WO2015149194A1 - 一种射频激励的气体激光器及其制备方法 - Google Patents

一种射频激励的气体激光器及其制备方法 Download PDF

Info

Publication number
WO2015149194A1
WO2015149194A1 PCT/CN2014/000358 CN2014000358W WO2015149194A1 WO 2015149194 A1 WO2015149194 A1 WO 2015149194A1 CN 2014000358 W CN2014000358 W CN 2014000358W WO 2015149194 A1 WO2015149194 A1 WO 2015149194A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing flange
cavity
mirror surface
gas laser
optical
Prior art date
Application number
PCT/CN2014/000358
Other languages
English (en)
French (fr)
Inventor
徐海军
Original Assignee
徐海军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐海军 filed Critical 徐海军
Priority to PCT/CN2014/000358 priority Critical patent/WO2015149194A1/zh
Priority to CN201480037793.2A priority patent/CN105684243A/zh
Publication of WO2015149194A1 publication Critical patent/WO2015149194A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited

Definitions

  • the present invention is in the field of germanium and laser technology, and in particular, a gas laser involving radio frequency excitation. Background technique
  • the chopper is one of the essential core components in modern laser processing systems. With the development of laser processing «Surgical», the company is constantly evolving, and many new lasers have emerged.
  • RF-excited gas lasers are one of the most widely used tuners, including carbon dioxide RF lasers and carbon monoxide RF lasers.
  • the low-power type can be applied to laser marking equipment, and high-power can be applied to laser cutting Ready.
  • the cavity resonator chamber ⁇ Qian longitudinal optical reflection lens shape processing is independently child, and" a dust delineated inner sealing flange fixed at both ends of the cavity spirit ⁇
  • a partial side sectional view showing an example of the laser of FIG i shows a prior art RF excitation gas ⁇ shown in Figure 1, the laser cavity shake 3 ⁇ 4 sundial package 1 ', both ends of the cavity respectively have front sealing flange 4 ' and the rear sealing flange 2, the sealing cavity 1 ⁇ the front optical reflection lens 5 of the inner cavity and the rear optical reflection lens 3 are independently processed and then fixed to the ends of the discharge tube by the fixing base 20 On the inner side, the fixing base 20 is fixed to the sealing flange at both ends of the discharge tube by screws 21.
  • Ron this complex structure can lead to unreliable factors, for example, due to the physical properties of the materials that make up the front and rear optical reflectors, the mounts, the wraps, and the sealing flanges, their thermal expansion ⁇ The number of turtles is not the same.
  • the vibration chamber»* learns the angle of the reflection lens, which causes the power output of the neon to decrease.
  • the looseness of the filament due to the vibration also causes the angle of the optical reflection lens of the cavity in the cavity. A change occurs, causing the laser output power to drop.
  • an object of the present invention is to provide a radio frequency excited gas laser having a simple structure and stable performance and a preparation method thereof.
  • a radio frequency excited gas laser comprising: a cavity (1) filled with a gas as a laser medium, wherein the inner side of the front sealing flange (4) of the cavity (1) An optical mirror surface (5) is formed, and an optical mirror surface (3) is formed on the inner side of the rear sealing flange (2) of the discharge tube, and an optical mirror surface (5) formed on the inner side of the front sealing flange (4) is The optical mirror surface (3) formed on the inside of the rear seal flange (2) constitutes a resonant cavity.
  • a method of preparing a radio frequency excited gas laser comprising a cavity (1) filled with a gas as a laser medium, the method comprising: a front sealing method in the discharge tube An optical mirror surface (5) is formed on the inner side of the blue (4); an optical mirror surface (3) is formed on the inner side of the rear sealing flange (2) of the discharge tube; and the front sealing flange (4) is fixed to the discharge tube
  • the front end, the rear sealing flange (2) is fixed to the rear end of the discharge tube to form a cavity (1), wherein the optical mirror surface (5) and the rear sealing method are formed on the inner side of the front sealing flange (4)
  • the optical mirror surface (3) formed on the inner side of the blue (2) constitutes a resonant cavity.
  • a deformation absorbing groove (11) is formed on the outer side of the front sealing flange (4) of the discharge tube and on the outer side of the rear sealing flange (2) of the discharge tube.
  • the deformation absorption groove (11) is formed in a ring shape centering on the axis of the discharge area (9).
  • the annular ring of the deformation absorbing groove (11) is larger than the effective use range of the optical mirror surface (5, 3).
  • the inner side of the front sealing flange (4) is machined into an optical mirror surface (5) such that the front sealing flange (4) is integral with the optical mirror surface (5).
