WO2011102083A1 - Plasma processing device and plasma processing method - Google Patents

Plasma processing device and plasma processing method Download PDF

Info

Publication number
WO2011102083A1
WO2011102083A1 PCT/JP2011/000409 JP2011000409W WO2011102083A1 WO 2011102083 A1 WO2011102083 A1 WO 2011102083A1 JP 2011000409 W JP2011000409 W JP 2011000409W WO 2011102083 A1 WO2011102083 A1 WO 2011102083A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
antenna coil
plasma processing
frequency power
plasma
Prior art date
Application number
PCT/JP2011/000409
Other languages
French (fr)
Japanese (ja)
Inventor
敏幸 中村
修市 山田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012500485A priority Critical patent/JPWO2011102083A1/en
Publication of WO2011102083A1 publication Critical patent/WO2011102083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils

Definitions

  • the present invention relates to an inductively coupled plasma processing apparatus and a plasma processing method.
  • an ICP (inductively coupled plasma) type plasma processing apparatus is known (see, for example, Patent Document 1).
  • the processing conditions such as the type of gas introduced into the vacuum chamber and the usage state of the vacuum chamber are different, the electric field strength at that time can be obtained even if the same high frequency power is applied to both antenna coils.
  • the distribution changes in the vacuum chamber, which causes the plasma density distribution to change.
  • a predetermined process such as etching or film formation is performed in the plasma processing apparatus, there is a problem that the etching rate or the film formation rate becomes non-uniform in the substrate surface to be processed.
  • the plasma field density is changed by changing the relative allocation of the high frequency power input to both antenna coils, thereby changing the electric field strength distribution in the vacuum chamber. Propose to improve the distribution.
  • the matching box matches the impedance of the plasma load with the impedance of the high-frequency power source so that the high-frequency power is stably input to the plasma load.
  • the impedance matching point in the matching box can be changed in a wide range. If the matching point changes in a wide range as described above, the matching box must have a wide matching range, and the control of the matching box becomes complicated and the input of high-frequency power becomes unstable due to reduced resolution. There is. In addition, there is a problem that the circuit configuration of the high frequency power supply becomes complicated because parts such as a variable capacitor are required.
  • the present invention provides a plasma processing apparatus and a plasma processing method that can change the plasma density distribution in the vacuum chamber without changing the configuration of the high-frequency power source and the matching box.
  • the present invention provides a vacuum chamber, a plurality of antenna coils arranged concentrically along the wall surface outside a predetermined wall surface formed of a dielectric material of the vacuum chamber, A high-frequency power source connected to the antenna coil via a matching box, and a predetermined gas is introduced into the vacuum chamber, and high-frequency power is supplied from the high-frequency power source to each antenna coil via the matching box.
  • the plasma processing apparatus for generating inductively coupled plasma includes a moving means for relatively moving a plurality of antenna coils in a direction orthogonal to the wall surface.
  • the moving means for moving the plurality of antenna coils in the direction orthogonal to the wall surface of the vacuum chamber since the plurality of antenna coils are relatively moved in the direction orthogonal to the wall surface, they are generated in the vacuum chamber.
  • the distribution of the electric field strength and the magnetic field strength to be locally changed can locally change the plasma density distribution in the vacuum chamber.
  • the antenna coil in order to change the distribution of the electric field strength and the magnetic field strength generated in the vacuum chamber, the antenna coil is relatively moved without changing the configuration of the high-frequency power source or the matching box or the high-frequency power to be input. Since the moving configuration is adopted, the impedance matching point does not change over a wide range, and high-frequency power can be input stably. In addition, the circuit configuration of the high frequency power supply is not complicated. If the present invention is applied to a dry etching apparatus or a film forming apparatus, the desired distribution of the etching rate or film forming speed within the substrate surface can be achieved by appropriately changing the plasma density distribution according to the processing conditions and usage conditions. Can be obtained.
  • the configuration of the plurality of antenna coils in the present invention is not limited to a configuration in which concentric ones having different diameters are arranged, but a plurality of concentric circles when the same shape or different shapes are arranged along the wall surface. The case where it is configured to spread in a ripple pattern is included.
  • the moving means adopts a configuration capable of locally moving a part of each antenna coil. It is preferable. Thereby, the plasma density distribution can be changed by locally changing the distribution of the electric field strength and magnetic field strength generated in the vacuum chamber.
  • the present invention provides a vacuum chamber, a spiral antenna coil disposed along the wall surface outside a predetermined wall surface formed of a dielectric material of the vacuum chamber, A high-frequency power source connected to the antenna coil via a matching box, and a predetermined gas is introduced into the vacuum chamber, and high-frequency power is supplied from the high-frequency power source to the antenna coil via the matching box.
  • a plasma processing apparatus for generating inductively coupled plasma at two points two points equidistant from the center are orthogonal to the wall surface among a plurality of points where the antenna coil and a straight line extending in the radial direction through the center of the antenna coil intersect.
  • a moving means for moving in the direction is provided.
  • the equidistant from the center does not mean that the distance from the center is exactly the same, but means that the distances from the center are substantially equal.
  • the spiral antenna coil is not limited to one antenna coil wound in a spiral shape, but may be configured by connecting two or more antenna coils.
  • the present invention uses the plasma processing apparatus according to any one of claims 1 to 3 to introduce a predetermined gas into a vacuum chamber and A plasma processing method in which high frequency power is supplied to each antenna coil via a matching box, inductively coupled plasma is generated in the vacuum chamber, and plasma processing is performed on the processing substrate in the vacuum chamber using this plasma.
  • the antenna coil is moved relative to a direction orthogonal to a predetermined wall surface in whole or in part.
  • Sectional drawing which shows typically the structure of the dry etching apparatus to which this invention is applied.
  • the top view of the dry etching apparatus of FIG. The figure which shows distribution of the etching rate at the time of etching by moving an inner side and an outer side antenna coil relatively.
  • the top view which shows the modification of an antenna coil.
  • the top view which shows the other modification of an antenna coil.
  • the dry etching apparatus includes a cylindrical vacuum chamber 1 capable of forming a vacuum atmosphere.
  • the upper wall 10 of the vacuum chamber 1 is formed of a dielectric material such as quartz or ceramics.
  • two C-shaped antenna coils 2 a and 2 b having different diameters are arranged concentrically along the upper wall 10.
  • a first high frequency power supply 4 is connected to one end of each antenna coil 2a, 2b via a matching box 3, and the other end of each antenna coil 2a, 2b is grounded.
  • Gas introduction pipes 5 are connected to the mutually opposing side walls of the vacuum chamber 1. Both gas introduction pipes 5 communicate with a gas source via a mass flow controller (not shown).
  • reference numeral 9 denotes an exhaust pipe connected to a vacuum exhaust means including a turbo molecular pump, a rotary pump, a conductance variable valve, etc. (not shown).
  • the substrate etching method using the etching apparatus will be described.
  • the substrate S is held on the substrate stage 6.
