラズマ生成空間内のプラズマ密度のバランスが崩れるといった問題の発生を防止することができる。 In this way, by making the shape of the transition portion projecting radially outward from the reference circle, the induction electric field acting on the portion corresponding to the transition portion of the plasma generation space is made as weak as possible. The plasma gas density of the processing gas can be reduced, and the plasma density of only a part of the corresponding part between the coil winding parts increases in an unexpected manner. It is possible to prevent the occurrence of a problem that the balance of the plasma density is lost.
 尚、本願における「基板」としては、シリコンや、炭化ケイ素、サファイア、化合物半導体、ガラス、樹脂などからなる基板を例示することができる。 As the “substrate” in the present application, a substrate made of silicon, silicon carbide, sapphire, compound semiconductor, glass, resin, or the like can be exemplified.
 以上のように、本発明に係るプラズマ処理装置によれば、プラズマ生成空間内におけるプラズマの密度が高くなる部分が軸対称となるように、プラズマ生成空間内の処理ガスをプラズマ化することができる。 As described above, according to the plasma processing apparatus of the present invention, the processing gas in the plasma generation space can be converted to plasma so that the portion where the plasma density in the plasma generation space is high is axisymmetric. .
本発明の一実施形態に係るプラズマ処理装置を示した正断面図である。It is the front sectional view showing the plasma treatment apparatus concerning one embodiment of the present invention. 図1におけるA-A間の拡大断面図である。FIG. 2 is an enlarged cross-sectional view taken along a line AA in FIG. 本発明の他の実施形態に係るプラズマ処理装置を示した断面図である。It is sectional drawing which showed the plasma processing apparatus which concerns on other embodiment of this invention. (a)は、本発明の他の実施形態に係るプラズマ処理装置におけるコイルを示した上面図であり、(b)は、(a)における矢示B方向から視た図である。(A) is the top view which showed the coil in the plasma processing apparatus which concerns on other embodiment of this invention, (b) is the figure seen from the arrow B direction in (a). 従来のプラズマエッチング装置を示した正断面図である。It is a front sectional view showing a conventional plasma etching apparatus. 図6におけるC-C間の拡大断面図である。FIG. 7 is an enlarged cross-sectional view taken along the line CC in FIG. 6.
 以下、本発明の具体的な実施形態について、図面に基づき説明する。尚、本例のプラズマ処理装置はプラズマエッチング装置であり、基板に対してプラズマエッチング処理を行う。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. Note that the plasma processing apparatus of this example is a plasma etching apparatus, and performs a plasma etching process on the substrate.
 図1に示すように、本例のプラズマエッチング装置1は、内部空間の下方に処理空間3が設定されるとともに、この処理空間3の上方にプラズマ生成空間4が設定される円筒状の処理チャンバ2と、前記プラズマ生成空間4に処理ガスを供給する処理ガス供給機構15と、処理チャンバ2の、プラズマ生成空間4が設定される部分の外周面を囲むように捲回されたコイル20と、このコイル20に高周波電力を供給するコイル電力供給機構25と、前記処理空間3に配設され、基板Kを載置するための基台30と、この基台30に高周波電力を供給する基台電力供給機構40と、前記処理チャンバ2内の気体を排気する排気装置45とを備えている。 As shown in FIG. 1, the plasma etching apparatus 1 of this example has a cylindrical processing chamber in which a processing space 3 is set below an internal space and a plasma generation space 4 is set above the processing space 3. 2, a processing gas supply mechanism 15 for supplying a processing gas to the plasma generation space 4, a coil 20 wound so as to surround an outer peripheral surface of a portion of the processing chamber 2 where the plasma generation space 4 is set, A coil power supply mechanism 25 that supplies high-frequency power to the coil 20, a base 30 that is disposed in the processing space 3 and on which the substrate K is placed, and a base that supplies high-frequency power to the base 30 A power supply mechanism 40 and an exhaust device 45 for exhausting the gas in the processing chamber 2 are provided.
 前記処理チャンバ2は、下胴部5,上胴部6,底板7,中間板8,天板9及び支柱10から構成されており、下胴部5は、その下端部に底板7が固設されるとともに、上端部に中間板8が固設され、これら下胴部5,底板7及び中間板8によって前記処理空間3が形成されている。また、上胴部6は、その下端部が中間板8の上面に固設されるとともに、上端部に天板9が固設され、これら上胴部6,中間板8及び天板9によってプラズマ生成空間4が形成されている。尚、前記中間板8には開口部8aが形成されており、当該開口部8aを介して処理空間3とプラズマ生成空間4とが連通している。また、前記中間板8と天板9との間には、複数の支柱10が設けられている。 The processing chamber 2 is composed of a lower body portion 5, an upper body portion 6, a bottom plate 7, an intermediate plate 8, a top plate 9, and a support column 10, and the lower body portion 5 has a bottom plate 7 fixed to a lower end portion thereof. At the same time, an intermediate plate 8 is fixed to the upper end, and the processing space 3 is formed by the lower body portion 5, the bottom plate 7 and the intermediate plate 8. The upper body 6 has a lower end fixed to the upper surface of the intermediate plate 8 and a top 9 fixed to the upper end. The upper body 6, the intermediate plate 8, and the top 9 make plasma. A generation space 4 is formed. Note that an opening 8a is formed in the intermediate plate 8, and the processing space 3 and the plasma generation space 4 communicate with each other through the opening 8a. In addition, a plurality of support columns 10 are provided between the intermediate plate 8 and the top plate 9.
