WO2015146185A1 - Friction stir welding device and friction stir welding method - Google Patents

Friction stir welding device and friction stir welding method Download PDF

Info

Publication number
WO2015146185A1
WO2015146185A1 PCT/JP2015/001752 JP2015001752W WO2015146185A1 WO 2015146185 A1 WO2015146185 A1 WO 2015146185A1 JP 2015001752 W JP2015001752 W JP 2015001752W WO 2015146185 A1 WO2015146185 A1 WO 2015146185A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction stir
stir welding
rotating body
lower rotating
tool
Prior art date
Application number
PCT/JP2015/001752
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 英俊
林太郎 上路
好昭 森貞
正善 釜井
昇 望月
望月 健児
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2015146185A1 publication Critical patent/WO2015146185A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a friction stir welding apparatus and a friction stir welding method, and more specifically, is a portable compact friction stir welding apparatus that can be applied on-site, and that enables manual operation control. And a friction stir welding method.
  • Friction stir welding is characterized by the fact that the maximum temperature reached during welding does not reach the melting point of the materials to be joined, and the strength reduction at the joint is small compared to conventional fusion welding, and has recently been rapidly put into practical use.
  • friction stir welding has various excellent characteristics, there is a problem that the apparatus becomes large because a very large tool load, force in the joining direction, and the like act on the material to be joined and the apparatus.
  • the friction stir welding can be easily used in small and medium-sized businesses and general households. There is a possibility that you will be able to.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-45980
  • a rotor that rotates at a high speed is moved in the direction of the rotation axis, the tip portion is pressed against the workpiece, and the tip portion contacts the workpiece.
  • the rotational drive around the rotational axis of the rotor and the straight drive in the rotational axis direction of the rotor are 1
  • a friction stir welding apparatus characterized in that it is performed with two drive sources.
  • the apparatus can be reduced in size and weight by performing the rotational drive and the rectilinear drive of the rotor with one drive source, and one drive source. Therefore, the initial cost and the maintenance cost can be reduced.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-61490
  • friction stir welding is performed in which a portion to be joined on a longitudinal side wall portion of a workpiece is frictionally agitated by a friction welding tool in a lateral posture to join the portion to be joined.
  • a self-propelled vehicle body configured to be capable of self-propelled along the bonded portion on the side wall portion of the object to be bonded, and mounted on the self-propelled vehicle body so as to be rotatable around a reference axis in a lateral orientation
  • a counteracting force generating means for generating a counterforce against the reaction force of the pressing force applied from the tool holding portion and the joining tool to the joined portion by the displacement driving means, and acting on the self-propelled vehicle body by the reaction force of the pressing force.
  • the friction stir welding apparatus described in Patent Document 2 includes a self-propelled vehicle body, a tool holding unit, a rotation driving unit, a displacement driving unit, a counter force generation unit, and a counter moment generation unit.
  • the reaction force of the pressing force can be canceled by the counter force generated by the counter force generating means, and the overturning moment can be canceled by the counter moment generated by the counter moment generating means.
  • the self-propelled vehicle body can be joined in a stable state while preventing overturning.
  • Patent Document 1 and Patent Document 2 are somewhat smaller than the conventional friction stir welding apparatus, it can be easily carried and manually operated. There is a big difference from the device that can control the operation.
  • an object of the present invention is a portable compact friction stir welding apparatus and friction stir welding method that can be applied on-site, and that enables manual operation control.
  • An object of the present invention is to provide a stir welding apparatus and a friction stir welding method.
  • the present inventor conducted extensive research on the process load generated during downsizing and joining of the friction stir welding apparatus, and as a result, a bobbin type friction stir welding tool and a preheating mechanism in which the upper and lower parts are driven separately. It has been found that the use and the like are extremely effective, and the present invention has been achieved.
  • the present invention An upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body, and a friction stir welding is performed by sandwiching a material to be joined between the upper rotating body and the lower rotating body.
  • a friction stir welding tool to perform, Providing a preheating mechanism for preheating the materials to be joined;
  • a friction stir welding apparatus characterized by the above is provided.
  • the Z-axis load generated during friction stir welding (substantially perpendicular to the surface of the material to be joined) is offset inside the bobbin type friction stir welding tool. . Therefore, it is possible to reduce the size, rigidity, and the like of the main body structure of the friction stir welding apparatus that holds the tool motor and the stage portion that fixes the material to be joined.
  • the rotation speeds of the upper rotating body and the lower rotating body can be set independently, and the rotation directions of the upper rotating body and the lower rotating body are opposite to each other. It is preferable that By rotating the upper rotating body and lower rotating body of the bobbin type friction stir welding tool in opposite directions and performing friction stir welding, the tool torque can be offset and the lateral vibration of the tool during friction stir welding is suppressed. can do.
  • the friction stir welding apparatus includes a preheating mechanism for preheating the materials to be joined, and the preheating mechanism is disposed in front of the bobbin type friction stir welding tool in the advancing direction, and the preheated by the preheating mechanism. It is preferable to induce the traveling direction of the bobbin type friction stir welding tool by softening the bonding material.
  • the process load during the friction stir welding can be effectively reduced.
  • the direction of travel of the bobbin type friction stir welding tool can be induced.
  • the preheating mechanism is an energization heating method. Compared with laser irradiation, high-frequency heating, and the like, energization heating can be suitably used from the viewpoint of realizing an inexpensive friction stir welding apparatus downsized because the apparatus is extremely inexpensive and small.
  • the upper rotating body has a convex shape;
  • the lower rotating body has a concave shape;
  • the convex portion of the upper rotating body is inserted into the concave portion of the lower rotating body, Is preferred.
  • the upper rotating body has a concave shape
  • the lower rotating body has a convex shape
  • the lower rotating body has a convex shape.
  • the part may be designed to be inserted into the recess of the upper rotating body.
  • the force (Fx) in the joining direction applied to the bobbin type friction stir welding tool during the friction stir welding the lateral force (Fy) perpendicular to the joining line, and the joining line
  • the perpendicular force (Fz) in the perpendicular direction is 10 kgf or less, and it is preferable to manually control the advancing direction of the bobbin type friction stir welding tool during friction stir welding.
  • the present invention also provides: Using a bobbin type friction stir welding tool having an upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body, Sandwiching the material to be joined between the upper rotating body and the lower rotating body; Rotating the upper rotating body and the lower rotating body in opposite directions; Moving the bobbin-type friction stir welding tool, A preheating mechanism is disposed in front of the bobbin type friction stir welding tool in the traveling direction, Inducing the direction of travel of the bobbin type friction stir welding tool by softening the material to be joined by the preheating, A friction stir welding method characterized by the above is also provided.
  • the traveling direction of the bobbin type friction stir welding tool is preferably controlled manually, and the material to be joined is preferably aluminum or an aluminum alloy.
  • friction stir welding method of the present invention can be suitably implemented using the friction stir welding apparatus of the present invention.
  • a portable compact friction stir welding apparatus and friction stir welding method capable of on-site construction, and a small friction stir welding apparatus and friction stir welding method that enable manual operation control are provided. Can do.
  • FIG. 1 is a schematic side view of a friction stir welding apparatus according to an embodiment of the present invention.
  • 1 is a schematic front view of a friction stir welding apparatus according to an embodiment of the present invention.
  • It is a conceptual diagram of the preheating mechanism used with the friction stir welding apparatus which concerns on one Embodiment of this invention.
  • It is an external appearance photograph of the friction stir welding apparatus produced in the Example.
  • It is an external appearance photograph of the upper rotating body and lower rotating body which were produced in the Example.
  • It is a load cell layout for measuring a process load at the time of friction stir welding. It is a measured value of the joining direction load Fx.
  • FIGS. 1 and 2 are a side view and a plan view showing an example of an upper rotating body used in a friction stir welding apparatus according to an embodiment of the present invention. It is.
  • the upper rotating body 1 has a tool mounting portion 2 and an upper shoulder portion 4. Further, the tool mounting portion 2 is provided with a mounting hole 6 for fixing the upper rotating body 1 to the bottom surface of the spindle.
  • the upper shoulder portion 4 has a cylindrical shape and can pass through a stirring shaft of a lower rotating body described later.
  • the bottom area of the upper shoulder portion 4 may be appropriately determined in consideration of the heat input required for the material to be joined, the motor capacity for rotating the upper shoulder portion 4, and the like.
  • FIG. 3 and 4 are a side view and a plan view showing an example of the lower rotating body used in the friction stir welding apparatus according to the embodiment of the present invention.
  • a lower shoulder portion 12 and an agitation shaft 14 are integrally formed, and the lower shoulder portion 12 is connected to the agitation shaft 14 via a probe portion 16.
  • the length of the probe portion 16 may be determined by the thickness of the material to be joined, and is preferably about the same as the thickness of the material to be joined or about 0.1 to 0.3 mm shorter than the thickness of the material to be joined.
  • the diameter of the probe part 16 may be determined in consideration of the process load applied to the probe part 16 during joining and the plastic flow characteristics of the materials to be joined. When the process load increases, it is necessary to increase the diameter in order to prevent breakage from the probe portion 16, and when the material to be joined is difficult to plastically flow, it is necessary to decrease the diameter in order to prevent formation of defects in the stirring portion. .
  • the plastic flow behavior in the stirring portion can be controlled.
  • the rotation direction of the probe portion 16 is clockwise (clockwise: CW)
  • the shape is a left screw
  • the shape of the probe is the right screw.
  • the flow can be promoted, and the formation of defects and the generation of burrs in the stirring section can be suppressed.
  • the plastic flow behavior can also be controlled by making the bottom surface (surface contacting the material to be joined) of the upper shoulder portion 4 and / or the lower shoulder portion 12 into a screw shape. In this case, it is preferable to form a screw so that the plastic flow becomes inward of the shoulder portion with the rotation of the upper shoulder portion 4 and / or the lower shoulder portion 12 (if the plastic flow becomes outward, the burrs Amount will increase).
  • the bobbin type friction stir welding tool 20 includes an upper rotating body 1 and a lower rotating body 10, and the stirring shaft 14 of the lower rotating body 10 passes through the center of the upper rotating body 1.
  • FIG. 7 is a conceptual diagram of a joining state using the bobbin type friction stir welding tool 20.
  • the materials to be joined are friction stir welded while being sandwiched between the upper shoulder portion 4 and the lower shoulder portion 12.
  • the gap between the upper shoulder portion 4 of the upper rotating body 1 and the lower shoulder portion 12 of the lower rotating body 10 is preferably shorter by about 0.1 to 0.3 mm than the thickness of the material to be joined.
  • the diameter of the stirring shaft 14 is slightly smaller than the inner diameter of the upper shoulder portion 4 so that the stirring shaft 14 can smoothly rotate inside the upper shoulder portion 4 and is softened from the gap between the stirring shaft 14 and the upper shoulder portion 4. It is preferable to prevent the material from entering.
  • the upper rotating body 1 and the lower rotating body 10 various conventionally known metal materials, cemented carbides, ceramic materials, and the like can be used as long as the effects of the present invention are not impaired.
  • hot tool steel such as SKD61.
  • it is not necessary to make all the parts the same raw material For example, it is good also considering only the surface which touches the to-be-joined material of the upper rotary body 1 and / or the lower rotary body 10 as a ceramic material.
  • the upper shoulder portion 4 has a convex portion 5, and is attached to the bottom surface of the spindle so that the convex portion 5 faces downward (in a direction facing the lower rotating body).
  • FIG. 10 and 11 are a side view and a plan view showing another example of the lower rotating body used in the friction stir welding apparatus according to the embodiment of the present invention.
  • the lower shoulder portion 12 has a recess 13.
  • the alternate long and short dash line in FIG. 10 indicates that the probe portion 16 is connected to the bottom surface of the recess 13.
  • the material to be joined is agitated in a state in which the convex portion 5 is inserted into the concave portion 13, and the material to be joined passes through the gap between the convex portion 5 and the concave portion 13, thereby causing various directions.
  • the complicated flow which arises can arise and the orientation of the crystal
  • what is necessary is just to set suitably the insertion amount of the convex part 5 with respect to the recessed part 13 in the range which does not impair the effect of this invention.
  • the concave portion 13 is provided in the upper shoulder portion 4
  • the convex portion 5 is provided in the lower shoulder portion 12
  • the convex portion 5 of the lower shoulder portion 12 is inserted into the concave portion 13 of the upper shoulder portion 4. Friction stir welding may be performed in such a manner.
  • FIGS. 12 and 13 are a schematic side view and a schematic front view, respectively, of a friction stir welding apparatus according to an embodiment of the present invention (a preheating mechanism is not shown).
  • the friction stir welding apparatus 30 includes an upper rotating body motor 32 and an upper rotating body spindle 34 for rotating the upper rotating body 1, a lower rotating body motor 36 and a lower rotating body spindle 38 for rotating the lower rotating body 10,
  • a sample fixing base 40 for fixing the bonding material, a sample fixing base moving motor 42 for moving the sample fixing base 40, and a sample fixing base base 44 are provided.
  • the sample fixing table 40, the sample fixing table moving motor 42, and the sample fixing table 44 are not indispensable constituent elements, and are a structure having a sufficient weight or a plate material fixed by an arbitrary method, etc.
  • the treatment can also be performed using the friction stir welding apparatus 30 that does not include the sample fixing table 40, the sample fixing table moving motor 42, and the sample fixing table 44.
  • the friction stir welding apparatus 30 uses the bobbin type friction stir welding tool 20 in which the upper rotating body 1 and the lower rotating body 10 are separately driven, two motors (an upper rotating body motor 32 and a lower rotating body motor 32) are used. 36) It is necessary to use a double-acting type.
  • a motor having an output of 0.73 kW or more and a rotation speed of 1000 rpm or more.
  • the motor output is more preferably about 0.73 kW or less.
  • the upper rotating body motor 32 and the lower rotating body motor 36 can set rotation independently. If the rotation direction of the upper rotary body motor 32 and the rotation direction of the lower rotary body motor 36 are designed to be reversed, it is not always possible to switch the rotation direction. Therefore, it is preferable that the rotation direction can be arbitrarily set in each motor.
  • the upper rotating body 1 is connected to the upper rotating body spindle 34, and the lower rotating body 10 is connected to the lower rotating body spindle 38, respectively. Further, the material to be joined 48 is fixed to the sample fixing base 40, and the region to be joined or reformed is press-fitted between the rotating upper rotating body 1 and the lower rotating body 10 and moved so that the joining or reforming can be performed. To achieve.
  • the tool torque can be offset, and the lateral vibration of the tool during the friction stir welding Can be suppressed. Furthermore, the tool torque can be changed depending on the combination of the rotational speeds of the upper rotating body 1 and the lower rotating body 10, and a joining condition that minimizes the tool torque can be selected.
  • the friction stir welding apparatus 30 by designing the friction stir welding apparatus 30 to apply a tension / compression load rather than a bending load, even a small friction stir welding apparatus 30 can obtain sufficient rigidity. Furthermore, by using a collet chuck to fix the stirring shaft 14, the positional accuracy of the bobbin type friction stir welding tool 20 can be ensured.
  • the upper rotating body spindle 34 can be coaxial with the lower rotating body spindle 38 by a timing belt.
  • the timing belt pulley 46 may have the same diameter on the motor side and the tool side. Further, by attaching a collet chuck to the lower rotating body spindle 38, the bobbin type friction stir welding tool 20 can be fixed without causing misalignment even when the stirring shaft 14 is thin.
  • the sample fixing base 40, the sample fixing base moving motor 42, and the sample fixing base 44 are not essential components of the friction stir welding apparatus 30, but are incorporated into the friction stir welding apparatus 30 as necessary.
  • a brushless DC motor can be used as the sample fixing table moving motor 42, and the sample fixing table 40 can be linearly moved by transmitting the rotational movement of the motor to a trapezoidal screw via a spur gear.
  • the allowable thrust of the trapezoidal screw may be appropriately determined depending on the material to be joined.
  • the maximum linear moving speed of the sample fixing base 40 is preferably set to 300 mm / min or more from the viewpoint of the degree of freedom in setting the joining conditions.
  • the sample fixing base 40 fixes the end of the material to be joined with a holding jig or the like, It is necessary to design so that the bobbin type friction stir welding tool 20 does not interfere.
  • the friction stir welding apparatus 30 since the back plate (a metal plate placed under the material to be joined) used in the case of normal friction stir welding is unnecessary, the friction stir welding apparatus 30 has the sample fixing base 40. Even so, it can be made relatively light.
  • a force (Fx) in the joining direction applied to the bobbin type friction stir welding tool 20 at the time of friction stir welding a lateral force orthogonal to the joining line
  • Both (Fy) and the force (Fz) in the vertical direction perpendicular to the joining line can be 10 kgf or less.
  • the friction stir welding apparatus 30 it is preferable to manually control the traveling direction of the bobbin type friction stir welding tool 20.
  • the position of the bobbin type friction stir welding tool 20 may be determined by manually moving the friction stir welding apparatus 30, and the relative bobbin type friction stirrer may be determined by manually moving the workpiece 48. The position of the welding tool 20 may be determined.
  • the fixation of the material to be joined 48 at the time of friction stir welding can be relaxed. For example, the friction stir welding is performed even when only one point of the material to be joined 48 is fixed. Can do.
  • the friction stir welding apparatus 30 of the present invention has a preheating mechanism.
  • the preheating mechanism various conventionally known preheating mechanisms can be used as long as the effects of the present invention are not impaired.
  • a mechanism using hot air, a mechanism using hot air, a mechanism using frictional heat, and the like can be exemplified, it is preferable to use a mechanism using current heating from the viewpoint of cost, apparatus weight, and the like.
  • the absorption efficiency of the laser is increased by melting the material to be joined.
  • the material to be bonded can be preheated more efficiently in the depth direction and the width direction by melting the material to be bonded by laser irradiation.
  • FIG. 14 is a conceptual diagram of a preheating mechanism using current heating that can be suitably used in the friction stir welding apparatus according to an embodiment of the present invention.
  • the preheating mechanism 50 has a positive electrode 52 and a negative electrode 54, and the positive electrode 52 and the negative electrode 54 are each connected to a power source 56.
  • the positive electrode 52 and the negative electrode 54 are brought into contact with the material to be bonded 48 and a voltage is applied, the material to be bonded 48 is energized, and the material to be bonded 48 is heated by resistance heat generation.
  • the heating region of the material to be bonded 48 can be controlled by the interval between the positive electrode 52 and the negative electrode 54.
  • the interval is not particularly limited, but in order to reduce the plastic deformation resistance of the material to be bonded 48 by local heating and efficiently reduce the process load at the time of friction stir welding, the interval is set to the diameter of the probe portion 16.
  • the diameter of the upper shoulder portion 4 or the lower shoulder portion 12 is preferably used. Further, in order to efficiently guide the traveling direction of the bobbin type friction stir welding tool 20, it is preferable that the distance be approximately equal to the diameter of the probe portion 16.
  • the temperature of 48 of a to-be-joined material can be raised efficiently by arranging the positive electrode 52 and the negative electrode 54 in a joining direction.
  • the preheating mechanism 50 can be disposed at various positions within a range not impairing the effects of the present invention, and may be provided separately from the friction stir welding apparatus 30, but is preferably incorporated in the friction stir welding apparatus 30.
  • the preheating mechanism 50 is disposed in front of the traveling direction of the bobbin type friction stir welding tool 20, and the traveling direction of the bobbin type friction stir welding tool 20 is induced by softening of the material 48 to be joined by preheating.
  • the preheating is not necessarily performed on the surface of the material to be bonded 48 but may be performed on the back surface of the material to be bonded 48.
  • the preheating temperature is preferably set to 150 to 250 ° C., because the deformation resistance is greatly reduced at around 200 ° C. regardless of the type. If the preheating temperature is set higher than necessary, the region where the deformation resistance is lowered becomes too wide, and it becomes difficult to guide the traveling direction of the bobbin type friction stir welding tool 20.
  • the friction stir welding method of the present invention comprises a bobbin type friction stir welding tool having an upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body. A step of sandwiching a material to be joined between the upper rotating body and the lower rotating body, a step of rotating the upper rotating body and the lower rotating body in opposite directions, and a step of moving the bobbin type friction stir welding tool. And a preheating mechanism is disposed in front of the bobbin type friction stir welding tool in the advancing direction, and the bobbin type friction stir welding tool is guided in the advancing direction by softening the material to be joined by the preheating. It is what.
  • the tool torque can be offset and the lateral vibration of the tool during friction stir welding is suppressed. can do. Furthermore, the tool torque can be changed by a combination of the rotational speeds of the upper rotating body and the lower rotating body, and the joining conditions that minimize the tool torque can be selected.
  • a preheating mechanism is disposed in front of the traveling direction of the bobbin type friction stir welding tool, and the traveling direction of the bobbin type friction stir welding tool is induced by softening the material to be joined by preheating.
  • the thickness of the material to be joined is preferably 5 mm or less.
  • the material to be joined is preferably aluminum or an aluminum alloy.
  • the thickness of the material to be bonded is preferably 5 mm or less.
  • friction stir welding method of the present invention can be suitably implemented using the friction stir welding apparatus of the present invention.
  • FIG. 15 shows an appearance photograph of the friction stir welding apparatus manufactured as an example.
  • a TEKNOMOTOR three-phase induction motor with an output of 0.73 kW was used for the upper rotating body motor and the lower rotating body motor, and an inverter (V1000) manufactured by Yaskawa Electric was used as the motor control device.
  • V1000 inverter manufactured by Yaskawa Electric
  • the friction stir welding apparatus produced is extremely small (width 280 mm ⁇ depth 440 mm ⁇ height 570 mm).
  • a motor for the upper rotating body and a motor for the lower rotating body are installed in parallel and are coaxial with the timing belt.
  • a feed motor for moving the base material is attached to the sample fixing base.
  • the maximum tool rotation speed of this apparatus was 1200 rpm, the maximum joining speed was 300 min / mm, and the specifications were such that materials up to a plate thickness of 2 mm could be joined.
  • FIG. 16 shows a photograph of the appearance of the bobbin type friction stir welding tool (upper rotating body and lower rotating body) produced in the example.
  • the material of the tool is hot tool steel (SKD61), and the upper tool is fixed to the lower surface of the spindle part through screws in four mounting holes.
  • the lower tool has a gripped part and is fixed with a collet chuck.
  • the surface of the upper shoulder portion and the lower shoulder portion that are in contact with the material to be joined has a 10 ° dent angle to minimize burrs, and the diameter is 10 mm.
  • the diameter of the probe part was about 4 mm.
  • FIG. 17 is a load cell layout diagram for measuring the process load during friction stir welding.
  • the force Fx in the joining direction was measured with the load cell X (rated load: 5000 N), and the component force of the force Fy in the direction orthogonal to the joining line was measured with the load cells Y1 to Y4 (rated load: 300 N).
  • the strain applied to the load cell was converted into an electric signal by a load cell amplifier, and the acquired electric signal was recorded on a PC.
  • FIG. 18 shows Fx when the rotation directions of the upper and lower rotating bodies are both CW, the rotation speeds are 600 rpm and 1000 rpm, and the movement speed is 50 to 300 min / mm.
  • Fx shows a small value under the condition that the rotational speed of the tool is high and the moving speed is low, and is about 70 N at 1000 rpm and 50 min / mm.
  • FIG. 19 shows the result of measuring Fy when the rotation directions of the upper and lower rotating bodies are the same (CW) and different (upper tool CCW / lower tool CW).
  • both the upper and lower rotating bodies are set to 700 rpm
  • the upper rotating body is set to 600 rpm
  • the lower rotating body is set to 700 rpm.
  • the value is generally smaller in the case of reverse rotation than in the case of the same rotation. This is a result of canceling out the forces generated by the upper and lower rotating bodies.
  • a force that pushes the bonded material in one direction is applied, whereas in the reverse rotation, the bonded material rotates in the CCW direction. Force is applied.
  • FIG. 21 shows the result of measuring Fy when the rotational speed of the lower rotating body is fixed at 700 rpm and the rotational speed of the upper rotating body is changed from 400 to 600 rpm when the rotational direction is reverse. .
  • Fy tends to decrease.
  • the values of Fy1 and Fy2 are almost zero.
  • the preferred combination of the rotational speeds of the upper and lower rotating bodies can change under various conditions, but the force applied from the upper and lower rotating bodies can be balanced by independently adjusting the rotational speed of the upper and lower rotating bodies. I understand.
  • FIG. 22 shows the temperature change of the back surface of the A1050 plate when the set current is 100 A and the nichrome electrode is brought into contact with the A1050 plate having a thickness of 2 mm and moved at 200 min / mm.
  • the maximum temperature reached is about 150 ° C., and the temperature is expected to be even higher on the surface of the A1050 plate. Therefore, it is considered that this will contribute sufficiently to the reduction of the plastic deformation resistance of A1050.
  • FIG. 23 shows measured values of various process loads during friction stir welding with and without preheating.
  • the nichrome electrode was placed 8.5 mm forward from the center of the bobbin type friction stir welding tool, and preheating was performed by moving with the tool (setting current: 100 A).
  • the friction stir welding conditions were such that the upper and lower rotating bodies were reversely rotated (upper tool CCW / lower tool CW), the moving speed was 200 min / mm, the rotating speed was 600 rpm on the upper side, and 700 rpm on the lower side.
  • FIG. 24 is an appearance photograph of the sample obtained by friction stir welding with preheating.
  • the appearance of the joined body obtained using the prototyped small friction stir welding apparatus is good, and no particular change is observed even with preheating. Although there are defects peculiar to the case where a bobbin type tool is used at the start end of the joining, there are few burrs, and the surface of the stirring part has a smooth shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Provided are a compact friction stir welding device and a friction stir welding method, the compact friction welding device being a portable type that enables site work, and enabling manual operation control. A friction stir welding device is characterized by: using a bobbin-type friction stir welding tool (20) which comprises an upper rotation body (1), a lower rotation body (10), and a stirring shaft (14) formed integrally with the lower rotation body (10), and performs friction stir welding while a material to be welded (48) is put between the upper rotation body (1) and the lower rotation body (10); and being provided with a preheating mechanism (50) for preheating the material to be welded (48).