  • a predetermined gas (etching gas) appropriately selected according to the substrate to be processed in the vacuum chamber 1 is introduced through the gas introduction pipe 5.
  • predetermined high-frequency power is supplied from the first high-frequency power source 4 to the antenna coils 2 a and 2 b via the matching box 3.
  • a bias voltage is applied to the substrate via the second high frequency power supply 8.
  • a magnetic field and an electric field are formed in the vacuum chamber 1 in accordance with the direction and current value of the current flowing through both antenna coils 2 a and 2 b, and inductively coupled plasma is formed in the vacuum chamber 1. Then, the gas ions ionized in the plasma are drawn toward the substrate S by the bias potential, so that the substrate S is etched.
  • the process conditions such as the type of process gas, the pressure in the vacuum chamber 1 during etching (based on the exhaust speed, the amount of process gas introduced, etc.), the deposition of reaction byproducts on the inner wall surface of the vacuum chamber 1, etc.
  • the usage state of the vacuum chamber 1 changes, the distribution of the magnetic field intensity and the electric field intensity generated in the vacuum chamber 1 changes, resulting in a change in the plasma density distribution.
  • the etching rate changes in the substrate plane.
  • an antenna coil (hereinafter referred to as “inner antenna coil”) 2 a located on the inner side and an antenna coil (hereinafter referred to as “outer antenna coil”) 2 b located on the outer side are orthogonal to the upper wall 10.
  • the moving means M that moves in the direction (vertical direction in FIG. 1) is provided.
  • the configuration of the moving means M will be described in detail.
  • the moving means M includes holding portions 21a and 21b for holding the antenna coils 2a and 2b, drive shafts 22a and 22b connected to the upper surfaces of the holding portions 21a and 21b, and the drive shaft. It is comprised from the drive parts 23a and 23b which move 22a and 22b up or down.
  • the holding portion 21a for holding the inner antenna coil 2a is formed of a plate material having a predetermined length, and both ends thereof are screwed at two locations in the radial direction of the inner antenna coil 2a.
  • the holding portion 21b that holds the outer antenna coil 2b is formed of a plate piece, and the plate pieces 21b are provided at two positions with a predetermined interval in the circumferential direction of the outer antenna coil 2b.
  • the drive parts 23a and 23b are each comprised with a multistage type air cylinder and a stepping motor. *
  • the drive shafts 22a and 22b are moved up or down by any of the drive units 23a and 23b, and the inner antenna coil 2a and the outer antenna coil 2b are moved in the vertical direction.
  • the gap G1 between the upper wall 10 and the inner antenna coil 2a and the gap G2 between the upper wall 10 and the outer antenna coil 2b are mutually changed.
  • the magnetic field strength and electric field strength generated in the vacuum chamber 1 are locally changed, and when plasma is generated in the vacuum chamber 1 as described above, the plasma density distribution in the vacuum chamber 1 is changed.
  • the uniformity of the etching rate within the substrate surface can be improved.
  • what is necessary is just to acquire the amount to move relatively by experiment beforehand.
  • a ⁇ 300 mm silicon wafer was used as the substrate S to be etched, and chlorine gas was used as the etching gas.
  • Etching conditions are: chlorine gas flow rate 100 sccm, etching operating pressure 0.5 Pa, high frequency power (frequency 13.56 MHz) input to both inner antenna coil 2 a and outer antenna coil 2 b 300 W, substrate electrode 6
  • the bias power (frequency: 12.5 MHz) to be input to is set to 800W.
  • the two antenna coils 2a and 2b were brought into contact with the upper wall 10 to make both the gaps G1 and G2 between the upper wall 10 and the antenna coils 2a and 2b zero, and were etched under the above conditions (comparative example). Further, with the outer antenna coil 2b in contact with the upper wall 10, the inner antenna coil 2a is moved up by the moving means M, and the gap G1 is 8 mm (Invention 1), 16 mm (Invention 2), 24 mm (Invention). Each of them was changed to 3), and other silicon wafers were etched under the same etching conditions.
  • FIG. 3 shows the result of measuring the distribution of the etching rate when etching is performed under the above conditions.
  • the etching rate was measured at five points on a line passing through the center of the silicon wafer (-145 mm, -75 mm, 0 mm (substrate center), 75 mm, 145 mm, with the left direction in FIG. 1 as the negative direction).
  • the distribution of the magnetic field strength and the electric field strength generated in the vacuum chamber 1 changes when the etching conditions and the use state of the vacuum chamber change.
  • the desired etching rate is uniform for each type of etching gas according to the etching conditions.
  • the distances G1 and G2 that can be obtained are obtained in advance, and the inner antenna coil 2a and the outer antenna coil 2b may be relatively moved so as to be the obtained distances G1 and G2. Further, the inner antenna coil 2a and the outer antenna coil 2b may be automatically moved relative to each other according to the use state of the vacuum chamber 1.
  • this invention is not limited above.
  • the present invention can also be applied to a case where a film is formed by a sputtering method or a plasma CVD method.
  • the C-shaped inner antenna coil 2a and the outer antenna coil 2b having different diameters are arranged along the upper wall 10, and the inner antenna coil 2a and the outer antenna coil 2b are respectively integrated (overall).
  • the present invention is not limited to this.
  • FIG. 4 two concentric circles with different diameters are rippled when the three antenna coils 12a, 12b, and 12c having the same shape are combined and arranged along the upper wall, as shown in FIG. It is possible to use the one that is spread over.
  • a holding portion 21c for holding the antenna coils 12a, 12b, and 12c a holding portion 21c configured by a disk-like base portion 211 and a support piece 212 provided so as to extend radially outward from the outer peripheral end of the base portion is used. The tips of the support pieces 212 are screwed to the portions constituting the inner circumference of the antenna coils 12a, 12b, 12c, respectively.
  • the portions constituting the outer circumference of the antenna coils 12 a, 12 b, and 12 c are fixed to the upper wall 10 of the vacuum chamber 1 using a fixing member 24. Thereby, if the drive shaft 22c is moved up or down by the drive unit 23c, the portions constituting the inner circumference of the antenna coils 12a, 12b, and 12c are moved together.
  • an antenna coil according to another modification as shown in FIG. 5, a coil formed by winding one antenna coil in a spiral shape can be used.
  • positions P1 and P2 that are equidistant from the center O have a predetermined length. Both ends of the holding part 21 are screwed.
  • the drive shaft 22 that moves up or down by the drive unit 23 is connected to the holding unit 21.
  • the magnetic field strength and the electric field strength generated in the vacuum chamber 1 are locally changed by moving a part of the antenna coil 20 wound in a spiral shape up or down relative to the other part. be able to.
  • the antenna coil in a spiral shape along the upper wall 10 of the vacuum chamber 1 using two antenna coils. What is necessary is just to comprise a moving means in a connection location and to comprise an inner part and an outer part so that relative movement is possible.
  • the follow-up means 30 may be constituted by an elastic means 31 composed of a leaf spring, a coil spring, or the like that urges the antenna coil 2b upward by a force that cancels the weight of the outer antenna coil 2b.
  • a part of the outer antenna coil 2 b is suspended from the support member 33 fixed at a predetermined position 34 of the etching apparatus via the elastic means 31 and the support member 32.
  • the outer antenna coil 2b when the outer antenna coil 2b is tilted by its own weight when the moving part moves the opposing portion of the outer antenna coil 2b, the outer antenna coil 2b is urged by a force that cancels the own weight. 2b is held substantially horizontal. According to this, the drive part which moves an antenna coil relatively can be decreased, and cost reduction can be achieved.
  • SYMBOLS 1 Vacuum chamber, 2a ... Inner antenna coil, 2b ... Outer antenna coil, 3 ... Matching box, 4 ... 1st high frequency power supply, 20 ... Antenna coil, M ... Moving means.