 前記上胴部6は、石英などからなり、その内径(言い換えれば、プラズマ生成空間の外径)が、直径1インチ以下の基板Kに見合った寸法である15mm以上50mm以下となるように成形されている。 The upper body portion 6 is made of quartz or the like, and is shaped so that the inner diameter (in other words, the outer diameter of the plasma generation space) is 15 mm or more and 50 mm or less, which is a size corresponding to the substrate K having a diameter of 1 inch or less. ing.
 前記下胴部6には、処理空間3内の気体を排気するための排気口5aが形成されており、当該排気口5aには、前記排気装置45が接続され、この排気装置45によって処理チャンバ2内の気体が排気されるようになっている。 The lower body 6 is formed with an exhaust port 5a for exhausting the gas in the processing space 3, and the exhaust device 45 is connected to the exhaust port 5a. The gas in 2 is exhausted.
 前記処理ガス供給機構15は、SFガスなどのエッチングガスを供給するエッチングガス供給部16と、一端が前記天板9の下面に環状に設けられた複数の吐出口に接続され、他端が前記エッチングガス供給部16に接続された供給管17とを備え、前記エッチングガス供給部16から供給管17を介してプラズマ生成空間4内にエッチングガスを供給する。尚、エッチングガスとしては、SFガスに限られるものではなく、他のフッ素系ガス、例えば、CFやNF、IFなどを用いることができる。 The processing gas supply mechanism 15 is connected to an etching gas supply unit 16 that supplies an etching gas such as SF 6 gas, and one end connected to a plurality of discharge ports provided in an annular shape on the lower surface of the top plate 9, and the other end. A supply pipe 17 connected to the etching gas supply unit 16 is provided, and an etching gas is supplied from the etching gas supply unit 16 into the plasma generation space 4 through the supply pipe 17. Note that the etching gas is not limited to SF 6 gas, and other fluorine-based gases such as CF 4 , NF 3 , and IF 5 can be used.
 前記コイル20は、図2に示すように、前記上胴部6の外方に、当該上胴部6の外周面を囲むように巻かれており、一端には、後述するコイル電力供給機構25に接続される電力導入部20aが径方向外方に引き出されるように形成され、他端には、アースに接続される電力導入部20bが同様に径方向外方に引き出されるように形成されている。尚、前記2つの電力導入部20a,20bは、相互に対向する位置から引き出されており、両者の間に隙間が形成されている。尚、本例のプラズマエッチング装置1におけるコイル20は、巻き数を1とした、一重の同一平面内の形状としており、これにより、コイル20をコンパクトなものとすることができ、また、磁界の向きを揃えて均一なプラズマを発生させることができる。 As shown in FIG. 2, the coil 20 is wound around the outer surface of the upper body 6 on the outer side of the upper body 6, and a coil power supply mechanism 25, which will be described later, is provided at one end. The power introduction portion 20a connected to the power supply portion 20a is formed so as to be drawn out radially outward, and at the other end, the power introduction portion 20b connected to the ground is similarly formed so as to be drawn out radially outward. Yes. The two power introduction portions 20a and 20b are drawn from positions facing each other, and a gap is formed between them. In addition, the coil 20 in the plasma etching apparatus 1 of the present example has a single coplanar shape with one winding, which makes it possible to make the coil 20 compact and to reduce the magnetic field. Uniform plasma can be generated with the same orientation.
 また、コイル20は、処理チャンバ2の、プラズマ生成空間4に対応する部分の外方に設定された基準円(以下、これを「ピッチ円」という)Pよりも径方向内方側に屈曲又は湾曲して張り出した6つの内方側張出部21と、前記ピッチ円Pよりも径方向外方側に屈曲又は湾曲して張り出した5つの外方側張出部22とが連続的に形成されており、前記6つの内方側張出部21と、5つの外方側張出部22及び電力導入部20a,20b間の隙間部分が、ピッチ円Pの周方向に沿って交互に等間隔に配置されている、言い換えれば、上胴部6の中心(プラズマ生成空間4の中心)から等距離で同角度の6つの内方側張出部21と5つの外方側張出部22とが交互に対称に配置されている。尚、コイル20は、中間板8の上面に取り付けられた複数の支持部材23によって、上胴部6の略中間に位置するように支持されている。 The coil 20 is bent or radially inward of a reference circle (hereinafter referred to as “pitch circle”) P set outside the portion of the processing chamber 2 corresponding to the plasma generation space 4. Six inwardly-extending portions 21 that are curved and projecting, and five outward-side projecting portions 22 that are bent or curved outward in the radial direction from the pitch circle P are continuously formed. The gap portions between the six inwardly extending portions 21, the five outwardly extending portions 22 and the power introducing portions 20a and 20b are alternately arranged along the circumferential direction of the pitch circle P, etc. In other words, the six inward projecting portions 21 and the five inward projecting portions 22 are equidistant from the center of the upper body 6 (the center of the plasma generation space 4) and at the same angle. Are alternately arranged symmetrically. The coil 20 is supported so as to be positioned approximately in the middle of the upper trunk portion 6 by a plurality of support members 23 attached to the upper surface of the intermediate plate 8.