Description

摩擦攪拌接合装置及び摩擦攪拌接合方法Friction stir welding apparatus and friction stir welding method
 本発明は摩擦攪拌接合装置及び摩擦攪拌接合方法に関し、より具体的には、現場施工が可能な可搬型の小型摩擦攪拌接合装置であって、手動による動作制御を可能とする小型摩擦攪拌接合装置及び摩擦攪拌接合方法に関する。 The present invention relates to a friction stir welding apparatus and a friction stir welding method, and more specifically, is a portable compact friction stir welding apparatus that can be applied on-site, and that enables manual operation control. And a friction stir welding method.
 摩擦攪拌接合は接合中の最高到達温度が被接合材の融点に達せず、接合部における強度低下が従来の溶融溶接と比較して小さいのが特徴で、近年急速に実用化が進んでいる。しかしながら、摩擦攪拌接合は種々の優れた特性を有する一方で、被接合材及び装置に対して非常に大きなツール荷重や接合方向の力等が働くため、装置が大型化するという問題がある。 Friction stir welding is characterized by the fact that the maximum temperature reached during welding does not reach the melting point of the materials to be joined, and the strength reduction at the joint is small compared to conventional fusion welding, and has recently been rapidly put into practical use. However, while friction stir welding has various excellent characteristics, there is a problem that the apparatus becomes large because a very large tool load, force in the joining direction, and the like act on the material to be joined and the apparatus.
 一般的な摩擦攪拌接合装置では、高い負荷に耐え得る剛性を得るため、大型の構造材、ベアリング、モータ及び減速機等が用いられており、被接合材を固定する治具も接合時の負荷に応じて大型となる。このように大型化した装置は製作にコストがかかるだけでなく、設置場所が制限されるため、摩擦攪拌接合の産業的利用を拡大する障壁となっている。 In general friction stir welding equipment, large structural materials, bearings, motors, reducers, etc. are used in order to obtain rigidity that can withstand high loads. Depending on the size. Such a large-sized device is not only costly to manufacture, but also has a limited installation location, which is an obstacle to expand industrial use of friction stir welding.
 また、割れ等の欠陥を補修するために溶融溶接を用いることができるが、熱影響による品質劣化などの問題があるため、入熱の少ない摩擦攪拌接合による補修が期待されている。しかしながら、既存の大型装置では補修のような現場施工への適用は困難である。これらの理由から、摩擦攪拌接合の適用範囲の拡大に資する、摩擦攪拌接合装置の小型化が切望されている。 Also, although fusion welding can be used to repair defects such as cracks, there are problems such as quality degradation due to thermal effects, so repair by friction stir welding with low heat input is expected. However, it is difficult to apply to existing construction such as repair with existing large-scale equipment. For these reasons, downsizing of the friction stir welding apparatus that contributes to the expansion of the application range of the friction stir welding is desired.
 加えて、手動で摩擦攪拌接合装置を制御することができる程度に小型化された、安価な可搬型の摩擦攪拌接合装置が実現すれば、中小企業や一般家庭においても手軽に摩擦攪拌接合を利用することができるようになる可能性がある。 In addition, if a low-cost portable friction stir welding device that is small enough to manually control the friction stir welding device is realized, the friction stir welding can be easily used in small and medium-sized businesses and general households. There is a possibility that you will be able to.
 これに対し、特許文献1(特開2002-45980号公報)では、高速回転する回転子を回転軸線方向に移動させ、先端部を被接合物に押圧し、先端部と被接合物との接触部を、回転により摩擦熱で軟化させ、攪拌して被接合物を接合する摩擦攪拌接合装置において、回転子の回転軸線まわりの回転駆動と、回転子の回転軸線方向への直進駆動とを1つの駆動源で行なうことを特徴とする摩擦攪拌接合装置が提案されている。 On the other hand, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-45980), a rotor that rotates at a high speed is moved in the direction of the rotation axis, the tip portion is pressed against the workpiece, and the tip portion contacts the workpiece. In the friction stir welding apparatus that softens the part with frictional heat by rotation and stirs and joins the objects to be joined, the rotational drive around the rotational axis of the rotor and the straight drive in the rotational axis direction of the rotor are 1 There has been proposed a friction stir welding apparatus characterized in that it is performed with two drive sources.
 上記特許文献1に記載の摩擦攪拌接合装置においては、回転子の回転駆動と直進駆動とを1つの駆動源で行なうことにより、装置を小型・軽量化することができ、また、1つの駆動源で済むため、イニシャルコスト及び維持費を低減することができる、としている。 In the friction stir welding apparatus described in Patent Document 1, the apparatus can be reduced in size and weight by performing the rotational drive and the rectilinear drive of the rotor with one drive source, and one drive source. Therefore, the initial cost and the maintenance cost can be reduced.
 また、特許文献2(特開2009-61479号公報)では、被接合物の縦向きの側壁部の被接合部を横向姿勢の摩擦接合ツールによって摩擦攪拌して被接合部を接合する摩擦攪拌接合装置において、被接合物の側壁部の被接合部に沿って自走可能に構成された自走車体と、 この自走車体に横向姿勢の基準軸線回りに回転自在に装備されて、接合ツールを保持するツール保持部と、自走車体に装備されツール保持部を基準軸線回りに回転駆動する回転駆動手段と、自走車体に装備されツール保持部を基準軸線に沿って変位駆動する変位駆動手段と、 変位駆動手段によりツール保持部と接合ツールから被接合部に作用させる押圧力の反力に抗する対抗力を発生させる対抗力発生手段と、前記押圧力の反力によって自走車体に作用する転倒モーメントに抗する対抗モーメントを発生させる対抗モーメント発生手段と、を備えたことを特徴とする摩擦攪拌接合装置が提案されている。 Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2009-61479), friction stir welding is performed in which a portion to be joined on a longitudinal side wall portion of a workpiece is frictionally agitated by a friction welding tool in a lateral posture to join the portion to be joined. In the device, a self-propelled vehicle body configured to be capable of self-propelled along the bonded portion on the side wall portion of the object to be bonded, and mounted on the self-propelled vehicle body so as to be rotatable around a reference axis in a lateral orientation, A holding tool holding unit, a rotation driving unit that is mounted on the self-propelled vehicle body and that rotates the tool holding unit around the reference axis, and a displacement driving unit that is mounted on the self-propelled vehicle body and that drives the tool holding unit to be displaced along the reference axis. And a counteracting force generating means for generating a counterforce against the reaction force of the pressing force applied from the tool holding portion and the joining tool to the joined portion by the displacement driving means, and acting on the self-propelled vehicle body by the reaction force of the pressing force. Fall over A counter moment generating means for generating a counter moment against the Mento, friction stir welding apparatus comprising the have been proposed.
 上記特許文献2に記載の摩擦攪拌接合装置においては、自走車体と、ツール保持部と、回転駆動手段と、変位駆動手段と、対抗力発生手段と、対抗モーメント発生手段とを備えているため、対抗力発生手段で発生させる対抗力によって押圧力の反力を打ち消すことができ、かつ、対抗モーメント発生手段で発生させる対抗モーメントによって転倒モーメントを打ち消すことができる。その結果、自走車体の転倒を防止しながら安定した状態で接合することができる、としている。 The friction stir welding apparatus described in Patent Document 2 includes a self-propelled vehicle body, a tool holding unit, a rotation driving unit, a displacement driving unit, a counter force generation unit, and a counter moment generation unit. The reaction force of the pressing force can be canceled by the counter force generated by the counter force generating means, and the overturning moment can be canceled by the counter moment generated by the counter moment generating means. As a result, the self-propelled vehicle body can be joined in a stable state while preventing overturning.
特開2002-45980号公報JP 2002-45980 A 特開2009-61479号公報JP 2009-61479 A
 しかしながら、上記特許文献1及び特許文献2に開示されている摩擦攪拌接合装置は、従来の摩擦攪拌接合装置と比較すると幾分かは小型化されているものの、容易に可搬でき、かつ、手動による動作制御が可能な装置とは大きな隔たりがある。 However, although the friction stir welding apparatus disclosed in Patent Document 1 and Patent Document 2 is somewhat smaller than the conventional friction stir welding apparatus, it can be easily carried and manually operated. There is a big difference from the device that can control the operation.
 以上のような従来技術における問題点に鑑み、本発明の目的は、現場施工が可能な可搬型の小型摩擦攪拌接合装置及び摩擦攪拌接合方法であって、手動による動作制御を可能とする小型摩擦攪拌接合装置及び摩擦攪拌接合方法を提供することにある。 SUMMARY OF THE INVENTION In view of the above problems in the prior art, an object of the present invention is a portable compact friction stir welding apparatus and friction stir welding method that can be applied on-site, and that enables manual operation control. An object of the present invention is to provide a stir welding apparatus and a friction stir welding method.
 本発明者は上記目的を達成すべく、摩擦攪拌接合装置の小型化及び接合時に発生するプロセス荷重について鋭意研究を重ねた結果、上下部位が別駆動するボビン型摩擦攪拌接合用工具と予熱機構を用いること等が極めて有効であることを見出し、本発明に到達した。 In order to achieve the above object, the present inventor conducted extensive research on the process load generated during downsizing and joining of the friction stir welding apparatus, and as a result, a bobbin type friction stir welding tool and a preheating mechanism in which the upper and lower parts are driven separately. It has been found that the use and the like are extremely effective, and the present invention has been achieved.
 即ち、本発明は、
 上部回転体と、下部回転体と、前記下部回転体と一体に形成される攪拌軸と、を有し、前記上部回転体と前記下部回転体の間に被接合材を挟み込んで摩擦攪拌接合を行うボビン型摩擦攪拌接合用工具を用い、
 被接合材を予熱するための予熱機構を備えること、
 を特徴とする摩擦攪拌接合装置を提供する。
That is, the present invention
An upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body, and a friction stir welding is performed by sandwiching a material to be joined between the upper rotating body and the lower rotating body. Using the bobbin type friction stir welding tool to perform,
Providing a preheating mechanism for preheating the materials to be joined;
A friction stir welding apparatus characterized by the above is provided.
 ボビン型摩擦攪拌接合用工具を用いることで、摩擦攪拌接合時に発生するZ軸荷重(被接合材の表面に対して略垂直方向の荷重)がボビン型摩擦攪拌接合用工具の内部で相殺される。よって、工具用のモータを保持する摩擦攪拌接合装置の本体構造及び被接合材を固定するステージ部等のサイズ及び剛性等を低減することができる。 By using the bobbin type friction stir welding tool, the Z-axis load generated during friction stir welding (substantially perpendicular to the surface of the material to be joined) is offset inside the bobbin type friction stir welding tool. . Therefore, it is possible to reduce the size, rigidity, and the like of the main body structure of the friction stir welding apparatus that holds the tool motor and the stage portion that fixes the material to be joined.
 本発明の摩擦攪拌接合装置においては、前記上部回転体と前記下部回転体の回転速度をそれぞれ独立して設定することができ、前記上部回転体と前記下部回転体の回転方向を反対とすることができること、が好ましい。ボビン型摩擦攪拌接合用工具の上部回転体と下部回転体を反対方向に回転させて摩擦攪拌接合を行うことで、ツールトルクを相殺することができ、摩擦攪拌接合中における工具の横振れを抑制することができる。 In the friction stir welding apparatus of the present invention, the rotation speeds of the upper rotating body and the lower rotating body can be set independently, and the rotation directions of the upper rotating body and the lower rotating body are opposite to each other. It is preferable that By rotating the upper rotating body and lower rotating body of the bobbin type friction stir welding tool in opposite directions and performing friction stir welding, the tool torque can be offset and the lateral vibration of the tool during friction stir welding is suppressed. can do.
 本発明の摩擦攪拌接合装置においては、被接合材を予熱するための予熱機構を備えており、前記予熱機構を前記ボビン型摩擦攪拌接合用工具の進行方向前方に配置し、前記予熱による前記被接合材の軟化によって前記ボビン型摩擦攪拌接合用工具の進行方向を誘導すること、が好ましい。 The friction stir welding apparatus according to the present invention includes a preheating mechanism for preheating the materials to be joined, and the preheating mechanism is disposed in front of the bobbin type friction stir welding tool in the advancing direction, and the preheated by the preheating mechanism. It is preferable to induce the traveling direction of the bobbin type friction stir welding tool by softening the bonding material.
 予熱領域の被接合材の強度は非予熱領域と比較して低下するため、摩擦攪拌接合時のプロセス荷重を効果的に低減することができる。加えて、ボビン型摩擦攪拌接合用工具の進行方向前方を選択的に予熱することで、ボビン型摩擦攪拌接合用工具の進行方向を誘導することができる。 Since the strength of the material to be joined in the preheating region is lower than that in the non-preheating region, the process load during the friction stir welding can be effectively reduced. In addition, by selectively preheating the front of the bobbin type friction stir welding tool in the direction of travel, the direction of travel of the bobbin type friction stir welding tool can be induced.