  • the inner side of the rear sealing flange (2) is machined into an optical mirror surface (3) such that the rear sealing flange (2) is integral with the optical mirror surface (3).
  • the optical mirror surface of the resonant cavity is formed on the sealing flange at both ends of the discharge tube, thereby eliminating the need to separately fix the optical reflecting lens of the resonant cavity, thereby reducing the complexity of the structure and the material of each component. The resulting unreliability factor.
  • a deformation absorption groove is formed on the outer side of the sealing flange at both ends of the discharge tube, which can reduce the curvature change of the optical mirror surface of the resonant cavity and the distortion of the surface type due to the deformation of the sealing flange, and the optical mirror surface of the resonant cavity Forming with the sealing flange further reduces the possibility of angular changes in the optical mirror surface.
  • FIG. 1 is a partial side cross-sectional view showing an example of a prior art RF excited gas laser
  • Figure 2 is a partial side cross-sectional view showing a radio frequency excited gas laser in accordance with a first embodiment of the present invention
  • Figure 3 is a partial top cross-sectional view showing a radio frequency excited gas laser in accordance with a first embodiment of the present invention
  • FIG. 4 shows an end view of a rear sealing flange of a radio frequency excited gas laser in accordance with a first embodiment of the present invention
  • Fig. 5 is a flow chart showing a method of fabricating a radio frequency excited gas laser according to a second embodiment of the present invention. detailed description
  • FIG. 2 shows a radio frequency excited gas laser according to a first embodiment of the present invention. Partial side cross-sectional view.
  • the laser comprises a cavity (1) filled with a gas as a laser medium (i.e., a working gas), such as carbon dioxide or carbon monoxide gas.
  • a gas as a laser medium (i.e., a working gas), such as carbon dioxide or carbon monoxide gas.
  • the front and rear ends of the cavity (1) respectively have a front sealing flange (4) and a rear sealing flange (2), and an optical reflecting mirror surface (5) is formed on the inner side of the front sealing flange (4), and the rear sealing flange
  • An optical mirror surface (3) is formed on the inner side of (2), and the optical mirror surface (5) and the optical mirror surface (3) constitute a resonant cavity.
  • the inside of the sealed cavity (1) is provided with a positive electrode plate (6) and a negative electrode plate (7), and the upper side of the cavity (1) is provided with an introduction electrode (8), a positive electrode plate (6) and a negative A discharge region (9) is formed between the electrode plates (7).
  • the RF current is injected into the positive electrode plate (6) through the introduction electrode (8), and a glow discharge is generated in the discharge region (9) between the positive electrode plate (6) and the negative electrode plate (7).
  • a seal groove (10) is provided at both ends of the cavity (1) between the front and rear seal flanges (2), (4) and the ends of the cavity (1).
  • the sealing groove (10) is internally pressed with a soft metal such as indium wire to function as a vacuum seal.
  • Fig. 3 shows a partial top cross-sectional view of a radio frequency excited gas laser in accordance with a first embodiment of the present invention.
  • a laser channel (14) is provided at a position beside the optical mirror surface (5) on the front sealing flange (4) of the cavity (1), and the outer end of the laser channel (14) It is sealed with an output mirror (12) plated with a real film.
  • the laser is output from the laser channel (14) and then passes through the output mirror (12) to output a laser beam (13) to the outside.
  • the optical mirror surfaces (5), (3) are respectively formed on the inner sides of the front sealing flange (4) and the rear sealing flange (2) of the cavity (1), so that it is not necessary to separately fix
  • the optically reflective lens of the cavity reduces the unreliability factor caused by the complicated structure and the material of each component.
  • a deformation absorption groove (11) is formed on the outer side (i.e., the side opposite to the optical mirror surface (3)), and the deformation absorption groove (11) is formed as a ring centered on the axis of the discharge region (9) .
  • the annular ring is set to be larger than the effective use range of the optical mirror surfaces (3), (5).
  • Figure 4 shows an end view of a rear sealing flange of a radio frequency excited gas laser in accordance with a first embodiment of the present invention.
  • the deformation absorption groove (11) is formed in an elliptical ring shape, and the output mirror (12) is located inside the deformation absorption groove (11).
  • a deformation absorption groove (11) is formed on the outer side of the front sealing flange (4) and the rear sealing flange (2), which can reduce the optical reflection mirror surface of the resonant cavity due to deformation of the sealing flange (5), (3) Distortion of the face shape.
