WO2015145833A1 - 表面特性検査方法及び表面特性検査装置 - Google Patents

表面特性検査方法及び表面特性検査装置 Download PDF

Info

Publication number
WO2015145833A1
WO2015145833A1 PCT/JP2014/076901 JP2014076901W WO2015145833A1 WO 2015145833 A1 WO2015145833 A1 WO 2015145833A1 JP 2014076901 W JP2014076901 W JP 2014076901W WO 2015145833 A1 WO2015145833 A1 WO 2015145833A1
Authority
WO
WIPO (PCT)
Prior art keywords
shot peening
subject
inspection
bridge circuit
detector
Prior art date
Application number
PCT/JP2014/076901
Other languages
English (en)
French (fr)
Inventor
良保 牧野
加賀 秀明
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to US15/128,573 priority Critical patent/US10048227B2/en
Priority to EP14887432.4A priority patent/EP3124964A4/en
Priority to JP2016509889A priority patent/JP6181851B2/ja
Priority to CN201480077492.2A priority patent/CN106164666B/zh
Publication of WO2015145833A1 publication Critical patent/WO2015145833A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening

Definitions

  • Patent Document 1 discloses that a heat-treated mold (steel product) is appropriately changed in hardness and particle diameter by a spherical projection material (shot) having a predetermined hardness and particle diameter.
  • shots spherical projection material
  • the present invention provides a surface characteristic inspection method and surface characteristic inspection apparatus for inspecting the surface characteristics of a subject that has been subjected to the two-stage shot peening process, in which residual stress is appropriately applied in the first-stage shot peening process. It is an object of the present invention to provide a surface characteristic inspection method and a surface characteristic inspection apparatus that can determine whether or not the two-stage shot peening processing is completed by a single inspection.
  • a surface property inspection method for inspecting a surface property of a subject subjected to shot peening treatment, comprising: an AC bridge circuit; and an AC power supply for the AC bridge circuit. And an evaluation device for evaluating the surface characteristics of the subject based on an output signal from the AC bridge circuit, wherein the AC bridge circuit includes a first resistor and a second resistor. And a test detector, which is provided with a variable resistor having a variable distribution ratio and a coil capable of exciting AC magnetism, and is arranged so that the coil can be arranged to excite an eddy current in the subject.
  • a reference detector for detecting a reference state serving as a reference to be compared with an output from the test detector.
  • the first resistor, the second resistor, and the reference detector And the above test An inspection apparatus preparation step in which a detector prepares a surface characteristic inspection device that constitutes a bridge circuit, a threshold setting step for determining a threshold value used for evaluating the surface characteristics of the object in the evaluation apparatus, and a surface A first shot peening process for applying a residual stress to a deep part, and a second shot peening process for applying a residual stress in the vicinity of the surface by performing shot peening at a lower intensity than the first shot peening process after the first shot peening process.
  • the eddy current is excited in the subject by the coil of the test detector, and the surface characteristic of the subject is compared by comparing the output signal output from the AC bridge circuit with the threshold value.
  • the influence of temperature changes in the inspection environment can be reduced. Since a reference sample having the same structure as the subject is used to detect the reference state in the reference detector, even if the output value fluctuates due to changes in the test environment such as temperature, humidity, and magnetism, the effect is not affected. Equivalent to specimen.
  • the inspection time can be shortened.
  • a quick inspection can be performed non-destructively, and can be suitably used as an in-line inspection.
  • the “same structure” means that the material and shape are the same, and it does not matter whether or not surface treatment is performed.
  • the surface characteristic means “characteristic from the outermost surface of the subject to the influence layer on the inner surface”. Further, “whether or not the first shot peening process is properly performed” is a concept including whether or not the first shot peening process is performed, as well as whether or not the first shot peening process is performed.
  • an untreated product that has not been subjected to a surface treatment is disposed in the reference detector as the reference specimen.
  • the technical means of being implemented in the state is used.
  • the output based on the difference in surface condition from the subject can be increased, so that the measurement accuracy can be further increased. Can be improved, and the threshold value can be easily set.
  • the first shot peening and the second shot peening are appropriately performed.
  • a technical means for setting the threshold based on an output signal of the AC bridge circuit when an eddy current is excited in the subject is used.
  • the threshold value is set based on the output characteristics of the subject in which the first shot peening process and the second shot peening process are appropriately performed, the first shot peening process is performed. Whether the second shot peening process is properly performed can be accurately determined.
