WO2015146028A1 - マイクロ波処理装置 - Google Patents

マイクロ波処理装置 Download PDF

Info

Publication number
WO2015146028A1
WO2015146028A1 PCT/JP2015/001325 JP2015001325W WO2015146028A1 WO 2015146028 A1 WO2015146028 A1 WO 2015146028A1 JP 2015001325 W JP2015001325 W JP 2015001325W WO 2015146028 A1 WO2015146028 A1 WO 2015146028A1
Authority
WO
WIPO (PCT)
Prior art keywords
circularly polarized
opening
waveguide
heating chamber
microwave
Prior art date
Application number
PCT/JP2015/001325
Other languages
English (en)
French (fr)
Inventor
大森 義治
吉野 浩二
辻本 真佐治
山口 崇任
順士 平田
孝之 明石
貞平 匡史
昌之 久保
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/117,688 priority Critical patent/US10362641B2/en
Priority to CN201580009480.0A priority patent/CN106031305B/zh
Publication of WO2015146028A1 publication Critical patent/WO2015146028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus
    • H05B6/6411Supports or covers specially adapted for use in microwave heating apparatus the supports being rotated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/704Feed lines using microwave polarisers

Definitions

  • microwave treatment treatment apparatus such as a microwave oven that heats an object to be heated by microwaves.
  • the microwave processing apparatus is such that a microwave generated by a magnetron, which is a typical microwave generation unit, is supplied to a heating chamber via a waveguide and is to be heated such as food placed in the heating chamber. Is to heat.
  • the electric field distribution generated in the heating chamber by the supplied microwave is not necessarily uniform.
  • the turntable is rotated by a motor and the object to be heated is rotated in the heating chamber, or the rotating antenna is rotated by the motor and the microwave is stirred, The method used to supply is used.
  • FIG. 12 is a diagram showing a current flowing through the surface of a waveguide in a conventional microwave processing apparatus.
  • the rectangular waveguide type waveguide 100 in which the microwave propagates in the TE10 mode has a rectangular shape with a cross section orthogonal to the longitudinal direction, that is, the propagation direction of the microwave, and a narrow surface ( Narrow plain) 102 and a wide surface (Wide plain) 103 wider than the narrow surface 102.
  • circular polarization can be generated, for example, by providing a combination of two openings.
  • FIGS. 13A and 13B are state transition diagrams for explaining a state in which the opening 107 generates circularly polarized waves.
  • the opening 107 has a cross slot shape in which two rectangular slots intersect at an intersecting angle of 90 degrees so as to generate circularly polarized waves.
  • FIG. 13A and 13B show the propagation direction 109 of the microwave and the rotation direction of the circularly polarized wave generated in the opening 107.
  • FIG. FIG. 13A shows a case where the microwave propagates from the upper side to the lower side of the paper
  • FIG. 13B shows a case where the microwave propagates from the lower side to the upper side of the paper.
  • the propagation direction 109 in the waveguide 100 is a downward direction on the paper surface.
  • the magnetic field 108 generated by the microwave also moves downward on the paper as time passes.
  • one rectangular slot of the opening 107 is excited in the excitation direction 110a by the magnetic field.
  • the magnetic field 108 moves downward.
  • the other slot of the opening 107 is excited in the excitation direction 110b.
  • the excitation directions 110c and 110d change in order as shown in the figure, and circularly polarized waves that rotate counterclockwise are generated.
  • the propagation direction 109 in the waveguide 100 is the upward direction on the paper.
  • the magnetic field 108 generated by the microwave also moves upward as time passes.
  • the excitation directions 110a, 110b, 110c, and 110d in the opening 107 are changed in order as shown in the figure, and a circle that rotates clockwise as opposed to FIG. 13A. Polarization occurs. As described above, reversely polarized circularly polarized waves are generated according to the propagation direction 109 in the waveguide 100.
  • FIG. 14 is a schematic plan view of a waveguide that generates circularly polarized waves in the conventional microwave processing apparatus described in Patent Document 1.
  • FIG. FIG. 15 is a schematic perspective view of a waveguide for generating circularly polarized waves in the conventional microwave processing apparatus described in Patent Document 2.
  • Patent Document 1 shows a configuration in which an opening 107 in which two rectangular slots intersect perpendicularly is provided on a waveguide 106a.
  • Patent Document 2 describes a configuration in which two rectangular slot-shaped openings 107a and 107b that are perpendicular to each other and do not intersect are provided on the wide surface of the waveguide 106b.
  • the waveguides 106a and 106b must be designed to be long in order to avoid the influence of disturbance of the electromagnetic field distribution near the magnetron.
  • the reflected waves generated at the ends of the waveguides 106a and 106b generate circularly polarized waves in the reverse rotation direction, thereby canceling the rotation in the excitation direction and generating standing waves in the waveguides 106a and 106b. As a result, the radiation efficiency from the aperture is lowered.
  • a rotating body called a phase shifter 111 is provided at the end of the waveguide 106a in order to change the phase of the reflected wave.
  • the waveguide 106a is not only significantly lengthened, but the effect of reducing the reflected wave is not recognized.
  • the present disclosure solves the above-described problems, and an object thereof is to provide a microwave processing device capable of generating circularly or elliptically polarized waves with high efficiency using a compact waveguide. .
  • a microwave processing apparatus includes a heating chamber that stores an object to be heated, a microwave generation unit that generates a microwave, a waveguide, A plurality of openings.
  • the waveguide has an E-bend structure, a first portion for propagating microwaves from the microwave generation portion toward the heating chamber, and a second portion whose wide surface is in contact with the outside of the heating chamber. And having a portion.
  • the plurality of openings are provided on a side surface of the heating chamber, communicate with the waveguide and the heating chamber, and have at least one circular polarization opening that generates circular polarization.
  • a circularly polarized aperture is provided so that the center of the aperture deviates.
  • FIG. 1 is a cross-sectional view of the microwave processing apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an opening that connects the heating chamber and the waveguide in the microwave processing apparatus according to the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view of the microwave processing apparatus according to the first embodiment.
  • FIG. 4A is a diagram illustrating an example of an opening communicating the heating chamber and the waveguide according to the second embodiment of the present disclosure.
  • FIG. 4B is a diagram showing an example of an opening in the second embodiment.
  • FIG. 4C is a diagram illustrating an example of the opening in the second embodiment.
  • FIG. 4D is a diagram illustrating an example of an opening in the second embodiment.
  • FIG. 4A is a diagram illustrating an example of an opening communicating the heating chamber and the waveguide according to the second embodiment of the present disclosure.
  • FIG. 4B is a diagram showing an example of an opening in the second embodiment.
  • FIG. 4C is a diagram illustrating an example
  • FIG. 5A is a diagram illustrating an example of an opening communicating the heating chamber and the waveguide according to the third embodiment of the present disclosure.
  • FIG. 5B is a diagram showing an example of an opening in the third embodiment.
  • FIG. 5C is a diagram showing an example of an opening in the third embodiment.
  • FIG. 6A is a diagram illustrating an example of a shape of an opening that allows the heating chamber and the waveguide to communicate with each other in the fourth embodiment of the present disclosure.
  • FIG. 6B is a diagram showing an example of the shape of the opening in the fourth embodiment.
  • FIG. 6C is a diagram showing an example of the shape of the opening in the fourth embodiment.
  • FIG. 6D is a diagram showing an example of the shape of the opening in the fourth embodiment.
  • FIG. 6A is a diagram illustrating an example of a shape of an opening that allows the heating chamber and the waveguide to communicate with each other in the fourth embodiment of the present disclosure.
  • FIG. 6B is a diagram showing an example of the shape of the opening
  • FIG. 6E is a diagram illustrating an example of the shape of the opening in the fourth embodiment.
  • FIG. 6F is a diagram illustrating an example of the shape of the opening in the fourth embodiment.
  • FIG. 6G is a diagram illustrating an example of the shape of the opening in the fourth embodiment.
  • FIG. 6H is a diagram illustrating an example of the shape of the opening in the fourth embodiment.
  • FIG. 6I is a diagram illustrating an example of the shape of the opening in the fourth embodiment.
  • FIG. 7 is a diagram illustrating a shape of an opening that communicates the heating chamber and the waveguide according to the fifth embodiment of the present disclosure.
  • FIG. 8A is a diagram illustrating an example of a shape of an opening that communicates the heating chamber and the waveguide according to the sixth embodiment of the present disclosure.
  • FIG. 8A is a diagram illustrating an example of a shape of an opening that communicates the heating chamber and the waveguide according to the sixth embodiment of the present disclosure.
  • FIG. 8B is a diagram showing an example of the shape of the opening that communicates the heating chamber and the waveguide in the sixth embodiment.
  • FIG. 9 is a state transition diagram for explaining the state of occurrence of circular polarization in the sixth embodiment.
  • FIG. 10 is a diagram illustrating an example of the shape of the opening that communicates the heating chamber and the waveguide according to the seventh embodiment of the present disclosure.
  • FIG. 11A is a diagram illustrating the directivity of the slot opening provided in the waveguide.
  • FIG. 11B is a diagram illustrating an example of the directivity of the circularly polarized aperture provided in the waveguide according to the eighth embodiment of the present disclosure.
  • FIG. 11C is a diagram illustrating an example of directivity of a circularly polarized wave aperture provided in the waveguide according to the eighth exemplary embodiment.
  • FIG. 12 is a diagram showing a current flowing in the wall surface of the waveguide in the conventional microwave processing apparatus.
  • FIG. 13A is a state transition diagram illustrating the generation of circularly polarized waves in a cross-slot shaped opening.
  • FIG. 13B is a state transition diagram for explaining the generation of circularly polarized waves in a cross-slot shaped opening.
  • FIG. 14 is a schematic plan view of a waveguide that generates circularly polarized waves in a conventional microwave processing apparatus.
  • FIG. 15 is a schematic perspective view of a waveguide that generates circularly polarized waves in a conventional microwave processing apparatus.
  • the microwave processing apparatus includes a heating chamber that houses an object to be heated, a microwave generation unit that generates microwaves, a waveguide, and a plurality of openings.
  • the waveguide has an E-bend structure, and has a first portion that propagates microwaves from the microwave generation portion toward the heating chamber, and a second portion whose wide surface is in contact with the outside of the heating chamber.
  • the plurality of openings are provided on a side surface of the heating chamber, communicate with the waveguide and the heating chamber, and have at least one circular polarization opening that generates circular polarization.
  • a circularly polarized aperture is provided so that the center of the aperture deviates.
  • a microwave processing device is the reflected wave provided in the first aspect on the terminal end side of the waveguide from the circularly polarized opening and having a length of more than half of the wavelength of the microwave.
  • a suppression opening is further provided. According to this aspect, it is possible to configure a compact waveguide that can reduce reflected waves generated at the terminal.