  • the optical mirror surface of the cavity can be integrated with the sealing flange, gp, the front sealing flange ( 4) Formed integrally with the optical mirror surface (5), and the rear sealing flange (2) is integrated with the optical mirror surface (3).
  • Fig. 5 is a flow chart showing a method of fabricating a radio frequency excited gas laser according to a second embodiment of the present invention.
  • an optical reflecting mirror surface is formed on the inner side of the front sealing flange of the cavity, and an optical mirror surface is formed on the inner side of the rear sealing flange of the cavity.
  • the inner side of the front sealing flange is processed into an optical mirror surface
  • the inner side of the rear sealing flange is processed into an optical Mirror surface.
  • the inside of the front and rear sealing flanges are machined (ie, polished) with a single-point diamond lathe to achieve the desired smoothness, surface shape, and curvature of the cavity of the laser to the optical mirror surface, and then formed in the process.
  • the surface is plated with a high reflective film (for example, a gold film or other multilayer dielectric film) so that optical mirror surfaces are formed on the inside of the front and rear sealing flanges, respectively.
  • a high reflective film for example, a gold film or other multilayer dielectric film
  • the material of the sealing flange is a material that has a high reflectivity to infrared light (eg Copper, silver, gold, etc., may also form an optical mirror surface on the inside of the sealing flange without plating.
  • polishing with a single-point diamond lathe is superior to conventional polishing.
  • Conventional polishing is performed by polishing the surface of the polishing powder, and generally only the spherical surface can be processed.
  • Single-point polishing is an ultra-high-precision machining of numerical control, which achieves nanometer-level precision and can process complex surfaces of aspheric surfaces.
  • the front sealing flange is fixed to the front end of the discharge tube, and the rear sealing flange is fixed to the rear end of the discharge tube to form a sealed laser cavity structure, wherein the optical mirror surface formed on the inner side of the front sealing flange
  • the optical mirror surface formed on the inner side of the rear sealing flange constitutes a resonant cavity.
  • the high-precision CNC cutting of the front and rear ends of the cavity can be performed, so that the parallel angle of the cutting surfaces at the front and rear ends is preferably less than 7 seconds, in order to ensure that the front and rear sealing flanges are assembled to form two resonant cavities.
  • the mounting angle error of the optical mirrors is within the design range.
  • the stable and reliable mounting angle of the two optical mirrors allows the light energy to be effectively confined between the two optical mirror surfaces, and after oscillation, it is controlled to overflow to one side, thereby outputting laser energy.
  • the vertical angle error is preferably less than 60 seconds, in order to ensure that the discharge area between the positive and negative electrode plates is not It will deviate from its design angle in the central design area between the two optical mirror surfaces, so that when the light oscillates between the two optical mirror surfaces, it can penetrate the entire discharge area without light blocking.
  • front and rear sealing flanges can be fixed to both ends of the discharge tube with screws or the like.
  • a sealing groove is provided on the front and rear sealing flanges or on both sides of the side of the discharge tube to press indium wire or the like therein to thereby perform a vacuum sealing function.
  • a deformation absorbing groove may be formed on the outer side of the front and rear sealing flanges, and the deformation absorbing groove may be formed in a ring shape centering on the axis of the discharge zone.
  • the annular ring can be formed to be larger than the effective use range of the optical mirror surface.
  • the discharge tube is vented and charged with a working gas.
  • the optical mirror surface of the resonant cavity is formed on the sealing flange at both ends of the discharge region, thereby eliminating the need to separately fix the resonant cavity.
  • the optical reflective lens reduces the unreliability factor caused by the complicated structure and the material of each component.
  • the deformation absorption groove is formed on the outer side of the seal flange, and the distortion of the surface of the optical mirror surface of the cavity due to the deformation of the seal flange can be reduced.
  • forming the optical mirror surface of the resonant cavity integrally with the sealing flange further reduces the possibility of changing the angle of the optical mirror surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