 また、本発明の摩擦攪拌接合装置においては、前記予熱機構が通電加熱方式であること、が好ましい。レーザ照射や高周波加熱等と比較して、通電加熱は装置が極めて安価かつ小型であることから、安価な摩擦攪拌接合装置小型化を実現するという観点から好適に用いることができる。 In the friction stir welding apparatus of the present invention, it is preferable that the preheating mechanism is an energization heating method. Compared with laser irradiation, high-frequency heating, and the like, energization heating can be suitably used from the viewpoint of realizing an inexpensive friction stir welding apparatus downsized because the apparatus is extremely inexpensive and small.
 更に、本発明の摩擦攪拌接合装置においては、
 前記上部回転体が凸形状を有し、
 前記下部回転体が凹形状を有し、
 前記上部回転体の凸部が前記下部回転体の凹部に挿入されること、
 が好ましい。摩擦攪拌接合中に被接合材が上部回転体の凸部と凹部の隙間を通過することで、種々の方向を有する複雑な流れが生じ、攪拌部における結晶の配向を低下させることができる。特に、六方最密充填構造を有するマグネシウム及びマグネシウム合金においては、攪拌部に配向が生じやすく、当該配向によって継手強度が低下することが知られており、本発明の摩擦攪拌接合装置を好適に用いることができる。
Furthermore, in the friction stir welding apparatus of the present invention,
The upper rotating body has a convex shape;
The lower rotating body has a concave shape;
The convex portion of the upper rotating body is inserted into the concave portion of the lower rotating body,
Is preferred. When the material to be joined passes through the gap between the convex portion and the concave portion of the upper rotating body during the friction stir welding, a complicated flow having various directions is generated, and the crystal orientation in the stirring portion can be reduced. In particular, in magnesium and magnesium alloys having a hexagonal close-packed structure, it is known that orientation is likely to occur in the stirring portion, and the joint strength is reduced by the orientation, and the friction stir welding apparatus of the present invention is preferably used. be able to.
 ここで、本発明の摩擦攪拌接合装置では、上記摩擦攪拌接合装置とは逆に、前記上部回転体が凹形状を有し、前記下部回転体が凸形状を有し、前記下部回転体の凸部が前記上部回転体の凹部に挿入されるように設計してもよい。 Here, in the friction stir welding apparatus according to the present invention, contrary to the friction stir welding apparatus, the upper rotating body has a concave shape, the lower rotating body has a convex shape, and the lower rotating body has a convex shape. The part may be designed to be inserted into the recess of the upper rotating body.
 本発明の摩擦攪拌接合装置では、摩擦攪拌接合時に前記ボビン型摩擦攪拌接合用工具に印加される接合方向の力(Fx)、接合線と直交する横方向の力(Fy)、及び接合線と直交する垂直方向の力(Fz)が、いずれも10kgf以下であること、が好ましく、摩擦攪拌接合時における前記ボビン型摩擦攪拌接合用工具の進行方向を手動で制御すること、が好ましい。 In the friction stir welding apparatus according to the present invention, the force (Fx) in the joining direction applied to the bobbin type friction stir welding tool during the friction stir welding, the lateral force (Fy) perpendicular to the joining line, and the joining line It is preferable that the perpendicular force (Fz) in the perpendicular direction is 10 kgf or less, and it is preferable to manually control the advancing direction of the bobbin type friction stir welding tool during friction stir welding.
 また、本発明は、
 上部回転体と、下部回転体と、前記下部回転体と一体に形成される攪拌軸と、を有するボビン型摩擦攪拌接合用工具を用い、
 前記上部回転体と前記下部回転体の間に被接合材を挟み込む工程と、
 前記上部回転体と前記下部回転体とを反対方向に回転させる工程と、
 前記ボビン型摩擦攪拌接合工具を移動させる工程と、を有し、
 予熱機構を前記ボビン型摩擦攪拌接合用工具の進行方向前方に配置し、
 前記予熱による前記被接合材の軟化によって前記ボビン型摩擦攪拌接合用工具の進行方向を誘導すること、
 を特徴とする摩擦攪拌接合方法も提供する。
The present invention also provides:
Using a bobbin type friction stir welding tool having an upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body,
Sandwiching the material to be joined between the upper rotating body and the lower rotating body;
Rotating the upper rotating body and the lower rotating body in opposite directions;
Moving the bobbin-type friction stir welding tool,
A preheating mechanism is disposed in front of the bobbin type friction stir welding tool in the traveling direction,
Inducing the direction of travel of the bobbin type friction stir welding tool by softening the material to be joined by the preheating,
A friction stir welding method characterized by the above is also provided.
 前記ボビン型摩擦攪拌接合用工具の進行方向は手動で制御すること、が好ましく、前記被接合材はアルミニウム又はアルミニウム合金であること、が好ましい。 The traveling direction of the bobbin type friction stir welding tool is preferably controlled manually, and the material to be joined is preferably aluminum or an aluminum alloy.
 なお、本発明の摩擦攪拌接合方法は、本発明の摩擦攪拌接合装置を用いて好適に実施することができる。 It should be noted that the friction stir welding method of the present invention can be suitably implemented using the friction stir welding apparatus of the present invention.
 本発明によれば、現場施工が可能な可搬型の小型摩擦攪拌接合装置及び摩擦攪拌接合方法であって、手動による動作制御を可能とする小型摩擦攪拌接合装置及び摩擦攪拌接合方法を提供することができる。 According to the present invention, a portable compact friction stir welding apparatus and friction stir welding method capable of on-site construction, and a small friction stir welding apparatus and friction stir welding method that enable manual operation control are provided. Can do.
本発明の一実施形態に係る摩擦攪拌接合装置で用いる上部回転体の一例を示す側面図である。It is a side view which shows an example of the upper rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる上部回転体の一例を示す平面図である。It is a top view which shows an example of the upper rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる下部回転体の一例を示す側面図である。It is a side view which shows an example of the lower rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる下部回転体の一例を示す平面図である。It is a top view which shows an example of the lower rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いるボビン型摩擦攪拌接合用工具の一例を示す側面図である。It is a side view which shows an example of the tool for bobbin type friction stir welding used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いるボビン型摩擦攪拌接合用工具の一例を示す平面図である。It is a top view which shows an example of the tool for bobbin type friction stir welding used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置による接合状態の概念図である。It is a conceptual diagram of the joining state by the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる上部回転体の別の一例を示す側面図である。It is a side view which shows another example of the upper rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる上部回転体の別の一例を示す平面図である。It is a top view which shows another example of the upper rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる下部回転体の別の一例を示す側面図である。It is a side view which shows another example of the lower rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる下部回転体の別の一例を示す平面図である。It is a top view which shows another example of the lower rotary body used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る摩擦攪拌接合装置の概略側面図である。1 is a schematic side view of a friction stir welding apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る摩擦攪拌接合装置の概略正面図である。1 is a schematic front view of a friction stir welding apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る摩擦攪拌接合装置で用いる予熱機構の概念図である。It is a conceptual diagram of the preheating mechanism used with the friction stir welding apparatus which concerns on one Embodiment of this invention. 実施例で作製した摩擦攪拌接合装置の外観写真である。It is an external appearance photograph of the friction stir welding apparatus produced in the Example. 実施例で作製した上部回転体と下部回転体の外観写真である。It is an external appearance photograph of the upper rotating body and lower rotating body which were produced in the Example. 摩擦攪拌接合時のプロセス荷重を測定するためのロードセル配置図である。It is a load cell layout for measuring a process load at the time of friction stir welding. 接合方向荷重Fxの測定値である。It is a measured value of the joining direction load Fx. 横方向荷重Fyの測定値である。This is a measured value of the lateral load Fy. 試料固定台に印加されるプロセス荷重の概念図である。It is a conceptual diagram of the process load applied to a sample fixing stand. 種々の上部回転体回転速度における横方向荷重Fyの測定値である。It is the measured value of the lateral load Fy at various upper rotating body rotational speeds. 予熱機構による被接合材の温度変化を示す線図である。It is a diagram which shows the temperature change of the to-be-joined material by a preheating mechanism. 予熱の有無における摩擦攪拌接合時のプロセス荷重の測定値である。It is a measured value of the process load at the time of friction stir welding with and without preheating. 予熱を伴う摩擦攪拌接合によって得られた試料の外観写真である。It is an external appearance photograph of the sample obtained by friction stir welding with preheating.
 以下、図面を参照しながら本発明の摩擦攪拌接合装置及び摩擦攪拌接合方法の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, representative embodiments of the friction stir welding apparatus and the friction stir welding method of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.
(1)摩擦攪拌接合装置
(A)ボビン型摩擦攪拌接合用工具
 図1及び図2は、本発明の一実施形態に係る摩擦攪拌接合装置で用いる上部回転体の一例を示す側面図及び平面図である。上部回転体1は、工具取付部2と上部ショルダ部4とを有している。また、工具取付部2には、上部回転体1をスピンドル底面に固定するための取付穴6が設けられている。
(1) Friction stir welding apparatus (A) Bobbin type friction stir welding tool FIGS. 1 and 2 are a side view and a plan view showing an example of an upper rotating body used in a friction stir welding apparatus according to an embodiment of the present invention. It is. The upper rotating body 1 has a tool mounting portion 2 and an upper shoulder portion 4. Further, the tool mounting portion 2 is provided with a mounting hole 6 for fixing the upper rotating body 1 to the bottom surface of the spindle.
 上部ショルダ部4は円筒形状となっており、後述の下部回転体が有する攪拌軸を貫通させることができる。ここで、上部ショルダ部4の底面積は被接合材に求められる入熱量や上部ショルダ部4を回転させるモータ容量等を考慮して適宜決定すればよい。 The upper shoulder portion 4 has a cylindrical shape and can pass through a stirring shaft of a lower rotating body described later. Here, the bottom area of the upper shoulder portion 4 may be appropriately determined in consideration of the heat input required for the material to be joined, the motor capacity for rotating the upper shoulder portion 4, and the like.
 図3及び図4は、本発明の一実施形態に係る摩擦攪拌接合装置で用いる下部回転体の一例を示す側面図及び平面図である。下部回転体10は、下部ショルダ部12と攪拌軸14とが一体に形成されており、下部ショルダ部12はプローブ部16を介して攪拌軸14と接続されている。 3 and 4 are a side view and a plan view showing an example of the lower rotating body used in the friction stir welding apparatus according to the embodiment of the present invention. In the lower rotating body 10, a lower shoulder portion 12 and an agitation shaft 14 are integrally formed, and the lower shoulder portion 12 is connected to the agitation shaft 14 via a probe portion 16.
 摩擦攪拌接合時のプロセス荷重を低下させる観点からは、上部ショルダ部4及び下部ショルダ部12の直径を小さくすることが好ましい。ここで、良好な摩擦攪拌接合に必要な入熱が不足する場合、上部ショルダ部4及び下部ショルダ部12の回転速度を高くすればよい。 From the viewpoint of reducing the process load during friction stir welding, it is preferable to reduce the diameters of the upper shoulder portion 4 and the lower shoulder portion 12. Here, when the heat input necessary for good friction stir welding is insufficient, the rotational speeds of the upper shoulder portion 4 and the lower shoulder portion 12 may be increased.
 プローブ部16の長さは被接合材の厚さによって決定すればよく、被接合材の厚さと同程度又は被接合材の厚さよりも0.1~0.3mm程度短くすることが好ましい。また、プローブ部16の直径は、接合中にプローブ部16に印加されるプロセス荷重及び被接合材の塑性流動特性を考慮して決定すればよい。プロセス荷重が大きくなる場合はプローブ部16からの破断を防ぐために直径を大きくする必要があり、被接合材が塑性流動し難い場合は攪拌部における欠陥の形成を防ぐために直径を小さくする必要がある。 The length of the probe portion 16 may be determined by the thickness of the material to be joined, and is preferably about the same as the thickness of the material to be joined or about 0.1 to 0.3 mm shorter than the thickness of the material to be joined. The diameter of the probe part 16 may be determined in consideration of the process load applied to the probe part 16 during joining and the plastic flow characteristics of the materials to be joined. When the process load increases, it is necessary to increase the diameter in order to prevent breakage from the probe portion 16, and when the material to be joined is difficult to plastically flow, it is necessary to decrease the diameter in order to prevent formation of defects in the stirring portion. .