 前記コイル電力供給機構25は、前記コイル20の電力導入部20aに接続されたインピーダンス整合器26と、このインピーダンス整合器26に接続された高周波電源27とからなり、上述したように、コイル20に高周波電力を供給する機構である。 The coil power supply mechanism 25 includes an impedance matching unit 26 connected to the power introduction unit 20a of the coil 20 and a high-frequency power source 27 connected to the impedance matching unit 26. This is a mechanism for supplying high-frequency power.
 前記基台30は、基板Kが載置される上部材31と、昇降シリンダ33が接続される下部材32とから構成され、支持台34によって上下方向に進退自在に支持された状態で前記処理空間3内に配設されており、前記昇降シリンダ33によって昇降されるようになっている。尚、前記下部材32における下面の外周縁部と支持台34の上面との間は、べローズ35によって覆われており、処理空間3の気密性が確保されるようになっている。 The base 30 is composed of an upper member 31 on which the substrate K is placed and a lower member 32 to which an elevating cylinder 33 is connected. The base 30 is supported by the support base 34 so as to be able to advance and retract in the vertical direction. It is disposed in the space 3 and is moved up and down by the lifting cylinder 33. The space between the outer peripheral edge of the lower surface of the lower member 32 and the upper surface of the support base 34 is covered with a bellows 35 so that the airtightness of the processing space 3 is ensured.
 前記基台電力供給機構40は、前記基台30に接続されたインピーダンス整合器41と、このインピーダンス整合器41に接続された高周波電源42とからなり、前記基台30に高周波電力を供給する機構である。 The base power supply mechanism 40 includes an impedance matching unit 41 connected to the base 30 and a high frequency power source 42 connected to the impedance matching unit 41, and supplies a high frequency power to the base 30. It is.
 前記排気装置45は、気体を排気する真空ポンプ46と、一端が真空ポンプ46に接続され、他端が前記下胴部5の排気口5aに接続された排気管47とからなり、当該排気装置45は、排気管47を介して真空ポンプ46により処理チャンバ2内の気体を排気し、処理チャンバ2の内部を所定の圧力に維持する。 The exhaust device 45 includes a vacuum pump 46 that exhausts gas, and an exhaust pipe 47 that has one end connected to the vacuum pump 46 and the other end connected to the exhaust port 5a of the lower body 5. 45 exhausts the gas in the processing chamber 2 by the vacuum pump 46 through the exhaust pipe 47 to maintain the inside of the processing chamber 2 at a predetermined pressure.
 次に、以上の構成を備えたプラズマエッチング装置1を用いて、基板K(例えば、シリコン基板)にエッチング処理を施す過程について説明する。 Next, a process of performing an etching process on the substrate K (for example, a silicon substrate) using the plasma etching apparatus 1 having the above configuration will be described.
 まず、下降位置にある基台30上に、表面に所定パターンのマスクが形成された基板Kを載置し、ついで、基台30を昇降シリンダ33によって処理位置まで上昇させた後、排気装置45によって処理チャンバ2内(処理空間3及びプラズマ生成空間4)の気体を排気して、当該処理チャンバ2内を負圧にする。 First, the substrate K having a mask with a predetermined pattern formed thereon is placed on the base 30 at the lowered position, and then the base 30 is moved up to the processing position by the lift cylinder 33, and then the exhaust device 45 is placed. By evacuating the gas in the processing chamber 2 (processing space 3 and plasma generation space 4), the processing chamber 2 is set to a negative pressure.
 また、これと並行して、前記コイル20に高周波電源27から高周波電力を供給し、プラズマ生成空間4内に誘導電界を生じさせ、この状態で、前記エッチングガス供給部16からプラズマ生成空間4内にエッチングガスを供給する。尚、コイル20に供給する高周波電力は、周波数を100kHz以上、大きさを50W以下とすることが好ましい。 In parallel with this, high-frequency power is supplied from the high-frequency power source 27 to the coil 20 to generate an induction electric field in the plasma generation space 4. In this state, the etching gas supply unit 16 supplies the coil 20 in the plasma generation space 4. Etching gas is supplied. The high frequency power supplied to the coil 20 is preferably set to a frequency of 100 kHz or more and a size of 50 W or less.
 ここで、本例のプラズマエッチング装置1においては、コイル20に内方側張出部21と外方側張出部22とが形成されており、内方側張出部21と、外方側張出部22及び電力導入部20a,20b間の隙間部分とが交互に配置されている。そして、内方側張出部21からプラズマ生成空間4までの距離S1の方が、外方側張出部22からプラズマ生成空間4までの距離S2よりも短くなっているため、プラズマ生成空間4の、内方側張出部21に対応する部分(図2中の破線で囲まれた部分R1)に作用する誘導電界の方が、外方側張出部22に対応する部分(図2中の点線で囲まれた部分R2)に作用する誘導電界よりも強くなり、また、2つの電力導入部20a,20bの間には隙間があり、この隙間にはコイル20が存在しないため、前記内方側張出部22に対応する部分に作用する誘導電界は、電力導入部20a、20b間の隙間部分に対応する部分(図2中の一点鎖線で囲まれた部分R3)に作用する誘導電界よりも強くなる。このため、プラズマ生成空間4内においては、内方側張出部21に対応する部分の方が、外方側張出部22及び電力導入部20a,20b間の隙間部分に対応する部分よりもプラズマが生成され易くなる。 Here, in the plasma etching apparatus 1 of the present example, the coil 20 is formed with an inwardly extending portion 21 and an outwardly extending portion 22, and the inwardly extending portion 21 and the outward side of the coil 20 are formed. The overhang portions 22 and the gap portions between the power introduction portions 20a and 20b are alternately arranged. Since the distance S1 from the inward projecting portion 21 to the plasma generating space 4 is shorter than the distance S2 from the outer projecting portion 22 to the plasma generating space 4, the plasma generating space 4 The induced electric field acting on the portion corresponding to the inwardly extending portion 21 (portion R1 