  • the higher the frequency of the AC power supplied to the AC bridge circuit the more the information reflecting the state of residual stress near the surface is obtained.
  • Information reflecting the state of residual stress in deep regions can be obtained.
  • by checking the frequency of the AC power supplied to the AC bridge circuit to be low it is inspected whether the residual stress after the first shot peening process is properly applied. It is possible to check whether or not the residual stress after the second shot peening process is properly applied by setting the frequency high. By performing these inspections in combination, it is possible to determine whether or not the first shot peening process and the second shot peening process have been properly performed, so that a more accurate inspection can be performed. In addition, it is possible to distinguish and determine which shot peening process was inappropriate.
  • the inspection time can be shortened.
  • a quick inspection can be performed non-destructively, and can be suitably used as an in-line inspection.
  • the invention described in claim 11 uses the technical means in the surface property inspection apparatus according to claim 9 or claim 10 that the coil is formed of a litz wire.
  • the first shot peening process and the second shot peening process are performed using a known shot peening apparatus, for example, a shot peening apparatus including a direct pressure type air nozzle.
  • compressive residual stress is applied to a deep part, for example, a depth of about 30 ⁇ m to 100 ⁇ m from the surface.
  • a shot material having a particle size of 0.6 mm and a hardness of HV580 is used, and shot peening can be performed with a projection pressure of 0.3 MPa, a projection amount of 13 kg / min, and a projection time of 10 seconds.
  • the projection material used in the second shot peening process employs a projection material smaller than the projection material used in the first shot peening process, and the projection material has a Vickers hardness of HV500 to 1200 and a particle size of 0.05 to 0.5 mm. Steel or the like appropriately selected from the range can be used.
  • As the projection conditions for example, when a direct pressure type shot peening apparatus is used, it is possible to adopt the conditions that the projection pressure is 0.05 to 0.7 MPa, and the maximum projection amount is 20 kg / min nozzle. Since the projection material used in the second shot peening process is smaller than the projection material used in the first shot peening process, the second shot peening process is a lower-intensity shot peening process than the first shot peening process.
  • a shot material having a particle size of 0.05 mm and a hardness of HV900 can be used, and shot peening can be performed with a projection pressure of 0.2 MPa, a projection amount of 10 kg / min, and a projection time of 10 seconds.
  • the surface property inspection apparatus 1 includes an AC power supply 10, an AC bridge circuit 20, and an evaluation apparatus 30.
  • the AC power supply 10 is configured to be able to supply AC power having a variable frequency to the AC bridge circuit 20.
  • the AC bridge circuit 20 is formed so that a variable resistor 21, a test detector 23 formed so that a coil can be disposed so as to excite eddy currents in the subject M, and a reference sample S having the same structure as the subject M can be disposed.
  • a reference detector 22 for detecting a reference state as a reference to be compared with the output from the inspection detector 23 is provided.
  • the same structure as the subject M means that the material and the shape are the same, regardless of whether or not the surface treatment is performed.
  • the variable resistor 21 is configured such that the distribution ratio ⁇ can be variably distributed between the resistor R A and the resistor R 2.
  • the resistors R1 and R2 form a bridge circuit together with the reference detector 22 and the inspection detector 23.
  • a point A that distributes the resistor R1 and the resistor R2 and a point B between the reference detector 22 and the inspection detector 23 are connected to the AC power supply 10 of the evaluation device 30, and the resistor R1 and the reference detector are connected.
  • the point C between 22 and the point D between the resistor R 2 and the test detector 23 is connected to the amplifier 31.
  • the reference detector 22 and the inspection detector 23 are grounded to reduce noise.
  • the amplifier 31 is connected to the point C and the point D, and a potential difference between the point C and the point D is input. Further, the absolute value circuit 32 and the LPF 33 are connected to the determination means 36 in this order.
  • the phase comparator 34 is connected to the AC power supply 10, the amplifier 31, and the determination unit 36.
  • the frequency adjuster 35 is connected to the AC power supply 10 and the amplifier 31.
  • the judging means 36 is configured to change the position of the point A of the AC bridge circuit 20, that is, the distribution ratio ⁇ between the resistors R1 and R2 by outputting a control signal. Thus, a variable resistance setting step described later is executed.