 ここで、プローブ部16の表面を螺子形状とすることで攪拌部における塑性流動挙動を制御することができる。プローブ部16の回転方向が右回転(時計回り:CW)の場合は左螺子、左回転(反時計回り:CCW)の場合は右螺子の形状とすることで、塑性流動を攪拌部下向きの塑性流動を促進することができ、攪拌部における欠陥形成およびバリの発生を抑制することができる。なお、ボビン型摩擦攪拌接合用工具の場合はプローブ部16が被接合材を貫通しているため、プローブ部16の長さ方向における略中心から上下で螺子の方向を変えることが好ましい(被接合材の表面からは下向き、裏面からは上向きの塑性流動を促進する)。 Here, by making the surface of the probe portion 16 into a screw shape, the plastic flow behavior in the stirring portion can be controlled. When the rotation direction of the probe portion 16 is clockwise (clockwise: CW), the shape is a left screw, and when it is counterclockwise (counterclockwise: CCW), the shape of the probe is the right screw. The flow can be promoted, and the formation of defects and the generation of burrs in the stirring section can be suppressed. In the case of a bobbin type friction stir welding tool, since the probe portion 16 penetrates the material to be joined, it is preferable to change the direction of the screw up and down from the approximate center in the length direction of the probe portion 16 (to be joined). It promotes plastic flow downward from the surface of the material and upward from the back surface).
 更に、上部ショルダ部4及び/又は下部ショルダ部12の底面(被接合材と当接する面)を螺子形状とすることで、塑性流動挙動を制御することもできる。この場合、上部ショルダ部4及び/又は下部ショルダ部12の回転に伴って、塑性流動が当該ショルダ部の内向きとなるように螺子を形成することが好ましい(塑性流動が外向きとなるとバリの量が増加してしまう)。 Furthermore, the plastic flow behavior can also be controlled by making the bottom surface (surface contacting the material to be joined) of the upper shoulder portion 4 and / or the lower shoulder portion 12 into a screw shape. In this case, it is preferable to form a screw so that the plastic flow becomes inward of the shoulder portion with the rotation of the upper shoulder portion 4 and / or the lower shoulder portion 12 (if the plastic flow becomes outward, the burrs Amount will increase).
 図5及び図6は、本発明の一実施形態に係る摩擦攪拌接合装置で用いるボビン型摩擦攪拌接合用工具の一例を示す側面図及び平面図である。ボビン型摩擦攪拌接合用工具20は上部回転体1と下部回転体10とから構成されており、下部回転体10の攪拌軸14が上部回転体1の中心を貫通している。 5 and 6 are a side view and a plan view showing an example of a bobbin type friction stir welding tool used in the friction stir welding apparatus according to the embodiment of the present invention. The bobbin type friction stir welding tool 20 includes an upper rotating body 1 and a lower rotating body 10, and the stirring shaft 14 of the lower rotating body 10 passes through the center of the upper rotating body 1.
 図7は、ボビン型摩擦攪拌接合用工具20を用いた接合状態の概念図である。被接合材は、上部ショルダ部4と下部ショルダ部12との間に挟まれた状態で摩擦攪拌接合されることになる。上部回転体1の上部ショルダ部4と下部回転体10の下部ショルダ部12とのギャップは、被接合材の厚さよりも0.1~0.3mm程度短くすることが好ましい。被接合材の厚さよりも小さなギャップに挟まれることで、被接合材に対して摩擦攪拌接合に必要な応力が印加されることになる。また、当該応力はボビン型摩擦攪拌接合用工具20の内部で相殺されるため、摩擦攪拌接合装置に求められる剛性等を低減することができる。 FIG. 7 is a conceptual diagram of a joining state using the bobbin type friction stir welding tool 20. The materials to be joined are friction stir welded while being sandwiched between the upper shoulder portion 4 and the lower shoulder portion 12. The gap between the upper shoulder portion 4 of the upper rotating body 1 and the lower shoulder portion 12 of the lower rotating body 10 is preferably shorter by about 0.1 to 0.3 mm than the thickness of the material to be joined. By being sandwiched by a gap smaller than the thickness of the material to be joined, stress necessary for friction stir welding is applied to the material to be joined. Further, since the stress is canceled out inside the bobbin type friction stir welding tool 20, rigidity and the like required for the friction stir welding apparatus can be reduced.
 攪拌軸14の直径は上部ショルダ部4の内径より僅かに小さくし、攪拌軸14が上部ショルダ部4の内部で円滑に回転できると共に、攪拌軸14と上部ショルダ部4の隙間から軟化した被接合材が侵入することを防止することが好ましい。 The diameter of the stirring shaft 14 is slightly smaller than the inner diameter of the upper shoulder portion 4 so that the stirring shaft 14 can smoothly rotate inside the upper shoulder portion 4 and is softened from the gap between the stirring shaft 14 and the upper shoulder portion 4. It is preferable to prevent the material from entering.
 上部回転体1及び下部回転体10の素材は本発明の効果を損なわない範囲で従来公知の種々の金属材、超硬合金、及びセラミックス材等を用いることができるが、機械的特性や加工性等を考慮すると、SKD61等の熱間工具鋼を用いることが好ましい。なお、全ての部位を同一の素材とする必要はなく、例えば、上部回転体1及び/又は下部回転体10の被接合材に接する表面のみをセラミックス材としてもよい。 As materials for the upper rotating body 1 and the lower rotating body 10, various conventionally known metal materials, cemented carbides, ceramic materials, and the like can be used as long as the effects of the present invention are not impaired. In consideration of the above, it is preferable to use hot tool steel such as SKD61. In addition, it is not necessary to make all the parts the same raw material, For example, it is good also considering only the surface which touches the to-be-joined material of the upper rotary body 1 and / or the lower rotary body 10 as a ceramic material.
 図8及び図9は、本発明の一実施形態に係る摩擦攪拌接合装置で用いる上部回転体の別の一例を示す側面図及び平面図である。上部回転体100においては、上部ショルダ部4は凸部5を有しており、凸部5が下向き(下部回転体と対向する向き)となるようにスピンドル底面に取り付けられる。 8 and 9 are a side view and a plan view showing another example of the upper rotating body used in the friction stir welding apparatus according to the embodiment of the present invention. In the upper rotating body 100, the upper shoulder portion 4 has a convex portion 5, and is attached to the bottom surface of the spindle so that the convex portion 5 faces downward (in a direction facing the lower rotating body).
 図10及び図11は、本発明の一実施形態に係る摩擦攪拌接合装置で用いる下部回転体の別の一例を示す側面図及び平面図である。下部回転体200においては、下部ショルダ部12は凹部13を有している。ここで、図10の一点鎖線は、プローブ部16が凹部13の底面に接続されていることを示している。 10 and 11 are a side view and a plan view showing another example of the lower rotating body used in the friction stir welding apparatus according to the embodiment of the present invention. In the lower rotating body 200, the lower shoulder portion 12 has a recess 13. Here, the alternate long and short dash line in FIG. 10 indicates that the probe portion 16 is connected to the bottom surface of the recess 13.
 摩擦攪拌接合時においては、凸部5が凹部13に挿入された状態で被接合材を攪拌することとなり、被接合材が凸部5と凹部13の隙間を通過することで、種々の方向を有する複雑な流れが生じ、攪拌部における結晶の配向を低下させることができる。なお、凹部13に対する凸部5の挿入量は、本発明の効果を損なわない範囲で適宜設定すればよい。 At the time of friction stir welding, the material to be joined is agitated in a state in which the convex portion 5 is inserted into the concave portion 13, and the material to be joined passes through the gap between the convex portion 5 and the concave portion 13, thereby causing various directions. The complicated flow which arises can arise and the orientation of the crystal | crystallization in a stirring part can be reduced. In addition, what is necessary is just to set suitably the insertion amount of the convex part 5 with respect to the recessed part 13 in the range which does not impair the effect of this invention.
 なお、本発明の摩擦攪拌接合装置では、上部ショルダ部4に凹部13を、下部ショルダ部12に凸部5をそれぞれ設け、下部ショルダ部12の凸部5を上部ショルダ部4の凹部13に挿入する態様で摩擦攪拌接合を行ってもよい。 In the friction stir welding apparatus according to the present invention, the concave portion 13 is provided in the upper shoulder portion 4, the convex portion 5 is provided in the lower shoulder portion 12, and the convex portion 5 of the lower shoulder portion 12 is inserted into the concave portion 13 of the upper shoulder portion 4. Friction stir welding may be performed in such a manner.
(B)摩擦攪拌接合装置本体
 図12及び図13は、それぞれ本発明の一実施形態に係る摩擦攪拌接合装置の概略側面図及び概略正面図である(予熱機構は図示せず)。摩擦攪拌接合装置30は、上部回転体1を回転させる上部回転体用モータ32及び上部回転体用スピンドル34、下部回転体10を回転させる下部回転体用モータ36及び下部回転体用スピンドル38、被接合材を固定する試料固定台40、試料固定台40を移動させるための試料固定台移動用モータ42、試料固定台用架台44を有している。ここで、試料固定台40、試料固定台移動用モータ42、及び試料固定用架台44は必須の構成要素ではなく、十分な重量を有する構造体又は任意の方法で固定した板材等に対して、試料固定台40、試料固定台移動用モータ42、及び試料固定用架台44を備えていない摩擦攪拌接合装置30を用いて処理を施すこともできる。
(B) Friction stir welding apparatus main body FIGS. 12 and 13 are a schematic side view and a schematic front view, respectively, of a friction stir welding apparatus according to an embodiment of the present invention (a preheating mechanism is not shown). The friction stir welding apparatus 30 includes an upper rotating body motor 32 and an upper rotating body spindle 34 for rotating the upper rotating body 1, a lower rotating body motor 36 and a lower rotating body spindle 38 for rotating the lower rotating body 10, A sample fixing base 40 for fixing the bonding material, a sample fixing base moving motor 42 for moving the sample fixing base 40, and a sample fixing base base 44 are provided. Here, the sample fixing table 40, the sample fixing table moving motor 42, and the sample fixing table 44 are not indispensable constituent elements, and are a structure having a sufficient weight or a plate material fixed by an arbitrary method, etc. The treatment can also be performed using the friction stir welding apparatus 30 that does not include the sample fixing table 40, the sample fixing table moving motor 42, and the sample fixing table 44.
 摩擦攪拌接合装置30は、上部回転体1と下部回転体10とが別駆動するボビン型摩擦攪拌接合用工具20を用いるため、モータを2台(上部回転体用モータ32及び下部回転体用モータ36)搭載した複動式とする必要がある。ここで、例えば板厚2mm程度のアルミニウム板の接合を目的とする場合、出力0.73kW以上、回転数1000rpm以上のモータを用いることが好ましい。また、家庭用コンセントで摩擦攪拌接合装置30を使用することを考慮すると、モータの出力は0.73kW程度以下にすることがより好ましい。 Since the friction stir welding apparatus 30 uses the bobbin type friction stir welding tool 20 in which the upper rotating body 1 and the lower rotating body 10 are separately driven, two motors (an upper rotating body motor 32 and a lower rotating body motor 32) are used. 36) It is necessary to use a double-acting type. Here, for example, when the purpose is to join an aluminum plate having a thickness of about 2 mm, it is preferable to use a motor having an output of 0.73 kW or more and a rotation speed of 1000 rpm or more. In consideration of using the friction stir welding apparatus 30 at a household outlet, the motor output is more preferably about 0.73 kW or less.
 摩擦攪拌接合装置30においては、上部回転体用モータ32と下部回転体用モータ36とは独立して回転を設定することができることが好ましい。上部回転体用モータ32の回転方向と下部回転体用モータ36の回転方向が逆になるように設計すれば、必ずしも回転方向の切り替えができる必要はないが、接合条件設定の自由度等の観点から、各モータにおいて回転方向を任意に設定できることが好ましい。 In the friction stir welding apparatus 30, it is preferable that the upper rotating body motor 32 and the lower rotating body motor 36 can set rotation independently. If the rotation direction of the upper rotary body motor 32 and the rotation direction of the lower rotary body motor 36 are designed to be reversed, it is not always possible to switch the rotation direction. Therefore, it is preferable that the rotation direction can be arbitrarily set in each motor.
 上部回転体1は上部回転体用スピンドル34と、下部回転体10は下部回転体用スピンドル38と、それぞれ連結される。また、被接合材48は試料固定台40に固定され、接合又は改質したい領域を回転する上部回転体1と下部回転体10との間に圧入して移動させることで、接合又は改質が達成させる。 The upper rotating body 1 is connected to the upper rotating body spindle 34, and the lower rotating body 10 is connected to the lower rotating body spindle 38, respectively. Further, the material to be joined 48 is fixed to the sample fixing base 40, and the region to be joined or reformed is press-fitted between the rotating upper rotating body 1 and the lower rotating body 10 and moved so that the joining or reforming can be performed. To achieve.
 ボビン型摩擦攪拌接合用工具の上部回転体1と下部回転体10を反対方向に回転させて摩擦攪拌接合を行うことで、ツールトルクを相殺することができ、摩擦攪拌接合中における工具の横振れを抑制することができる。更に、上部回転体1と下部回転体10の回転速度の組合せによってツールトルクを変化させることができ、ツールトルクが最低となるような接合条件を選定することができる。 By rotating the upper rotating body 1 and the lower rotating body 10 of the bobbin type friction stir welding tool in opposite directions and performing the friction stir welding, the tool torque can be offset, and the lateral vibration of the tool during the friction stir welding Can be suppressed. Furthermore, the tool torque can be changed depending on the combination of the rotational speeds of the upper rotating body 1 and the lower rotating body 10, and a joining condition that minimizes the tool torque can be selected.
 また、摩擦攪拌接合装置30に曲げ荷重よりも引張圧縮の荷重が印加するように設計することで、小型の摩擦攪拌接合装置30でも十分な剛性を得ることができる。更に、攪拌軸14の固定にコレットチャックを使用することにより、ボビン型摩擦攪拌接合用工具20の位置精度を確保することができる。 Further, by designing the friction stir welding apparatus 30 to apply a tension / compression load rather than a bending load, even a small friction stir welding apparatus 30 can obtain sufficient rigidity. Furthermore, by using a collet chuck to fix the stirring shaft 14, the positional accuracy of the bobbin type friction stir welding tool 20 can be ensured.