  • the microwave processing apparatus further includes: a base provided on a lower portion of the heating chamber for placing the object to be heated; Provided, and the reflection wave suppression opening is configured to be located in the lower part of the heating chamber.
  • the amount and phase of the reflected wave from the heating chamber into the waveguide are changed by rotating the object to be heated.
  • the amplitude and position of the standing wave generated in the waveguide varies.
  • the object to be heated can be heated more uniformly.
  • the microwave processing apparatus is the one in which a circularly polarized wave opening is configured by combining two slot openings in the first aspect. According to this aspect, circularly polarized waves can be generated more reliably by generating excitation in two directions.
  • a microwave processing device is the one in which a circularly polarized wave opening is provided so that the center of the circularly polarized wave opening is deviated from the tube axis of the second part in the first aspect. is there. According to this aspect, circular polarization can be more reliably generated by exciting at the end of the magnetic field propagating through the waveguide.
  • the circularly polarized aperture has a regular polygonal shape or a circular shape. According to this aspect, by generating excitation at the end of the magnetic field propagating through the waveguide, the microwave supplied to the heating chamber can be evenly excited in two directions, and the circularly polarized wave can be more reliably generated. Can be generated.
  • a microwave processing apparatus is the microwave processing apparatus according to the first aspect, wherein the circularly polarized aperture is a polygonal aperture having a polygonal shape, and the polygonal aperture has a plurality of diagonal lines that are the longest. is there. According to this aspect, circularly polarized waves can be generated more reliably by generating excitations in two different directions more reliably.
  • a microwave processing apparatus is the fourth aspect, in which the slot opening has a rounded angle, unlike the length in the short direction, in the longitudinal direction, and has a circular polarization.
  • the wave opening has a plurality of longest inner diameters. According to this aspect, by stabilizing the direction of excitation generated in each slot, excitation in two different directions can be generated, and circularly polarized waves can be generated more reliably.
  • the microwave processing apparatus is such that, in the fourth aspect, the circularly polarized aperture is configured such that the slot apertures intersect at an angle other than 90 degrees. According to this aspect, the directivity of the generated circularly polarized wave can be biased in a desired direction.
  • a microwave processing apparatus is the microwave processing apparatus according to the fourth aspect, in which the crossing angle between one slot opening and the tube axis of the waveguide is different from the other slot opening and the tube axis of the waveguide.
  • the circularly polarized aperture is configured so as to be different from the crossing angle. According to this aspect, the directivity of the generated circularly polarized wave can be biased in a desired direction.
  • the microwave processing apparatus of the present disclosure is not limited to a microwave oven, but a processing apparatus that uses microwave heating, a garbage disposal machine, or a semiconductor manufacturing apparatus. Is included.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a microwave oven 20, in particular, a waveguide 3 and a heating chamber 1, which is a microwave processing apparatus according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram showing an opening that connects the heating chamber 1 and the waveguide 3 when viewed from the inside of the heating chamber 1 according to the present embodiment.
  • FIG. 3 is an enlarged cross-sectional view of the vicinity of the waveguide 3 in FIG.
  • a heated object 6 such as a food is placed on a table 5 provided in the heating chamber 1.
  • the magnetron 2 is a microwave generation unit that generates a microwave.
  • the waveguide 3 is attached to the right side surface as viewed from the front of the heating chamber 1.
  • the microwave generated by the magnetron 2 propagates through the waveguide 3 and reaches a circularly polarized wave opening 4 a provided between the heating chamber 1 and the waveguide 3.
  • This microwave passes through the circular polarization aperture 4a, circular polarization occurs in the circular polarization aperture 4a.
  • the microwave that is circularly polarized is supplied to the object to be heated 6 accommodated in the heating chamber 1.
  • the reflected wave suppression opening 4b is provided at a position closer to the end of the waveguide 3 than the circular polarization opening 4a (in the present embodiment, below the circular polarization opening 4a). Communicate.
  • the reflected wave suppression opening 4 b has a rectangular shape whose length in the longitudinal direction is not less than half the wavelength of the microwave propagating through the waveguide 3.
  • the waveguide 3 is a rectangular waveguide having a rectangular cross section perpendicular to the microwave propagation direction.
  • the rectangular waveguide has a pair of opposing surfaces having a wider width and a pair of opposing surfaces having a narrower width.
  • the former is called a wide surface and the latter is called a narrow surface.
  • the waveguide 3 includes a first portion and a second portion whose narrow surfaces are bent into an L shape and are substantially orthogonal to each other. In general, such a configuration is called an E-bend configuration.
  • the first portion extends substantially perpendicular to the side surface of the heating chamber 1 and propagates the microwave in a direction toward the heating chamber 1 (leftward in FIGS. 1 and 3).
  • the second portion extends along the side surface of the heating chamber 1 and propagates the microwave parallel to the side surface of the heating chamber 1 (downward in FIGS. 1 and 3).
  • the first portion is referred to as a vertical portion 3a
  • the second portion is referred to as a parallel portion 3b.
  • the waveguide 3 is installed so that the wide surface of the parallel part 3 b is in contact with the heating chamber 1 and the end of the waveguide 3 is at a height equivalent to the height of the table 5 in the heating chamber 1.
  • the propagation distance of the microwave in the waveguide 3 is such that the central axis of the waveguide 3 parallel to the propagation direction of the microwave, that is, the length of the vertical portion 3a along the tube axis of the waveguide 3 and the parallel portion 3b. It is the sum of the length. Therefore, a sufficient propagation distance can be ensured even in a model in which the heating chamber 1 has a low height. Due to this propagation distance, the disturbance of the electromagnetic field generated in the vicinity of the magnetron 2 can be hardly affected in the vicinity of the circularly polarized wave opening 4a and the reflected wave suppressing opening 4b.
  • the circularly polarized wave opening 4a has an X-shaped cross slot shape in which two rectangular slots having the same shape and dimensions are formed orthogonally.
  • the heating is partitioned by virtually projecting the cross section of the vertical portion 3a perpendicular to the tube axis 7a (see FIG. 3) of the vertical portion 3a onto the side surface of the heating chamber 1 along the tube axis 7a of the vertical portion 3a.
  • the circularly polarized wave opening 4a is arranged so that the center of the circularly polarized wave opening 4a is off the area on the side surface of the chamber 1 (hereinafter referred to as a cross-section projected area 3c).
  • the tube axis 7b of the parallel portion 3b (more precisely, the tube axis 7b is a straight line projected on the wide surface of the parallel portion 3b, and is short in the short direction of the parallel portion 3b of the waveguide 3).
  • the circularly polarized wave aperture 4a is arranged so that the center of the circularly polarized wave aperture 4a deviates from the center line.
  • Such an arrangement of the circularly polarized aperture 4a can generate excitation with a time difference in two directions at the end of the electromagnetic field with little disturbance. As a result, circularly polarized waves or elliptically polarized waves can be generated more reliably.
  • the microwaves propagated to the end of the waveguide 3 are supplied into the heating chamber 1 through the reflected wave suppression opening 4b as linearly polarized microwaves. Since reflection of the microwave at the end of the waveguide 3 can be suppressed by the reflected wave suppression opening 4b, circular polarization or elliptical polarization in the circular polarization opening 4a can be more reliably generated.
  • the object to be heated 6 is mounted on a rotating table 5 driven by a motor (drive device) (not shown), and rotates in the heating chamber 1.
  • a motor drive device
  • the distance between the reflected wave suppression opening 4b provided at the lower portion of the side surface of the heating chamber 1 and the object 6 to be heated changes from time to time, and accordingly, the distance from the heating chamber 1 toward the reflected wave suppression opening 4b.
  • the amount and phase of the microwave (reflected wave 9 shown in FIG. 3) reflected in the same manner also changes.
  • a microwave traveling wave 8 shown in FIG. 3 traveling from the magnetron 2 toward the heating chamber 1 and a reflected wave returning to the waveguide 3 through the reflected wave suppression opening 4 b. 9 and the standing wave 10 are generated.
  • the amount and phase of the reflected wave 9 change from moment to moment, the state of the standing wave 10 also changes in the same manner.
  • the traveling wave 8 and the reflected wave 9 cause a complex electromagnetic field that fluctuates between circularly polarized waves and elliptically polarized waves that are close to linearly polarized waves due to overlapping of two-way rotational excitation (Rotational excitation). Distribution can be generated. Uneven heating can be reduced by microwave heating the article 6 to be heated using this electromagnetic field distribution.
  • the X-shaped circularly polarized wave aperture 4a has been described.
  • the present invention is not limited to this, and the circularly polarized wave aperture 4 may have two rectangular slots that are orthogonal to each other.
  • the circularly polarized wave opening 4 may be L-shaped or T-shaped, and further, as described in Patent Document 2, two orthogonal rectangular slots may be provided with a gap therebetween.
  • (Embodiment 2) 4A to 4D are diagrams illustrating examples of openings that connect the heating chamber 1 and the waveguide 3 in the microwave oven 20 according to the second embodiment of the present disclosure.
  • a circularly polarized wave opening 4aa, a circularly polarized wave opening 4ab, and a reflected wave suppressing opening 4ba are provided on the wide surface of the parallel part 3b.
  • the circularly polarized apertures 4aa and 4ab have the same shape and size as the circularly polarized aperture 4a in the first embodiment, and are provided side by side in the horizontal direction.
  • the reflected wave suppression opening 4ba is substantially the same as the reflected wave suppression opening 4b in the first embodiment, and the same effect as the reflected wave suppression opening 4b can be obtained.
  • a circularly polarized wave opening 4ac, a circularly polarized wave opening 4ad, and a reflected wave suppressing opening 4bb are provided on the wide surface of the parallel portion 3b.
  • the circularly polarized apertures 4ac and 4ad have the same shape and size as the circularly polarized aperture 4a, and are provided obliquely along the wide surface of the parallel portion 3b.
  • the reflected wave suppression opening 4bb is narrower than the reflected wave suppression opening 4b, but the same effect as the reflected wave suppression opening 4b can be obtained.
  • a circularly polarized wave opening 4ae, a circularly polarized wave opening 4af, and a reflected wave suppressing opening 4bc are provided on the wide surface of the parallel portion 3b.
  • the circularly polarized wave opening 4ae has the same shape and size as the circularly polarized wave opening 4a.
  • the circularly polarized wave aperture 4af has the same shape as the circularly polarized wave aperture 4a and is smaller in size than the circularly polarized wave aperture 4a.
  • the circularly polarized wave openings 4ae and 4af are provided in the vertical direction in the right half of the wide surface of the parallel portion 3b.