一种射频激励的气体激光器及其制备方法,该射频激励的气体激光器,包括:填充有作为激光工作介质的气体的密封腔体(1),在密封腔体(1)内安装有正电极板(6)和负电极板(7),密封腔体的前密封法兰(4)的内侧上形成有光学反射镜面(5),密封腔体的后密封法兰(2)的内侧上形成有光学反射镜面(3),前密封法兰(4)的内侧上形成的光学反射镜面(5)与后密封法兰(2)的内侧上形成的光学反射镜面(3)构成谐振腔。

Description

一种射頻潋励的气体潋光器及其制备方法 技术领域
本发 «渉及激光器技术領域, 具体地, 涉及射频激励的气体激 光器。 背景技术
檄光器^现代激光加工系统中必不可少的核心组件之一。 隨着 激光加工 «术»发展,激*¾也在不斷向前发展, ώ現了许多新型激 光器。射频激励的气体激光器是当前应用最为广泛》潋光器之一,例 如包括二氧化碳射频激光器和一氧化碳射频激光器等,其小功率型可 应用予激光打标设备上, 大功率可应用于激 *切割谁备上。
在现有飾射频檄励 «气体激光器領域中, 腔体 ή谦振腔的前后 光学反射镜片均独立加工形虐,然后《a固定塵圈定靈腔体两端的密 封法兰内侧 β
图 i示出了现有技术的射频激励的气体激光器示例的局部侧视 剖面图 β 如图 1所示, 该激 ¾晷包摇腔体 1 ' , 腔体 的两端分别 具有前密封法兰 4 ' 和后密封法兰 2 , 密封腔体 1 <内谐振腔的前 光学反射镜片 5 和后光学反射镜片 3 均独立加工形威, 然后通过 固定座 20固定至放电管两端 害封 ft兰的内侧,固定座 20通过螺丝 21固定至放电管两端的密封法兰。
然丽, 这种复杂的结构会导致不可靠因数的产生, 例如, 由于 构成前后光学反射铼片、 固定座、纏丝、及密封法兰的材料的物理性 讓各不相同,它们的热膨胀蘼数龜不 *同,在戮光器长时间 «1使用过 程中,温度的变化、反复的热胀冷縮等会导致激 *器各部件的结构松 动、 变形, 从丽影响构成密封腔体内请振腔 »*学反射镜片的角度, 导致澂光输出功率下降等。另外, 在激光器的运输过程中, 由于震动 而导致的螵丝的松动也会导致腔体内谐振腔的光学反射镜片的角度 发生变化, 从而使得激光输出功率下降。
因此, 需要提供一种改进的射频激励的气体激光器。 发明内容
鉴于此, 本发明的目的是提供一种结构简单、 性能稳定的射频 激励的气体激光器及其制备方法。
根据本发明的一方面, 提供一种射频激励的气体激光器, 包括: 填充有作为激光介质的气体的腔体(1),其中,腔体(1)的前密封法兰 (4) 的内侧上形成有光学反射镜面(5) , 放电管的后密封法兰(2) 的内侧上形成有光学反射镜面(3) , 前密封法兰(4) 的内侧上形成 的光学反射镜面(5)与后密封法兰(2) 的内侧上形成的光学反射镜 面 (3) 构成谐振腔。
根据本发明的另一方面, 提供一种射频激励的气体激光器的制 备方法, 该气体激光器包括填充有作为激光介质的气体的腔体(1), 所述方法包括: 在放电管的前密封法兰 (4) 的内侧上形成光学反射 镜面(5) ; 在放电管的后密封法兰(2) 的内侧上形成光学反射镜面 (3) ; 将前密封法兰 (4) 固定至放电管的前端, 将后密封法兰 (2) 固定至放电管的后端, 从而形成腔体(1), 其中, 前密封法兰(4) 的 内侧上形成的光学反射镜面(5)与后密封法兰(2) 的内侧上形成的 光学反射镜面 (3) 构成谐振腔。
优选地, 在放电管的前密封法兰 (4) 的外侧上以及在放电管的 后密封法兰 (2) 的外侧上形成变形吸收槽 (11) 。
优选地, 变形吸收槽 (11) 被形成为以放电区 (9) 的轴为中心 的环形。
优选地, 变形吸收槽 (11) 的环形圈大于光学反射镜面 (5、 3) 的有效使用范围。
优选地, 将前密封法兰 (4) 的内侧加工成光学反射镜面 (5) , 从而前密封法兰 (4) 与光学反射镜面 (5) 为一体。