 上部回転体用スピンドル34は、タイミングベルトによって下部回転体用スピンドル38と同軸にすることができる。ここで、回転を減速させないためには、タイミングベルト用プーリー46の径をモータ側と工具側と同一とすればよい。また、下部回転体用スピンドル38にコレットチャックを付けることで、攪拌軸14が細い場合であっても芯ずれが生じることなくボビン型摩擦攪拌接合用工具20を固定することができる。 The upper rotating body spindle 34 can be coaxial with the lower rotating body spindle 38 by a timing belt. Here, in order not to decelerate the rotation, the timing belt pulley 46 may have the same diameter on the motor side and the tool side. Further, by attaching a collet chuck to the lower rotating body spindle 38, the bobbin type friction stir welding tool 20 can be fixed without causing misalignment even when the stirring shaft 14 is thin.
 上述の通り、試料固定台40、試料固定台移動用モータ42、及び試料固定用架台44は摩擦攪拌接合装置30の必須の構成要素ではないが、必要に応じて摩擦攪拌接合装置30に組み込むことが好ましい。試料固定台移動用モータ42には、例えば、ブラシレスDCモータを用いることができ、平歯車を介してモータの回転運動を台形ネジに伝達することで試料固定台40を直線運動させることができる。この場合、台形ネジの許容推力は対象とする被接合材によって適宜決定すればよい。また、試料固定台40の最大直線移動速度は、接合条件設定の自由度の観点から、300mm/min以上とすることが好ましい。 As described above, the sample fixing base 40, the sample fixing base moving motor 42, and the sample fixing base 44 are not essential components of the friction stir welding apparatus 30, but are incorporated into the friction stir welding apparatus 30 as necessary. Is preferred. For example, a brushless DC motor can be used as the sample fixing table moving motor 42, and the sample fixing table 40 can be linearly moved by transmitting the rotational movement of the motor to a trapezoidal screw via a spur gear. In this case, the allowable thrust of the trapezoidal screw may be appropriately determined depending on the material to be joined. In addition, the maximum linear moving speed of the sample fixing base 40 is preferably set to 300 mm / min or more from the viewpoint of the degree of freedom in setting the joining conditions.
 摩擦攪拌接合装置30ではボビン型摩擦攪拌接合用工具20を用いて接合及び改質を行うため、試料固定台40は被接合材の端を押え治具等で固定し、被処理領域の上下はボビン型摩擦攪拌接合用工具20が干渉しないように設計する必要がある。ここで、通常の摩擦攪拌接合の場合に使用する裏板(被接合材の下に配置する金属製の板)等が不要であることから、摩擦攪拌接合装置30が試料固定台40を有する場合であっても比較的軽量とすることができる。 In the friction stir welding apparatus 30, since the bobbin type friction stir welding tool 20 is used for joining and modification, the sample fixing base 40 fixes the end of the material to be joined with a holding jig or the like, It is necessary to design so that the bobbin type friction stir welding tool 20 does not interfere. Here, since the back plate (a metal plate placed under the material to be joined) used in the case of normal friction stir welding is unnecessary, the friction stir welding apparatus 30 has the sample fixing base 40. Even so, it can be made relatively light.
 後述の予熱機構を備えた摩擦攪拌接合装置30を用いることで、摩擦攪拌接合時にボビン型摩擦攪拌接合用工具20に印加される接合方向の力(Fx)、接合線と直交する横方向の力(Fy)、及び接合線と直交する垂直方向の力(Fz)を、いずれも10kgf以下とすることができる。 By using a friction stir welding apparatus 30 having a preheating mechanism described later, a force (Fx) in the joining direction applied to the bobbin type friction stir welding tool 20 at the time of friction stir welding, a lateral force orthogonal to the joining line Both (Fy) and the force (Fz) in the vertical direction perpendicular to the joining line can be 10 kgf or less.
 摩擦攪拌接合装置30においては、ボビン型摩擦攪拌接合用工具20の進行方向を手動で制御することが好ましい。この際、摩擦攪拌接合装置30を手動で移動させることでボビン型摩擦攪拌接合用工具20の位置を決定してもよく、被接合材48を手動で移動させることで相対的なボビン型摩擦攪拌接合用工具20の位置を決定してもよい。なお、摩擦攪拌接合装置30を用いることで、摩擦攪拌接合時における被接合材48の固定を緩和することができ、例えば、被接合材48の一点のみを固定した状態でも摩擦攪拌接合を施すことができる。 In the friction stir welding apparatus 30, it is preferable to manually control the traveling direction of the bobbin type friction stir welding tool 20. At this time, the position of the bobbin type friction stir welding tool 20 may be determined by manually moving the friction stir welding apparatus 30, and the relative bobbin type friction stirrer may be determined by manually moving the workpiece 48. The position of the welding tool 20 may be determined. In addition, by using the friction stir welding apparatus 30, the fixation of the material to be joined 48 at the time of friction stir welding can be relaxed. For example, the friction stir welding is performed even when only one point of the material to be joined 48 is fixed. Can do.
(C)予熱機構
 本発明の摩擦攪拌接合装置30は、予熱機構を有している。予熱機構としては、本発明の効果を損なわない範囲で従来公知の種々の予熱機構を用いることができ、通電加熱を用いた機構、レーザ照射を用いた機構、高周波加熱を用いた機構、マイクロアークを用いた機構、熱風を用いた機構、及び摩擦熱を用いた機構等を例示することができるが、コスト及び装置重量等の観点から、通電加熱を用いた機構を用いることが好ましい。
(C) Preheating mechanism The friction stir welding apparatus 30 of the present invention has a preheating mechanism. As the preheating mechanism, various conventionally known preheating mechanisms can be used as long as the effects of the present invention are not impaired. A mechanism using current heating, a mechanism using laser irradiation, a mechanism using high-frequency heating, a micro arc Although a mechanism using hot air, a mechanism using hot air, a mechanism using frictional heat, and the like can be exemplified, it is preferable to use a mechanism using current heating from the viewpoint of cost, apparatus weight, and the like.
 ここで、予熱機構としてレーザ照射を用いる場合、被接合材を溶融させることでレーザの吸収効率が増加する。つまり、レーザ照射によって被接合材を溶融させることで、深さ方向及び幅方向に、より効率的に被接合材の予熱を行うことができる。 Here, when laser irradiation is used as the preheating mechanism, the absorption efficiency of the laser is increased by melting the material to be joined. In other words, the material to be bonded can be preheated more efficiently in the depth direction and the width direction by melting the material to be bonded by laser irradiation.
 図14は、本発明の一実施形態に係る摩擦攪拌接合装置で好適に用いることができる通電加熱を利用した予熱機構の概念図である。予熱機構50は、正電極52及び負電極54を有しており、正電極52及び負電極54はそれぞれ電源56に接続されている。ここで、正電極52及び負電極54を被接合材48に当接させて電圧を印加することで、被接合材48に通電され、抵抗発熱によって被接合材48が加熱される。 FIG. 14 is a conceptual diagram of a preheating mechanism using current heating that can be suitably used in the friction stir welding apparatus according to an embodiment of the present invention. The preheating mechanism 50 has a positive electrode 52 and a negative electrode 54, and the positive electrode 52 and the negative electrode 54 are each connected to a power source 56. Here, when the positive electrode 52 and the negative electrode 54 are brought into contact with the material to be bonded 48 and a voltage is applied, the material to be bonded 48 is energized, and the material to be bonded 48 is heated by resistance heat generation.
 被接合材48の加熱領域は正電極52及び負電極54の間隔によって制御することができる。当該間隔は特に限定されないが、局所的な加熱によって被接合材48の塑性変形抵抗を低下させ、摩擦攪拌接合時のプロセス荷重を効率的に低下させるために、当該間隔をプローブ部16の直径~上部ショルダ部4又は下部ショルダ部12の直径とすることが好ましい。また、ボビン型摩擦攪拌接合用工具20の進行方向を効率的に誘導するためには、当該間隔をプローブ部16の直径と同程度にすることが好ましい。なお、正電極52及び負電極54を接合方向に並べることで、被接合材の48の温度を効率的に上昇させることができる。 The heating region of the material to be bonded 48 can be controlled by the interval between the positive electrode 52 and the negative electrode 54. The interval is not particularly limited, but in order to reduce the plastic deformation resistance of the material to be bonded 48 by local heating and efficiently reduce the process load at the time of friction stir welding, the interval is set to the diameter of the probe portion 16. The diameter of the upper shoulder portion 4 or the lower shoulder portion 12 is preferably used. Further, in order to efficiently guide the traveling direction of the bobbin type friction stir welding tool 20, it is preferable that the distance be approximately equal to the diameter of the probe portion 16. In addition, the temperature of 48 of a to-be-joined material can be raised efficiently by arranging the positive electrode 52 and the negative electrode 54 in a joining direction.
 予熱機構50は、本発明の効果を損なわない範囲で種々の位置に配置することができ、摩擦攪拌接合装置30とは別に設けてもよいが、摩擦攪拌接合装置30に組み込むことが好ましい。ここで、予熱機構50はボビン型摩擦攪拌接合用工具20の進行方向前方に配置し、 予熱による被接合材48の軟化によってボビン型摩擦攪拌接合用工具20の進行方向を誘導することが好ましい。なお、予熱は被接合材48の表面に対して施すとは限らず、被接合材48の裏面に対して施してもよい。 The preheating mechanism 50 can be disposed at various positions within a range not impairing the effects of the present invention, and may be provided separately from the friction stir welding apparatus 30, but is preferably incorporated in the friction stir welding apparatus 30. Here, it is preferable that the preheating mechanism 50 is disposed in front of the traveling direction of the bobbin type friction stir welding tool 20, and the traveling direction of the bobbin type friction stir welding tool 20 is induced by softening of the material 48 to be joined by preheating. Note that the preheating is not necessarily performed on the surface of the material to be bonded 48 but may be performed on the back surface of the material to be bonded 48.
 予熱機構50によって、変形抵抗が十分に低下する程度にまで被接合材48の温度を上昇させることが好ましい。ここで、アルミニウム合金の場合は種類によらず200℃付近で大幅に変形抵抗が低下することから、予熱温度を150~250℃とすることが好ましい。なお、予熱温度を必要以上に高く設定すると、変形抵抗が低下する領域が広くなり過ぎ、ボビン型摩擦攪拌接合用工具20の進行方向を誘導することが困難となる。 It is preferable to raise the temperature of the material to be joined 48 to such an extent that the deformation resistance is sufficiently lowered by the preheating mechanism 50. Here, in the case of an aluminum alloy, the preheating temperature is preferably set to 150 to 250 ° C., because the deformation resistance is greatly reduced at around 200 ° C. regardless of the type. If the preheating temperature is set higher than necessary, the region where the deformation resistance is lowered becomes too wide, and it becomes difficult to guide the traveling direction of the bobbin type friction stir welding tool 20.
 なお、予熱機構50によって加熱される領域の周囲を強制冷却することで、加熱領域とその近傍における被接合材48の変形抵抗の差が大きくなり、ボビン型摩擦攪拌接合用工具20の進行方向をより効率的に誘導することができる。ここで、強制冷却には本発明の効果を損なわない範囲で従来公知の種々の冷却方法を用いることができ、例えば、液体窒素、液体CO2、不活性ガス、大気、水等をノズル等で噴射することで達成することができる。 In addition, by forcibly cooling the periphery of the region heated by the preheating mechanism 50, the difference in deformation resistance of the material to be bonded 48 in the heating region and the vicinity thereof increases, and the traveling direction of the bobbin type friction stir welding tool 20 is changed. It can be guided more efficiently. Here, various types of conventionally known cooling methods can be used for forced cooling within a range that does not impair the effects of the present invention. For example, liquid nitrogen, liquid CO 2 , inert gas, air, water, etc. can be used with a nozzle or the like. This can be achieved by spraying.
(2)摩擦攪拌接合方法
 本発明の摩擦攪拌接合方法は、上部回転体と、下部回転体と、前記下部回転体と一体に形成される攪拌軸と、を有するボビン型摩擦攪拌接合用工具を用い、上部回転体と下部回転体の間に被接合材を挟み込む工程と、上部回転体と下部回転体とを反対方向に回転させる工程と、ボビン型摩擦攪拌接合工具を移動させる工程と、を有し、予熱機構を前記ボビン型摩擦攪拌接合用工具の進行方向前方に配置し、前記予熱による前記被接合材の軟化によって前記ボビン型摩擦攪拌接合用工具の進行方向を誘導すること、を特徴とするものである。
(2) Friction stir welding method The friction stir welding method of the present invention comprises a bobbin type friction stir welding tool having an upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body. A step of sandwiching a material to be joined between the upper rotating body and the lower rotating body, a step of rotating the upper rotating body and the lower rotating body in opposite directions, and a step of moving the bobbin type friction stir welding tool. And a preheating mechanism is disposed in front of the bobbin type friction stir welding tool in the advancing direction, and the bobbin type friction stir welding tool is guided in the advancing direction by softening the material to be joined by the preheating. It is what.
 ボビン型摩擦攪拌接合用工具の上部回転体と下部回転体を反対方向に回転させて摩擦攪拌接合を行うことで、ツールトルクを相殺することができ、摩擦攪拌接合中における工具の横振れを抑制することができる。更に、上部回転体と下部回転体の回転速度の組合せによってツールトルクを変化させることができ、ツールトルクが最低となるような接合条件を選定することができる。 By rotating the upper rotating body and lower rotating body of the bobbin type friction stir welding tool in opposite directions and performing friction stir welding, the tool torque can be offset and the lateral vibration of the tool during friction stir welding is suppressed. can do. Furthermore, the tool torque can be changed by a combination of the rotational speeds of the upper rotating body and the lower rotating body, and the joining conditions that minimize the tool torque can be selected.