  • the reflected wave suppression opening 4bc is narrower than the reflected wave suppression opening 4b, but the same effect as the reflected wave suppression opening 4b can be obtained.
  • circularly polarized wave openings 4ag, 4ah, 4ai, 4aj and a reflected wave suppressing opening 4bd are provided on the wide surface of the parallel part 3b.
  • the circularly polarized apertures 4ag and 4ah have the same shape and size as the circularly polarized apertures 4ae and 4af shown in FIG. 4C, respectively, and are provided in the right half of the wide surface of the parallel portion 3b.
  • the circularly polarized wave aperture 4ai and the circularly polarized wave aperture 4aj have the same shape and size as the circularly polarized wave aperture 4ag and the circularly polarized wave aperture 4ah, respectively, and are provided in the left half of the wide surface of the parallel part 3b.
  • the reflected wave suppression opening 4bd is narrower than the reflected wave suppression opening 4b, but the same effect as the reflected wave suppression opening 4b can be obtained.
  • the circularly polarized wave apertures 4aa to 4aj are arranged so that the respective centers are deviated from the cross-sectional projection region 3c and the tube axis 7b. Be placed.
  • excitation with a time difference in two directions can be generated at the end of the electromagnetic field with less disturbance.
  • circularly polarized waves or elliptically polarized waves can be generated more reliably.
  • FIGS. 5A to 5C are diagrams illustrating examples of openings that connect the heating chamber 1 and the waveguide 3 in the microwave oven 20 according to Embodiment 3 of the present disclosure.
  • Circularly polarized wave opening 4ak and a reflected wave suppressing opening 4be are provided on the wide surface of the parallel portion 3b of the waveguide 3.
  • Circularly polarized wave opening 4ak has the same shape and size as circularly polarized wave opening 4a in the first embodiment.
  • the reflected wave suppression opening 4be is substantially the same as the reflected wave suppression opening 4b in the first embodiment, and the same effect as in the first embodiment can be obtained.
  • the circularly polarized wave opening 4al and the reflected wave suppressing opening 4bf are provided on the wide surface of the parallel part 3b.
  • the circularly polarized wave aperture 4al has the same shape as the circularly polarized wave aperture 4a and a larger size than the circularly polarized wave aperture 4a.
  • the reflected wave suppression opening 4bf is narrower than the reflected wave suppression opening 4b, but the same effect as the reflected wave suppression opening 4b can be obtained.
  • the circularly polarized wave opening 4am, the circularly polarized wave opening 4an, and the reflected wave suppressing opening 4bg Provided on wide surface.
  • the circularly polarized apertures 4am and 4an are respectively disposed closer to the tube axis 7b of the parallel portion 3b than the circularly polarized apertures 4ac and 4ad in FIG. 4B.
  • the circularly polarized wave openings 4ak, 4al, 4am and 4n are arranged.
  • excitation with a time difference in two directions can be generated at the end of the electromagnetic field with less disturbance.
  • circularly polarized waves or elliptically polarized waves can be generated more reliably.
  • FIGS. 6A to 6I are diagrams illustrating examples of openings that connect the heating chamber 1 and the waveguide 3 in the microwave oven 20 according to Embodiment 4 of the present disclosure.
  • the circularly polarized wave opening 4ao has a cross slot shape in which two rectangular slots intersect.
  • the circularly polarized wave aperture 4ao has a rectangular slot size different from that of the circularly polarized wave aperture 4a in the first embodiment, or the crossing angle and crossing position of the two rectangular slots are different. To do. However, similarly to the circularly polarized wave aperture 4a, the circularly polarized wave aperture 4ao can generate excitation with a time difference in two directions. As a result, circularly polarized waves or elliptically polarized waves can be generated more reliably.
  • the circularly polarized wave opening 4ao is not limited to the X shape, and the circularly polarized wave opening 4ao may have two rectangular slots that are orthogonal to each other.
  • the circularly polarized wave opening 4ao may be L-shaped or T-shaped, and further, as described in Patent Document 2, two orthogonal rectangular slots may be provided with a gap therebetween. .
  • 6G to 6I are also configured by combining two rectangular slots, but the two rectangular slots do not intersect. Even with such a configuration, the same effect as the circularly polarized wave aperture 4ao shown in FIGS. 6A to 6F can be obtained.
  • the rectangular slot is not limited to a strict rectangular shape.
  • the corners of the rectangular slot may be elliptical.
  • the same effect can be obtained by combining two rectangular slots so that one rectangular slot and another rectangular slot shorter and narrower than the rectangular slot are orthogonal to each other.
  • the rectangular slot included in the circularly polarized wave opening 4ao is not limited to a strict rectangular shape, and for example, the corners of the rectangular slot may be elliptical. Basically, two rectangular slots are combined so that one rectangular slot and another rectangular slot shorter and narrower than the rectangular slot are orthogonal to each other, and the longitudinal direction of the latter rectangular slot is narrower than that of the waveguide 3. The same effect can be obtained by arranging so as to face the surface.
  • FIG. 7 is a diagram illustrating a shape of an opening that connects the heating chamber 1 and the waveguide 3 in the microwave oven 20 according to the fifth embodiment of the present disclosure.
  • the circularly polarized wave opening 4 ap is provided on the wide surface of the waveguide 3.
  • the circularly polarized wave opening 4ap has a cross slot shape in which two slots (slot 16a and slot 16b) are orthogonal to each other.
  • the longitudinal dimension (“length” shown in FIG. 7) of these two slots is longer than the transverse dimension ("width" shown in FIG. 7).
  • the circularly polarized wave aperture 4ap is arranged so that the center of the circularly polarized wave aperture 4ap is deviated from the cross-sectional projection region 3c. Further, the circularly polarized wave opening 4ap is arranged so that the center of the circularly polarized wave opening 4ap is deviated from the tube axis 7b of the parallel portion 3b of the waveguide 3.
  • the amount of microwave power radiated from the slots 16a and 16b mainly depends on the size of the maximum inner diameter 11 of the circularly polarized aperture 4ap.
  • the excitation direction of the microwave depends on the direction of the maximum inner diameter 11.
  • the maximum inner diameter 11 is slightly larger by the roundness at both ends than a circularly polarized opening having a complete rectangular slot. . According to the present embodiment, it is possible to supply the heating chamber 1 with a microwave having a larger electric energy than the circularly polarized aperture described above.
  • excitation with a time difference in two directions can be generated at the end of the electromagnetic field with less disturbance.
  • circularly polarized waves or elliptically polarized waves can be generated more reliably.
  • the slots 16a and 16b have arc-shaped end portions and are shaped like a track for an athletics as a whole, but are rectangular slots with slightly rounded corners. May be used. That is, if each of the two slots has the maximum inner diameter in the longitudinal direction at two or more locations, the same effect can be obtained.
  • FIG. 8A is a diagram illustrating an example of a shape of an opening that communicates the heating chamber 1 and the waveguide 3 in the microwave oven 20 according to Embodiment 6 of the present disclosure.
  • the circularly polarized wave opening 4aq is constituted by one circular opening.
  • the circularly polarized wave opening 4aq is arranged so that the center of the circularly polarized wave opening 4aq deviates from the cross-sectional projection region 3c and the tube axis 7b, as in the above-described embodiment. Even if such a circular circularly polarized aperture 4aq is used, microwave excitation can be evenly generated in a plurality of directions.
  • FIG. 9 is a state transition diagram for explaining the generation of circularly polarized waves by the circularly polarized aperture 4aq in the present embodiment.
  • the microwave radiated from the circularly polarized aperture 4 aq is excited in the excitation direction 14 a by the magnetic field 12.
  • the magnetic field 12 travels in the waveguide 3 (moves downward in FIG. 9), and the microwave radiated from the circularly polarized aperture 4aq is excited in the excitation direction 14b. .
  • the microwave radiated from the circularly polarized wave aperture 4aq is excited in the excitation direction 14c.
  • time t3 after a certain time has elapsed from time t2, the microwave radiated from the circularly polarized wave aperture 4aq is excited in the excitation direction 14d. In this way, circularly polarized waves that rotate counterclockwise are generated.
  • the excitation direction can be changed with time by exciting the microwave radiated from the circularly polarized aperture 4aq at the end of the magnetic field 12 in the waveguide 3.
  • the microwave supplied into the heating chamber 1 can be excited equally in two directions, so that the generation of circularly polarized waves can be made more reliable.
  • the circularly polarized aperture 4aq has a circular shape.
  • the present invention is not limited to this. The same effect can be obtained even when the circularly polarized aperture 4 aq has not only the square shown in FIG. 8B but also a regular polygon such as a regular pentagon or a regular hexagon.
  • FIG. 10 is a diagram illustrating an example of the shape of the opening that communicates the heating chamber 1 and the waveguide 3 in the microwave oven 20 according to the seventh embodiment of the present disclosure.
  • the circularly polarized aperture 4ar has an isosceles trapezoidal shape and has a maximum inner diameter 11 at two locations. That is, in the present embodiment, the length of the diagonal line is the maximum inner diameter 11.
  • excitation in two different directions can be generated more reliably, and as a result, circular polarization can be generated from the circular polarization opening 4ar.
  • FIG. 11A is a diagram illustrating the directivity of the slot opening provided in the waveguide 3.
  • the radiation directivity 15 of the microwave radiated from the slot opening shows a distribution that spreads in a direction orthogonal to the longitudinal direction of the slot opening.
  • the distribution of the radiation directivity 15 does not have a uniform spread in two directions orthogonal to the longitudinal direction of the slot opening, but spreads unevenly according to the installation position, installation direction, etc. of the slot opening on the wide surface.
  • 11B and 11C are diagrams illustrating an example of directivity of the circularly polarized wave opening 4as provided in the waveguide 3 according to the eighth embodiment of the present disclosure.
  • the circularly polarized wave aperture 4as when the circularly polarized wave aperture 4as has a cross slot shape in which the crossing angle of the two slot apertures is 90 degrees, a portion having a weak radiation directivity of one slot aperture is designated as the other radiation directivity. It is possible to form the radiation directivity 15 that exhibits a distribution that is compensated by a strong portion. As a result, the circularly polarized wave aperture 4as shown in FIG. 11B can radiate microwaves in various directions more evenly.
  • the circularly polarized wave opening 4as has a cross slot shape in which the crossing angle of the two slot openings is not 90 degrees, a radiation directivity 15 showing a biased distribution is formed. Accordingly, by appropriately selecting the crossing angle between the two slot openings and the crossing angle between each of the two slot openings and the tube axis 7b of the waveguide 3, the bias of the microwave radiation directivity 15 is utilized. Thus, the electromagnetic field distribution can be adjusted.
  • the microwave processing apparatus of the present disclosure it is possible to uniformly irradiate an object to be heated with microwaves. Therefore, the microwave processing apparatus of this indication is applicable to the microwave heating apparatus for cooking, sterilization, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