surrounded by the broken line in FIG. 2) is the portion corresponding to the outwardly extending portion 22 (in FIG. 2). Since the induction electric field acting on the portion R2) surrounded by the dotted line is stronger and there is a gap between the two power introduction portions 20a and 20b, and the coil 20 does not exist in the gap, The induced electric field acting on the portion corresponding to the side projecting portion 22 is the induced electric field acting on the portion corresponding to the gap portion between the power introducing portions 20a and 20b (the portion R3 surrounded by the one-dot chain line in FIG. 2). Be stronger than For this reason, in the plasma generation space 4, the portion corresponding to the inwardly extending portion 21 is more than the portion corresponding to the gap portion between the outwardly extending portion 22 and the power introducing portions 20a and 20b. Plasma is easily generated.
 したがって、本例のプラズマエッチング装置1においては、内方側張出部21に対応する部分のプラズマ密度が相対的に高くなる一方、外方側張出部22及び電力導入部20a,20b間の隙間部分に対応する部分のプラズマ密度が相対的に低くなり、プラズマ密度の高い部分と低い部分とが周方向に沿って交互に等間隔に並んだ、言い換えれば、プラズマ密度の高い部分が軸対称に配置された状態となる。 Therefore, in the plasma etching apparatus 1 of this example, the plasma density in the portion corresponding to the inward extending portion 21 is relatively high, while the distance between the outward extending portion 22 and the power introduction portions 20a and 20b is increased. The plasma density of the portion corresponding to the gap portion is relatively low, and the high plasma density portion and the low plasma density portion are alternately arranged at equal intervals along the circumferential direction, in other words, the high plasma density portion is axisymmetric. It will be in the state arranged in.
 しかる後、高周波電源42から基台30に高周波電力を供給する。その後、密度の高い部分と低い部分とが交互に等間隔に並んだ状態のプラズマ化されたエッチングガスは、前記中間板8の開口部8aを介して処理空間3に降下する過程で、密度の高い部分から低い部分へとスムーズに拡散するため、当該プラズマ化されたエッチングガスは、平面内密度の均一化が進んだ状態で基板K上に至り、基板K全面に対して一様に作用する。これにより、基板Kの表面がエッチングされ、当該基板Kの表面にエッチング構造が形成される。尚、本例のエッチング工程においては、基台30に高周波電力を供給し、基板Kにバイアス電位を与えているため、プラズマ中のイオンが基板Kに向けて照射され、所謂イオンアシストエッチングが行われる。 Thereafter, high frequency power is supplied from the high frequency power source 42 to the base 30. Thereafter, the plasma-etched etching gas in which high density portions and low density portions are alternately arranged at equal intervals falls in the process of descending into the processing space 3 through the openings 8a of the intermediate plate 8. In order to smoothly diffuse from a high part to a low part, the plasma-ized etching gas reaches the substrate K in a state where the in-plane density is uniformized, and acts uniformly on the entire surface of the substrate K. . As a result, the surface of the substrate K is etched, and an etching structure is formed on the surface of the substrate K. In the etching process of this example, since high frequency power is supplied to the base 30 and a bias potential is applied to the substrate K, ions in the plasma are irradiated toward the substrate K, so-called ion-assisted etching is performed. Is called.
 以上のように、本例のプラズマエッチング装置1によれば、プラズマ生成空間4内において、プラズマ密度の高い部分と低い部分とが交互に等間隔に並んだ状態、言い換えれば、プラズマ密度の高い部分と低い部分とがそれぞれ軸対称となった状態にすることによって、プラズマをスムーズに拡散させることができ、基板Kに対して平面内密度が均一化されたプラズマを作用させることができる。 As described above, according to the plasma etching apparatus 1 of the present example, in the plasma generation space 4, the high plasma density portion and the low plasma density portion are alternately arranged at equal intervals, in other words, the high plasma density portion. In this state, the plasma can be diffused smoothly and plasma with uniform in-plane density can be applied to the substrate K.
 以上、本発明の一実施形態について説明したが、本発明の採り得る態様は何らこれに限定されるものではない。 As mentioned above, although one Embodiment of this invention was described, the aspect which this invention can take is not limited to this at all.
 例えば、上例においては、コイル20に6つの内方側張出部21と5つの外方側張出部22とを形成するようにしたが、内方側張出部21及び外方側張出部22の数はこれに限られるものではなく、コイルのサイズなどに応じて適宜設計すれば良い。 For example, in the above example, the coil 20 is formed with six inwardly extending parts 21 and five outwardly extending parts 22, but the inwardly extending part 21 and the outwardly extending part The number of the protruding portions 22 is not limited to this, and may be appropriately designed according to the size of the coil.