Abstract

Disclosed are a plasma processing device and method which can change plasma density distribution within a vacuum chamber, without altering the structure of a matching box or a high-frequency power source. The disclosed plasma processing device is provided with: a vacuum chamber (1); a plurality of antenna coils (2a, 2b) which are arranged concentrically along the outer side of an upper wall (10) formed from the dielectric material of the vacuum chamber (1); and a high-frequency power source (4) which is connected to each antenna coil (2a, 2b) via a matching box (3). In the disclosed device, a prescribed gas is introduced into the vacuum chamber (1), high-frequency power is supplied to each antenna coil (2a, 2b) from the high-frequency power source (4) and via the matching box (3), and inductively-coupled plasma is generated within the vacuum chamber (1). The device is further provided with a movement means (M) which relatively moves the plurality of antenna coils (2a, 2b) in the direction at right angles to the upper wall (10).

Description

プラズマ処理装置及びプラズマ処理方法Plasma processing apparatus and plasma processing method
 本発明は、誘導結合型のプラズマ処理装置及びプラズマ処理方法に関する。 The present invention relates to an inductively coupled plasma processing apparatus and a plasma processing method.
 従来、半導体デバイスの製造工程において、プラズマを用いて各種処理を行うことが知られている。このような処理を行うプラズマ処理装置では、処理速度の向上等のためプラズマの高密度化が図られている。高密度プラズマを発生し得るプラズマ処理装置の例として、ICP(誘導結合プラズマ)型のプラズマ処理装置が知られている(例えば、特許文献1参照)。 Conventionally, it is known to perform various treatments using plasma in the manufacturing process of a semiconductor device. In a plasma processing apparatus that performs such processing, the plasma density is increased in order to improve the processing speed. As an example of a plasma processing apparatus capable of generating high-density plasma, an ICP (inductively coupled plasma) type plasma processing apparatus is known (see, for example, Patent Document 1).
 上記特許文献1記載のものでは、誘電体材料で構成された真空チャンバの上壁に沿って、径の異なる2本のアンテナコイルを同心に配置している。そして、真空チャンバ内に所定のガスを導入すると共に高周波電源からマッチングボックスを介して両アンテナコイルに高周波電力を投入すると、真空チャンバ内に形成される磁場の時間変化が起こり、それにより電場が誘導され、この電場により電子が加速されることで高密度のプラズマが真空チャンバ内に発生する。 In the above-mentioned Patent Document 1, two antenna coils having different diameters are arranged concentrically along the upper wall of a vacuum chamber made of a dielectric material. Then, when a predetermined gas is introduced into the vacuum chamber and high frequency power is supplied to both antenna coils from the high frequency power source via the matching box, the time change of the magnetic field formed in the vacuum chamber occurs, thereby inducing the electric field. Then, electrons are accelerated by this electric field, and high-density plasma is generated in the vacuum chamber.
 上記種のプラズマ処理装置では、真空チャンバ内に導入するガスの種類等の処理条件や真空チャンバの使用状態が異なると、両アンテナコイルに同等の高周波電力を投入しても、そのときの電場強度分布が真空チャンバ内で変化し、これに起因してプラズマ密度分布が変化する。このような場合、上記プラズマ処理装置にてエッチングや成膜等の所定の処理を行うと、エッチング速度や成膜速度が処理すべき基板面内で不均一になるという問題がある。 In the plasma processing apparatus of the above type, if the processing conditions such as the type of gas introduced into the vacuum chamber and the usage state of the vacuum chamber are different, the electric field strength at that time can be obtained even if the same high frequency power is applied to both antenna coils. The distribution changes in the vacuum chamber, which causes the plasma density distribution to change. In such a case, when a predetermined process such as etching or film formation is performed in the plasma processing apparatus, there is a problem that the etching rate or the film formation rate becomes non-uniform in the substrate surface to be processed.
 このような問題を解決するため、上記特許文献1記載のものでは、両アンテナコイルに投入する高周波電力の相対的な割り当てを変更することで、真空チャンバ内の電場強度分布を変化させてプラズマ密度分布を改善することを提案している。 In order to solve such a problem, in the one described in Patent Document 1, the plasma field density is changed by changing the relative allocation of the high frequency power input to both antenna coils, thereby changing the electric field strength distribution in the vacuum chamber. Propose to improve the distribution.
 ところで、アンテナコイルへの高周波電力の投入時、マッチングボックスによりプラズマ負荷のインピーダンスと高周波電源のインピーダンスとを整合させてプラズマ負荷に対して安定して高周波電力が投入されるようにしている。然し、上記特許文献1記載のように、両アンテナコイルに投入する高周波電力の相対的な割り当てを変更すると、マッチングボックスでのインピーダンスの整合ポイントが広範囲に変化し得る。このように整合ポイントが広範囲に変化すると、マッチングボックスの整合範囲を広くしなければならず、マッチングボックスの制御が複雑になったり、分解能が落ちることで高周波電力の投入が不安定になるという問題がある。その上、可変コンデンサ等の部品が必要となって高周波電源の回路構成が複雑になるという問題もある。 By the way, when high-frequency power is applied to the antenna coil, the matching box matches the impedance of the plasma load with the impedance of the high-frequency power source so that the high-frequency power is stably input to the plasma load. However, as described in Patent Document 1, when the relative allocation of the high-frequency power input to both antenna coils is changed, the impedance matching point in the matching box can be changed in a wide range. If the matching point changes in a wide range as described above, the matching box must have a wide matching range, and the control of the matching box becomes complicated and the input of high-frequency power becomes unstable due to reduced resolution. There is. In addition, there is a problem that the circuit configuration of the high frequency power supply becomes complicated because parts such as a variable capacitor are required.
特開2008-270815号公報JP 2008-270815 A
 本発明は、以上の点に鑑み、高周波電源及びマッチングボックスの構成を変更することなく、真空チャンバ内のプラズマ密度分布を変化させることができるプラズマ処理装置及びプラズマ処理方法を提供することをその課題とする。 In view of the above, the present invention provides a plasma processing apparatus and a plasma processing method that can change the plasma density distribution in the vacuum chamber without changing the configuration of the high-frequency power source and the matching box. And
 上記課題を解決するために、本発明は、真空チャンバと、この真空チャンバの誘電体材料で形成される所定の壁面の外側に、この壁面に沿って同心に配置した複数のアンテナコイルと、各アンテナコイルにマッチングボックスを介して接続された高周波電源とを備え、真空チャンバ内に所定のガスを導入すると共に、高周波電源からマッチングボックスを介して各アンテナコイルに高周波電力を供給し、真空チャンバ内に誘導結合型のプラズマを発生させるプラズマ処理装置において、複数のアンテナコイルを前記壁面に直交する方向に相対移動させる移動手段を備えることを特徴とする。 In order to solve the above problems, the present invention provides a vacuum chamber, a plurality of antenna coils arranged concentrically along the wall surface outside a predetermined wall surface formed of a dielectric material of the vacuum chamber, A high-frequency power source connected to the antenna coil via a matching box, and a predetermined gas is introduced into the vacuum chamber, and high-frequency power is supplied from the high-frequency power source to each antenna coil via the matching box. The plasma processing apparatus for generating inductively coupled plasma includes a moving means for relatively moving a plurality of antenna coils in a direction orthogonal to the wall surface.
 本発明によれば、複数のアンテナコイルを真空チャンバの壁面に直交する方向に相対移動させる移動手段を備えるため、複数のアンテナコイルを壁面に直交する方向に相対移動させると、真空チャンバ内に発生する電場強度及び磁場強度の分布が局所的に変化して、真空チャンバ内でのプラズマ密度分布を局所的に変化させることができる。 According to the present invention, since the moving means for moving the plurality of antenna coils in the direction orthogonal to the wall surface of the vacuum chamber is provided, when the plurality of antenna coils are relatively moved in the direction orthogonal to the wall surface, they are generated in the vacuum chamber. The distribution of the electric field strength and the magnetic field strength to be locally changed can locally change the plasma density distribution in the vacuum chamber.