 本発明の摩擦攪拌接合方法においては、予熱機構をボビン型摩擦攪拌接合用工具の進行方向前方に配置し、予熱による被接合材の軟化によってボビン型摩擦攪拌接合用工具の進行方向を誘導する。ここで、予熱によって被接合材を十分に軟化させるという観点から、被接合材の板厚は5mm以下とすることが好ましい。 In the friction stir welding method of the present invention, a preheating mechanism is disposed in front of the traveling direction of the bobbin type friction stir welding tool, and the traveling direction of the bobbin type friction stir welding tool is induced by softening the material to be joined by preheating. Here, from the viewpoint of sufficiently softening the material to be joined by preheating, the thickness of the material to be joined is preferably 5 mm or less.
 また、ボビン型摩擦攪拌接合用工具の進行方向は手動で制御すること、が好ましく、被接合材はアルミニウム又はアルミニウム合金であること、が好ましい。ここで、接合中における攪拌軸の破断を抑制するため、例えば、被接合材がアルミニウム又はアルミニウム合金の場合は、当該被接合材の板厚を5mm以下とすることが好ましい。 Also, it is preferable to manually control the traveling direction of the bobbin type friction stir welding tool, and the material to be joined is preferably aluminum or an aluminum alloy. Here, in order to suppress breakage of the stirring shaft during bonding, for example, when the material to be bonded is aluminum or an aluminum alloy, the thickness of the material to be bonded is preferably 5 mm or less.
 なお、本発明の摩擦攪拌接合方法は、本発明の摩擦攪拌接合装置を用いて好適に実施することができる。 It should be noted that the friction stir welding method of the present invention can be suitably implemented using the friction stir welding apparatus of the present invention.
 以上、本発明の摩擦攪拌接合装置及び摩擦攪拌接合方法の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 The representative embodiments of the friction stir welding apparatus and the friction stir welding method according to the present invention have been described above, but the present invention is not limited to these embodiments, and various design changes are possible. Are all included in the technical scope of the present invention.
 図15に、実施例として作製した摩擦攪拌接合装置の外観写真を示す。なお、上部回転体用モータ及び下部回転体用モータには、出力0.73kWのTEKNOMOTOR製三相誘導モータを用い、モータの制御装置は安川電機製インバータ(V1000)を用いた。参考として撮影したペットボトルと比較しても明らかであるとおり、作製した摩擦攪拌接合装置は極めて小さなものである(幅280mm×奥行440mm×高さ570mm)。 FIG. 15 shows an appearance photograph of the friction stir welding apparatus manufactured as an example. A TEKNOMOTOR three-phase induction motor with an output of 0.73 kW was used for the upper rotating body motor and the lower rotating body motor, and an inverter (V1000) manufactured by Yaskawa Electric was used as the motor control device. As is clear from comparison with a plastic bottle taken as a reference, the friction stir welding apparatus produced is extremely small (width 280 mm × depth 440 mm × height 570 mm).
 摩擦攪拌接合装置の上方には、上部回転体用モータと下部回転体用モータが並列に設置されており、タイミングベルトで同軸にしている。また、試料固定台には母材を移動させる送りモータが取り付けられている。本装置の最大ツール回転数は1200rpm、最大接合速度は300min/mmであり、板厚2mmまでの材料を接合可能な仕様とした。 Above the friction stir welding apparatus, a motor for the upper rotating body and a motor for the lower rotating body are installed in parallel and are coaxial with the timing belt. A feed motor for moving the base material is attached to the sample fixing base. The maximum tool rotation speed of this apparatus was 1200 rpm, the maximum joining speed was 300 min / mm, and the specifications were such that materials up to a plate thickness of 2 mm could be joined.
 図16に、実施例で作製したボビン型摩擦攪拌接合用工具(上部回転体及び下部回転体)の外観写真を示す。ツールの材質は熱間工具鋼(SKD61)で、上部ツールは4つの取付穴にネジを通してスピンドル部下面に固定する。また、下部ツールは把持部が研磨されており、コレットチャックで固定する仕様とした。 FIG. 16 shows a photograph of the appearance of the bobbin type friction stir welding tool (upper rotating body and lower rotating body) produced in the example. The material of the tool is hot tool steel (SKD61), and the upper tool is fixed to the lower surface of the spindle part through screws in four mounting holes. In addition, the lower tool has a gripped part and is fixed with a collet chuck.
 上部ショルダ部及び下部ショルダ部の被接合材と当接する面には、バリを最小限に抑えるために10°の凹み角が与えられており、直径は10mmとした。また、プローブ部の直径は約4mmとした。 The surface of the upper shoulder portion and the lower shoulder portion that are in contact with the material to be joined has a 10 ° dent angle to minimize burrs, and the diameter is 10 mm. The diameter of the probe part was about 4 mm.
 [プロセス荷重測定]
 上記摩擦攪拌接合装置を用いて板厚2mmのA1050板(90mm×100mm×2mm)に対する摩擦攪拌接合を行い、接合中の各種プロセス荷重を測定した。図17は、摩擦攪拌接合時のプロセス荷重を測定するためのロードセル配置図である。接合方向の力FxをロードセルX(定格荷重:5000N)、接合線と直交方向の力Fyの分力をロードセルY1からY4(定格荷重:300N)で測定した。ロードセルに与えられたひずみはロードセルアンプで電気信号に変換し、取得した電気信号はPCに記録した。
[Process load measurement]
Using the friction stir welding apparatus, friction stir welding was performed on an A1050 plate (90 mm × 100 mm × 2 mm) having a thickness of 2 mm, and various process loads during the bonding were measured. FIG. 17 is a load cell layout diagram for measuring the process load during friction stir welding. The force Fx in the joining direction was measured with the load cell X (rated load: 5000 N), and the component force of the force Fy in the direction orthogonal to the joining line was measured with the load cells Y1 to Y4 (rated load: 300 N). The strain applied to the load cell was converted into an electric signal by a load cell amplifier, and the acquired electric signal was recorded on a PC.
 図18は、上下の回転体の回転方向を共にCWとし、回転速度を600rpm及び1000rpm、移動速度を50~300min/mmとした場合のFxを示している。Fxはツールの回転速度が大きく、移動速度が小さい条件で小さな値を示しており、1000rpm、50min/mmでは約70Nとなっている。 FIG. 18 shows Fx when the rotation directions of the upper and lower rotating bodies are both CW, the rotation speeds are 600 rpm and 1000 rpm, and the movement speed is 50 to 300 min / mm. Fx shows a small value under the condition that the rotational speed of the tool is high and the moving speed is low, and is about 70 N at 1000 rpm and 50 min / mm.
 図19は、上下の回転体の回転方向が同じ場合(CW)と異なる場合(上側ツールCCW/下側ツールCW)において、Fyを測定した結果である。なお、回転方向が同じ場合は上下の回転体共に700rpmとし、ツール回転方向が異なる場合は上部回転体を600rpm、下部回転体を700rpmとした。 FIG. 19 shows the result of measuring Fy when the rotation directions of the upper and lower rotating bodies are the same (CW) and different (upper tool CCW / lower tool CW). When the rotation direction is the same, both the upper and lower rotating bodies are set to 700 rpm, and when the tool rotating direction is different, the upper rotating body is set to 600 rpm and the lower rotating body is set to 700 rpm.
 Fyの絶対値に着目すると、同回転の場合と比較して,逆回転の場合は概ね値が小さくなっている。これは,上下の回転体によって発生する力が相殺された結果である。なお、図20に示しているように、同回転の場合は被接合材が一方向に押されるような力が印加されているのに対し、逆回転の場合は被接合材がCCW方向に回転するような力が印加されている。 Focusing on the absolute value of Fy, the value is generally smaller in the case of reverse rotation than in the case of the same rotation. This is a result of canceling out the forces generated by the upper and lower rotating bodies. In addition, as shown in FIG. 20, in the case of the same rotation, a force that pushes the bonded material in one direction is applied, whereas in the reverse rotation, the bonded material rotates in the CCW direction. Force is applied.
 図21は、上記の回転方向が逆回転の場合において、下部回転体の回転速度を700rpmで固定し、上部回転体の回転速度を400~600rpmと変化させた場合のFyを測定した結果である。上部回転体の回転速度低下に伴いFyが小さくなる傾向が現れており、400rpmにおいてはFy1及びFy2の値がほぼ0になっている。上下回転体の回転数の好適な組み合わせは種々の条件で変化し得るが、上下回転体の回転数を独立して調整することで、上下の回転体から印加される力をバランスすることができることが分かる。 FIG. 21 shows the result of measuring Fy when the rotational speed of the lower rotating body is fixed at 700 rpm and the rotational speed of the upper rotating body is changed from 400 to 600 rpm when the rotational direction is reverse. . As the rotational speed of the upper rotating body decreases, Fy tends to decrease. At 400 rpm, the values of Fy1 and Fy2 are almost zero. The preferred combination of the rotational speeds of the upper and lower rotating bodies can change under various conditions, but the force applied from the upper and lower rotating bodies can be balanced by independently adjusting the rotational speed of the upper and lower rotating bodies. I understand.
 [予熱]
 被接合材の表面に鋭利な先端を有するニクロム電極を当接させ(電極間距離4mm)、当該電極間を通電させる通電加熱方式を用いた簡易な予熱機構を作製した。図22は、設定電流を100Aとし、板厚2mmのA1050板にニクロム電極を当接させて200min/mmで移動させた場合のA1050板裏面の温度変化を示している。最高到達温度は約150℃となっており、A1050板表面では更に温度が高いと予想されることから、A1050の塑性変形抵抗の低減には十分に寄与するものと思われる。
[Preheating]
A simple preheating mechanism using an energization heating method in which a nichrome electrode having a sharp tip is brought into contact with the surface of the material to be joined (distance between electrodes: 4 mm) and the electrodes are energized was produced. FIG. 22 shows the temperature change of the back surface of the A1050 plate when the set current is 100 A and the nichrome electrode is brought into contact with the A1050 plate having a thickness of 2 mm and moved at 200 min / mm. The maximum temperature reached is about 150 ° C., and the temperature is expected to be even higher on the surface of the A1050 plate. Therefore, it is considered that this will contribute sufficiently to the reduction of the plastic deformation resistance of A1050.
 図23は、予熱の有無における摩擦攪拌接合時の各種プロセス荷重の測定値である。なお、ニクロム電極をボビン型摩擦攪拌接合用工具の中心から8.5mm前方に配置し、ツールと共に移動することで予熱を行った(設定電流:100A)。摩擦攪拌接合条件は上下の回転体を逆回転(上側ツールCCW/下側ツールCW)とし、移動速度を200min/mm、回転速度を上側600rpm、下側700rpmとした。 FIG. 23 shows measured values of various process loads during friction stir welding with and without preheating. The nichrome electrode was placed 8.5 mm forward from the center of the bobbin type friction stir welding tool, and preheating was performed by moving with the tool (setting current: 100 A). The friction stir welding conditions were such that the upper and lower rotating bodies were reversely rotated (upper tool CCW / lower tool CW), the moving speed was 200 min / mm, the rotating speed was 600 rpm on the upper side, and 700 rpm on the lower side.
 予熱によるプロセス荷重の低下は顕著であり、FyについてはFy2を除いて数Nとなっている。加えて、Fxも予熱によって約30%低減されており、Fy及びFx共に、手動によるツール位置の制御が可能な値となっている。 The decrease in process load due to preheating is remarkable, and Fy is several N except for Fy2. In addition, Fx is also reduced by about 30% by preheating, and both Fy and Fx are values that allow manual control of the tool position.
 図24は、予熱を伴う摩擦攪拌接合によって得られた試料の外観写真である。試作した小型の摩擦攪拌接合装置を用いて得られた接合体の外観は良好であり、予熱を伴った場合でも特に変化は認められない。接合の始端部にはボビン型の工具を用いた場合に特有の欠陥が存在するが、それ以外はバリも少なく、攪拌部表面は滑らかな形状を有している。 FIG. 24 is an appearance photograph of the sample obtained by friction stir welding with preheating. The appearance of the joined body obtained using the prototyped small friction stir welding apparatus is good, and no particular change is observed even with preheating. Although there are defects peculiar to the case where a bobbin type tool is used at the start end of the joining, there are few burrs, and the surface of the stirring part has a smooth shape.
1,100・・・上部回転体、
2・・・工具取付部、
4・・・上部ショルダ部、
5・・・凸部、
6・・・取付穴、
10,200・・・下部回転体、
12・・・下部ショルダ部、
13・・・凹部、
14・・・攪拌軸、
16・・・プローブ部、
20・・・ボビン型摩擦攪拌接合用工具、
30・・・摩擦攪拌接合装置、
32・・・上部回転体用モータ、
34・・・上部回転体用スピンドル、
36・・・下部回転体用モータ、
38・・・下部回転体用スピンドル、
40・・・試料固定台、
42・・・試料固定台移動用モータ、
44・・・試料固定用架台、
46・・・タイミングベルト用プーリー、
48・・・被接合材、
50・・・予熱機構、
62・・・正電極、
64・・・負電極、
66・・・電源。
1,100 ... upper rotating body,
2 ... Tool mounting part,
4 ... Upper shoulder,
5 ... convex part,
6 ... mounting holes,
10, 200 ... lower rotating body,
12 ... Lower shoulder,
13 ... concave portion,
14 ... stirring shaft,
16: Probe part,
20 ... Bobbin type friction stir welding tool,
30 ... friction stir welding apparatus,
32... Motor for upper rotating body,
34 ... Spindle for upper rotating body,
36... Motor for lower rotating body,
38 ... Spindle for lower rotating body,
40: Sample fixing table,
42 ... Motor for moving the sample fixing table,
44... Sample fixing base,
46 ... pulley for timing belt,
48 ... materials to be joined,
50 ... Preheating mechanism,
62 ... Positive electrode,
64 ... negative electrode,
66: Power supply.