 また、上例では、コイル20の形状を、内方側張出部21と外方側張出部22とを連続的に形成した形状としたが、このような形状に限られるものではなく、図3に示すコイル50のように、3つの内方側張出部51と2つの外方側張出部52とを間隔を空けて形成し、3つの内方側張出部51と、2つの外方側張出部52及び2つの電力導入部50a,50bの間の隙間部分とをピッチ円Pの周方向に沿って交互に等間隔に配置した形状であっても良い。このようにしても、プラズマ生成空間4の、内方側張出部51に対応する部分のプラズマ密度を相対的に高くし、外方側張出部52及び電力導入部50a,50b間の隙間部分に対応する部分のプラズマ密度を相対的に低くして、当該プラズマ生成空間4の中に、プラズマ密度の高い部分と低い部分とが周方向に沿って交互に等間隔に並んだ状態を作り出すことができる。 In the above example, the shape of the coil 20 is a shape in which the inwardly extending portion 21 and the outwardly extending portion 22 are continuously formed. However, the shape is not limited to such a shape. As shown in the coil 50 shown in FIG. 3, three inwardly extending portions 51 and two outwardly extending portions 52 are formed with a space therebetween, and the three inwardly extending portions 51, 2 The shape which arrange | positioned the clearance gap part between the two outward side protrusion parts 52 and the two electric power introduction parts 50a and 50b alternately at equal intervals along the circumferential direction of the pitch circle P may be sufficient. Even in this case, the plasma density in the portion of the plasma generation space 4 corresponding to the inward extending portion 51 is relatively increased, and the gap between the outward extending portion 52 and the power introducing portions 50a and 50b is increased. The plasma density of the portion corresponding to the portion is relatively lowered to create a state in which the high plasma density portion and the low plasma density portion are alternately arranged at equal intervals along the circumferential direction in the plasma generation space 4. be able to.
 また、上例においては、コイル20の巻き数を1とし、高さ方向の厚みを周方向において一定なものとしてコイル自体をコンパクトなものにすることにより、直径1インチ以下の基板にエッチング処理をするプラズマエッチング装置のような、高さ方向に制限がある小型のプラズマエッチング装置1において、特に顕著な効果を奏するようにしているが、装置のサイズなどに応じて、コイルの巻き数は2以上にしても良い。 In the above example, the number of turns of the coil 20 is set to 1, the thickness in the height direction is constant in the circumferential direction, and the coil itself is made compact, thereby etching the substrate having a diameter of 1 inch or less. In a small plasma etching apparatus 1 having a restriction in the height direction, such as a plasma etching apparatus, a remarkable effect is achieved. However, depending on the size of the apparatus, the number of turns of the coil is 2 or more. Anyway.
 ここで、コイルの巻き数を2以上にすると、例えば、1段目の捲回部から2段目の捲回部へと移行する特異的部分たる移行部が形成される場合がある。そして、移行部が形成されている場合には、プラズマ生成空間の、1段目の捲回部と2段目の捲回部との間に位置する部分の一部にのみ移行部から誘導電界が作用することになり、プラズマ生成空間内のプラズマ密度のバランスが崩れ易くなる可能性がある。 Here, when the number of turns of the coil is set to 2 or more, for example, a transition portion that is a specific portion that transitions from the first winding portion to the second winding portion may be formed. And when the transition part is formed, an induction electric field is generated from the transition part only in a part of the plasma generation space located between the first stage winding part and the second stage winding part. May act, and the balance of the plasma density in the plasma generation space may be easily lost.
 そこで、コイルの巻き数を2以上にした場合には、図4に示すように、コイル60の移行部63を、2つの電力導入部60a,60bの間の隙間の近傍に形成し、当該移行部63をピッチ円Pよりも径方向外方側に張り出した形状にすることが好ましい。このようにすれば、プラズマ生成空間4の、コイル60の捲回部間に対応する部分に対して、移行部から作用する誘導電界を極力弱めることができ、プラズマ生成空間4内のプラズマ密度のバランスが予期せぬ形で崩れるといった問題の発生を抑えることができる。 Therefore, when the number of turns of the coil is 2 or more, as shown in FIG. 4, a transition portion 63 of the coil 60 is formed in the vicinity of the gap between the two power introduction portions 60a and 60b, and the transition is performed. It is preferable that the part 63 has a shape projecting radially outward from the pitch circle P. In this way, the induction electric field acting from the transition portion can be weakened as much as possible to the portion of the plasma generation space 4 corresponding to the winding portion of the coil 60, and the plasma density in the plasma generation space 4 can be reduced. It is possible to suppress the occurrence of problems such as an unbalanced balance.
 また、上例においては、本発明に係るプラズマ処理装置をプラズマエッチング装置として具現化したものを例示したが、これに限られるものではなく、例えば、基板に薄膜を形成する際に用いるプラズマCVD装置や、レジストを除去する際に用いられるプラズマアッシング装置として具現化しても良い。 In the above example, the plasma processing apparatus according to the present invention is embodied as a plasma etching apparatus. However, the present invention is not limited to this. For example, a plasma CVD apparatus used when forming a thin film on a substrate is used. Alternatively, it may be embodied as a plasma ashing device used when removing the resist.
 1  プラズマエッチング装置
 2  処理チャンバ
 3  処理空間
 4  プラズマ生成空間
 5  下胴部
 6  上胴部
 15 処理ガス供給機構
 20 コイル
 20a,20b 電力導入部
 21 内方側張出部
 22 外方側張出部
 25 コイル電力供給機構
 30 基台
 40 基台電力供給機構
 45 排気装置
 50 コイル
 50a,50b 電力導入部
 51 内方側張出部
 52 外方側張出部
 60 コイル
 60a,60b 電力導入部
 61 内方側張出部
 62 外方側張出部
 63 移行部
 