优选地, 将后密封法兰 (2) 的内侧加工成光学反射镜面 (3) , 从而后密封法兰 (2) 与光学反射镜面 (3) 为一体。 本发明的射频激励的气体激光器中, 谐振腔的光学反射镜面形 成在放电管两端的密封法兰上,从而无须单独固定谐振腔的光学反射 镜片,减少了由于结构复杂、各部件材料的不同而导致的不可靠因数。 此外,在放电管两端的密封法兰的外侧上形成变形吸收槽, 能够减少 由于密封法兰的变形而导致谐振腔的光学反射镜面的曲率改变和面 型的畸变,将谐振腔的光学反射镜面与密封法兰形成为一体进一步减 小了光学反射镜面的角度改变的可能性。 附图说明
附图是用来提供对本发明的进一步理解, 其构成说明书的一部 分,且与下面的具体实施例一起用于解释本发明,但并不构成对本发 明的限制。 附图中:
图 1 示出了现有技术的射频激励的气体激光器示例的局部侧视 剖面图;
图 2示出了根据本发明的第一实施例的射频激励的气体激光器 的局部侧视剖面图;
图 3示出了根据本发明的第一实施例的射频激励的气体激光器 的局部俯视剖面图;
图 4示出了根据本发明的第一实施例的射频激励的气体激光器 的后密封法兰的端视图;
图 5示出了根据本发明的第二实施例的射频激励的气体激光器 的制备方法的流程图。 具体实施方式
以下结合附图对本发明的具体实施例进行详细说明。 应当理解 的是,此处所描述的具体实施例仅用于说明和解释本发明, 并不用于 限制本发明。 第一实施例
图 2示出了根据本发明的第一实施例的射频激励的气体激光器 的局部侧视剖面图。
如图 2所示, 该激光器包括腔体(1), 密封腔体(1)中填充有作 为激光介质 (即, 工作气体) 的气体, 例如有二氧化碳或一氧化碳气 体等。腔体(1)的前后两端分别具有前密封法兰(4)和后密封法兰(2), 前密封法兰(4)的内侧上形成有光学反射镜面(5),后密封法兰(2) 的内侧上形成有光学反射镜面(3) , 光学反射镜面(5)与光学反射 镜面(3)构成谐振腔。此外,密封腔体(1)的内部设置有正电极板(6) 和负电极板 (7) , 腔体(1)的上侧面设置有引入电极 (8) , 正电极 板 (6) 和负电极板 (7) 之间形成放电区 (9) 。 激光管工作时, 通 过引入电极 (8) 向正电极板 (6) 注入射频电流, 正电极板 (6) 和 负电极板(7)之间的放电区 (9) 中会产生辉光放电, 从而激励工作 气体进入等离子态并产生能级的迁跃, 并且在光学反射镜面 (3) 、 (5) 的限制下产生振荡, 然后从光学反射镜面(5) 的旁侧激光通道 (14)输出激光, 该激光穿透镀有真透膜的输出镜(12)而向外界输 出激光束 (13) 。
例如, 在腔体(1)的两端设置有密封槽 (10) , 其位于前后密封 法兰 (2) 、 (4) 与腔体(1)的两端之间。 密封槽 (10) 内压有例如 铟丝等软金属, 以起真空密封作用。
图 3示出了根据本发明的第一实施例的射频激励的气体激光器 的局部俯视剖面图。
如图 3所示, 在腔体(1)的前密封法兰 (4) 上的光学反射镜面 (5) 旁侧的位置处设置有激光通道 (14) , 该激光通道 (14) 的外 端用镀有真透膜的输出镜 (12) 密封, 激光从激光通道 (14) 输出, 然后穿透输出镜 (12) 而向外界输出激光束 (13) 。
根据该实施例的激光器中, 光学反射镜面 (5) 、 (3) 分别形 成在腔体(1)的前密封法兰 (4) 和后密封法兰 (2) 的内侧上, 从而 无须单独固定谐振腔的光学反射镜片,减少了由于结构复杂、各部件 材料的不同而导致的不可靠因数。
此外, 在根据该实施例的激光器中, 在前密封法兰 (4) 的外侧 (即, 与光学反射镜面 (5) 相背的一侧) 上以及在后密封法兰 (2) 的外侧 (即, 与光学反射镜面 (3) 相背的一侧) 上均形成有变形吸 收槽 (11) , 变形吸收槽 (11) 被形成为以放电区 (9) 的轴为中心 的环形。 例如, 环形圈设置为大于光学反射镜面 (3) 、 (5) 的有效 使用范围。
图 4示出了根据本发明的第一实施例的射频激励的气体激光器 的后密封法兰的端视图。
如图 4所示,变形吸收槽(11)被形成为椭圆环形,输出镜(12) 位于变形吸收槽 (11) 的内侧。
在前密封法兰 (4) 和后密封法兰 (2) 的外侧上形成变形吸收 槽(11), 能够减少由于密封法兰的变形而导致谐振腔的光学反射镜 面 (5) 、 (3) 的面型的畸变。