電子レンジ(20)は、Eベンド構造を有する導波管(3)と、複数の開口(4a、4b)とを備える。導波管(3)は、マイクロ波をマグネトロン(2)から加熱室(1)に向けて伝播させる第1の部分(3a)と、幅広面が加熱室(1)の外側に接する第2の部分(3b)とを有する。複数の開口(4a、4b)は、加熱室(1)の側面に設けられて導波管(3)と加熱室(1)とを連通し、円偏波を発生させる円偏波開口(4a)を少なくとも一つ有する。第1の部分(3a)の管軸(7a)に直交する第1の部分(3a)の断面を、第1の部分(3a)の管軸(7a)に沿って加熱室(1)の側面に仮想的に投影することにより区画される断面投影領域(3c)から円偏波開口(4a)の中心が外れるように、円偏波開口(4a)が設けられる。この構成により、コンパクトな導波管で確実に円偏波を発生することが可能となる。

Description

マイクロ波処理装置
 本開示は、マイクロ波により被加熱物を加熱する電子レンジ等のマイクロ波処理装置(Microwave treatment apparatus)に関するものである。
 マイクロ波処理装置は、代表的なマイクロ波発生部であるマグネトロンによって発生されたマイクロ波が、導波管を経由して加熱室に供給され、加熱室内に載置された食品などの被加熱物を加熱するものである。
 しかし、供給されるマイクロ波により加熱室内に発生する電界分布は、必ずしも均一ではない。従来、被加熱物を均一に加熱するため、モータによりターンテーブルを回転させて、加熱室内で被加熱物を回転させる方法、または、モータにより回転アンテナを回転させてマイクロ波を攪拌し、加熱室内に供給する方法が使用されている。
 一方、電界の偏波面が時間経過につれて回転する円偏波または楕円偏波を利用することで、均一に被加熱物を加熱しようとする方法が提案されている。円偏波または楕円偏波を発生させるためには、励振方向が交差する一対の励振手段を用いて、位相差を設けた一対の励振を発生させることが必要である。
 図12は、従来のマイクロ波処理装置における導波管の面を流れる電流を示す図である。図12に示すように、TE10モードでマイクロ波が伝播する方形導波管タイプの導波管100は、長手方向すなわちマイクロ波の伝播方向に直交する断面の形状が長方形であり、幅狭面(Narrow plain)102と、幅狭面102より幅の広い幅広面(Wide plain)103とを有する。
 このような導波管100において、マイクロ波伝播方向に垂直な断面101に開口が設けられた場合、導波管100内に一様な方向の電界104が発生し、1軸方向の励振が発生する。幅狭面102に開口が設けられた場合、幅狭面102に一様な方向に電流105が流れ、1軸方向の励振が発生する。
 しかし、幅広面103に開口が設けられた場合、幅広面103上を場所に応じてさまざまな方向に電流105が流れ、2軸方向の励振が発生する。
 上記理由により、励振方向が交差する一対の励振手段を用いて円偏波を発生させるには、幅広面103に開口を設ける必要がある。
 マイクロ波が伝播することにより時間とともに励振位置が移動するので、例えば、二つの開口を組み合わせて設けることにより、円偏波を発生させることができる。
 図13A、図13Bは、開口107が円偏波を発生させる様子を説明するための状態遷移図である。開口107は、円偏波を発生させるように、二つの長方形スロットが交差角度90度で交差したクロススロット(Cross slot)形状を有する。
 図13A、図13Bは、マイクロ波の伝播方向109と、開口107において発生する円偏波の回転方向とを示している。図13Aは、マイクロ波が紙面の上方から下方へ伝播する場合を、図13Bは、マイクロ波が紙面の下方から上方へ伝播する場合を、それぞれ示している。
 図13Aにおいて、導波管100内における伝播方向109は、紙面の下方向である。マイクロ波により発生する磁界108も、時間の経過とともに紙面の下方向へ移動する。
 図13Aに示すように、時刻t0では、磁界108により、開口107の一方の長方形スロットが励振方向110aに励振される。一定時間後の時刻t1では、磁界108は下方向に移動する。時刻t1では、開口107の他方のスロットが励振方向110bに励振される。時刻t2、t3においては、励振方向110c、110dが図示されるように順に変わり、反時計回り方向に回転する円偏波が発生する。
 図13Bでは、導波管100内における伝播方向109は、紙面の上方向である。マイクロ波により発生する磁界108も、時間の経過とともに紙面の上方向へ移動する。図13Bにおいても、時刻t0からt3に時間が経過すると、開口107における励振方向110a、110b、110c、110dが図示されるように順に変わり、図13Aとは逆に、時計回り方向に回転する円偏波が発生する。上記の通り、導波管100内における伝播方向109に応じて、逆回転の円偏波が発生する。
 図14は、特許文献1に記載された従来のマイクロ波処理装置における円偏波を発生させる導波管の概略平面図である。図15は、特許文献2に記載された従来のマイクロ波処理装置における円偏波を発生させる導波管の概略斜視図である。
 図14に示すように、特許文献1には、二つの長方形スロットが垂直に交差する開口107が導波管106a上に設けられた構成が示されている。図15に示すように、特許文献2には、交差しない互いに垂直な二つの長方形スロット状の開口107a、107bが、導波管106bの幅広面に設けられた構成が記載されている。
米国特許第4301347号明細書 特許第3510523号公報
 しかしながら、特許文献1、2に記載された従来技術においては、マグネトロン近傍の電磁界分布の乱れなどの影響を回避するため、導波管106a、106bを長く設計せざるを得ない。
 導波管106a、106bの終端で発生する反射波により、逆回転方向の円偏波が発生することにより、励振方向の回転が打ち消されたり、導波管106a、106b内に定在波が発生することにより、開口からの放射効率が低くなったりする。
 特許文献1に記載された従来技術においては、図14に示すように、反射波の位相を変化させるため、導波管106aの終端に位相シフタ(Phase shifter)111という回転体が設けられる。しかし、この従来技術においては、導波管106aが大幅に長くなるばかりでなく、反射波を減らす効果が認められない。
 本開示は上記問題点を解決するものであり、コンパクトな導波管を用いて高効率に円偏波または楕円偏波を発生させることが可能なマイクロ波処理装置を提供することを目的とする。
 上記従来の問題点を解決するために、本開示の一態様に係るマイクロ波処理装置は、被加熱物を収納する加熱室と、マイクロ波を発生させるマイクロ波発生部と、導波管と、複数の開口とを備える。
 導波管は、Eベンド構造(E-bend structure)を有し、マイクロ波をマイクロ波発生部から加熱室に向けて伝播させる第1の部分と、幅広面が加熱室の外側に接する第2の部分とを有する。複数の開口は、加熱室の側面に設けられて導波管と加熱室とを連通し、円偏波を発生させる円偏波開口を少なくとも一つ有する。
 第1の部分の管軸に直交する第1の部分の断面を、第1の部分の管軸に沿って加熱室の側面に仮想的に投影することにより区画される断面投影領域から円偏波開口の中心が外れるように、円偏波開口が設けられる。
 本態様によれば、マグネトロンの近傍における電磁界分布の乱れなどの影響を抑制することができる。その結果、コンパクトな導波管で円偏波または楕円偏波の発生をより確実することができる。