Claims (11)

  1.  上部回転体と、下部回転体と、前記下部回転体と一体に形成される攪拌軸と、を有し、前記上部回転体と前記下部回転体の間に被接合材を挟み込んで摩擦攪拌接合を行うボビン型摩擦攪拌接合用工具を用い、
     被接合材を予熱するための予熱機構を備えること、
     を特徴とする摩擦攪拌接合装置。
    An upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body, and a friction stir welding is performed by sandwiching a material to be joined between the upper rotating body and the lower rotating body. Using the bobbin type friction stir welding tool to perform,
    Providing a preheating mechanism for preheating the materials to be joined;
    A friction stir welding apparatus characterized by the above.
  2.  前記上部回転体と前記下部回転体の回転速度をそれぞれ独立して設定することができ、
     前記上部回転体と前記下部回転体の回転方向を反対とすることができること、
     を特徴とする請求項1に記載の摩擦攪拌接合装置。
    The rotational speed of the upper rotating body and the lower rotating body can be set independently,
    The rotational direction of the upper rotating body and the lower rotating body can be reversed,
    The friction stir welding apparatus according to claim 1.
  3.  前記予熱機構を前記ボビン型摩擦攪拌接合用工具の進行方向前方に配置し、
     前記予熱による前記被接合材の軟化によって前記ボビン型摩擦攪拌接合用工具の進行方向を誘導すること、
     を特徴とする請求項1又は2に記載の摩擦攪拌接合装置。
    The preheating mechanism is disposed in the forward direction of the bobbin type friction stir welding tool,
    Inducing the direction of travel of the bobbin type friction stir welding tool by softening the material to be joined by the preheating,
    The friction stir welding apparatus according to claim 1 or 2, characterized in that:
  4.  前記予熱機構が通電加熱方式であること、
     を特徴とする請求項1~3のうちのいずれかに記載の摩擦攪拌接合装置。
    The preheating mechanism is an electric heating system;
    The friction stir welding apparatus according to any one of claims 1 to 3, wherein:
  5.  前記上部回転体が凸形状を有し、
     前記下部回転体が凹形状を有し、
     前記上部回転体の凸部が前記下部回転体の凹部に挿入されること、
     を特徴とする請求項1~4のうちのいずれかに記載の摩擦攪拌接合装置。
    The upper rotating body has a convex shape;
    The lower rotating body has a concave shape;
    The convex portion of the upper rotating body is inserted into the concave portion of the lower rotating body,
    The friction stir welding apparatus according to any one of claims 1 to 4, wherein:
  6.  前記上部回転体が凹形状を有し、
     前記下部回転体が凸形状を有し、
     前記下部回転体の凸部が前記上部回転体の凹部に挿入されること、
     を特徴とする請求項1~4のうちのいずれかに記載の摩擦攪拌接合装置。
    The upper rotating body has a concave shape;
    The lower rotating body has a convex shape;
    The convex portion of the lower rotating body is inserted into the concave portion of the upper rotating body,
    The friction stir welding apparatus according to any one of claims 1 to 4, wherein:
  7.  摩擦攪拌接合時に前記ボビン型摩擦攪拌接合用工具に印加される接合方向の力(Fx)、接合線と直交する横方向の力(Fy)、及び接合線と直交する垂直方向の力(Fz)が、いずれも10kgf以下であること、
     を特徴とする請求項1~6のうちのいずれかに記載の摩擦攪拌接合装置。
    Force (Fx) in the joining direction applied to the bobbin type friction stir welding tool during friction stir welding, lateral force (Fy) perpendicular to the joining line, and vertical force (Fz) perpendicular to the joining line Are all 10 kgf or less,
    The friction stir welding apparatus according to any one of claims 1 to 6, wherein:
  8.  摩擦攪拌接合時における前記ボビン型摩擦攪拌接合用工具の進行方向を手動で制御すること、
     を特徴とする請求項1~7のうちのいずれかに記載の摩擦攪拌接合装置。
    Manually controlling the direction of travel of the bobbin type friction stir welding tool during friction stir welding;
    The friction stir welding apparatus according to any one of claims 1 to 7, wherein:
  9.  上部回転体と、下部回転体と、前記下部回転体と一体に形成される攪拌軸と、を有するボビン型摩擦攪拌接合用工具を用い、
     前記上部回転体と前記下部回転体の間に被接合材を挟み込む工程と、
     前記上部回転体と前記下部回転体とを反対方向に回転させる工程と、
     前記ボビン型摩擦攪拌接合工具を移動させる工程と、を有し、
     予熱機構を前記ボビン型摩擦攪拌接合用工具の進行方向前方に配置し、
     前記予熱による前記被接合材の軟化によって前記ボビン型摩擦攪拌接合用工具の進行方向を誘導すること、
     を特徴とする摩擦攪拌接合方法。
    Using a bobbin type friction stir welding tool having an upper rotating body, a lower rotating body, and a stirring shaft formed integrally with the lower rotating body,
    Sandwiching the material to be joined between the upper rotating body and the lower rotating body;
    Rotating the upper rotating body and the lower rotating body in opposite directions;
    Moving the bobbin-type friction stir welding tool,
    A preheating mechanism is disposed in front of the bobbin type friction stir welding tool in the traveling direction,
    Inducing the direction of travel of the bobbin type friction stir welding tool by softening the material to be joined by the preheating,
    A friction stir welding method characterized by the above.
  10.  前記ボビン型摩擦攪拌接合用工具の進行方向を手動で制御すること、
     を特徴とする請求項9に記載の摩擦攪拌接合方法。
    Manually controlling the direction of travel of the bobbin type friction stir welding tool,
    The friction stir welding method according to claim 9.
  11.  前記被接合材がアルミニウム又はアルミニウム合金であること、
     を特徴とする請求項9又は10に記載の摩擦攪拌接合方法。

     
    The material to be joined is aluminum or an aluminum alloy;
    The friction stir welding method according to claim 9 or 10.

PCT/JP2015/001752 2014-03-26 2015-03-26 Friction stir welding device and friction stir welding method WO2015146185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064039 2014-03-26
JP2014064039A JP6383961B2 (en) 2014-03-26 2014-03-26 Friction stir welding apparatus and friction stir welding method

Publications (1)

Publication Number Publication Date
WO2015146185A1 true WO2015146185A1 (en) 2015-10-01

Family

ID=54194729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001752 WO2015146185A1 (en) 2014-03-26 2015-03-26 Friction stir welding device and friction stir welding method

Country Status (2)

Country Link
JP (1) JP6383961B2 (en)
WO (1) WO2015146185A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108568590A (en) * 2018-06-28 2018-09-25 航天工程装备(苏州)有限公司 A kind of agitating friction weldering with the self-supporting structure static shaft shoulder and welding method
US20220143741A1 (en) * 2019-02-25 2022-05-12 Fusematic Corporation An improved automated portable friction welding system and method of operatio

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6731601B2 (en) * 2016-03-11 2020-07-29 国立大学法人大阪大学 Joining method for magnesium alloy materials
JP2019017263A (en) * 2017-07-12 2019-02-07 エイブル株式会社 Culture container and culture device
JP6964311B2 (en) * 2018-02-19 2021-11-10 国立大学法人大阪大学 Friction stir welding device
CN110064837B (en) * 2019-06-06 2021-08-17 中车株洲电力机车有限公司 Friction stir welding device and section welding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199745B1 (en) * 1998-07-09 2001-03-13 Mts Systems Corporation Welding head
JP2001287054A (en) * 2000-04-07 2001-10-16 Hitachi Ltd Friction-stir-welding method
JP2004154790A (en) * 2002-11-05 2004-06-03 Mitsubishi Heavy Ind Ltd Friction stir welding apparatus, and its welding method
JP2004216435A (en) * 2003-01-16 2004-08-05 Mitsubishi Heavy Ind Ltd Friction stirring and joining method and apparatus
JP2006088173A (en) * 2004-09-21 2006-04-06 Sumitomo Light Metal Ind Ltd Friction stir welding method for double skin shape
US20060231595A1 (en) * 2005-04-14 2006-10-19 James Florian Quinn Method for friction stir welding of dissimilar materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078647B2 (en) * 2004-10-21 2006-07-18 Wisconsin Alumni Research Foundation Arc-enhanced friction stir welding
CN103052462B (en) * 2010-09-03 2015-11-25 普锐特冶金技术日本有限公司 Friction-stir mating system and friction stirring connecting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199745B1 (en) * 1998-07-09 2001-03-13 Mts Systems Corporation Welding head
JP2001287054A (en) * 2000-04-07 2001-10-16 Hitachi Ltd Friction-stir-welding method
JP2004154790A (en) * 2002-11-05 2004-06-03 Mitsubishi Heavy Ind Ltd Friction stir welding apparatus, and its welding method
JP2004216435A (en) * 2003-01-16 2004-08-05 Mitsubishi Heavy Ind Ltd Friction stirring and joining method and apparatus
JP2006088173A (en) * 2004-09-21 2006-04-06 Sumitomo Light Metal Ind Ltd Friction stir welding method for double skin shape
US20060231595A1 (en) * 2005-04-14 2006-10-19 James Florian Quinn Method for friction stir welding of dissimilar materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108568590A (en) * 2018-06-28 2018-09-25 航天工程装备(苏州)有限公司 A kind of agitating friction weldering with the self-supporting structure static shaft shoulder and welding method
US20220143741A1 (en) * 2019-02-25 2022-05-12 Fusematic Corporation An improved automated portable friction welding system and method of operatio

Also Published As

Publication number Publication date
JP2015182133A (en) 2015-10-22
JP6383961B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
WO2015146185A1 (en) Friction stir welding device and friction stir welding method
JP4332157B2 (en) Friction stir welding equipment
JP4838388B2 (en) Double-side friction stir welding method and apparatus and double-side friction stir welding tool set
JP5022502B2 (en) Friction stir welding equipment
JP4183964B2 (en) Friction stir welding equipment
JP2000301360A (en) Friction agitation joining device
US8181843B1 (en) Friction stir welding method and its device
JPWO2012029176A1 (en) Friction stir welding system and friction stir welding method
JP2004216435A (en) Friction stirring and joining method and apparatus
EP3825055A1 (en) Machine tool
WO2003033198A1 (en) Frictional agitating connection device and robot with the device
WO2015068428A1 (en) Friction stir welding method
JP4740289B2 (en) Friction stir welding equipment
JP2005205473A (en) C-shaped friction stirring and joining spot joining gun
JP2007268558A (en) Apparatus and method for friction stir welding
JP2011088211A (en) Laser beam welding machine
JP4533401B2 (en) Pulse current welding equipment for small joint surfaces
JP4940246B2 (en) Friction stir spot welding equipment
JP2002292479A (en) Bonding unit using friction and agitation
KR101059250B1 (en) Crossbeam and its manufacturing method
CN113993656B (en) Joint system and method of operating the same
JP2005288465A (en) Friction stir spot welding method and equipment
KR20130100511A (en) Laser assisted machining
JP2003112264A (en) Pulse-energization joining method and equipment for small surface, and joined body
JP2008188605A (en) Machine for friction stir surfacing and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770339

Country of ref document: EP

Kind code of ref document: A1