为了进一步减小复杂度以及减小光学反射镜面 (5) 、 (3) 的 角度改变的可能性,可以将谐振腔的光学反射镜面与密封法兰形成为 一体, gp, 将前密封法兰 (4) 与光学反射镜面 (5) 形成为一体, 将 后密封法兰 (2) 与光学反射镜面 (3) 形成为一体。 第二实施例
图 5示出了根据本发明的第二实施例的射频激励的气体激光器 的制备方法的流程图。
如图 5所示, 首先, 在腔体的前密封法兰的内侧上形成光学反 射镜面, 在腔体的后密封法兰的内侧上形成光学反射镜面。例如, 为 了分别将前密封法兰与光学反射镜面以及后密封法兰与光学反射镜 面形成为一体,将前密封法兰的内侧加工成光学反射镜面, 以及将后 密封法兰的内侧加工成光学反射镜面。
例如, 用单点金刚石车床对前后密封法兰的内侧进行加工 (即, 抛光), 以达到激光器的谐振腔对光学反射镜面所要求的光滑度、 面 型及曲率等, 然后在所加工形成的表面上镀高反膜(例如, 可以为金 膜或其它多层介质膜),这样就分别在前后密封法兰的内侧形成了光 学反射镜面。 当然, 根据情况, 也可以直接加工形成光学反射镜面而 无需镀膜。例如,如果密封法兰的材料是对红外光反射率大的材料(如 铜、 银、 金等) , 也可以不镀膜而在密封法兰的内侧形成光学反射镜 面。
其中, 利用单点金刚石车床进行抛光 (即, 单点抛光) 优于采 用传统抛光。传统抛光是用抛光粉加工表面进行研磨, 一般只能加工 球面。而单点抛光是在数控的超高精密切削加工,其能达到纳米级的 精度, 并且能对非球面的复杂面型进行加工。
然后, 将前密封法兰固定至放电管的前端, 将后密封法兰固定 至放电管的后端, 从而形成密封的激光器腔体结构, 其中, 前密封法 兰的内侧上形成的光学反射镜面与后密封法兰的内侧上形成的光学 反射镜面构成谐振腔。
其中, 可以对腔体的前后两端进行高精度的数控切削, 使其前 后两端切削表面的平行度夹角最好小于 7秒,目的是为了确保前后密 封法兰安装后构成谐振腔的两个光学反射镜面的安装角度误差在设 计范围内。这两个光学反射镜面的稳定可靠的安装角度使得光能有效 地限制在这两个光学反射镜面之间,并且振荡后向一侧可控溢出,从 而输出激光能量。此外, 同时保证密封腔体的前后两端切削表面与放 电管内部的上、 下电极板垂直, 其垂直角度误差最好小于 60秒, 目 的是为了确保正、负电极板之间的放电区不会偏离其设计角度而处于 两个光学反射镜面之间的中心设计区域内,从而使得光在这两个光学 反射镜面之间振荡时, 能穿透整个放电区而没有挡光现象出现。
例如, 可以用螺丝等将前后密封法兰固定至放电管两端。 在前 后密封法兰上或在放电管侧面的两端上设置密封槽,以在其中压铟丝 等, 从而起真空密封作用。
此外, 可以在前后密封法兰的外侧上形成变形吸收槽, 变形吸 收槽可以被形成为以放电区的轴为中心的环形。
例如, 用数控机床在前后密封法兰的外侧上加工出环形的变形 吸收槽, 可以将环形圈形成为大于光学反射镜面的有效使用范围。
然后, 对放电管进行排气, 并充入工作气体。
利用该实施例制备的射频激励的气体激光器中, 谐振腔的光学 反射镜面形成在放电区两端的密封法兰上,从而无须单独固定谐振腔 的光学反射镜片,减少了由于结构复杂、各部件材料的不同而导致的 不可靠因数。此外, 在密封法兰的外侧上形成变形吸收槽, 能够减少 由于密封法兰的变形而导致谐振腔的光学反射镜面的面型的畸变。其 中,将谐振腔的光学反射镜面与密封法兰形成为一体进一步减小了光 学反射镜面的角度改变的可能性。 可以理解的是, 上述实施例仅仅是为了说明本发明的原理而采 用的示例性实施例,然而本发明并不局限于此。本发明的实施例可以 省略上述技术特征中的一些技术特征,仅解决现有技术中存在的部分 技术问题, 而且, 所公开的技术特征可以进行任意组合。对于本领域 内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可 以做出各种变型和改进, 这些变型和改进也视为本发明的保护范围。 本发明的保护范围由所附权利要求限定。