 このように本発明においては、真空チャンバ内に発生する電場強度及び磁場強度の分布を変化させるために、高周波電源やマッチングボックスの構成や投入する高周波電力に変更を加えることなく、アンテナコイルを相対移動させる構成としたため、インピーダンスの整合ポイントが広範囲に変化することはなく、安定して高周波電力を投入できる。その上、高周波電源の回路構成が複雑になることもない。そして、本発明をドライエッチング装置や成膜装置に適用すれば、処理条件や使用状況等に応じてプラズマ密度分布を適宜変更すれば、エッチング速度や成膜速度の基板面内での所望の分布を得ることができる。 As described above, in the present invention, in order to change the distribution of the electric field strength and the magnetic field strength generated in the vacuum chamber, the antenna coil is relatively moved without changing the configuration of the high-frequency power source or the matching box or the high-frequency power to be input. Since the moving configuration is adopted, the impedance matching point does not change over a wide range, and high-frequency power can be input stably. In addition, the circuit configuration of the high frequency power supply is not complicated. If the present invention is applied to a dry etching apparatus or a film forming apparatus, the desired distribution of the etching rate or film forming speed within the substrate surface can be achieved by appropriately changing the plasma density distribution according to the processing conditions and usage conditions. Can be obtained.
 なお、本発明における複数のアンテナコイルの構成には、径の異なるものを同心に配置して構成した場合だけでなく、同一形状又は形状の異なるものを壁面に沿って配置したときに複数の同心円が波紋状に拡がるように構成した場合等が含まれる。 The configuration of the plurality of antenna coils in the present invention is not limited to a configuration in which concentric ones having different diameters are arranged, but a plurality of concentric circles when the same shape or different shapes are arranged along the wall surface. The case where it is configured to spread in a ripple pattern is included.
 また、複数の同心円が波紋状に拡がるように壁面に沿って複数のアンテナコイルを配置した場合には、前記移動手段は、各アンテナコイルの一部を局所的に相対移動し得る構成を採用することが好ましい。これにより、真空チャンバ内に発生する電場強度及び磁場強度の分布を局所的に変化させてプラズマ密度分布を変化させることができる。 Further, in the case where a plurality of antenna coils are arranged along the wall surface so that a plurality of concentric circles expand in a ripple pattern, the moving means adopts a configuration capable of locally moving a part of each antenna coil. It is preferable. Thereby, the plasma density distribution can be changed by locally changing the distribution of the electric field strength and magnetic field strength generated in the vacuum chamber.
 また、上記課題を解決するために、本発明は、真空チャンバと、真空チャンバの誘電体材料で形成される所定の壁面の外側に、この壁面に沿って配置された渦巻き状のアンテナコイルと、このアンテナコイルにマッチングボックスを介して接続された高周波電源とを備え、真空チャンバ内に所定のガスを導入すると共に、高周波電源からマッチングボックスを介してアンテナコイルに高周波電力を供給し、真空チャンバ内に誘導結合型のプラズマを発生させるプラズマ処理装置において、アンテナコイルとアンテナコイルの中心を通って径方向に延びる直線とが交わる複数箇所のうち、中心から等距離の2箇所を前記壁面に直交する方向に移動させる移動手段を備えることを特徴とする。 In order to solve the above problems, the present invention provides a vacuum chamber, a spiral antenna coil disposed along the wall surface outside a predetermined wall surface formed of a dielectric material of the vacuum chamber, A high-frequency power source connected to the antenna coil via a matching box, and a predetermined gas is introduced into the vacuum chamber, and high-frequency power is supplied from the high-frequency power source to the antenna coil via the matching box. In a plasma processing apparatus for generating inductively coupled plasma at two points, two points equidistant from the center are orthogonal to the wall surface among a plurality of points where the antenna coil and a straight line extending in the radial direction through the center of the antenna coil intersect. A moving means for moving in the direction is provided.
 なお、本発明において、中心から等距離とは、中心からの距離が厳密に一致していることを意味するのではなく、中心からの距離が実質的に等しいことを意味する。また、渦巻き状のアンテナコイルとは、一本のアンテナコイルを渦巻き状に巻回したものだけでなく、2本以上を繋ぎ合わせて構成したものであってもよい。 In the present invention, the equidistant from the center does not mean that the distance from the center is exactly the same, but means that the distances from the center are substantially equal. In addition, the spiral antenna coil is not limited to one antenna coil wound in a spiral shape, but may be configured by connecting two or more antenna coils.
 また、上記課題を解決するために、本発明は、請求項1~請求項3のいずれか1項に記載のプラズマ処理装置を用い、真空チャンバ内に所定のガスを導入すると共に、高周波電源からマッチングボックスを介して各アンテナコイルに高周波電力を供給し、真空チャンバ内に誘導結合型のプラズマを発生させ、このプラズマを用いて真空チャンバ内で処理基板に対してプラズマ処理を施すプラズマ処理方法であって、処理基板をプラズマ処理する際にアンテナコイルを全体的または部分的に所定の壁面に直交する方向に相対移動させることを特徴とする。 In order to solve the above problems, the present invention uses the plasma processing apparatus according to any one of claims 1 to 3 to introduce a predetermined gas into a vacuum chamber and A plasma processing method in which high frequency power is supplied to each antenna coil via a matching box, inductively coupled plasma is generated in the vacuum chamber, and plasma processing is performed on the processing substrate in the vacuum chamber using this plasma. In the plasma processing of the processing substrate, the antenna coil is moved relative to a direction orthogonal to a predetermined wall surface in whole or in part.
本発明を適用したドライエッチング装置の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the dry etching apparatus to which this invention is applied. 図1のドライエッチング装置の平面図。The top view of the dry etching apparatus of FIG. 内側及び外側アンテナコイルを相対移動させてエッチングした場合のエッチング速度の分布を示す図。The figure which shows distribution of the etching rate at the time of etching by moving an inner side and an outer side antenna coil relatively. アンテナコイルの変形例を示す平面図。The top view which shows the modification of an antenna coil. アンテナコイルの他の変形例を示す平面図。The top view which shows the other modification of an antenna coil. 追従手段の模式的断面図。A typical sectional view of a follow-up means.
 以下、図面を参照して、本発明をICP型のドライエッチング装置に適用した実施形態を説明する。 Hereinafter, an embodiment in which the present invention is applied to an ICP type dry etching apparatus will be described with reference to the drawings.
 図1を参照して、ドライエッチング装置は、真空雰囲気を形成可能な円筒形状の真空チャンバ1を備える。真空チャンバ1の上壁10は、石英やセラミックスなどの誘電体材料で形成されている。上壁10の上側には、この上壁10に沿って径の異なる2本のC形のアンテナコイル2a、2bが同心に配置されている。アンテナコイル2a、2bとしては、導電率が高い金属製の板材または中空円筒形状のものが用いられる。各アンテナコイル2a、2bの一端にはマッチングボックス3を介して第1の高周波電源4が接続されており、各アンテナコイル2a、2bの他端は接地されている。真空チャンバ1の相互に対向する側壁にはガス導入管5がそれぞれ接続されている。両ガス導入管5は、図示省略のマスフローコントローラを介してガス源に連通している。 Referring to FIG. 1, the dry etching apparatus includes a cylindrical vacuum chamber 1 capable of forming a vacuum atmosphere. The upper wall 10 of the vacuum chamber 1 is formed of a dielectric material such as quartz or ceramics. On the upper side of the upper wall 10, two C- shaped antenna coils 2 a and 2 b having different diameters are arranged concentrically along the upper wall 10. As the antenna coils 2a and 2b, a metal plate having a high electrical conductivity or a hollow cylindrical shape is used. A first high frequency power supply 4 is connected to one end of each antenna coil 2a, 2b via a matching box 3, and the other end of each antenna coil 2a, 2b is grounded. Gas introduction pipes 5 are connected to the mutually opposing side walls of the vacuum chamber 1. Both gas introduction pipes 5 communicate with a gas source via a mass flow controller (not shown).
 真空チャンバ1の底部中央には、プラズマ処理される基板Sが保持される基板ステージ6が設けられている。また、基板ステージ6の上面には基板電極が設けられ、ブロッキングコンデンサ7を介して第2の高周波電源8が接続されている。そして、プラズマ処理中、基板Sに対して所定のバイアス電位を印加できるようになっている。なお、図1中、9は、図示省略したターボ分子ポンプ、ロータリポンプ及びコンダクタンス可変バルブ等からなる真空排気手段に接続された排気管である。 In the center of the bottom of the vacuum chamber 1, there is provided a substrate stage 6 on which a substrate S to be plasma-treated is held. A substrate electrode is provided on the upper surface of the substrate stage 6, and a second high-frequency power source 8 is connected via a blocking capacitor 7. A predetermined bias potential can be applied to the substrate S during the plasma processing. In FIG. 1, reference numeral 9 denotes an exhaust pipe connected to a vacuum exhaust means including a turbo molecular pump, a rotary pump, a conductance variable valve, etc. (not shown).