DESCRIPTION OF SYMBOLS 1 Plasma etching apparatus 2 Processing chamber 3 Processing space 4 Plasma generation space 5 Lower trunk | drum 6 Upper trunk | drum 15 Process gas supply mechanism 20 Coil 20a, 20b Power introduction part 21 Inner side extension part 22 Outer side extension part 25 Coil power supply mechanism 30 Base 40 Base power supply mechanism 45 Exhaust device 50 Coil 50a, 50b Power introduction part 51 Inner side extension part 52 Outer side extension part 60 Coil 60a, 60b Power introduction part 61 Inner side Overhang part 62 Outer side overhang part 63 Transition part

Claims (12)

  1.  処理チャンバ内に設定されたプラズマ生成空間に処理ガスを供給し、前記処理チャンバの、前記プラズマ生成空間に対応する部分の外方に捲回された環状のコイルに、コイル電力供給機構から高周波電力を供給して、プラズマ生成空間内の処理ガスをプラズマ化し、該プラズマ化された処理ガスによって基台上の基板をプラズマ処理するプラズマ処理装置において、
     前記コイルは、
     一方が前記コイル電力供給機構に接続され、他方がアースに接続され、両者の間に隙間が形成された2つの電力導入部と、
     前記プラズマ生成空間に対応する処理チャンバの周囲に設定された基準円よりも径方向内方側に向けて張り出した少なくとも3つの内方側張出部とを有し、
     前記少なくとも3つの内方側張出部が、前記基準円の周方向に沿って等間隔に形成されていることを特徴とするプラズマ処理装置。
    A processing gas is supplied to a plasma generation space set in the processing chamber, and a high-frequency power is supplied from a coil power supply mechanism to an annular coil wound outward of a portion of the processing chamber corresponding to the plasma generation space. In the plasma processing apparatus for converting the processing gas in the plasma generation space into plasma, and plasma processing the substrate on the base with the plasma processing gas,
    The coil is
    Two power introduction parts, one connected to the coil power supply mechanism, the other connected to the ground, and a gap formed between them;
    Having at least three inwardly extending portions that protrude toward the radially inward side of a reference circle set around the processing chamber corresponding to the plasma generation space;
    The plasma processing apparatus, wherein the at least three inwardly extending portions are formed at equal intervals along a circumferential direction of the reference circle.
  2.  前記コイルは、前記基準円よりも径方向外方側に向けて張り出した少なくとも2つの外方側張出部が、前記基準円の周方向に沿って形成されており、
     該少なくとも2つの外方側張出部、前記少なくとも3つの内方側張出部、及び前記電力導入部間の隙間は、前記周方向に等間隔に配置されていることを特徴とする請求項1記載のプラズマ処理装置。
    The coil is formed with at least two outwardly projecting portions projecting radially outward from the reference circle along a circumferential direction of the reference circle,
    The gap between the at least two outward projecting portions, the at least three inward projecting portions, and the power introduction portion is arranged at equal intervals in the circumferential direction. 2. The plasma processing apparatus according to 1.
  3.  前記コイルは、その巻き数が2以上であって、捲回部から次の捲回部へと移行する移行部が前記電力導入部間の隙間の近傍に形成されており、
     前記移行部は、前記基準円よりも径方向外方側に向けて張り出していることを特徴とする請求項1又は2記載のプラズマ処理装置。
    The coil has two or more turns, and a transition part that transitions from the winding part to the next winding part is formed in the vicinity of the gap between the power introduction parts,
    The plasma processing apparatus according to claim 1, wherein the transition portion protrudes outward in the radial direction from the reference circle.
  4.  処理チャンバ内に設定されたプラズマ生成空間に処理ガスを供給し、前記処理チャンバの、前記プラズマ生成空間に対応する部分の外方に捲回された環状のコイルに、コイル電力供給機構から高周波電力を供給して、プラズマ生成空間内の処理ガスをプラズマ化し、該プラズマ化された処理ガスによって基台上の基板をプラズマ処理するプラズマ処理装置において、
     前記コイルは、
     一方が前記コイル電力供給機構に接続され、他方がアースに接続され、両者の間に隙間が形成された2つの電力導入部と、
     プラズマ生成空間に向けて接近する方向に張り出した少なくとも3つの内方側張出部とを有し、
     前記少なくとも3つの内方側張出部が、プラズマ生成空間の中心から等距離、同角度で対称に形成されていることを特徴とするプラズマ処理装置。
    A processing gas is supplied to a plasma generation space set in the processing chamber, and a high-frequency power is supplied from a coil power supply mechanism to an annular coil wound outward of a portion of the processing chamber corresponding to the plasma generation space. In the plasma processing apparatus for converting the processing gas in the plasma generation space into plasma, and plasma processing the substrate on the base with the plasma processing gas,
    The coil is
    Two power introduction parts, one connected to the coil power supply mechanism, the other connected to the ground, and a gap formed between them;
    Having at least three inwardly protruding portions protruding in a direction approaching the plasma generation space;
    The plasma processing apparatus, wherein the at least three inwardly extending portions are formed symmetrically at the same angle and the same distance from the center of the plasma generation space.
  5.  前記コイルは、プラズマ生成空間から離反する方向に張り出した少なくとも2つの外方側張出部が、プラズマ生成空間の中心から等距離に形成されており、