Claims

权 利 要 求 书
1. 一种射频激励的气体激光器及其制备方法, 包括:
填充有作为激光介质的气体的密封腔体(1), 其中,
腔体(1)的前密封法兰(4)的内侧上形成有光学反射镜面(5) , 腔体(1)的后密封法兰 (2) 的内侧上形成有光学反射镜面 (3) , 前 密封法兰(4) 的内侧上形成的光学反射镜面(5)与后密封法兰(2) 的内侧上形成的光学反射镜面 (3) 构成谐振腔。
2. 根据权利要求 1所述的气体激光器, 其中, 在腔体(1)的前 密封法兰 (4) 的外侧上以及在腔体(1)的后密封法兰 (2) 的外侧上 形成有变形吸收槽 (11) 。
3. 根据权利要求 2所述的气体激光器, 其中, 变形吸收槽(11) 被形成为以放电区 (9) 的轴为中心的环形。
4. 根据权利要求 3所述的气体激光器, 其中, 变形吸收槽(11) 的环形圈大于光学反射镜面 (5、 3) 的有效使用范围。
5. 根据权利要求 1所述的气体激光器, 其中, 前密封法兰 (4) 与光学反射镜面 (5) 为一体。
6. 根据权利要求 1所述的气体激光器, 其中, 后密封法兰 (2) 与光学反射镜面 (3) 为一体。
7. 一种射频激励的气体激光器的制备方法, 该气体激光器包括 填充有作为激光介质的气体的密封腔体, 所述方法包括:
在腔体(1)的前密封法兰(4)的内侧上形成光学反射镜面(5) ; 在腔体(1)的后密封法兰(2)的内侧上形成光学反射镜面(3) ; 将前密封法兰 (4) 固定至放电管的前端, 将后密封法兰 (2) 園定至放电管的后端, 从丽形咸密封的腔体《
其 Ψ, 前害封 ft兰 〈4〉 的内侧上形戚《¾学反射镜面 (5) 与 后 *封法兰 (2) 的内侧上形慮 tt光学反射镜面 (3) 梶戚请振腔。
8. 根据权利要求 7所述的方法, 还包括:
在腔体(1)的前密封法兰(4) 脑外倒上 及在腔 后密封 法兰 (2) 的 侧上形 Λ有变形吸 ft槽 (11) β
9. 權据 tt利要求 8所建論方法, 其中, 变形吸 ft槽 (11) 被形 成为 放电 K (9) »轴 *中心麵环形 β
10. 根握概利要求 9慶達 方 ft, 其中, 变形吸 ft槽 《11) m 环形圈大亍 Λ学反射镜面 (δ, 3) 的有效使用范围
11. 權据衩利要求 7所述的方法, 其中 将前密封法兰 (4) m
Λ側加工慮 Λ学反射镜面 »
12. 棍攝植利要求 7所述 方法, 其中, 将后密封法兰 (2) m 内侧加工慮光学反射镜面 (3)
PCT/CN2014/000358 2014-04-01 2014-04-01 一种射频激励的气体激光器及其制备方法 WO2015149194A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/000358 WO2015149194A1 (zh) 2014-04-01 2014-04-01 一种射频激励的气体激光器及其制备方法
CN201480037793.2A CN105684243A (zh) 2014-04-01 2014-04-01 一种射频激励的气体激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/000358 WO2015149194A1 (zh) 2014-04-01 2014-04-01 一种射频激励的气体激光器及其制备方法