図1は、本開示の実施の形態1に係るマイクロ波処理装置の断面図である。 図2は、実施の形態1に係るマイクロ波処理装置における加熱室と導波管とを連通する開口を示す図である。 図3は、実施の形態1に係るマイクロ波処理装置の拡大断面図である。 図4Aは、本開示の実施の形態2における加熱室と導波管とを連通する開口の一例を示す図である。 図4Bは、実施の形態2における開口の一例を示す図である。 図4Cは、実施の形態2における開口の一例を示す図である。 図4Dは、実施の形態2における開口の一例を示す図である。 図5Aは、本開示の実施の形態3における加熱室と導波管とを連通する開口の一例を示す図である。 図5Bは、実施の形態3における開口の一例を示す図である。 図5Cは、実施の形態3における開口の一例を示す図である。 図6Aは、本開示の実施の形態4における加熱室と導波管とを連通する開口の形状の一例を示す図である。 図6Bは、実施の形態4における開口の形状の一例を示す図である。 図6Cは、実施の形態4における開口の形状の一例を示す図である。 図6Dは、実施の形態4における開口の形状の一例を示す図である。 図6Eは、実施の形態4における開口の形状の一例を示す図である。 図6Fは、実施の形態4における開口の形状の一例を示す図である。 図6Gは、実施の形態4における開口の形状の一例を示す図である。 図6Hは、実施の形態4における開口の形状の一例を示す図である。 図6Iは、実施の形態4における開口の形状の一例を示す図である。 図7は、本開示の実施の形態5における加熱室と導波管とを連通する開口の形状を示す図である。 図8Aは、本開示の実施の形態6における加熱室と導波管とを連通する開口の形状の一例を示す図である。 図8Bは、実施の形態6における加熱室と導波管とを連通する開口の形状の一例を示す図である。 図9は、実施の形態6における円偏波の発生の様子を説明する状態遷移図である。 図10は、本開示の実施の形態7における加熱室と導波管とを連通する開口の形状の一例を示す図である。 図11Aは、導波管に設けられたスロット開口の指向性を示す図である。 図11Bは、本開示の実施の形態8における導波管に設けられた円偏波開口の指向性の一例を示す図である。 図11Cは、実施の形態8における導波管に設けられた円偏波開口の指向性の一例を示す図である。 図12は、従来のマイクロ波処理装置における導波管の壁面に流れる電流を示す図である。 図13Aは、クロススロット形状の開口における円偏波の発生を説明する状態遷移図である。 図13Bは、クロススロット形状の開口における円偏波の発生を説明する状態遷移図である。 図14は、従来のマイクロ波処理装置における円偏波を発生させる導波管の概略平面図である。 図15は、従来のマイクロ波処理装置における円偏波を発生させる導波管の概略斜視図である。
 本開示の第1の態様に係るマイクロ波処理装置は、被加熱物を収納する加熱室と、マイクロ波を発生させるマイクロ波発生部と、導波管と、複数の開口とを備える。
 導波管は、Eベンド構造を有し、マイクロ波をマイクロ波発生部から加熱室に向けて伝播させる第1の部分と、幅広面が加熱室の外側に接する第2の部分とを有する。複数の開口は、加熱室の側面に設けられて導波管と加熱室とを連通し、円偏波を発生させる円偏波開口を少なくとも一つ有する。
 第1の部分の管軸に直交する第1の部分の断面を、第1の部分の管軸に沿って加熱室の側面に仮想的に投影することにより区画された断面投影領域から円偏波開口の中心が外れるように、円偏波開口が設けられる。
 本開示の第2の態様に係るマイクロ波処理装置は、第1の態様において、円偏波開口より導波管の終端側に設けられ、マイクロ波の波長の半分以上の長さを有する反射波抑制開口をさらに備える。本態様によれば、終端で発生する反射波を低減できるコンパクトな導波管を構成することができる。
 本開示の第3の態様に係るマイクロ波処理装置は、第2の態様において、加熱室の下部に設けられ被加熱物を載置するための台と、台を回転させる駆動装置と、をさらに備え、反射波抑制開口が加熱室の下部に位置するように構成される。
 本態様によれば、被加熱物を回転させることにより、加熱室から導波管内への反射波の量および位相が変動する。これに応じて、導波管内に発生する定在波の振幅および位置が変動する。その結果、より均一に被加熱物を加熱することができる。
 本開示の第4の態様に係るマイクロ波処理装置は、第1の態様において、二つのスロット開口を組み合わせて円偏波開口が構成されたものである。本態様によれば、二方向の励振を発生させることにより、円偏波をより確実に発生させることができる。
 本開示の第5の態様に係るマイクロ波処理装置は、第1の態様において、第2の部分の管軸から円偏波開口の中心がずれるように、円偏波開口が設けられたものである。本態様によれば、導波管を伝播する磁界の端で励振させることにより、円偏波をより確実に発生させることができる。
 本開示の第6の態様に係るマイクロ波処理装置は、第1の態様において、円偏波開口が正多角形または円形の形状を有するものである。本態様によれば、導波管を伝播する磁界の端で励振を発生させることにより、加熱室内に供給されるマイクロ波を二方向に均等に励振させることができ、円偏波をより確実に発生させることができる。
 本開示の第7の態様に係るマイクロ波処理装置は、第1の態様において、円偏波開口が多角形の形状を有する多角形開口であり、多角形開口が最も長い対角線を複数有するものである。本態様によれば、異なる二方向の励振をより確実に発生させることにより、円偏波をより確実に発生させることができる。
 本開示の第8の態様に係るマイクロ波処理装置は、第4の態様において、スロット開口は、長手方向の長さが短手方向の長さと異なり、丸みを帯びた角を有し、円偏波開口は最も長い内径を複数有するものである。本態様によれば、各スロットにおいて発生する励振の方向を安定させることにより、異なる二方向の励振を発生させ、円偏波をより確実に発生させることができる。
 本開示の第9の態様に係るマイクロ波処理装置は、第4の態様において、スロット開口が90度以外の角度で交差するように、円偏波開口が構成されたものである。本態様によれば、発生する円偏波の指向性を所望の方向に偏らせることができる。
 本開示の第10の態様に係るマイクロ波処理装置は、第4の態様において、一方のスロット開口と導波管の管軸との交差角度が、他方のスロット開口と導波管の管軸との交差角度と異なるように、円偏波開口が構成されたものである。本態様によれば、発生する円偏波の指向性を所望の方向に偏らせることができる。
 以下、本開示に係るマイクロ波処理装置の好適な実施の形態について、添付の図面を参照しながら説明する。本実施の形態においては、電子レンジに適用した例について説明するが、本開示のマイクロ波処理装置は電子レンジ以外に、マイクロ波加熱を利用した処理装置、生ゴミ処理機、または半導体製造装置などを含むものである。
 なお、以下の全ての図面において、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。
 (実施の形態1)
 図1は、本開示の実施の形態1に係るマイクロ波処理装置である電子レンジ20、特に導波管3および加熱室1の構成を示す概略断面図である。図2は、本実施の形態における加熱室1の内側から見た場合の加熱室1と導波管3とを連通する開口を示す図である。図3は図1における導波管3の近傍を拡大した断面図である。
 図1から図3に示すように、本実施の形態に係るマイクロ波処理装置である電子レンジ20において、食品などの被加熱物6は加熱室1内に設けられた台5に載置される。マグネトロン2は、マイクロ波を発生させるマイクロ波発生部である。導波管3は、加熱室1の正面から見て右側の側面に取り付けられる。
 マグネトロン2によって発生されたマイクロ波は、導波管3を伝播し、加熱室1と導波管3との間に設けられた円偏波開口4aに達する。このマイクロ波が円偏波開口4aを通過する際、円偏波開口4aにおいて円偏波が発生する。円偏波となったマイクロ波は、加熱室1に収容された被加熱物6に供給される。
 反射波抑制開口4bは、円偏波開口4aより導波管3の終端に近い位置(本実施の形態では、円偏波開口4aの下方)に設けられ、加熱室1と導波管3とを連通する。反射波抑制開口4bは、長手方向の長さが、導波管3を伝播するマイクロ波の波長の半分以上である長方形の形状を有する。
 導波管3は、マイクロ波の伝播方向に直交する断面の形状が長方形の形状を有する方形導波管である。方形導波管は、より広い幅を有する対向する一対の面と、より狭い幅を有する対向する一対の面とを有する。前者は幅広面、後者は幅狭面と呼ばれる。
 導波管3は、幅狭面がL字形状に屈曲して互いに実質的に直交する第1の部分と第2の部分とを含む。一般的に、このような構成をEベンド構成という。
 第1の部分は、加熱室1の側面に対して実質的に垂直に延在し、加熱室1に向かう方向(図1および図3においては左方向)にマイクロ波を伝播する。第2の部分は、加熱室1の側面に沿って延在し、加熱室1の側面に平行(図1および図3においては下方向)にマイクロ波を伝播する。以下、第1の部分を垂直部3a、第2の部分を平行部3bという。