     該少なくとも2つの外方側張出部、前記少なくとも3つの内方側張出部、及び前記電力導入部間の隙間は、前記プラズマ生成空間の中心から同角度で対称に形成されていることを特徴とする請求項4記載のプラズマ処理装置。
    In the coil, at least two outwardly extending portions that protrude in a direction away from the plasma generation space are formed at an equal distance from the center of the plasma generation space,
    The gaps between the at least two outward projecting portions, the at least three inward projecting portions, and the power introducing portion are formed symmetrically at the same angle from the center of the plasma generation space. The plasma processing apparatus according to claim 4, wherein:
  6.  前記コイルは、その巻き数が2以上であって、捲回部から次の捲回部へと移行する移行部が前記電力導入部間の隙間の近傍に形成されており、
     前記移行部は、前記プラズマ生成空間から離反する方向に張り出していることを特徴とする請求項4又は5記載のプラズマ処理装置。
    The coil has two or more turns, and a transition part that transitions from the winding part to the next winding part is formed in the vicinity of the gap between the power introduction parts,
    6. The plasma processing apparatus according to claim 4, wherein the transition portion projects in a direction away from the plasma generation space.
  7.  処理チャンバ内に設定されたプラズマ生成空間内で処理ガスをプラズマ化して、該プラズマ化された処理ガスによって基板にプラズマ処理を施すプラズマ処理装置に用いられる環状のコイルであって、
     2つの電力導入部を有し、該2つの電力導入部の間に隙間が形成されており、
     前記プラズマ生成空間に対応する処理チャンバの周囲に設定された基準円よりも径方向内方側に向けて張り出した少なくとも3つの内方側張出部が、前記基準円の周方向に沿って等間隔に形成されていることを特徴とするコイル。
    An annular coil used in a plasma processing apparatus for converting a processing gas into plasma in a plasma generation space set in a processing chamber and performing plasma processing on a substrate with the plasma processing gas,
    There are two power introduction parts, and a gap is formed between the two power introduction parts,
    At least three inwardly extending portions projecting radially inward from the reference circle set around the processing chamber corresponding to the plasma generation space are provided along the circumferential direction of the reference circle, etc. A coil characterized by being formed at intervals.
  8.  前記基準円よりも径方向外方に向けて張り出した少なくとも2つの外方側張出部が、前記基準円の周方向に沿って形成されており、
     該少なくとも2つの外方側張出部、前記少なくとも3つの内方側張出部、及び前記電力導入部間の隙間は、前記周方向に等間隔に配置されていることを特徴とする請求項7記載のコイル。
    At least two outward projecting portions projecting radially outward from the reference circle are formed along the circumferential direction of the reference circle;
    The gap between the at least two outward projecting portions, the at least three inward projecting portions, and the power introduction portion is arranged at equal intervals in the circumferential direction. 7. The coil according to 7.
  9.  巻き数が2以上であって、捲回部から次の捲回部へと移行する移行部が前記電力導入部間の隙間の近傍に形成されており、
     前記移行部は、前記基準円よりも径方向外方側に向けて張り出していることを特徴とする請求項7又は8記載のコイル。
    The number of turns is 2 or more, and a transition part that transitions from the winding part to the next winding part is formed in the vicinity of the gap between the power introduction parts,
    The coil according to claim 7 or 8, wherein the transition portion projects outward in the radial direction from the reference circle.
  10.  処理チャンバ内に設定されたプラズマ生成空間内で処理ガスをプラズマ化して、該プラズマ化された処理ガスによって基板にプラズマ処理を施すプラズマ処理装置に用いられる環状のコイルであって、
     2つの電力導入部を有し、該2つの電力導入部の間に隙間が形成されており、
     前記プラズマ生成空間に向けて接近する方向に張り出した少なくとも3つの内方側張出部が、前記プラズマ生成空間の中心から等距離、同角度で対称に形成されていることを特徴とするコイル。
    An annular coil used in a plasma processing apparatus for converting a processing gas into plasma in a plasma generation space set in a processing chamber and performing plasma processing on a substrate with the plasma processing gas,
    There are two power introduction parts, and a gap is formed between the two power introduction parts,
    The coil is characterized in that at least three inwardly projecting portions projecting in a direction approaching the plasma generation space are formed symmetrically at the same angle and at the same angle from the center of the plasma generation space.
  11.  前記プラズマ生成空間から離反する方向に張り出した少なくとも2つの外方側張出部が、プラズマ生成空間の中心から等距離に形成されており、
     該少なくとも2つの外方側張出部、前記少なくとも3つの内方側張出部、及び前記電力導入部間の隙間は、前記プラズマ生成空間の中心から同角度で対称に形成されていることを特徴とする請求項10記載のコイル。
    At least two outward projecting portions projecting away from the plasma generation space are formed at equal distances from the center of the plasma generation space;
    The gaps between the at least two outward projecting portions, the at least three inward projecting portions, and the power introducing portion are formed symmetrically at the same angle from the center of the plasma generation space. The coil according to claim 10.
  12.  巻き数が2以上であって、捲回部から次の捲回部へと移行する移行部が前記電力導入部間の隙間の近傍に形成されており、
     前記移行部は、前記プラズマ生成空間から離反する方向に張り出していることを特徴とする請求項10又は11記載のコイル。
     