Publications (1)

Publication Number Publication Date
WO2015149194A1 true WO2015149194A1 (zh) 2015-10-08

Family

ID=54239191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000358 WO2015149194A1 (zh) 2014-04-01 2014-04-01 一种射频激励的气体激光器及其制备方法

Country Status (2)

Country Link
CN (1) CN105684243A (zh)
WO (1) WO2015149194A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791396B (zh) * 2021-07-01 2024-06-11 长沙湘计海盾科技有限公司 基于光谐振腔的大规模激光雷达阵列微单元及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2149566A (en) * 1983-08-09 1985-06-12 Honeywell Inc Stable alignment mechanism
JPS6298785A (ja) * 1985-10-25 1987-05-08 Matsushita Electric Ind Co Ltd ガスレ−ザ管
CN201181804Y (zh) * 2008-04-22 2009-01-14 吉林省永利激光科技有限公司 准基模长寿命百瓦级二氧化碳激光管
CN101789559A (zh) * 2010-02-10 2010-07-28 华中科技大学 一种气体激光器
CN201667485U (zh) * 2010-02-10 2010-12-08 华中科技大学 一种气体激光器
CN102354905A (zh) * 2011-10-19 2012-02-15 华中科技大学 一种射频激励气体激光器
CN103594909A (zh) * 2013-01-05 2014-02-19 丁健君 纵向放电型静态二氧化碳激光器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204788A (ja) * 1999-01-07 2000-07-25 Sumitomo Metal Ind Ltd 鋼製制震ダンパ―および鋼製制震ダンパ―による制震装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2149566A (en) * 1983-08-09 1985-06-12 Honeywell Inc Stable alignment mechanism
JPS6298785A (ja) * 1985-10-25 1987-05-08 Matsushita Electric Ind Co Ltd ガスレ−ザ管
CN201181804Y (zh) * 2008-04-22 2009-01-14 吉林省永利激光科技有限公司 准基模长寿命百瓦级二氧化碳激光管
CN101789559A (zh) * 2010-02-10 2010-07-28 华中科技大学 一种气体激光器
CN201667485U (zh) * 2010-02-10 2010-12-08 华中科技大学 一种气体激光器
CN102354905A (zh) * 2011-10-19 2012-02-15 华中科技大学 一种射频激励气体激光器
CN103594909A (zh) * 2013-01-05 2014-02-19 丁健君 纵向放电型静态二氧化碳激光器

Also Published As

Publication number Publication date
CN105684243A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
US7088749B2 (en) Green welding laser
US5359622A (en) Radial polarization laser resonator
CN104600552A (zh) 一种单晶金刚石连续波可调谐深紫外激光器
WO2015149194A1 (zh) 一种射频激励的气体激光器及其制备方法
CN108110596B (zh) 碱金属激光器
CN103545701B (zh) 相位锁定的圆筒形co2激光器
US7068700B2 (en) Optical bench for diode-pumped solid state lasers in field applications
JP2023015345A (ja) 波長区別スラブレーザ
WO2015172263A1 (zh) 一种射频激励的气体激光器及其制备方法
JP2009010066A (ja) パルスレーザ発振器
CN112130395B (zh) 一种用于频率变换的整体光学谐振腔
JP2004296706A (ja) 光共振器及びレーザ発振器
JP2526946B2 (ja) レ―ザ装置
JP5493907B2 (ja) 光共振器
CN105552696A (zh) 激光振荡器
CN220122323U (zh) 一种高功率高纯度可调谐单频涡旋激光器
CN200976452Y (zh) 高功率脉冲激光器抗失调谐振腔
CN215070841U (zh) 一种一体化小型光学模清洁器
JPH0786673A (ja) ガスレーザ発振器
JPH01271088A (ja) レーザ装置
JP2009004818A (ja) 固体レーザ光発振器および固体レーザ光発振装置
JPH01270373A (ja) レーザ装置
TWI384709B (zh) 雷射整形模組
JP2004311719A (ja) 固体レーザ光発振器および固体レーザ光発振装置
CN115673545A (zh) 一种半导体激光器焊接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14888131

Country of ref document: EP

Kind code of ref document: A1