 次に、上記エッチング装置を用いた基板のエッチング方法を説明すると、先ず、基板ステージ6に基板Sを保持させる。この状態で真空チャンバ1を真空引きした後、真空チャンバ1内で処理すべき基板に応じて適宜選択された所定のガス(エッチングガス)を、ガス導入管5を介して導入する。そして、第1の高周波電源4からマッチングボックス3を介して各アンテナコイル2a、2bに所定の高周波電力を投入する。これと同時に、基板に対して第2の高周波電源8を介してバイアス電圧を印加する。これにより、両アンテナコイル2a、2bを流れる電流の向きや電流値に応じて真空チャンバ1内に磁場及び電場が形成され、真空チャンバ1内に誘導結合型のプラズマが形成される。そして、プラズマ中で電離したガスイオンがバイアス電位により基板Sに向けて引き込まれることで、基板Sがエッチングされる。 Next, the substrate etching method using the etching apparatus will be described. First, the substrate S is held on the substrate stage 6. After evacuating the vacuum chamber 1 in this state, a predetermined gas (etching gas) appropriately selected according to the substrate to be processed in the vacuum chamber 1 is introduced through the gas introduction pipe 5. Then, predetermined high-frequency power is supplied from the first high-frequency power source 4 to the antenna coils 2 a and 2 b via the matching box 3. At the same time, a bias voltage is applied to the substrate via the second high frequency power supply 8. As a result, a magnetic field and an electric field are formed in the vacuum chamber 1 in accordance with the direction and current value of the current flowing through both antenna coils 2 a and 2 b, and inductively coupled plasma is formed in the vacuum chamber 1. Then, the gas ions ionized in the plasma are drawn toward the substrate S by the bias potential, so that the substrate S is etched.
 ここで、プロセスガスの種類、エッチング時の真空チャンバ1内の圧力(排気速度やプロセスガス導入量等に基づく)等のプロセス条件や真空チャンバ1の内壁面への反応副生成物の付着等の真空チャンバ1の使用状態が変わると、真空チャンバ1内に発生する磁場強度及び電場強度の分布が変化し、これに起因して、プラズマ密度分布が変化する。このような場合、エッチング速度が基板面内において変化してしまう。 Here, the process conditions such as the type of process gas, the pressure in the vacuum chamber 1 during etching (based on the exhaust speed, the amount of process gas introduced, etc.), the deposition of reaction byproducts on the inner wall surface of the vacuum chamber 1, etc. When the usage state of the vacuum chamber 1 changes, the distribution of the magnetic field intensity and the electric field intensity generated in the vacuum chamber 1 changes, resulting in a change in the plasma density distribution. In such a case, the etching rate changes in the substrate plane.
 本実施形態では、内側に位置するアンテナコイル(以下、「内側アンテナコイル」とする)2aと外側に位置するアンテナコイル(以下、「外側アンテナコイル」とする)2bとを上壁10に直交する方向(図1中の上下方向)に相対移動させる移動手段Mを設けることとした。以下、移動手段Mの構成について詳述する。 In the present embodiment, an antenna coil (hereinafter referred to as “inner antenna coil”) 2 a located on the inner side and an antenna coil (hereinafter referred to as “outer antenna coil”) 2 b located on the outer side are orthogonal to the upper wall 10. The moving means M that moves in the direction (vertical direction in FIG. 1) is provided. Hereinafter, the configuration of the moving means M will be described in detail.
 移動手段Mは、図1及び図2に示すように、アンテナコイル2a、2bを保持する保持部21a、21bと、保持部21a、21bの上面に連結した駆動軸22a、22bと、この駆動軸22a、22bを上動または下動する駆動部23a、23bとから構成される。この場合、内側アンテナコイル2aを保持する保持部21aは所定長さの板材で構成され、その両端が、内側アンテナコイル2aの径方向2箇所でネジ止めされている。また、外側アンテナコイル2bを保持する保持部21bは板片で構成され、板片21bが、外側アンテナコイル2bの周方向で所定間隔を存して2箇所に設けられている。また、駆動部23a、23bは、多段式エアシリンダやステッピングモータでそれぞれ構成される。  As shown in FIGS. 1 and 2, the moving means M includes holding portions 21a and 21b for holding the antenna coils 2a and 2b, drive shafts 22a and 22b connected to the upper surfaces of the holding portions 21a and 21b, and the drive shaft. It is comprised from the drive parts 23a and 23b which move 22a and 22b up or down. In this case, the holding portion 21a for holding the inner antenna coil 2a is formed of a plate material having a predetermined length, and both ends thereof are screwed at two locations in the radial direction of the inner antenna coil 2a. In addition, the holding portion 21b that holds the outer antenna coil 2b is formed of a plate piece, and the plate pieces 21b are provided at two positions with a predetermined interval in the circumferential direction of the outer antenna coil 2b. Moreover, the drive parts 23a and 23b are each comprised with a multistage type air cylinder and a stepping motor. *
 エッチング処理する際に(例えば、エッチング処理に先立って)、いずれかの駆動部23a、23bにより駆動軸22a、22bを上動または下動し、内側アンテナコイル2a及び外側アンテナコイル2bを上下方向で相対移動させ、上壁10と内側アンテナコイル2aの間隔G1と上壁10と外側アンテナコイル2bの間隔G2を相互に変化させる。これにより、真空チャンバ1内に発生する磁場強度及び電場強度が局所的に変化し、上記のようにして真空チャンバ1内にプラズマを発生させると、真空チャンバ1内のプラズマ密度分布が変化する。これにより、エッチング速度の基板面内での均一性を向上させることができる。尚、相対移動させる量は、予め実験で取得しておけばよい。 During the etching process (for example, prior to the etching process), the drive shafts 22a and 22b are moved up or down by any of the drive units 23a and 23b, and the inner antenna coil 2a and the outer antenna coil 2b are moved in the vertical direction. By relative movement, the gap G1 between the upper wall 10 and the inner antenna coil 2a and the gap G2 between the upper wall 10 and the outer antenna coil 2b are mutually changed. Thereby, the magnetic field strength and electric field strength generated in the vacuum chamber 1 are locally changed, and when plasma is generated in the vacuum chamber 1 as described above, the plasma density distribution in the vacuum chamber 1 is changed. Thereby, the uniformity of the etching rate within the substrate surface can be improved. In addition, what is necessary is just to acquire the amount to move relatively by experiment beforehand.
 次に、本発明の効果を確認するため、上記ドライエッチング装置を用いて次の実験を行った。 Next, in order to confirm the effect of the present invention, the following experiment was performed using the dry etching apparatus.
 先ず、エッチングすべき基板Sとしてφ300mmのシリコンウエハ、エッチングガスとして塩素ガスを用いることとした。そして、エッチング条件として、塩素ガスを流量100sccm、エッチング時の作動圧力を0.5Pa、内側アンテナコイル2a及び外側アンテナコイル2bの双方に投入する高周波電力(周波数13.56MHz)を300W、基板電極6に投入するバイアス電力(周波数12.5MHz)を800Wとした。 First, a φ300 mm silicon wafer was used as the substrate S to be etched, and chlorine gas was used as the etching gas. Etching conditions are: chlorine gas flow rate 100 sccm, etching operating pressure 0.5 Pa, high frequency power (frequency 13.56 MHz) input to both inner antenna coil 2 a and outer antenna coil 2 b 300 W, substrate electrode 6 The bias power (frequency: 12.5 MHz) to be input to is set to 800W.
 実験開始時、2つのアンテナコイル2a、2bを上壁10に当接させて上壁10とアンテナコイル2a、2bの間隔G1、G2の双方をゼロとし、上記条件でエッチングした(比較例)。また、外側アンテナコイル2bを上壁10に当接させた状態で、移動手段Mにより内側アンテナコイル2aを上動して、間隔G1を8mm(発明1)、16mm(発明2)、24mm(発明3)にそれぞれ変更し、他のシリコンウエハに対して同一のエッチング条件でエッチングした。 At the start of the experiment, the two antenna coils 2a and 2b were brought into contact with the upper wall 10 to make both the gaps G1 and G2 between the upper wall 10 and the antenna coils 2a and 2b zero, and were etched under the above conditions (comparative example). Further, with the outer antenna coil 2b in contact with the upper wall 10, the inner antenna coil 2a is moved up by the moving means M, and the gap G1 is 8 mm (Invention 1), 16 mm (Invention 2), 24 mm (Invention). Each of them was changed to 3), and other silicon wafers were etched under the same etching conditions.
 図3は、上記条件にてエッチングしたときのエッチング速度の分布を測定した結果を示すものである。エッチング速度の測定点は、シリコンウエハの中心を通る線上の5点(図1中の左方向を-方向として、-145mm、-75mm、0mm(基板中心)、75mm、145mm)とした。 FIG. 3 shows the result of measuring the distribution of the etching rate when etching is performed under the above conditions. The etching rate was measured at five points on a line passing through the center of the silicon wafer (-145 mm, -75 mm, 0 mm (substrate center), 75 mm, 145 mm, with the left direction in FIG. 1 as the negative direction).
 上記実験によれば、比較例のものでは、基板中心でのエッチング速度が局所的に高くなっており、結果として、基板面内でのエッチング速度が不均一となっていることが判る。それに対して、発明1~発明3のように、内側アンテナコイル2aを上動させて間隔G1を変化させると、エッチング速度が比較例の結果から変化していることが判る。そして、発明1では、基板面内でのエッチング速度の均一性を著しく向上できたことが判る。 According to the above experiment, it can be seen that in the comparative example, the etching rate at the center of the substrate is locally high, and as a result, the etching rate within the substrate surface is non-uniform. On the other hand, when the inner antenna coil 2a is moved up and the interval G1 is changed as in Inventions 1 to 3, it can be seen that the etching rate changes from the result of the comparative example. And in invention 1, it turns out that the uniformity of the etching rate within a substrate surface was remarkably improved.
 なお、特に実験例を示して説明しないが、エッチング条件や真空チャンバの使用状態が変わると、真空チャンバ1内に発生する磁場強度及び電場強度の分布が変化することも判明した。このような場合には、例えば、同一のエッチング装置を用いてガスの種類を変えて基板をエッチングするような場合には、エッチングガスの種類毎に、エッチング条件に応じて所望のエッチング速度の均一性が得られる間隔G1、G2を予め求めておき、求めた間隔G1、G2となるように内側アンテナコイル2a及び外側アンテナコイル2bを相対移動させればよい。また、真空チャンバ1の使用状態に応じて自動的に内側アンテナコイル2a及び外側アンテナコイル2bが相対移動するように構成してもよい。 It should be noted that, although not shown and described in particular experimental examples, it has also been found that the distribution of the magnetic field strength and the electric field strength generated in the vacuum chamber 1 changes when the etching conditions and the use state of the vacuum chamber change. In such a case, for example, when the substrate is etched by changing the type of gas using the same etching apparatus, the desired etching rate is uniform for each type of etching gas according to the etching conditions. The distances G1 and G2 that can be obtained are obtained in advance, and the inner antenna coil 2a and the outer antenna coil 2b may be relatively moved so as to be the obtained distances G1 and G2. Further, the inner antenna coil 2a and the outer antenna coil 2b may be automatically moved relative to each other according to the use state of the vacuum chamber 1.
 以上、本発明をエッチング装置に適用した実施形態を説明したが、本発明は上記に限定されるものではない。本発明は、スパッタリング法やプラズマCVD法にて成膜するような場合にも適用することができる。 As mentioned above, although embodiment which applied this invention to the etching apparatus was described, this invention is not limited above. The present invention can also be applied to a case where a film is formed by a sputtering method or a plasma CVD method.
 また、上記実施形態では、上壁10に沿って径の異なるC形の内側アンテナコイル2a及び外側アンテナコイル2bを配置し、内側アンテナコイル2aまたは外側アンテナコイル2bをそれぞれ一体(全体的)に上動または下動させることで相対移動するものを例に説明しているが、これに限定されるものではない。 Further, in the above embodiment, the C-shaped inner antenna coil 2a and the outer antenna coil 2b having different diameters are arranged along the upper wall 10, and the inner antenna coil 2a and the outer antenna coil 2b are respectively integrated (overall). Although an example has been described of relative movement by moving or moving downward, the present invention is not limited to this.
 変形例に係るアンテナコイルとしては、図4に示すように、同一形状の3本のアンテナコイル12a、12b、12cを上壁に沿って組み合わせて配置したときに径の異なる2つの同心円が波紋状に拡がるようにしたものを用いることができる。各アンテナコイル12a、12b、12cを保持する保持部21cとしては、円板状の基部211とこの基部の外周端から径方向外側にのびるように設けた支持片212とから構成したものが用いられ、支持片212の先端がアンテナコイル12a、12b、12cの内周円を構成する部分にそれぞれネジ止めされている。この場合、アンテナコイル12a、12b、12cの外周円を構成する部分は、固定部材24を用いて真空チャンバ1の上壁10に固定されている。これにより、駆動部23cにより駆動軸22cを上動または下動させれば、アンテナコイル12a、12b、12cの内周円を構成する部分が一体に移動するようになる。 As shown in FIG. 4, two concentric circles with different diameters are rippled when the three antenna coils 12a, 12b, and 12c having the same shape are combined and arranged along the upper wall, as shown in FIG. It is possible to use the one that is spread over. As the holding portion 21c for holding the antenna coils 12a, 12b, and 12c, a holding portion 21c configured by a disk-like base portion 211 and a support piece 212 provided so as to extend radially outward from the outer peripheral end of the base portion is used. The tips of the support pieces 212 are screwed to the portions constituting the inner circumference of the antenna coils 12a, 12b, 12c, respectively. In this case, the portions constituting the outer circumference of the antenna coils 12 a, 12 b, and 12 c are fixed to the upper wall 10 of the vacuum chamber 1 using a fixing member 24. Thereby, if the drive shaft 22c is moved up or down by the drive unit 23c, the portions constituting the inner circumference of the antenna coils 12a, 12b, and 12c are moved together.
 また、他の変形例に係るアンテナコイルとしては、図5に示すように、1本のアンテナコイルを渦巻き状に巻回して構成したものを用いることができる。このような場合には、アンテナコイル20と、アンテナコイル20の中心Oを通り径方向にのびる直線Lとが交わる箇所のうち、中心Oから等間隔となる位置P1、P2に、所定長さの保持部21の両端部をネジ止めしておく。そして、駆動部23により上動または下動する駆動軸22を保持部21に連結する。これにより、渦巻き状に巻回されたアンテナコイル20の一部を他の部分に対して上動または下動させることで、真空チャンバ1内に発生する磁場強度及び電場強度が局所的に変化させることができる。なお、2本のアンテナコイルを用いて真空チャンバ1の上壁10に沿って渦巻き状にアンテナコイルが配置されるようにすることができ、このような場合には、内側部分と外側部分との連結箇所に移動手段を設けて内側部分と外側部分とを相対移動可能に構成しておけばよい。 Further, as an antenna coil according to another modification, as shown in FIG. 5, a coil formed by winding one antenna coil in a spiral shape can be used. In such a case, of the locations where the antenna coil 20 and the straight line L extending in the radial direction passing through the center O of the antenna coil 20 intersect, positions P1 and P2 that are equidistant from the center O have a predetermined length. Both ends of the holding part 21 are screwed. Then, the drive shaft 22 that moves up or down by the drive unit 23 is connected to the holding unit 21. As a result, the magnetic field strength and the electric field strength generated in the vacuum chamber 1 are locally changed by moving a part of the antenna coil 20 wound in a spiral shape up or down relative to the other part. be able to. In addition, it is possible to arrange the antenna coil in a spiral shape along the upper wall 10 of the vacuum chamber 1 using two antenna coils. What is necessary is just to comprise a moving means in a connection location and to comprise an inner part and an outer part so that relative movement is possible.
 さらに、上記実施形態では、外側アンテナコイル2bを上動または下動させるために2個の移動手段Mを設けたものを例に説明したが、移動手段の数はアンテナコイルの種類や径に応じて適宜変更される。また、移動手段の一方を追従手段から構成することもできる。追従手段30としては、図6に示すように、外側アンテナコイル2bの自重をキャンセルする力でアンテナコイル2bを上方向に付勢する板バネやコイルバネ等からなる弾性手段31から構成すればよい。この場合、エッチング装置の所定位置34に固定された支持部材33に外側アンテナコイル2bの一部を、弾性手段31と支持部材32を介して吊設しておく。そして、例えば、移動手段により外側アンテナコイル2bの対向する部分を上動したとき、外側アンテナコイル2bが自重によって傾くと、この自重をキャンセルする力で外側アンテナコイル2bが付勢されて外側アンテナコイル2bが略水平に保持される。これによれば、アンテナコイルを相対移動させる駆動部を少なくでき、低コスト化を図ることができる。 Further, in the above-described embodiment, an example in which two moving means M are provided to move the outer antenna coil 2b up or down has been described, but the number of moving means depends on the type and diameter of the antenna coil. Are appropriately changed. Further, one of the moving means can be constituted by the following means. As shown in FIG. 6, the follow-up means 30 may be constituted by an elastic means 31 composed of a leaf spring, a coil spring, or the like that urges the antenna coil 2b upward by a force that cancels the weight of the outer antenna coil 2b. In this case, a part of the outer antenna coil 2 b is suspended from the support member 33 fixed at a predetermined position 34 of the etching apparatus via the elastic means 31 and the support member 32. For example, when the outer antenna coil 2b is tilted by its own weight when the moving part moves the opposing portion of the outer antenna coil 2b, the outer antenna coil 2b is urged by a force that cancels the own weight. 2b is held substantially horizontal. According to this, the drive part which moves an antenna coil relatively can be decreased, and cost reduction can be achieved.
 1…真空チャンバ、2a…内側アンテナコイル、2b…外側アンテナコイル、3…マッチングボックス、4…第1の高周波電源、20…アンテナコイル、M…移動手段。 DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 2a ... Inner antenna coil, 2b ... Outer antenna coil, 3 ... Matching box, 4 ... 1st high frequency power supply, 20 ... Antenna coil, M ... Moving means.

Claims (4)

  1.  真空チャンバと、この真空チャンバの誘電体材料で形成される所定の壁面の外側に、この壁面に沿って同心に配置した複数のアンテナコイルと、各アンテナコイルにマッチングボックスを介して接続された高周波電源とを備え、真空チャンバ内に所定のガスを導入すると共に、高周波電源からマッチングボックスを介して各アンテナコイルに高周波電力を供給し、真空チャンバ内に誘導結合型のプラズマを発生させるプラズマ処理装置において、複数のアンテナコイルを前記壁面に直交する方向に相対移動させる移動手段を備えることを特徴とするプラズマ処理装置。 A vacuum chamber, a plurality of antenna coils arranged concentrically along the wall surface outside a predetermined wall surface formed of a dielectric material of the vacuum chamber, and a high frequency connected to each antenna coil via a matching box And a plasma processing apparatus for introducing a predetermined gas into the vacuum chamber and supplying high frequency power from the high frequency power source to each antenna coil via a matching box to generate inductively coupled plasma in the vacuum chamber The plasma processing apparatus according to claim 1, further comprising moving means for relatively moving a plurality of antenna coils in a direction orthogonal to the wall surface.
  2.  前記移動手段は、各アンテナコイルの一部を局所的に相対移動し得ることを特徴とする請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the moving means can locally move a part of each antenna coil.
  3.  真空チャンバと、真空チャンバの誘電体材料で形成される所定の壁面の外側に、この壁面に沿って配置された渦巻き状のアンテナコイルと、このアンテナコイルにマッチングボックスを介して接続された高周波電源とを備え、真空チャンバ内に所定のガスを導入すると共に、高周波電源からマッチングボックスを介してアンテナコイルに高周波電力を供給し、真空チャンバ内に誘導結合型のプラズマを発生させるプラズマ処理装置において、アンテナコイルとアンテナコイルの中心を通って径方向に延びる直線とが交わる複数箇所のうち、中心から等距離の2箇所を前記壁面に直交する方向に移動させる移動手段を備えることを特徴とするプラズマ処理装置。 A vacuum chamber, a spiral antenna coil disposed along the wall surface outside a predetermined wall surface formed of a dielectric material of the vacuum chamber, and a high frequency power source connected to the antenna coil via a matching box In a plasma processing apparatus for introducing a predetermined gas into a vacuum chamber and supplying high frequency power from a high frequency power source to an antenna coil via a matching box to generate inductively coupled plasma in the vacuum chamber, Plasma comprising a moving means for moving two locations equidistant from the center in a direction orthogonal to the wall surface among a plurality of locations where an antenna coil and a straight line extending in the radial direction through the center of the antenna coil intersect Processing equipment.
  4.  請求項1~請求項3のいずれか1項に記載のプラズマ処理装置を用い、真空チャンバ内に所定のガスを導入すると共に、高周波電源からマッチングボックスを介して各アンテナコイルに高周波電力を供給し、真空チャンバ内に誘導結合型のプラズマを発生させ、このプラズマを用いて真空チャンバ内で処理基板に対してプラズマ処理を施すプラズマ処理方法であって、処理基板をプラズマ処理する際にアンテナコイルを全体的にまたは部分的に所定の壁面に直交する方向に相対移動させることを特徴とするプラズマ処理方法。 The plasma processing apparatus according to any one of claims 1 to 3, wherein a predetermined gas is introduced into the vacuum chamber and high frequency power is supplied from a high frequency power source to each antenna coil via a matching box. A plasma processing method for generating an inductively coupled plasma in a vacuum chamber and performing plasma processing on the processing substrate in the vacuum chamber using the plasma, wherein the antenna coil is used for plasma processing of the processing substrate. A plasma processing method, wherein the plasma processing method is characterized in that the entire or part is relatively moved in a direction orthogonal to a predetermined wall surface.
PCT/JP2011/000409 2010-02-19 2011-01-26 Plasma processing device and plasma processing method WO2011102083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012500485A JPWO2011102083A1 (en) 2010-02-19 2011-01-26 Plasma processing apparatus and plasma processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-034707 2010-02-19
JP2010034707 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102083A1 true WO2011102083A1 (en) 2011-08-25