    The number of turns is 2 or more, and a transition part that transitions from the winding part to the next winding part is formed in the vicinity of the gap between the power introduction parts,
    The coil according to claim 10 or 11, wherein the transition portion projects in a direction away from the plasma generation space.
PCT/JP2014/059432 2014-03-31 2014-03-31 Plasma treatment device and coil used therein WO2015151150A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014534687A JP5638727B1 (en) 2014-03-31 2014-03-31 Plasma processing apparatus and coil used in the same
PCT/JP2014/059432 WO2015151150A1 (en) 2014-03-31 2014-03-31 Plasma treatment device and coil used therein
US14/897,423 US20160358748A1 (en) 2014-03-31 2014-03-31 Plasma Processing Apparatus and Coil Used Therein
KR1020157005656A KR101529498B1 (en) 2014-03-31 2014-03-31 Plasma processing apparatus and coil used therein
EP14887912.5A EP3128819A1 (en) 2014-03-31 2014-03-31 Plasma treatment device and coil used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059432 WO2015151150A1 (en) 2014-03-31 2014-03-31 Plasma treatment device and coil used therein

Publications (1)

Publication Number Publication Date
WO2015151150A1 true WO2015151150A1 (en) 2015-10-08

Family

ID=52145668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059432 WO2015151150A1 (en) 2014-03-31 2014-03-31 Plasma treatment device and coil used therein

Country Status (5)

Country Link
US (1) US20160358748A1 (en)
EP (1) EP3128819A1 (en)
JP (1) JP5638727B1 (en)
KR (1) KR101529498B1 (en)
WO (1) WO2015151150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170316920A1 (en) * 2016-04-29 2017-11-02 Semes Co., Ltd. Apparatus and method for treating a substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074115B1 (en) * 2018-03-22 2020-02-05 가부시키가이샤 코쿠사이 엘렉트릭 Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device, and Electrostatic Shield
CN114727464B (en) * 2022-03-29 2023-03-24 电子科技大学 Method for prolonging service life of plasma spheroidization radio frequency torch and radio frequency torch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540617A (en) * 1999-03-26 2002-11-26 東京エレクトロン株式会社 Apparatus for improving plasma distribution and performance of inductively coupled plasma
JP2012018921A (en) * 2010-07-06 2012-01-26 Samsung Electronics Co Ltd Plasma generating apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626195B2 (en) * 1987-04-07 1994-04-06 三菱電機株式会社 Plasma processing device
JP2008117753A (en) * 2006-10-12 2008-05-22 Tdk Corp Ion gun, ion beam etching device, ion beam etching equipment, etching method and manufacturing method of magnetic recording medium
CN103347360B (en) * 2006-11-28 2016-01-20 莎姆克株式会社 Plasma treatment appts
JP2012128970A (en) * 2010-12-13 2012-07-05 Showa Shinku:Kk Electron beam irradiation device, electron beam irradiation processing apparatus using the same, and collector electrode for use in the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540617A (en) * 1999-03-26 2002-11-26 東京エレクトロン株式会社 Apparatus for improving plasma distribution and performance of inductively coupled plasma
JP2012018921A (en) * 2010-07-06 2012-01-26 Samsung Electronics Co Ltd Plasma generating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170316920A1 (en) * 2016-04-29 2017-11-02 Semes Co., Ltd. Apparatus and method for treating a substrate

Also Published As

Publication number Publication date
EP3128819A1 (en) 2017-02-08
KR101529498B1 (en) 2015-06-17
JPWO2015151150A1 (en) 2017-04-13
US20160358748A1 (en) 2016-12-08
JP5638727B1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP4815533B2 (en) Plasma processing apparatus and plasma processing method
KR101224143B1 (en) Plasma etching apparatus
TW201519354A (en) Precleaning chamber and semiconductor processing device
US10418224B2 (en) Plasma etching method
JP5970268B2 (en) Plasma processing apparatus and processing method
JP5638727B1 (en) Plasma processing apparatus and coil used in the same
TW201523683A (en) Bottom electrode apparatus and plasma processing device
WO2011102083A1 (en) Plasma processing device and plasma processing method
US20170186591A1 (en) Cleaning method of plasma processing apparatus and plasma processing apparatus
JP2004022822A (en) Plasma processing method and device
KR101232200B1 (en) Baffle, apparatus for treating substrate and method for treating thereof
WO2020116248A1 (en) Plasma processing device
TWI817229B (en) Lower electrode element, plasma processing device and method of replacing focus ring
JP5893260B2 (en) Plasma processing apparatus and processing method
TW201711529A (en) Substrate processing apparatus
US20220122820A1 (en) Substrate processing apparatus
JP4336680B2 (en) Reactive ion etching system
JP2008108811A (en) Plasma processor
TW201537609A (en) Plasma processing apparatus and coil used therein
JP5669991B1 (en) Plasma processing equipment
CN107403750B (en) Base assembly and reaction chamber
JP6279498B2 (en) Plasma processing apparatus and plasma processing method
JP5689209B1 (en) Plasma processing apparatus and plasma processing method
JP2023103113A (en) Substrate processing method
JP3732210B2 (en) Plasma etching equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014534687

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897423

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014887912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887912

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE