WO2015146029A1 - Microwave treatment apparatus - Google Patents

Microwave treatment apparatus Download PDF

Info

Publication number
WO2015146029A1
WO2015146029A1 PCT/JP2015/001326 JP2015001326W WO2015146029A1 WO 2015146029 A1 WO2015146029 A1 WO 2015146029A1 JP 2015001326 W JP2015001326 W JP 2015001326W WO 2015146029 A1 WO2015146029 A1 WO 2015146029A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
propagation
microwave
heating chamber
waveguide
Prior art date
Application number
PCT/JP2015/001326
Other languages
French (fr)
Japanese (ja)
Inventor
大森 義治
吉野 浩二
辻本 真佐治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015146029A1 publication Critical patent/WO2015146029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines

Definitions

  • microwave treatment treatment apparatus such as a microwave oven that heats an object to be heated by microwaves.
  • a microwave processing apparatus supplies microwaves generated by a magnetron, which is a typical microwave generation unit, to a heating chamber via a waveguide, and is to be heated such as food placed in the heating chamber. Is to heat.
  • the electric field distribution generated in the heating chamber by the supplied microwave is not necessarily uniform.
  • the turntable is rotated by a motor and the object to be heated is rotated in the heating chamber, or the antenna is rotated by the motor and the microwave is agitated to enter the heating chamber.
  • the feeding method is used.
  • FIG. 6 is a diagram showing the current flowing through the surface of the waveguide in the conventional microwave processing apparatus.
  • a rectangular waveguide type waveguide 100 in which microwaves propagate in the TE10 mode has a rectangular shape with a cross section orthogonal to the longitudinal direction, that is, the microwave propagation direction, and a narrow surface ( Narrow plain) 102 and a wide surface (Wide plain) 103 wider than the narrow surface 102.
  • circular polarization can be generated, for example, by providing a combination of two openings.
  • Patent Document 1 describes a configuration in which two rectangular slot-like openings 107 a and 107 b that are not perpendicular to each other are provided on the wide surface 103 of the waveguide 106. .
  • the waveguide 106 must be designed to be long in order to avoid the influence of disturbance of the electromagnetic field distribution near the magnetron. Further, in the configuration in which the opening is provided in the wide surface 103, the direction from the opening toward the heating chamber and the microwave propagation direction are orthogonal to each other, so that high radiation efficiency is hardly obtained.
  • An object of the present disclosure is to provide a microwave processing apparatus capable of generating circularly or elliptically polarized waves with high efficiency using a compact waveguide. To do.
  • a microwave processing apparatus includes a heating chamber that houses an object to be heated, a microwave generation unit that generates a microwave, a first propagation unit, A waveguide including the second propagation part, and a pair of openings communicating the waveguide and the heating chamber.
  • the first propagation unit propagates the microwave toward the heating chamber, and the second propagation unit propagates the microwave in parallel to the heating chamber.
  • the pair of openings includes a first opening and a second opening, and generates circularly polarized waves.
  • a cross-section projection region partitioned by virtually projecting a cross section of the first propagation section perpendicular to the tube axis of the first propagation section onto the side surface of the heating chamber along the tube axis of the first propagation section;
  • the first opening is provided so that at least a part of the opening overlaps.
  • FIG. 1 is a cross-sectional view of the microwave processing apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the waveguide in the microwave processing apparatus according to the first embodiment.
  • FIG. 3 is a diagram showing an opening that connects the heating chamber and the waveguide in the microwave processing apparatus according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the microwave processing apparatus according to the second embodiment of the present disclosure.
  • FIG. 5 is an enlarged cross-sectional view of the vicinity of the waveguide of the microwave processing apparatus according to the third embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating a current flowing through a wall surface of a waveguide in a conventional microwave processing apparatus.
  • FIG. 7 is a schematic perspective view of a waveguide that generates circularly polarized waves in a conventional microwave processing apparatus.
  • a microwave processing apparatus includes a heating chamber that houses an object to be heated, a microwave generation unit that generates a microwave, and a waveguide that includes a first propagation unit and a second propagation unit. And a pair of openings communicating the waveguide and the heating chamber.
  • the first propagation unit propagates the microwave toward the heating chamber, and the second propagation unit propagates the microwave in parallel to the heating chamber.
  • the pair of openings includes a first opening and a second opening, and generates circularly polarized waves.
  • a cross-section projection region partitioned by virtually projecting a cross section of the first propagation section perpendicular to the tube axis of the first propagation section onto the side surface of the heating chamber along the tube axis of the first propagation section;
  • the first opening is provided so that at least a part of the opening overlaps.
  • the microwave propagated in the first propagation part toward the side surface of the heating chamber is radiated into the heating chamber through the first opening in the same direction. Therefore, even if the length of the first propagation part in the tube axis direction is short, an electric field in a uniform direction is generated in the first propagation part. As a result, stable microwave excitation occurs in a predetermined direction in the first opening.
  • the first propagation part suppresses the influence of disturbance of the electromagnetic field distribution in the vicinity of the magnetron. Therefore, even if the length of the second propagation part in the tube axis direction is short, an electric field in a uniform direction is generated in the second propagation part. As a result, in the second opening, stable microwave excitation is generated in a direction orthogonal to the excitation direction in the first opening.
  • the microwave processing apparatus is the microwave processing apparatus according to the first aspect, in which the second opening is provided in the second propagation portion so that the center of the second opening is deviated from the cross-sectional projection region. . According to this aspect, it is possible to more reliably generate circularly polarized waves or elliptically polarized waves using a compact waveguide.
  • the microwave excitation direction by the first opening and the microwave excitation direction by the second opening are not parallel to each other.
  • a first opening and a second opening are provided. According to this aspect, it is possible to more reliably generate circularly polarized waves or elliptically polarized waves using a compact waveguide.
  • the microwave processing apparatus of the present disclosure is not limited to a microwave oven, but a processing apparatus, a garbage disposal machine, or a semiconductor manufacturing apparatus that uses microwave heating. Including devices.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a microwave oven 50, particularly a waveguide 3 and a heating chamber 1, which is a microwave processing apparatus according to Embodiment 1 of the present disclosure.
  • a microwave oven 50 that is a microwave processing apparatus according to the present embodiment, an object to be heated 19 such as food is placed on a table 18 provided in the heating chamber 1.
  • the magnetron 2 is a microwave generation unit that generates a microwave.
  • the waveguide 3 is attached to the right side surface as viewed from the front of the heating chamber 1.
  • the microwave generated by the magnetron 2 propagates through the waveguide 3 and is supplied into the heating chamber 1 through the openings 4 a and 4 b provided between the heating chamber 1 and the waveguide 3.
  • the object to be heated 19 placed on the table 18 is heated by the microwave.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the waveguide 3 in FIG.
  • the waveguide 3 is a rectangular waveguide having a rectangular shape in cross section perpendicular to the propagation direction of the microwave. Therefore, as described above, the waveguide 3 has a wide surface and a narrow surface.
  • the waveguide 3 includes a propagation part 3a and a propagation part 3b whose narrow surfaces are bent in an L shape and are substantially orthogonal to each other.
  • the magnetron 2 is attached to the propagation part 3a.
  • the propagation unit 3a extends substantially perpendicular to the side surface of the heating chamber 1, and propagates the microwave 6a in a direction toward the heating chamber 1 (leftward in FIGS. 1 and 2).
  • Propagation unit 3b extends downward from the end of propagation unit 3a along the side surface of heating chamber 1, and propagates microwave 6b parallel to the side surface of heating chamber 1 (downward in FIGS. 1 and 2). .
  • the propagation unit 3a corresponds to the first propagation unit
  • the propagation unit 3b corresponds to the second propagation unit.
  • such a waveguide configuration is called an E-bend configuration.
  • FIG. 3 is a diagram showing an opening that connects the heating chamber 1 and the waveguide 3 when viewed from the inside of the heating chamber 1 according to the present embodiment.
  • openings 4a and 4b are provided on the wide surface of the propagation part 3b.
  • the waveguide 3 and the heating chamber 1 communicate with each other through these openings.
  • the opening 4a is a rectangular slot having a long side in the horizontal direction and perpendicular to the tube axis 7b of the propagation part 3b.
  • the opening 4b is a rectangular slot having a long side in the vertical direction and parallel to the tube axis 7b of the propagation part 3b. That is, in FIG. 2, the opening 4a has a long side in the depth direction, and the opening 4b has a long side in the vertical direction.
  • the openings 4a and 4b correspond to the first opening and the second opening, respectively.
  • the side surface of the heating chamber 1 that is partitioned by virtually projecting the cross section of the propagation portion 3a perpendicular to the tube axis 7a (see FIG. 2) of the propagation portion 3a onto the side surface of the heating chamber 1 along the tube axis 7a.
  • the opening 4a is arranged so that the upper area (hereinafter referred to as a cross-section projected area 3c) overlaps at least a part of the opening 4a.
  • the opening 4b is disposed so that the center of the opening 4b is deviated from the cross-sectional projection region 3c.
  • the microwave 6a propagating in the propagation part 3a toward the side surface of the heating chamber 1 is radiated into the heating chamber 1 through the opening 4a in the same direction. Therefore, even if the length of the propagation part 3a in the tube axis direction is short, an electric field 5a in a uniform direction (see FIG. 2) is generated in the propagation part 3a. As a result, stable microwave excitation is generated in the opening 4a in a predetermined direction.
  • the propagation part 3a suppresses the influence of disturbance of the electromagnetic field distribution in the vicinity of the magnetron 2. Therefore, even if the length of the propagation part 3b in the tube axis direction is short, an electric field 5b in a uniform direction (see FIG. 2) is generated in the propagation part 3b. As a result, in the opening 4b, stable microwave excitation occurs in a direction orthogonal to the excitation direction in the opening 4a.
  • circular polarization or elliptical polarization can be more reliably generated using the compact waveguide 3 having the pair of openings (openings 4a and 4b) configured as described above. Can do.
  • two rectangular slits orthogonal to each other are used to generate circularly polarized waves.
  • the present invention is not limited to this, and the same effect can be obtained by using an X-shaped opening where two slots intersect, or by using an L-shaped or T-shaped opening.
  • the same effect can be obtained by combining one rectangular slot and another rectangular slot shorter and thinner than the rectangular slot.
  • FIG. 4 is a front cross-sectional view of a microwave oven 51 that is a microwave processing apparatus according to the second embodiment of the present disclosure.
  • the heating chamber 1 has a convex portion 8 a that is a part of the heating chamber 1 below the bottom surface.
  • the waveguide 13 includes a propagation part 13a that is a first propagation part and a propagation part 13b that is a second propagation part.
  • the cross section of the waveguide 13 parallel to the propagation direction of the microwave has an L shape.
  • the waveguide 13 is attached to the convex part 8a so that the propagation part 13a and the propagation part 13b sandwich the lower right corner of the convex part 8a.
  • An opening 14a that is a first opening is provided at the end of the propagation part 13a, and the propagation part 13a and the heating chamber 1 communicate with each other through the opening 14a.
  • the opening 14a is a rectangular slot having a long side in the depth direction.
  • the convex portion 8a is partitioned by virtually projecting the cross section of the propagation portion 13a perpendicular to the tube axis 17a of the propagation portion 13a onto the side surface of the convex portion 8a along the tube axis 17a.
  • the opening 14a is provided so that almost all of the region on the side surface (cross-sectional projection region 13c) is an opening.
  • the wide surface of the propagation part 13b is provided with an opening 14b as a second opening so as to be orthogonal to the tube axis 17b of the propagation part 13b, and the propagation part 13b and the heating chamber 1 communicate with each other through the opening 14b.
  • the opening 14b is a rectangular slot having a long side in the depth direction.
  • the opening 14a is arranged so that the cross-sectional projection region 13c and at least a part of the opening 14a overlap, and the center of the opening 14b from the cross-sectional projection region 3c is centered.
  • the opening 14b is disposed so as to be detached.
  • the propagation direction of the microwave (left direction in FIG. 4) is perpendicular to the side surface of the convex part 8a.
  • the propagation direction of the microwave (left direction in FIG. 4) is parallel to the bottom surface of the convex part 8a.
  • the magnetron 2 is provided on the lower right side of the waveguide 13.
  • the microwave 6a propagating toward the convex portion 8a is radiated into the convex portion 8a through the opening 14a in the same direction. Therefore, even if the length of the propagation part 13a in the tube axis direction is short, an electric field 5a in a uniform direction is generated in the propagation part 13a. As a result, as in the first embodiment, stable microwave excitation occurs in the predetermined direction in the opening 14a.
  • the propagation part 13a suppresses the influence of disturbance of the electromagnetic field distribution in the vicinity of the magnetron 2. Therefore, even if the length of the propagation part 13b in the tube axis direction is short, an electric field 5b in a uniform direction is generated in the propagation part 13b. As a result, in the opening 14b, stable microwave excitation is generated in a direction orthogonal to the excitation direction in the opening 14a.
  • the circularly polarized wave or the elliptically polarized wave can be more reliably generated by using the compact waveguide 13 having the pair of openings (openings 14a and 14b) configured as described above. Can do.
  • FIG. 5 is an enlarged cross-sectional view of the vicinity of the waveguide of the microwave oven 52 that is the microwave processing apparatus according to the third embodiment of the present disclosure.
  • the heating chamber 1 includes, as a part of the heating chamber 1, a convex portion 8 b having a horizontal upper surface and an obliquely inclined side surface.
  • the waveguide 23 includes a propagation part 23a that is a first propagation part and a propagation part 23b that is a second propagation part.
  • the waveguide 23 is attached to the convex portion 8b so that the wide surface of the propagation portion 23a and the wide surface of the propagation portion 23b sandwich the convex portion 8b.
  • the magnetron 2 is provided in the vicinity of the intersection of the propagation part 23a and the propagation part 23b.
  • An opening 24a that is a first opening is provided at the end of the propagation part 23a, and the propagation part 13a and the heating chamber 1 communicate with each other through the opening 24a.
  • the opening 24a is a rectangular slot having a long side in the depth direction.
  • the heating chamber 1 is partitioned by virtually projecting the cross section of the propagation portion 23a perpendicular to the tube axis 27a of the propagation portion 23a onto the side surface of the heating chamber 1 along the tube axis 27a.
  • the opening 24a is provided so that almost all of the region on the side surface (cross-sectional projection region 23c) is an opening.
  • An opening 24b which is a second opening, is provided on the wide surface of the propagation part 23b so as to be orthogonal to the tube axis 27b of the propagation part 23b, and the propagation part 23b and the heating chamber 1 communicate with each other through the opening 24b.
  • the opening 24b is a rectangular slot having a long side in the depth direction.
  • the opening 24a is arranged so that the cross-sectional projection region 23c and at least a part of the opening 24a overlap, and the center of the opening 24b from the cross-sectional projection region 23c is the center.
  • the opening 24b is arranged so as to be detached.
  • the propagation direction of the microwave (left direction in FIG. 5) is perpendicular to the side surface of the heating chamber 1.
  • the propagation direction of the microwave in the diagonally lower left direction in FIG. 5) is parallel to the side surface of the convex part 8b.
  • the microwave 6a propagating toward the heating chamber 1 is radiated into the heating chamber 1 through the opening 24a in the same direction. Therefore, even if the length of the propagation part 23a in the tube axis direction is short, an electric field 5a in a uniform direction is generated in the propagation part 23a. As a result, as in the first embodiment, stable microwave excitation is generated in the predetermined direction in the opening 24a.
  • the length of the propagation portion 23b in the tube axis direction can be designed to be longer in a limited space. Therefore, an electric field 5b having a uniform direction is generated in the propagation part 23b. As a result, in the opening 24b, stable microwave excitation is generated in a direction orthogonal to the excitation direction in the opening 24a.
  • the compact waveguide 23 having the pair of openings (openings 24a and 24b) configured as described above it is possible to more reliably generate circularly polarized waves or elliptically polarized waves. Can do.
  • the microwave processing apparatus of the present disclosure it is possible to uniformly irradiate an object to be heated with microwaves. Therefore, the microwave processing apparatus of this indication is applicable to the microwave heating apparatus for cooking, sterilization, etc.

Abstract

A microwave oven (50) is provided with a waveguide (3) including a first propagation part and a second propagation part, and a pair of openings provided on a side surface of a heating chamber (1), the openings providing communication between the waveguide (3) and the heating chamber (1). The first propagation part transmits microwaves toward the heating chamber (1), and the second propagation part transmits the microwaves in parallel to the heating chamber (1). The openings include a first opening (4a) and a second opening (4b), with circular polarized waves being generated. The first opening (4a) is provided so that at least some of the first opening (4a) overlaps a cross-section projection region (3c) demarcated by virtually projecting a cross-section of the first propagation part orthogonal to the tube axis of the first propagation part onto the side surface of the heating chamber (1) along the tube axis of the first propagation part. Circularly polarized waves or elliptically polarized waves are thereby more reliably generated using a compact waveguide.

Description

マイクロ波処理装置Microwave processing equipment
 本開示は、マイクロ波により被加熱物を加熱する電子レンジ等のマイクロ波処理装置(Microwave treatment apparatus)に関するものである。 This disclosure relates to a microwave treatment device (microwave treatment treatment apparatus) such as a microwave oven that heats an object to be heated by microwaves.
 マイクロ波処理装置は、代表的なマイクロ波発生部であるマグネトロンによって発生されたマイクロ波を、導波管を経由して加熱室に供給し、加熱室内に載置された食品などの被加熱物を加熱するものである。 A microwave processing apparatus supplies microwaves generated by a magnetron, which is a typical microwave generation unit, to a heating chamber via a waveguide, and is to be heated such as food placed in the heating chamber. Is to heat.
 しかし、供給されるマイクロ波により加熱室内に発生する電界分布は、必ずしも均一ではない。従来、被加熱物を均一に加熱するため、モータによりターンテーブルを回転させて、加熱室内で被加熱物を回転させる方法、または、モータによりアンテナを回転させてマイクロ波を攪拌し、加熱室内に供給する方法が使用されている。 However, the electric field distribution generated in the heating chamber by the supplied microwave is not necessarily uniform. Conventionally, in order to uniformly heat the object to be heated, the turntable is rotated by a motor and the object to be heated is rotated in the heating chamber, or the antenna is rotated by the motor and the microwave is agitated to enter the heating chamber. The feeding method is used.
 一方、電界の偏波面が時間経過につれて回転する円偏波または楕円偏波を利用することで、均一に被加熱物を加熱しようとする方法が提案されている。円偏波または楕円偏波を発生させるためには、励振方向が交差する一対の励振手段を用いて、位相差を設けた一対の励振を発生させることが必要である。 On the other hand, a method has been proposed in which the object to be heated is uniformly heated by using circularly or elliptically polarized waves whose electric field polarization plane rotates with time. In order to generate circularly polarized waves or elliptically polarized waves, it is necessary to generate a pair of excitations having a phase difference by using a pair of excitation means whose excitation directions intersect.
 図6は、従来のマイクロ波処理装置における導波管の面を流れる電流を示す図である。 FIG. 6 is a diagram showing the current flowing through the surface of the waveguide in the conventional microwave processing apparatus.
 図6に示すように、TE10モードでマイクロ波が伝播する方形導波管タイプの導波管100は、長手方向すなわちマイクロ波の伝播方向に直交する断面の形状が長方形であり、幅狭面(Narrow plain)102と、幅狭面102より幅の広い幅広面(Wide plain)103とを有する。 As shown in FIG. 6, a rectangular waveguide type waveguide 100 in which microwaves propagate in the TE10 mode has a rectangular shape with a cross section orthogonal to the longitudinal direction, that is, the microwave propagation direction, and a narrow surface ( Narrow plain) 102 and a wide surface (Wide plain) 103 wider than the narrow surface 102.
 このような導波管100において、マイクロ波伝播方向に垂直な断面101に開口が設けられた場合、導波管100内に一様な方向の電界104が発生し、1軸方向の励振が発生する。幅狭面102に開口が設けられた場合、幅狭面102に一様な方向に電流105が流れ、1軸方向の励振が発生する。 In such a waveguide 100, when an opening is provided in a cross section 101 perpendicular to the microwave propagation direction, an electric field 104 in a uniform direction is generated in the waveguide 100, and excitation in a uniaxial direction is generated. To do. When an opening is provided in the narrow surface 102, the current 105 flows in a uniform direction through the narrow surface 102, and excitation in one axis direction occurs.
 しかし、幅広面103に開口が設けられた場合、幅広面103上を場所に応じてさまざまな方向に電流105が流れ、2軸方向の励振が発生する。 However, when an opening is provided in the wide surface 103, a current 105 flows in various directions on the wide surface 103 depending on the location, and biaxial excitation occurs.
 上記理由により、励振方向が交差する一対の励振手段を用いて円偏波を発生させるには、幅広面103に開口を設ける必要がある。 For the above reason, it is necessary to provide an opening in the wide surface 103 in order to generate circularly polarized waves using a pair of excitation means whose excitation directions intersect.
 マイクロ波が伝播することにより時間とともに励振位置が移動するので、例えば、二つの開口を組み合わせて設けることにより、円偏波を発生させることができる。 Since the excitation position moves with time due to the propagation of microwaves, circular polarization can be generated, for example, by providing a combination of two openings.
 図7に示すように、特許文献1には、交差しない互いに垂直な二つの長方形スロット状の開口107aと開口107bとが、導波管106の幅広面103に設けられた構成が記載されている。 As shown in FIG. 7, Patent Document 1 describes a configuration in which two rectangular slot- like openings 107 a and 107 b that are not perpendicular to each other are provided on the wide surface 103 of the waveguide 106. .
日本特許第3510523号公報Japanese Patent No. 3510523
 しかしながら、特許文献1に記載された従来技術においては、マグネトロン近傍の電磁界分布の乱れなどの影響を回避するため、導波管106を長く設計せざるを得ない。また、幅広面103に開口が設けられる構成において、開口から加熱室に向かう方向とマイクロ波伝播方向とが直交するため、高い放射効率が得られ難い。 However, in the conventional technique described in Patent Document 1, the waveguide 106 must be designed to be long in order to avoid the influence of disturbance of the electromagnetic field distribution near the magnetron. Further, in the configuration in which the opening is provided in the wide surface 103, the direction from the opening toward the heating chamber and the microwave propagation direction are orthogonal to each other, so that high radiation efficiency is hardly obtained.
 本開示は上記問題点を解決するものであり、コンパクトな導波管を用いて、高効率に円偏波または楕円偏波を発生させることが可能なマイクロ波処理装置を提供することを目的とする。 An object of the present disclosure is to provide a microwave processing apparatus capable of generating circularly or elliptically polarized waves with high efficiency using a compact waveguide. To do.
 上記従来の問題点を解決するために、本開示の一態様に係るマイクロ波処理装置は、被加熱物を収納する加熱室と、マイクロ波を発生させるマイクロ波発生部と、第1伝播部および第2伝播部を含む導波管と、導波管と加熱室とを連通する一対の開口と、を備える。 In order to solve the above-described conventional problems, a microwave processing apparatus according to an aspect of the present disclosure includes a heating chamber that houses an object to be heated, a microwave generation unit that generates a microwave, a first propagation unit, A waveguide including the second propagation part, and a pair of openings communicating the waveguide and the heating chamber.
 第1伝播部はマイクロ波を加熱室に向けて伝播させ、第2伝播部はマイクロ波を加熱室に平行に伝播させる。一対の開口は、第1開口および第2開口を含み、円偏波を発生させる。第1伝播部の管軸に直交する第1伝播部の断面を、第1伝播部の管軸に沿って加熱室の側面に仮想的に投影することにより区画される断面投影領域と、第1開口の少なくとも一部が重なるように第1開口が設けられる。 The first propagation unit propagates the microwave toward the heating chamber, and the second propagation unit propagates the microwave in parallel to the heating chamber. The pair of openings includes a first opening and a second opening, and generates circularly polarized waves. A cross-section projection region partitioned by virtually projecting a cross section of the first propagation section perpendicular to the tube axis of the first propagation section onto the side surface of the heating chamber along the tube axis of the first propagation section; The first opening is provided so that at least a part of the opening overlaps.
 本態様によれば、コンパクトな導波管を用いて、円偏波または楕円偏波をより確実に発生させることができる。 According to this aspect, it is possible to more reliably generate circularly polarized waves or elliptically polarized waves using a compact waveguide.
図1は、本開示の実施の形態1に係るマイクロ波処理装置の断面図である。FIG. 1 is a cross-sectional view of the microwave processing apparatus according to the first embodiment of the present disclosure. 図2は、実施の形態1に係るマイクロ波処理装置における導波管の近傍の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the vicinity of the waveguide in the microwave processing apparatus according to the first embodiment. 図3は、実施の形態1に係るマイクロ波処理装置における加熱室と導波管とを連通する開口を示す図である。FIG. 3 is a diagram showing an opening that connects the heating chamber and the waveguide in the microwave processing apparatus according to the first embodiment. 図4は、本開示の実施の形態2に係るマイクロ波処理装置の断面図である。FIG. 4 is a cross-sectional view of the microwave processing apparatus according to the second embodiment of the present disclosure. 図5は、本開示の実施の形態3に係るマイクロ波処理装置の導波管の近傍の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the vicinity of the waveguide of the microwave processing apparatus according to the third embodiment of the present disclosure. 図6は、従来のマイクロ波処理装置における導波管の壁面を流れる電流を示す図である。FIG. 6 is a diagram illustrating a current flowing through a wall surface of a waveguide in a conventional microwave processing apparatus. 図7は、従来のマイクロ波処理装置における円偏波を発生させる導波管の概略斜視図である。FIG. 7 is a schematic perspective view of a waveguide that generates circularly polarized waves in a conventional microwave processing apparatus.
 本開示の第1の態様に係るマイクロ波処理装置は、被加熱物を収納する加熱室と、マイクロ波を発生させるマイクロ波発生部と、第1伝播部および第2伝播部を含む導波管と、導波管と加熱室とを連通する一対の開口と、を備える。 A microwave processing apparatus according to a first aspect of the present disclosure includes a heating chamber that houses an object to be heated, a microwave generation unit that generates a microwave, and a waveguide that includes a first propagation unit and a second propagation unit. And a pair of openings communicating the waveguide and the heating chamber.
 第1伝播部はマイクロ波を加熱室に向けて伝播させ、第2伝播部はマイクロ波を加熱室に平行に伝播させる。一対の開口は、第1開口および第2開口を含み、円偏波を発生させる。第1伝播部の管軸に直交する第1伝播部の断面を、第1伝播部の管軸に沿って加熱室の側面に仮想的に投影することにより区画される断面投影領域と、第1開口の少なくとも一部が重なるように第1開口が設けられる。 The first propagation unit propagates the microwave toward the heating chamber, and the second propagation unit propagates the microwave in parallel to the heating chamber. The pair of openings includes a first opening and a second opening, and generates circularly polarized waves. A cross-section projection region partitioned by virtually projecting a cross section of the first propagation section perpendicular to the tube axis of the first propagation section onto the side surface of the heating chamber along the tube axis of the first propagation section; The first opening is provided so that at least a part of the opening overlaps.
 本態様において、第1伝播部内を加熱室の側面に向かって伝播してきたマイクロ波が、そのままの方向で第1開口を通って加熱室内に放射される。そのため、第1伝播部の管軸方向の長さが短くても、第1伝播部内には一様な方向の電界が発生する。その結果、第1開口では所定の方向に、安定したマイクロ波の励振が発生する。 In this embodiment, the microwave propagated in the first propagation part toward the side surface of the heating chamber is radiated into the heating chamber through the first opening in the same direction. Therefore, even if the length of the first propagation part in the tube axis direction is short, an electric field in a uniform direction is generated in the first propagation part. As a result, stable microwave excitation occurs in a predetermined direction in the first opening.
 このようにして、第1伝播部により、マグネトロンの近傍における電磁界分布の乱れなどの影響が抑制される。そのため、第2伝播部の管軸方向の長さが短くても、第2伝播部内には一様な方向の電界が発生する。その結果、第2開口では、第1開口における励振方向と直交する方向に、安定したマイクロ波の励振が発生する。 In this way, the first propagation part suppresses the influence of disturbance of the electromagnetic field distribution in the vicinity of the magnetron. Therefore, even if the length of the second propagation part in the tube axis direction is short, an electric field in a uniform direction is generated in the second propagation part. As a result, in the second opening, stable microwave excitation is generated in a direction orthogonal to the excitation direction in the first opening.
 本態様によれば、コンパクトな導波管を用いて、円偏波または楕円偏波をより確実に発生させることができる。 According to this aspect, it is possible to more reliably generate circularly polarized waves or elliptically polarized waves using a compact waveguide.
 本開示の第2の態様に係るマイクロ波処理装置は、第1の態様において、断面投影領域から第2開口の中心が外れるように、第2伝播部に第2開口が設けられたものである。本態様によれば、コンパクトな導波管を用いて、円偏波または楕円偏波をより確実に発生させることができる。 The microwave processing apparatus according to the second aspect of the present disclosure is the microwave processing apparatus according to the first aspect, in which the second opening is provided in the second propagation portion so that the center of the second opening is deviated from the cross-sectional projection region. . According to this aspect, it is possible to more reliably generate circularly polarized waves or elliptically polarized waves using a compact waveguide.
 本開示の第3の態様に係るマイクロ波処理装置は、第1の態様において、第1開口によるマイクロ波の励振方向と、第2開口によるマイクロ波の励振方向とが互いに平行とならないように、第1開口および第2開口が設けられたものである。本態様によれば、コンパクトな導波管を用いて、円偏波または楕円偏波をより確実に発生させることができる。 In the microwave processing apparatus according to the third aspect of the present disclosure, in the first aspect, the microwave excitation direction by the first opening and the microwave excitation direction by the second opening are not parallel to each other. A first opening and a second opening are provided. According to this aspect, it is possible to more reliably generate circularly polarized waves or elliptically polarized waves using a compact waveguide.
 以下、本開示に係るマイクロ波処理装置の好適な実施の形態について、添付の図面を参照しながら説明する。本実施の形態においては、電子レンジに適用した例について説明するが、本開示のマイクロ波処理装置は、電子レンジ以外に、マイクロ波加熱を利用した処理装置、生ゴミ処理機、または、半導体製造装置などを含むものである。 Hereinafter, preferred embodiments of the microwave processing apparatus according to the present disclosure will be described with reference to the accompanying drawings. In this embodiment, an example in which the present invention is applied to a microwave oven will be described. However, the microwave processing apparatus of the present disclosure is not limited to a microwave oven, but a processing apparatus, a garbage disposal machine, or a semiconductor manufacturing apparatus that uses microwave heating. Including devices.
 なお、以下の全ての図面において、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。 In all of the drawings below, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted.
 (実施の形態1)
 図1は、本開示の実施の形態1に係るマイクロ波処理装置である電子レンジ50、特に導波管3および加熱室1の構成を示す概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view illustrating a configuration of a microwave oven 50, particularly a waveguide 3 and a heating chamber 1, which is a microwave processing apparatus according to Embodiment 1 of the present disclosure.
 図1に示すように、本実施の形態に係るマイクロ波処理装置である電子レンジ50において、食品などの被加熱物19は加熱室1内に設けられた台18に載置される。マグネトロン2は、マイクロ波を発生させるマイクロ波発生部である。導波管3は、加熱室1の正面から見て右側の側面に取り付けられる。 As shown in FIG. 1, in a microwave oven 50 that is a microwave processing apparatus according to the present embodiment, an object to be heated 19 such as food is placed on a table 18 provided in the heating chamber 1. The magnetron 2 is a microwave generation unit that generates a microwave. The waveguide 3 is attached to the right side surface as viewed from the front of the heating chamber 1.
 マグネトロン2によって発生されたマイクロ波は、導波管3を伝播し、加熱室1と導波管3との間に設けられた開口4a、4bを通って、加熱室1内に供給される。このマイクロ波により、台18に載置された被加熱物19が加熱される。 The microwave generated by the magnetron 2 propagates through the waveguide 3 and is supplied into the heating chamber 1 through the openings 4 a and 4 b provided between the heating chamber 1 and the waveguide 3. The object to be heated 19 placed on the table 18 is heated by the microwave.
 図2は図1における導波管3の近傍を拡大した断面図である。 FIG. 2 is an enlarged cross-sectional view of the vicinity of the waveguide 3 in FIG.
 図2に示すように、導波管3は、マイクロ波の伝播方向に直交する断面の形状が長方形の形状を有する方形導波管である。そのため、上述のように、導波管3は幅広面と幅狭面とを有する。 As shown in FIG. 2, the waveguide 3 is a rectangular waveguide having a rectangular shape in cross section perpendicular to the propagation direction of the microwave. Therefore, as described above, the waveguide 3 has a wide surface and a narrow surface.
 導波管3は、幅狭面がL字形状に屈曲して互いに実質的に直交する伝播部3aと伝播部3bとを含む。マグネトロン2は、伝播部3aに取り付けられる。 The waveguide 3 includes a propagation part 3a and a propagation part 3b whose narrow surfaces are bent in an L shape and are substantially orthogonal to each other. The magnetron 2 is attached to the propagation part 3a.
 伝播部3aは、加熱室1の側面に対して実質的に垂直に延在し、加熱室1に向かう方向(図1および図2においては左方向)にマイクロ波6aを伝播する。伝播部3bは、伝播部3aの終端から加熱室1の側面に沿って下方に延在し、加熱室1の側面に平行(図1および図2においては下方向)にマイクロ波6bを伝播する。 The propagation unit 3a extends substantially perpendicular to the side surface of the heating chamber 1, and propagates the microwave 6a in a direction toward the heating chamber 1 (leftward in FIGS. 1 and 2). Propagation unit 3b extends downward from the end of propagation unit 3a along the side surface of heating chamber 1, and propagates microwave 6b parallel to the side surface of heating chamber 1 (downward in FIGS. 1 and 2). .
 本実施の形態では、伝播部3aが第1伝播部に、伝播部3bが第2伝播部にそれぞれ対応する。一般的に、このような導波管の構成をEベンド構成という。 In this embodiment, the propagation unit 3a corresponds to the first propagation unit, and the propagation unit 3b corresponds to the second propagation unit. In general, such a waveguide configuration is called an E-bend configuration.
 図3は、本実施の形態における加熱室1の内側から見た場合の加熱室1と導波管3とを連通する開口を示す図である。 FIG. 3 is a diagram showing an opening that connects the heating chamber 1 and the waveguide 3 when viewed from the inside of the heating chamber 1 according to the present embodiment.
 図3に示すように、伝播部3bの幅広面には、一対の開口(開口4a、4b)が設けられる。これらの開口を介して、導波管3と加熱室1とが連通する。 As shown in FIG. 3, a pair of openings ( openings 4a and 4b) are provided on the wide surface of the propagation part 3b. The waveguide 3 and the heating chamber 1 communicate with each other through these openings.
 開口4aは、横方向に長辺を有し、伝播部3bの管軸7bと垂直な長方形スロットである。開口4bは、縦方向に長辺を有し、伝播部3bの管軸7bと平行な長方形スロットである。すなわち、図2においては、開口4aは奥行き方向に長辺を有し、開口4bは上下方向に長辺を有する。本実施の形態では、開口4a、4bは、第1開口、第2開口にそれぞれ対応する。 The opening 4a is a rectangular slot having a long side in the horizontal direction and perpendicular to the tube axis 7b of the propagation part 3b. The opening 4b is a rectangular slot having a long side in the vertical direction and parallel to the tube axis 7b of the propagation part 3b. That is, in FIG. 2, the opening 4a has a long side in the depth direction, and the opening 4b has a long side in the vertical direction. In the present embodiment, the openings 4a and 4b correspond to the first opening and the second opening, respectively.
 伝播部3aの管軸7a(図2参照)に直交する伝播部3aの断面を、管軸7aに沿って加熱室1の側面に仮想的に投影することにより区画される、加熱室1の側面上の領域(以下、断面投影領域(Cross-section projected area)3cという)と、開口4aの少なくとも一部とが重なるように、開口4aが配置される。開口4bは、断面投影領域3cから、開口4bの中心が外れるように配置される。 The side surface of the heating chamber 1 that is partitioned by virtually projecting the cross section of the propagation portion 3a perpendicular to the tube axis 7a (see FIG. 2) of the propagation portion 3a onto the side surface of the heating chamber 1 along the tube axis 7a. The opening 4a is arranged so that the upper area (hereinafter referred to as a cross-section projected area 3c) overlaps at least a part of the opening 4a. The opening 4b is disposed so that the center of the opening 4b is deviated from the cross-sectional projection region 3c.
 伝播部3a内を加熱室1の側面に向かって伝播してきたマイクロ波6aは、そのままの方向で開口4aを通って加熱室1内に放射される。そのため、伝播部3aの管軸方向の長さが短くても、伝播部3a内には一様な方向(図2参照)の電界5aが発生する。その結果、開口4aでは所定の方向に、安定したマイクロ波の励振が発生する。 The microwave 6a propagating in the propagation part 3a toward the side surface of the heating chamber 1 is radiated into the heating chamber 1 through the opening 4a in the same direction. Therefore, even if the length of the propagation part 3a in the tube axis direction is short, an electric field 5a in a uniform direction (see FIG. 2) is generated in the propagation part 3a. As a result, stable microwave excitation is generated in the opening 4a in a predetermined direction.
 このようにして、伝播部3aにより、マグネトロン2の近傍における電磁界分布の乱れなどの影響が抑制される。そのため、伝播部3bの管軸方向の長さが短くても、伝播部3b内には一様な方向(図2参照)の電界5bが発生する。その結果、開口4bでは、開口4aにおける励振方向と直交する方向に、安定したマイクロ波の励振が発生する。 In this way, the propagation part 3a suppresses the influence of disturbance of the electromagnetic field distribution in the vicinity of the magnetron 2. Therefore, even if the length of the propagation part 3b in the tube axis direction is short, an electric field 5b in a uniform direction (see FIG. 2) is generated in the propagation part 3b. As a result, in the opening 4b, stable microwave excitation occurs in a direction orthogonal to the excitation direction in the opening 4a.
 本実施の形態によれば、上述のように構成された一対の開口(開口4a、4b)を有するコンパクトな導波管3を用いて、円偏波または楕円偏波をより確実に発生させることができる。 According to the present embodiment, circular polarization or elliptical polarization can be more reliably generated using the compact waveguide 3 having the pair of openings ( openings 4a and 4b) configured as described above. Can do.
 なお、本実施の形態では、円偏波を発生させるために、直交する二つの長方形スリットを用いる。これに限定されるものではなく、二つのスロットが交差するX字形状の開口を用いても、さらには、L字形状やT字形状の開口を用いても、同様の効果が得られる。 In the present embodiment, two rectangular slits orthogonal to each other are used to generate circularly polarized waves. The present invention is not limited to this, and the same effect can be obtained by using an X-shaped opening where two slots intersect, or by using an L-shaped or T-shaped opening.
 二つのスロットが直交しなくても、平行でなければ、これら二つのスロットにより円偏波または楕円偏波を発生させることは可能である。角に少しだけ丸みを持たせた長方形スロットを用いても同様である。 Even if the two slots are not orthogonal, if these are not parallel, it is possible to generate circularly polarized waves or elliptically polarized waves by these two slots. The same applies when using rectangular slots with slightly rounded corners.
 基本的に、一つの長方形スロットと、その長方形スロットより短く細いもう一つの長方形スロットとを組み合わせれば、同様の効果を得ることができる。 Basically, the same effect can be obtained by combining one rectangular slot and another rectangular slot shorter and thinner than the rectangular slot.
 (実施の形態2)
 図4は、本開示の実施の形態2に係るマイクロ波処理装置である電子レンジ51の正面断面図である。
(Embodiment 2)
FIG. 4 is a front cross-sectional view of a microwave oven 51 that is a microwave processing apparatus according to the second embodiment of the present disclosure.
 図4に示すように、加熱室1は、その底面の下方に、加熱室1の一部である凸部8aを有する。 As shown in FIG. 4, the heating chamber 1 has a convex portion 8 a that is a part of the heating chamber 1 below the bottom surface.
 導波管13は、第1伝播部である伝播部13aと、第2伝播部である伝播部13bとを含む。導波管13の、マイクロ波の伝播方向に平行な断面がL字形状を有する。伝播部13aと伝播部13bが凸部8aの右下角を挟むように、導波管13が凸部8aに取り付けられる。 The waveguide 13 includes a propagation part 13a that is a first propagation part and a propagation part 13b that is a second propagation part. The cross section of the waveguide 13 parallel to the propagation direction of the microwave has an L shape. The waveguide 13 is attached to the convex part 8a so that the propagation part 13a and the propagation part 13b sandwich the lower right corner of the convex part 8a.
 伝播部13aの端部には、第1開口である開口14aが設けられ、開口14aを介して伝播部13aと加熱室1とが連通する。開口14aは、奥行き方向に長辺を有する長方形スロットである。 An opening 14a that is a first opening is provided at the end of the propagation part 13a, and the propagation part 13a and the heating chamber 1 communicate with each other through the opening 14a. The opening 14a is a rectangular slot having a long side in the depth direction.
 本実施の形態では、伝播部13aの管軸17aに直交する伝播部13aの断面を、管軸17aに沿って凸部8aの側面に仮想的に投影することにより区画される、凸部8aの側面上の領域(断面投影領域13c)のほぼすべてが開口となるように、開口14aが設けられる。 In the present embodiment, the convex portion 8a is partitioned by virtually projecting the cross section of the propagation portion 13a perpendicular to the tube axis 17a of the propagation portion 13a onto the side surface of the convex portion 8a along the tube axis 17a. The opening 14a is provided so that almost all of the region on the side surface (cross-sectional projection region 13c) is an opening.
 伝播部13bの幅広面には、第2開口である開口14bが、伝播部13bの管軸17bに直交するように設けられ、開口14bを介して伝播部13bと加熱室1とが連通する。開口14bは、奥行き方向に長辺を有する長方形スロットである。 The wide surface of the propagation part 13b is provided with an opening 14b as a second opening so as to be orthogonal to the tube axis 17b of the propagation part 13b, and the propagation part 13b and the heating chamber 1 communicate with each other through the opening 14b. The opening 14b is a rectangular slot having a long side in the depth direction.
 すなわち、本実施の形態では、実施の形態1と同様に、断面投影領域13cと、開口14aの少なくとも一部とが重なるように、開口14aが配置され、断面投影領域3cから開口14bの中心が外れるように、開口14bが配置される。 That is, in the present embodiment, similarly to the first embodiment, the opening 14a is arranged so that the cross-sectional projection region 13c and at least a part of the opening 14a overlap, and the center of the opening 14b from the cross-sectional projection region 3c is centered. The opening 14b is disposed so as to be detached.
 伝播部13aにおいて、マイクロ波の伝播方向(図4においては左方向)は凸部8aの側面に垂直である。伝播部13bにおいて、マイクロ波の伝播方向(図4においては左方向)は凸部8aの底面に平行である。 In the propagation part 13a, the propagation direction of the microwave (left direction in FIG. 4) is perpendicular to the side surface of the convex part 8a. In the propagation part 13b, the propagation direction of the microwave (left direction in FIG. 4) is parallel to the bottom surface of the convex part 8a.
 マグネトロン2は、導波管13の右下方に設けられる。 The magnetron 2 is provided on the lower right side of the waveguide 13.
 このように構成された導波管13内において、凸部8aに向かって伝播するマイクロ波6aは、そのままの方向で開口14aを通って凸部8a内に放射される。そのため、伝播部13aの管軸方向の長さが短くても、伝播部13a内には一様な方向の電界5aが発生する。その結果、実施の形態1と同様に、開口14aでは所定の方向に、安定したマイクロ波の励振が発生する。 In the waveguide 13 configured in this way, the microwave 6a propagating toward the convex portion 8a is radiated into the convex portion 8a through the opening 14a in the same direction. Therefore, even if the length of the propagation part 13a in the tube axis direction is short, an electric field 5a in a uniform direction is generated in the propagation part 13a. As a result, as in the first embodiment, stable microwave excitation occurs in the predetermined direction in the opening 14a.
 このようにして、伝播部13aにより、マグネトロン2の近傍における電磁界分布の乱れなどの影響が抑制される。そのため、伝播部13bの管軸方向の長さが短くても、伝播部13b内には一様な方向の電界5bが発生する。その結果、開口14bでは、開口14aにおける励振方向と直交する方向に、安定したマイクロ波の励振が発生する。 In this way, the propagation part 13a suppresses the influence of disturbance of the electromagnetic field distribution in the vicinity of the magnetron 2. Therefore, even if the length of the propagation part 13b in the tube axis direction is short, an electric field 5b in a uniform direction is generated in the propagation part 13b. As a result, in the opening 14b, stable microwave excitation is generated in a direction orthogonal to the excitation direction in the opening 14a.
 本実施の形態によれば、上述のように構成された一対の開口(開口14a、14b)を有するコンパクトな導波管13を用いて、円偏波または楕円偏波をより確実に発生させることができる。 According to the present embodiment, the circularly polarized wave or the elliptically polarized wave can be more reliably generated by using the compact waveguide 13 having the pair of openings (openings 14a and 14b) configured as described above. Can do.
 (実施の形態3)
 図5は、本開示の実施の形態3におけるマイクロ波処理装置である電子レンジ52の導波管の近傍の拡大断面図を示す。
(Embodiment 3)
FIG. 5 is an enlarged cross-sectional view of the vicinity of the waveguide of the microwave oven 52 that is the microwave processing apparatus according to the third embodiment of the present disclosure.
 本実施の形態において、図5に示すように、加熱室1は、その側面に、水平な上面と斜めに傾斜する側面とを有する凸部8bを加熱室1の一部として備える。 In the present embodiment, as shown in FIG. 5, the heating chamber 1 includes, as a part of the heating chamber 1, a convex portion 8 b having a horizontal upper surface and an obliquely inclined side surface.
 導波管23は、第1伝播部である伝播部23aと、第2伝播部である伝播部23bとを含む。伝播部23aの幅広面と伝播部23bの幅広面とが凸部8bを挟むように、導波管23が凸部8bに取り付けられる。 The waveguide 23 includes a propagation part 23a that is a first propagation part and a propagation part 23b that is a second propagation part. The waveguide 23 is attached to the convex portion 8b so that the wide surface of the propagation portion 23a and the wide surface of the propagation portion 23b sandwich the convex portion 8b.
 マグネトロン2は、伝播部23aと伝播部23bとの交差部分の近傍に設けられる。 The magnetron 2 is provided in the vicinity of the intersection of the propagation part 23a and the propagation part 23b.
 伝播部23aの端部には、第1開口である開口24aが設けられ、開口24aを介して伝播部13aと加熱室1とが連通する。開口24aは、奥行き方向に長辺を有する長方形スロットである。 An opening 24a that is a first opening is provided at the end of the propagation part 23a, and the propagation part 13a and the heating chamber 1 communicate with each other through the opening 24a. The opening 24a is a rectangular slot having a long side in the depth direction.
 本実施の形態では、伝播部23aの管軸27aに直交する伝播部23aの断面を、管軸27aに沿って加熱室1の側面に仮想的に投影することにより区画される、加熱室1の側面上の領域(断面投影領域23c)のほぼすべてが開口となるように、開口24aが設けられる。 In the present embodiment, the heating chamber 1 is partitioned by virtually projecting the cross section of the propagation portion 23a perpendicular to the tube axis 27a of the propagation portion 23a onto the side surface of the heating chamber 1 along the tube axis 27a. The opening 24a is provided so that almost all of the region on the side surface (cross-sectional projection region 23c) is an opening.
 伝播部23bの幅広面には、第2開口である開口24bが、伝播部23bの管軸27bに直交するように設けられ、開口24bを介して伝播部23bと加熱室1とが連通する。開口24bは、奥行き方向に長辺を有する長方形スロットである。 An opening 24b, which is a second opening, is provided on the wide surface of the propagation part 23b so as to be orthogonal to the tube axis 27b of the propagation part 23b, and the propagation part 23b and the heating chamber 1 communicate with each other through the opening 24b. The opening 24b is a rectangular slot having a long side in the depth direction.
 すなわち、本実施の形態では、実施の形態1と同様に、断面投影領域23cと、開口24aの少なくとも一部とが重なるように、開口24aが配置され、断面投影領域23cから開口24bの中心が外れるように、開口24bが配置される。 That is, in the present embodiment, as in the first embodiment, the opening 24a is arranged so that the cross-sectional projection region 23c and at least a part of the opening 24a overlap, and the center of the opening 24b from the cross-sectional projection region 23c is the center. The opening 24b is arranged so as to be detached.
 伝播部23aにおいて、マイクロ波の伝播方向(図5においては左方向)は加熱室1の側面に垂直である。伝播部23bにおいて、マイクロ波の伝播方向(図5においては斜め左下方向)は凸部8bの側面に平行である。 In the propagation part 23 a, the propagation direction of the microwave (left direction in FIG. 5) is perpendicular to the side surface of the heating chamber 1. In the propagation part 23b, the propagation direction of the microwave (in the diagonally lower left direction in FIG. 5) is parallel to the side surface of the convex part 8b.
 このように構成された導波管23内において、加熱室1に向かって伝播するマイクロ波6aは、そのままの方向で開口24aを通って加熱室1内に放射される。そのため、伝播部23aの管軸方向の長さが短くても、伝播部23a内には一様な方向の電界5aが発生する。その結果、実施の形態1と同様に、開口24aでは所定の方向に、安定したマイクロ波の励振が発生する。 In the thus configured waveguide 23, the microwave 6a propagating toward the heating chamber 1 is radiated into the heating chamber 1 through the opening 24a in the same direction. Therefore, even if the length of the propagation part 23a in the tube axis direction is short, an electric field 5a in a uniform direction is generated in the propagation part 23a. As a result, as in the first embodiment, stable microwave excitation is generated in the predetermined direction in the opening 24a.
 管軸27bが傾斜するため、限られた空間において、伝播部23bの管軸方向の長さをより長く設計することができる。そのため、伝播部23b内には一様な方向の電界5bが発生する。その結果、開口24bでは、開口24aにおける励振方向と直交する方向に、安定したマイクロ波の励振が発生する。 Since the tube axis 27b is inclined, the length of the propagation portion 23b in the tube axis direction can be designed to be longer in a limited space. Therefore, an electric field 5b having a uniform direction is generated in the propagation part 23b. As a result, in the opening 24b, stable microwave excitation is generated in a direction orthogonal to the excitation direction in the opening 24a.
 このようにして、マイクロ波が開口24a、24bを通過する際、開口24a、24bにおいて円偏波または楕円偏波が発生する。 Thus, when the microwaves pass through the openings 24a and 24b, circularly polarized waves or elliptically polarized waves are generated in the openings 24a and 24b.
 本実施の形態によれば、上述のように構成された一対の開口(開口24a、24b)を有するコンパクトな導波管23を用いて、円偏波または楕円偏波をより確実に発生させることができる。 According to the present embodiment, by using the compact waveguide 23 having the pair of openings ( openings 24a and 24b) configured as described above, it is possible to more reliably generate circularly polarized waves or elliptically polarized waves. Can do.
 以上のように、本開示のマイクロ波処理装置によれば、マイクロ波を被加熱物に均一に照射することができる。そのため、本開示のマイクロ波処理装置は、調理、殺菌などのためのマイクロ波加熱装置に適用可能である。 As described above, according to the microwave processing apparatus of the present disclosure, it is possible to uniformly irradiate an object to be heated with microwaves. Therefore, the microwave processing apparatus of this indication is applicable to the microwave heating apparatus for cooking, sterilization, etc.
 1 加熱室
 2 マグネトロン
 3,13,23,100,106 導波管
 3a,3b,13a,13b,23a,23b 伝播部
 3c,13c,23c 断面投影領域
 4a,4b,14a,14b,24a,24b,107a,107b 開口
 5a,5b,104 電界
 6a,6b マイクロ波
 7a,7b,17a,17b,27a,27b 管軸
 8a,8b 凸部
 18 台
 19 被加熱物
 50,51,52 電子レンジ
 101 断面
 102 幅狭面
 103 幅広面
 105 電流
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Magnetron 3, 13, 23, 100, 106 Waveguide 3a, 3b, 13a, 13b, 23a, 23b Propagation part 3c, 13c, 23c Section projection area 4a, 4b, 14a, 14b, 24a, 24b, 107a, 107b Opening 5a, 5b, 104 Electric field 6a, 6b Microwave 7a, 7b, 17a, 17b, 27a, 27b Tube axis 8a, 8b Protrusion 18 units 19 Heated object 50, 51, 52 Microwave oven 101 Cross section 102 Width Narrow surface 103 Wide surface 105 Current

Claims (3)

  1.  被加熱物を収納する加熱室と、
     マイクロ波を発生させるマイクロ波発生部と、
     第1伝播部および第2伝播部を含む導波管であって、前記第1伝播部が前記マイクロ波を前記加熱室に向けて伝播させ、前記第2伝播部が前記マイクロ波を前記加熱室に平行に伝播させる導波管と、
     前記導波管と前記加熱室とを連通する第1開口および第2開口を含み、円偏波を発生させる一対の開口と、
    を備え、
     前記第1伝播部の管軸に直交する前記第1伝播部の断面を、前記第1伝播部の管軸に沿って前記加熱室の側面に仮想的に投影することにより区画される断面投影領域と、前記第1開口の少なくとも一部が重なるように、前記第1開口が設けられたマイクロ波処理装置。
    A heating chamber for storing an object to be heated;
    A microwave generator for generating microwaves;
    A waveguide including a first propagation unit and a second propagation unit, wherein the first propagation unit propagates the microwave toward the heating chamber, and the second propagation unit transmits the microwave to the heating chamber. A waveguide propagating parallel to the
    A pair of openings including a first opening and a second opening communicating the waveguide and the heating chamber, and generating circularly polarized waves;
    With
    A cross-sectional projection region defined by virtually projecting a cross section of the first propagation part perpendicular to the tube axis of the first propagation part onto the side surface of the heating chamber along the tube axis of the first propagation part. And a microwave processing apparatus provided with the first opening so that at least a part of the first opening overlaps.
  2.  前記断面投影領域から前記第2開口の中心が外れるように、前記第2伝播部に前記第2開口が設けられた請求項1に記載のマイクロ波処理装置。 The microwave processing apparatus according to claim 1, wherein the second opening is provided in the second propagation part so that a center of the second opening is deviated from the cross-sectional projection region.
  3.  前記第1開口による前記マイクロ波の励振方向と、前記第2開口による前記マイクロ波の励振方向とが互いに平行とならないように、前記第1開口および第2開口が設けられた請求項1に記載のマイクロ波処理装置。 The said 1st opening and 2nd opening were provided so that the excitation direction of the said microwave by the said 1st opening and the excitation direction of the said microwave by the said 2nd opening may not be mutually parallel. Microwave processing equipment.
PCT/JP2015/001326 2014-03-25 2015-03-11 Microwave treatment apparatus WO2015146029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-061330 2014-03-25
JP2014061330A JP2015185409A (en) 2014-03-25 2014-03-25 Microwave processor

Publications (1)

Publication Number Publication Date
WO2015146029A1 true WO2015146029A1 (en) 2015-10-01

Family

ID=54194583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001326 WO2015146029A1 (en) 2014-03-25 2015-03-11 Microwave treatment apparatus

Country Status (2)

Country Link
JP (1) JP2015185409A (en)
WO (1) WO2015146029A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151944U (en) * 1978-04-13 1979-10-22
JPH10106741A (en) * 1996-08-31 1998-04-24 Daewoo Electron Co Ltd Waveguide system of electronic oven
JPH11176570A (en) * 1997-12-02 1999-07-02 Samsung Electron Co Ltd Microwave oven
JP2000048946A (en) * 1998-07-22 2000-02-18 Samsung Electronics Co Ltd Microwave oven
JP3510523B2 (en) * 1998-04-06 2004-03-29 エルジー電子株式会社 Microwave and waveguide systems
WO2012073451A1 (en) * 2010-11-29 2012-06-07 パナソニック株式会社 Microwave heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151944U (en) * 1978-04-13 1979-10-22
JPH10106741A (en) * 1996-08-31 1998-04-24 Daewoo Electron Co Ltd Waveguide system of electronic oven
JPH11176570A (en) * 1997-12-02 1999-07-02 Samsung Electron Co Ltd Microwave oven
JP3510523B2 (en) * 1998-04-06 2004-03-29 エルジー電子株式会社 Microwave and waveguide systems
JP2000048946A (en) * 1998-07-22 2000-02-18 Samsung Electronics Co Ltd Microwave oven
WO2012073451A1 (en) * 2010-11-29 2012-06-07 パナソニック株式会社 Microwave heater

Also Published As

Publication number Publication date
JP2015185409A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
US10362641B2 (en) Microwave treatment apparatus
EP2741574B1 (en) Microwave heating device
JP5991595B2 (en) Microwave heating device
WO2015129233A1 (en) Microwave treatment device
JP6528088B2 (en) Microwave heating device
JP2013218904A (en) Microwave heating device
JP5816820B2 (en) Microwave heating device
WO2015146029A1 (en) Microwave treatment apparatus
JP4836965B2 (en) High frequency heating device
JP6967708B2 (en) High frequency heating device
JP7230802B2 (en) Microwave processor
WO2013001787A1 (en) Microwave heating device
JP2009230881A (en) High-frequency heater
WO2018037801A1 (en) High-frequency heating device
JP7380221B2 (en) microwave processing equipment
JP7178557B2 (en) High frequency heating device
CN111033127B (en) Microwave processing apparatus
JPWO2017081852A1 (en) Microwave heating device
JP5877304B2 (en) Microwave heating device
JP2013120632A (en) Microwave heating device
JP2014089942A (en) Microwave heating device
JP2013254609A (en) Traveling wave type heating apparatus
JP2008166123A (en) Microwave heating device
JP2005050644A (en) Microwave heating device
JP2005044729A (en) Microwave heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769084

Country of ref document: EP

Kind code of ref document: A1