Family

ID=44482692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000409 WO2011102083A1 (en) 2010-02-19 2011-01-26 Plasma processing device and plasma processing method

Country Status (3)

Country Link
JP (1) JPWO2011102083A1 (en)
TW (1) TW201145345A (en)
WO (1) WO2011102083A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253349A (en) * 2011-05-31 2012-12-20 Semes Co Ltd Antenna unit, substrate treating apparatus including the same, and substrate treating method using such apparatus
JP2013076790A (en) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd Dry etching device, dry etching method, photomask manufacturing device, and photomask manufacturing method
WO2014099398A1 (en) * 2012-12-21 2014-06-26 Qualcomm Mems Technologies, Inc. Adjustable coil for inductively coupled plasma
CN105491780A (en) * 2014-10-01 2016-04-13 日新电机株式会社 Antenna for plasma generation and plasma processing device having the same
JP2020177756A (en) * 2019-04-16 2020-10-29 株式会社アルバック Plasma processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149790A (en) * 2012-01-19 2013-08-01 Tokyo Electron Ltd Plasma processing device
JP2023017411A (en) * 2021-07-26 2023-02-07 日新電機株式会社 Plasma processing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955375A (en) * 1995-06-06 1997-02-25 Matsushita Electric Ind Co Ltd Method and apparatus for plasma treatment
JPH09228056A (en) * 1996-02-21 1997-09-02 Samuko Internatl Kenkyusho:Kk Plasma treatment device
JP2003243359A (en) * 2002-02-14 2003-08-29 Semiconductor Leading Edge Technologies Inc Plasma etching apparatus and method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231308B2 (en) * 2009-03-31 2013-07-10 東京エレクトロン株式会社 Plasma processing equipment
US9305750B2 (en) * 2009-06-12 2016-04-05 Lam Research Corporation Adjusting current ratios in inductively coupled plasma processing systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955375A (en) * 1995-06-06 1997-02-25 Matsushita Electric Ind Co Ltd Method and apparatus for plasma treatment
JPH09228056A (en) * 1996-02-21 1997-09-02 Samuko Internatl Kenkyusho:Kk Plasma treatment device
JP2003243359A (en) * 2002-02-14 2003-08-29 Semiconductor Leading Edge Technologies Inc Plasma etching apparatus and method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253349A (en) * 2011-05-31 2012-12-20 Semes Co Ltd Antenna unit, substrate treating apparatus including the same, and substrate treating method using such apparatus
US9496121B2 (en) 2011-05-31 2016-11-15 Semes Co., Ltd. Antenna units, substrate treating apparatuses including the same, and substrate treating methods using the apparatuses
JP2013076790A (en) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd Dry etching device, dry etching method, photomask manufacturing device, and photomask manufacturing method
WO2014099398A1 (en) * 2012-12-21 2014-06-26 Qualcomm Mems Technologies, Inc. Adjustable coil for inductively coupled plasma
CN105491780A (en) * 2014-10-01 2016-04-13 日新电机株式会社 Antenna for plasma generation and plasma processing device having the same
JP2020177756A (en) * 2019-04-16 2020-10-29 株式会社アルバック Plasma processing apparatus

Also Published As

Publication number Publication date
JPWO2011102083A1 (en) 2013-06-17
TW201145345A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP4995907B2 (en) Apparatus for confining plasma, plasma processing apparatus and semiconductor substrate processing method
US11728139B2 (en) Process chamber for cyclic and selective material removal and etching
WO2011102083A1 (en) Plasma processing device and plasma processing method
US20200058467A1 (en) Plasma processing apparatus
JP6219229B2 (en) Heater feeding mechanism
US20040168771A1 (en) Plasma reactor coil magnet
JP2010501123A (en) Inductively coupled coil and inductively coupled plasma apparatus using the inductively coupled coil
JP4601104B2 (en) Plasma processing equipment
JP2013139642A (en) Plasma treatment apparatus applied for sputtering film forming
JP4614578B2 (en) Plasma processing equipment for sputter deposition applications
US8956500B2 (en) Methods to eliminate “M-shape” etch rate profile in inductively coupled plasma reactor
US9978566B2 (en) Plasma etching method
WO2012011171A1 (en) Etching device
JP6530859B2 (en) Plasma processing system
TW201711529A (en) Substrate processing apparatus
JP2022544801A (en) Tunable uniformity control using a rotating magnetic housing
KR101529498B1 (en) Plasma processing apparatus and coil used therein
KR20200051505A (en) Placing table and substrate processing apparatus
JP4698625B2 (en) Plasma processing equipment
US20150279623A1 (en) Combined inductive and capacitive sources for semiconductor process equipment
TWI715002B (en) Two piece electrode assembly with gap for plasma control
JP2011017088A (en) Plasma treatment apparatus for applying sputtering film deposition
WO2022259793A1 (en) Plasma treatment device
JP2008251857A (en) Plasma processor
KR100739959B1 (en) Etching chamber used in semiconductor device fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500485

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744378

Country of ref document: EP

Kind code of ref document: A1