 導波管3は、平行部3bの幅広面が加熱室1に接し、導波管3の終端が加熱室1内の台5の高さと同等の高さになるように設置される。
 このような構成により、マグネトロン2の設置に必要な空間にほぼ収まる導波管3を構成することができる。
 導波管3内におけるマイクロ波の伝播距離は、マイクロ波の伝播方向に平行な導波管3の中心軸、すなわち導波管3の管軸に沿った垂直部3aの長さと平行部3bの長さとの合計である。したがって、加熱室1の高さが低い機種でも十分な伝播距離を確保できる。この伝播距離により、マグネトロン2の近辺に発生する電磁界の乱れが、円偏波開口4a、反射波抑制開口4bの近辺に影響を及ぼし難くすることができる。
 図2に示すように、円偏波開口4aは、形、寸法が同一の二つの長方形スロットが直交して形成するX字形状のクロススロット形状を有する。
 垂直部3aの管軸7a(図3参照)に直交する垂直部3aの断面を、垂直部3aの管軸7aに沿って加熱室1の側面に仮想的に投影することにより区画される、加熱室1の側面上の領域(以下、断面投影領域(Cross-section projected area)3cという)から、円偏波開口4aの中心が外れるように、円偏波開口4aが配置される。
 さらに、図2に示す、平行部3bの管軸7b(正確には、管軸7bが平行部3bの幅広面に投影された直線であり、導波管3の平行部3bの短手方向の中心線)から、円偏波開口4aの中心が外れるように、円偏波開口4aが配置される。
 このような円偏波開口4aの配置により、乱れの少ない電磁界の端で、二方向に時間差を設けた励振を発生させることができる。その結果、円偏波または楕円偏波をより確実に発生させることができる。
 導波管3の終端まで伝播してきたマイクロ波のほとんどが、直線偏波のマイクロ波として反射波抑制開口4bを通して加熱室1内に供給される。反射波抑制開口4bにより、導波管3の終端におけるマイクロ波の反射を抑えることができるため、円偏波開口4aにおける円偏波または楕円偏波をより確実に発生させることができる。
 被加熱物6は、図示しないモータ(駆動装置)により駆動され回転する台5に載置され、加熱室1内で回転する。この時、加熱室1の側面の下部に設けられた反射波抑制開口4bと被加熱物6との距離は時々刻々と変化し、それに伴って、加熱室1内から反射波抑制開口4bに向かって反射するマイクロ波(図3に示す反射波9)の量および位相も同様に変化する。
 導波管3の中において、マグネトロン2から加熱室1に向かって進行するマイクロ波(図3に示す進行波8)と、反射波抑制開口4bを通って導波管3に戻ってきた反射波9とが重なり合うことにより、定在波10が発生する。上述のように、反射波9の量および位相が時々刻々と変化するため、定在波10の状態も同様に変化する。
 以上のように、進行波8と反射波9とにより、二方向の回転励振(Rotational excitation)が重なって、円偏波と直線偏波に近い楕円偏波との間を変動する複雑な電磁界分布を発生させることができる。この電磁界分布を用いて被加熱物6をマイクロ波加熱することにより、加熱むらを低減することができる。
 なお、本実施の形態では、X字形状の円偏波開口4aについて説明したが、これに限定されず、直交する二つの長方形スロットを円偏波開口4が有すれば良い。例えば、円偏波開口4はL字形状やT字形状でも良く、さらには、特許文献2に記載されるように、直交する二つの長方形スロットが間隔を空けて設けられても良い。
 (実施の形態2)
 図4A~図4Dは、本開示の実施の形態2に係る電子レンジ20における加熱室1と導波管3とを連通する開口の例を示す図である。
 図4Aに示すように、円偏波開口4aaと円偏波開口4abと反射波抑制開口4baとが平行部3bの幅広面に設けられる。円偏波開口4aa、4abは、実施の形態1における円偏波開口4aと同一の形状および大きさを有し、横方向に並んで設けられる。
 反射波抑制開口4baは、実施の形態1における反射波抑制開口4bと実質的に同一であり、反射波抑制開口4bと同様の効果を得ることができる。
 図4Bに示すように、円偏波開口4acと円偏波開口4adと反射波抑制開口4bbとが平行部3bの幅広面に設けられる。円偏波開口4ac、4adは、円偏波開口4aと同一の形状および大きさを有し、平行部3bの幅広面に斜めに並んで設けられる。
 反射波抑制開口4bbは、幅は反射波抑制開口4bより狭いが、反射波抑制開口4bと同様の効果を得ることができる。
 図4Cに示すように、円偏波開口4aeと円偏波開口4afと反射波抑制開口4bcとが平行部3bの幅広面に設けられる。円偏波開口4aeは、円偏波開口4aと同一の形状および大きさを有する。円偏波開口4afは、形状が円偏波開口4aと同一で大きさが円偏波開口4aより小さい。円偏波開口4ae、4afは、平行部3bの幅広面の右半分に縦方向に並んで設けられる。
 反射波抑制開口4bcは、幅は反射波抑制開口4bより狭いが、反射波抑制開口4bと同様の効果を得ることができる。
 図4Dに示すように、円偏波開口4ag、4ah、4ai、4ajと反射波抑制開口4bdとが平行部3bの幅広面に設けられる。円偏波開口4ag、4ahは、図4Cに示す円偏波開口4ae、4afとそれぞれ同一の形状および大きさを有し、平行部3bの幅広面の右半分に設けられる。円偏波開口4aiと円偏波開口4ajとは、円偏波開口4agと円偏波開口4ahとそれぞれ同一の形状および大きさを有し、平行部3bの幅広面の左半分に設けられる。
 反射波抑制開口4bdは、幅は反射波抑制開口4bより狭いが、反射波抑制開口4bと同様の効果を得ることができる。
 図4Aから図4Dに示すように、実施の形態1における円偏波開口4aと同様に、断面投影領域3cおよび管軸7bから、それぞれの中心が外れるように、円偏波開口4aa~4ajが配置される。
 以上のような構成により、乱れの少ない電磁界の端で、二方向に時間差を設けた励振を発生させることができる。その結果、円偏波または楕円偏波をより確実に発生させることができる。
 (実施の形態3)
 図5A~図5Cは、本開示の実施の形態3に係る電子レンジ20における加熱室1と導波管3とを連通する開口の例を示す図である。
 図5Aに示すように、円偏波開口4akと反射波抑制開口4beとが導波管3の平行部3bの幅広面に設けられる。円偏波開口4akは、実施の形態1における円偏波開口4aと同一の形状および大きさを有する。
 反射波抑制開口4beは、実施の形態1における反射波抑制開口4bと実質的に同一であり、実施の形態1と同様の効果を得ることができる。
 図5Bに示すように、円偏波開口4alと反射波抑制開口4bfとが平行部3bの幅広面に設けられる。円偏波開口4alは、形状が円偏波開口4aと同一で大きさが円偏波開口4aより大きい。
 反射波抑制開口4bfは、幅は反射波抑制開口4bより狭いが、反射波抑制開口4bと同様の効果を得ることができる。
 図5Cに示すように、図4Bにおける円偏波開口4ac、4adと反射波抑制開口4bbと同様に、円偏波開口4amと円偏波開口4anと反射波抑制開口4bgとが平行部3bの幅広面に設けられる。円偏波開口4am、4anはそれぞれ、図4Bにおける円偏波開口4ac、4adより平行部3bの管軸7bの近くに配置される。
 図5Aから図5Cに示すように、実施の形態1における円偏波開口4aと同様に、断面投影領域3cおよび管軸7bから、それぞれの中心が外れるように、円偏波開口4ak、4al、4am、4nが配置される。
 以上のような構成により、乱れの少ない電磁界の端で、二方向に時間差を設けた励振を発生させることができる。その結果、円偏波または楕円偏波をより確実に発生させることができる。
 (実施の形態4)
 図6A~図6Iは、本開示の実施の形態4に係る電子レンジ20における加熱室1と導波管3とを連通する開口の例を示す図である。
 図6Aから図6Fに示すように、円偏波開口4aoは、二つの長方形スロットが交差するクロススロット形状を有する。
 図6Aから図6Fでは、円偏波開口4aoは、実施の形態1における円偏波開口4aと比べて、長方形スロットの大きさが異なったり、二つの長方形スロットの交差角度、交差位置が異なったりする。しかし、円偏波開口4aoは、円偏波開口4aと同様に、二方向に時間差を設けた励振を発生させることができる。その結果、円偏波または楕円偏波をより確実に発生させることができる。
 円偏波開口4aoはX字形状に限定されず、直交する二つの長方形スロットを円偏波開口4aoが有すれば良い。例えば、円偏波開口4aoは、L字型やT字型の形状でも良く、さらには、特許文献2に記載されるように、直交する二つの長方形スロットが間隔を空けて設けられても良い。
 図6Gから図6Iに示す円偏波開口4aoも、二つの長方形スロットを組み合わせて構成されるが、二つの長方形スロットは交差しない。これらのような構成でも、図6Aから図6Fに示す円偏波開口4aoと同様の効果が得られる。
 長方形スロットは、厳密な長方形の形状に限定されず、例えば、長方形スロットの角が楕円形状であっても良い。一つの長方形スロットと、その長方形スロットより短く細いもう一つの長方形スロットとが直交するように、二つの長方形スロットを組み合わせれば、同様の効果が得られる。
 円偏波開口4aoに含まれる長方形スロットは、厳密な長方形の形状に限定されず、例えば、長方形スロットの角が楕円形状であっても良い。基本的に、一つの長方形スロットと、その長方形スロットより短く細いもう一つの長方形スロットとが直交するように、二つの長方形スロットを組み合わせ、後者の長方形スロットの長手方向が導波管3の幅狭面の方向に向くように配置すれば、同様の効果を得ることができる。
 (実施の形態5)
 図7は、本開示の実施の形態5に係る電子レンジ20における加熱室1と導波管3とを連通する開口の形状を示す図である。
 図7に示すように、円偏波開口4apは、導波管3の幅広面に設けられる。円偏波開口4apは、二つのスロット(スロット16a、スロット16b)が直交するクロススロット形状を有する。これら二つのスロットの長手方向の寸法(図7に示す「長さ」)は、短手方向の寸法(図7に示す「幅」)より長い。
 上述の実施の形態と同様に、断面投影領域3cから、円偏波開口4apの中心が外れるように、円偏波開口4apが配置される。さらに、導波管3の平行部3bの管軸7bから、円偏波開口4apの中心が外れるように、円偏波開口4apが配置される。
 スロット16a、16bから放射されるマイクロ波の電力量は、主に円偏波開口4apの最大内径11の大きさに依存する。なお、マイクロ波の励振方向は、最大内径11の向きに依存する。
 図7に示すように、スロット16a、16bの両端が円弧状に形成されているため、最大内径11は、完全な長方形スロットを有する円偏波開口と比べて両端の丸みの分だけ少し大きくなる。本実施の形態によれば、上述の円偏波開口より大きな電力量のマイクロ波を加熱室1に供給することができる。
 以上のような構成により、乱れの少ない電磁界の端で、二方向に時間差を設けた励振を発生させることができる。その結果、円偏波または楕円偏波をより確実に発生させることができる。
 なお、本実施の形態において、スロット16a、16bは、円弧状の端部を有して全体として陸上競技のトラック(Track)のような形状としたが、角に少し丸みを持たせた長方形スロットを用いても良い。すなわち、二つのスロットがそれぞれ、長手方向の最大内径を二箇所以上で有すれば、同様の効果を得ることができる。
 (実施の形態6)
 図8Aは、本開示の実施の形態6に係る電子レンジ20における加熱室1と導波管3とを連通する開口の形状の一例を示す図である。本実施の形態では、円偏波開口4aqが一つの円形開口で構成される。
 図8Aに示すように、上述の実施の形態と同様に、断面投影領域3cおよび管軸7bから、円偏波開口4aqの中心が外れるように、円偏波開口4aqが配置される。このような一つの円形状の円偏波開口4aqを用いても、マイクロ波の励振を複数方向に均等に発生させることができる。
 図9は、本実施の形態における円偏波開口4aqによる円偏波の発生の様子を説明する状態遷移図である。
 図9において、図13Aと同様に、マイクロ波の伝播方向13が紙面の下方向で、磁界12が、時間の経過とともに下方向へ移動する。
 図9に示すように、時刻t0では、円偏波開口4aqから放射されるマイクロ波は、磁界12により励振方向14aに励振される。一定時間経過後の時刻t1では、磁界12は導波管3内を進行(図9における下方向に移動)し、円偏波開口4aqから放射されるマイクロ波は、励振方向14bに励振される。
 時刻t1から一定時間経過後の時刻t2において、円偏波開口4aqから放射されるマイクロ波は励振方向14cに励振される。時刻t2から一定時間経過後の時刻t3において、円偏波開口4aqから放射されるマイクロ波は、励振方向14dに励振される。このようにして、反時計回り方向に回転する円偏波が発生する。
 上記の通り、導波管3内における磁界12の端で、円偏波開口4aqから放射されるマイクロ波を励振させることにより、時間とともに励振方向を変化させることができる。その結果、加熱室1内に供給されるマイクロ波を均等に二方向に励振させることができるので、円偏波の発生をより確実にすることができる。
 なお、本実施の形態では、円偏波開口4aqが円形形状である場合について説明したが、これに限定されない。円偏波開口4aqが、図8Bに示す正方形だけでなく、正五角形や正六角形などの正多角形の形状を有する場合でも、同様の効果を得ることができる。
 (実施の形態7)
 図10は、本開示の実施の形態7に係る電子レンジ20における加熱室1と導波管3とを連通する開口の形状の一例を示す図である。
 図10に示すように、円偏波開口4arは、等脚台形形状を有し、最大内径11を二箇所で有する。すなわち、本実施の形態では、対角線の長さが最大内径11である。
 本実施の形態によれば、異なる二方向の励振をより確実に発生させることができ、その結果、円偏波開口4arから円偏波を発生させることができる。
 (実施の形態8)
 図11Aは、導波管3に設けられたスロット開口の指向性を説明する図である。
 図11Aに示すように、スロット開口から放射されるマイクロ波の放射指向性(Radiation directivity)15は、スロット開口の長手方向に直交する方向に広がるような分布を示す。ただし、放射指向性15の分布は、スロット開口の長手方向に直交する二つの方向に均等な広がりを有するのではなく、幅広面におけるスロット開口の設置位置、設置方向などに応じて偏った広がりを有する。
 図11B、図11Cは、本開示の実施の形態8における導波管3に設けられた円偏波開口4asの指向性の一例を説明する図である。
 図11Bに示すように、円偏波開口4asが、二つのスロット開口の交差角度が90度であるクロススロット形状を有する場合、一方のスロット開口の放射指向性の弱い部分を、他方の放射指向性の強い部分で補うような分布を示す放射指向性15を形成することができる。その結果、図11Bに示す円偏波開口4asは、さまざまな方向に、より均等にマイクロ波を放射することができる。
 図11Cに示すように、円偏波開口4asが、二つのスロット開口の交差角度が90度でないクロススロット形状を有する場合、偏った分布を示す放射指向性15が形成される。従って、二つのスロット開口の交差角度、および、二つのスロット開口の各々と導波管3の管軸7bとの交差角度を適宜選択することにより、マイクロ波の放射指向性15の偏りを利用して電磁界分布を調整することができる。
 以上のように、本開示のマイクロ波処理装置によれば、マイクロ波を被加熱物に均一に照射することができる。そのため、本開示のマイクロ波処理装置は、調理、殺菌などのためのマイクロ波加熱装置に適用可能である。
 1 加熱室
 2 マグネトロン
 3,100,106a,106b 導波管
 3a 垂直部
 3b 平行部
 3c 断面投影領域
 4,4a,4aa,4ab,4ac,4ad,4ae,4af,4ag,4ah,4ai,4aj,4ak,4al,4am,4an,4ao,4ap,4aq,4ar,4as 円偏波開口
 4b,4ba,4bb,4bc,4bd,4be,4bf,4bg 反射波抑制開口
 5 台
 6 被加熱物
 7a,7b 管軸
 8 進行波
 9 反射波
 10 定在波
 11 最大内径
 12,108 磁界
 13,109 伝播方向
 14a,14b,14c,14d,110a,110b,110c 励振方向
 15 放射指向性
 16a,16b スロット
 20 電子レンジ

Claims (10)

  1.  被加熱物を収納する加熱室と、
     マイクロ波を発生させるマイクロ波発生部と、
     Eベンド構造を有し、前記マイクロ波を前記マイクロ波発生部から前記加熱室に向けて伝播させる第1の部分と、幅広面が前記加熱室の外側に接する第2の部分とを有する導波管と、
     前記加熱室の側面に設けられて前記導波管と前記加熱室とを連通し、円偏波を発生させる円偏波開口を少なくとも一つ有する複数の開口と、
    を備え、
     前記第1の部分の管軸に直交する前記第1の部分の断面を、前記第1の部分の管軸に沿って前記加熱室の側面に仮想的に投影することにより区画される断面投影領域から前記円偏波開口の中心が外れるように、前記円偏波開口が設けられたマイクロ波処理装置。
  2.  前記円偏波開口より前記導波管の終端側に設けられ、前記マイクロ波の波長の半分以上の長さを有する反射波抑制開口をさらに備えた請求項1に記載のマイクロ波処理装置。
  3.  前記加熱室の下部に設けられ前記被加熱物を載置するための台と、
     前記台を回転させる駆動装置と、
    をさらに備え、
     前記反射波抑制開口が前記加熱室の下部に位置するように構成された請求項2に記載のマイクロ波処理装置。
  4.  二つのスロット開口を組み合わせて前記円偏波開口が構成された請求項1に記載のマイクロ波処理装置。
  5.  前記第2の部分の管軸から前記円偏波開口の中心がずれるように、前記円偏波開口が設けられた請求項1に記載のマイクロ波処理装置。
  6.  前記円偏波開口が正多角形または円形の形状を有する請求項1に記載のマイクロ波処理装置。
  7.  前記円偏波開口が多角形の形状を有する多角形開口であり、
     前記多角形開口が最も長い対角線を複数有する請求項1に記載のマイクロ波処理装置。
  8.  前記スロット開口は、長手方向の長さが短手方向の長さと異なり、丸みを帯びた角を有し、
     前記円偏波開口は最も長い内径を複数有する請求項4に記載のマイクロ波処理装置。
  9.  前記スロット開口が90度以外の角度で交差するように、前記円偏波開口が構成された請求項4に記載のマイクロ波処理装置。
  10.  一方の前記スロット開口と前記導波管の管軸との交差角度が、他方の前記スロット開口と前記導波管の管軸との交差角度と異なるように、前記円偏波開口が構成された請求項4に記載のマイクロ波処理装置。
PCT/JP2015/001325 2014-03-25 2015-03-11 マイクロ波処理装置 WO2015146028A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/117,688 US10362641B2 (en) 2014-03-25 2015-03-11 Microwave treatment apparatus
CN201580009480.0A CN106031305B (zh) 2014-03-25 2015-03-11 微波处理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-061329 2014-03-25
JP2014061329 2014-03-25
JP2015-011260 2015-01-23
JP2015011260A JP2015195175A (ja) 2014-03-25 2015-01-23 マイクロ波処理装置

Publications (1)

Publication Number Publication Date
WO2015146028A1 true WO2015146028A1 (ja) 2015-10-01

Family

ID=54194582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001325 WO2015146028A1 (ja) 2014-03-25 2015-03-11 マイクロ波処理装置

Country Status (4)

Country Link
US (1) US10362641B2 (ja)
JP (1) JP2015195175A (ja)
CN (1) CN106031305B (ja)
WO (1) WO2015146028A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024177A1 (en) 2013-08-20 2015-02-26 Whirlpool Corporation Method for detecting the status of popcorn in a microwave
WO2015099649A1 (en) 2013-12-23 2015-07-02 Whirlpool Corporation Interrupting circuit for a radio frequency generator
WO2016144872A1 (en) 2015-03-06 2016-09-15 Whirlpool Corporation Method of calibrating a high power amplifier for a radio frequency power measurement system
US10904962B2 (en) 2015-06-03 2021-01-26 Whirlpool Corporation Method and device for electromagnetic cooking
US11483905B2 (en) 2016-01-08 2022-10-25 Whirlpool Corporation Method and apparatus for determining heating strategies
US10764970B2 (en) 2016-01-08 2020-09-01 Whirlpool Corporation Multiple cavity microwave oven insulated divider
EP3409076B1 (en) 2016-01-28 2020-01-15 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
EP3417675B1 (en) 2016-02-15 2020-03-18 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
US10827569B2 (en) 2017-09-01 2020-11-03 Whirlpool Corporation Crispness and browning in full flat microwave oven
US11039510B2 (en) 2017-09-27 2021-06-15 Whirlpool Corporation Method and device for electromagnetic cooking using asynchronous sensing strategy for resonant modes real-time tracking
US10772165B2 (en) 2018-03-02 2020-09-08 Whirlpool Corporation System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device
WO2019203171A1 (ja) * 2018-04-20 2019-10-24 パナソニックIpマネジメント株式会社 マイクロ波加熱装置
US11404758B2 (en) 2018-05-04 2022-08-02 Whirlpool Corporation In line e-probe waveguide transition
US10912160B2 (en) 2018-07-19 2021-02-02 Whirlpool Corporation Cooking appliance
CN109729611B (zh) * 2019-01-22 2021-03-26 江南大学 适用于液态物料的微波腔体
CN112563707A (zh) * 2020-11-30 2021-03-26 广东美的厨房电器制造有限公司 波导及微波烹饪器具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106847A (ja) * 1993-10-07 1995-04-21 Nippon Steel Corp 漏れ波導波管スロットアレーアンテナ
JPH09181052A (ja) * 1995-05-26 1997-07-11 Tokyo Electron Ltd プラズマ処理装置
JP2733472B2 (ja) * 1988-02-19 1998-03-30 有限会社ラジアルアンテナ研究所 導波管スロット・アンテナ及びその製造方法並びに導波管の結合構造
JP2000048946A (ja) * 1998-07-22 2000-02-18 Samsung Electronics Co Ltd 電子レンジ
JP3510523B2 (ja) * 1998-04-06 2004-03-29 エルジー電子株式会社 電子レンジおよび導波管システム
WO2012073451A1 (ja) * 2010-11-29 2012-06-07 パナソニック株式会社 マイクロ波加熱装置
JP2013125670A (ja) * 2011-12-15 2013-06-24 Panasonic Corp マイクロ波加熱装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51523B1 (ja) * 1970-12-31 1976-01-08
US4301347A (en) 1980-08-14 1981-11-17 General Electric Company Feed system for microwave oven
DE3602820A1 (de) * 1986-01-30 1987-08-06 Windmoeller & Hoelscher Verfahren zur ueberpruefung der funktionsfaehigkeit von parallel geschalteten lastwiderstaenden
US5698036A (en) 1995-05-26 1997-12-16 Tokyo Electron Limited Plasma processing apparatus
JP3064875B2 (ja) * 1995-07-07 2000-07-12 松下電器産業株式会社 高周波加熱装置
MY123981A (en) * 1997-08-26 2006-06-30 Samsung Electronics Co Ltd Microwave oven having a cooking chamber reflecting microwaves at varying angles
KR100266292B1 (ko) * 1997-12-02 2000-09-15 윤종용 전자렌지
CN100365345C (zh) 1999-01-26 2008-01-30 三星电子株式会社 微波炉
US6720541B2 (en) * 2000-04-17 2004-04-13 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus with temperature detection means
WO2012137447A1 (ja) * 2011-04-01 2012-10-11 パナソニック株式会社 マイクロ波加熱装置
JPWO2013001787A1 (ja) * 2011-06-27 2015-02-23 パナソニック株式会社 マイクロ波加熱装置
CN104272866A (zh) * 2012-03-09 2015-01-07 松下电器产业株式会社 微波加热装置
JP2014032744A (ja) * 2012-08-01 2014-02-20 Panasonic Corp マイクロ波加熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733472B2 (ja) * 1988-02-19 1998-03-30 有限会社ラジアルアンテナ研究所 導波管スロット・アンテナ及びその製造方法並びに導波管の結合構造
JPH07106847A (ja) * 1993-10-07 1995-04-21 Nippon Steel Corp 漏れ波導波管スロットアレーアンテナ
JPH09181052A (ja) * 1995-05-26 1997-07-11 Tokyo Electron Ltd プラズマ処理装置
JP3510523B2 (ja) * 1998-04-06 2004-03-29 エルジー電子株式会社 電子レンジおよび導波管システム
JP2000048946A (ja) * 1998-07-22 2000-02-18 Samsung Electronics Co Ltd 電子レンジ
WO2012073451A1 (ja) * 2010-11-29 2012-06-07 パナソニック株式会社 マイクロ波加熱装置
JP2013125670A (ja) * 2011-12-15 2013-06-24 Panasonic Corp マイクロ波加熱装置

Also Published As

Publication number Publication date
CN106031305B (zh) 2019-09-17
JP2015195175A (ja) 2015-11-05
US20160353529A1 (en) 2016-12-01
CN106031305A (zh) 2016-10-12
US10362641B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2015146028A1 (ja) マイクロ波処理装置
US9585203B2 (en) Microwave heating device
JP6528088B2 (ja) マイクロ波加熱装置
JP5674914B2 (ja) 高周波加熱装置
JP2013218904A (ja) マイクロ波加熱装置
JP6273598B2 (ja) マイクロ波加熱装置
JP5816820B2 (ja) マイクロ波加熱装置
JP4836965B2 (ja) 高周波加熱装置
WO2013005438A1 (ja) マイクロ波加熱装置
JP6304552B2 (ja) マイクロ波加熱装置
JP6414683B2 (ja) マイクロ波加熱装置
JP2015015225A (ja) マイクロ波加熱装置
JP6459123B2 (ja) マイクロ波加熱装置
JP2013098021A (ja) マイクロ波加熱装置
JP2013222672A (ja) 高周波加熱装置
JP6569991B2 (ja) マイクロ波加熱装置
JP2013026099A (ja) 高周波加熱装置
JPWO2016103585A1 (ja) マイクロ波加熱装置
WO2015146029A1 (ja) マイクロ波処理装置
JP6414684B2 (ja) マイクロ波加熱装置
JP2013120632A (ja) マイクロ波加熱装置
JP2014089942A (ja) マイクロ波加熱装置
JP2018198224A (ja) マイクロ波加熱装置
JP2013191349A (ja) マイクロ波加熱装置
JP2014160632A (ja) マイクロ波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768537

Country of ref document: EP

Kind code of ref document: A1