  • the temperature measuring means 38 is composed of a non-contact infrared sensor, a thermocouple, etc., and outputs a temperature signal of the surface of the subject M to the judging means 36.
  • the judging means 36 judges whether the surface treatment state of the subject M is good or not, and the temperature detected by the temperature measuring means 38 is When it is outside the predetermined range, the quality of the surface treatment state of the subject M is not judged. Thereby, when the temperature of the subject M affects the accuracy of the examination, it is possible to prevent the judgment of the quality of the surface treatment state of the subject, so that a highly accurate examination can be performed. .
  • the test detector 23 and the reference detector 22 having the same configuration as the test detector 23 are formed by winding a coil around the outer periphery of the core through which the evaluation unit of the subject M can be inserted, and the coil is formed on the surface of the subject M. And a detector capable of exciting eddy currents in the subject M by using them close to each other. That is, this coil is wound so as to face the surface property inspection region of the subject.
  • surrounding the surface property inspection region of the subject includes energizing eddy currents in the surface property inspection region by surrounding at least a part of the surface property inspection region. is doing.
  • the inspection detector 23 used for inspecting the surface characteristics of an object provided with a gear part as the object M, for example, the gear G whose surface has been subjected to the gear part.
  • the inspection detector 23 includes a cylindrical core 23a formed so as to cover the gear portion of the gear G, and a coil 23b wound around the outer peripheral surface of the core 23a.
  • the core 23a is made of a nonmagnetic material, for example, a resin.
  • the shape of the core 23a is not limited to a cylindrical shape as long as the gear G can be disposed inside.
  • the subject M is not arranged, and a reference sample S for outputting a reference output can be arranged.
  • the inspection detector 23 of the present invention is characterized in that the surface characteristics are evaluated by capturing the response of the eddy current with high accuracy, so that the eddy current flows in the region where the surface characteristics are desired to be inspected.
  • the surface characteristics are evaluated by capturing the response of the eddy current with high accuracy, so that the eddy current flows in the region where the surface characteristics are desired to be inspected.
  • the inspection detector 23 may not include the core 23a as long as the coil 23b can maintain the shape.
  • a coil 23b is formed by using, for example, a fusion enameled copper wire that has an action of bonding an enameled copper wire wound around an air core with a curable epoxy resin or the like, or curing it with heat. It can be formed by winding with a core and then curing with hot air or heat from a drying furnace.
  • the voltage output to the amplifier 31 is the difference between E1 and E2, and is expressed by the following equation.
  • a preparation step S1 which is an inspection device preparation step
  • a surface characteristic inspection device 1 and a reference specimen S are prepared.
  • variable resistance setting step S2 is performed.
  • the variable resistance setting step S ⁇ b> 2 first, AC power is supplied from the AC power supply 10 to the AC bridge circuit 20.
  • the distribution ratio ⁇ of the variable resistor 21 is adjusted so that the detection sensitivity of the specimen by the surface characteristic inspection apparatus 1 is increased. That is, the distribution ratio ⁇ of the variable resistor 21 is adjusted so that the output signal of the AC bridge circuit 20 becomes small without bringing the specimen close to the test detector 23.
  • the adjustment of the distribution ratio ⁇ of the variable resistor 21 is performed in order to increase the output difference according to the difference in the surface state by reducing the differential voltage (E2-E1), and to improve the inspection accuracy.
  • the components A and B change by adjusting the distribution ratio ⁇ , so that they are variable according to the impedances (R S + j ⁇ L S ) and (R T + j ⁇ L T ) of the reference detector 22 and the test detector 23.
  • the differential voltage (E2-E1) that is the output from the AC bridge circuit 20 can be reduced. Thereby, the difference in characteristics between the reference detector 22 and the test detector 23 can be reduced and the original characteristics of the subject M can be extracted as much as possible, so that the test accuracy can be improved.
  • AC power is supplied from the AC power supply 10 to the AC bridge circuit 20 with the reference sample S being in proximity to the reference detector 22, and supplied to the AC bridge circuit 20 by the frequency adjuster 35.
  • the voltage amplitude output from the AC bridge circuit 20 or the voltage output from the LPF 33 is monitored.
  • Ef1 and Ef2 are compared, and if Ef2> Ef1, a control signal is output so that the frequency f3 is a predetermined value higher than the frequency f2, and the output voltage Ef3 from the amplifier 31 at the frequency f3 is It is input to the frequency adjuster 35 and stored. Then, Ef2 and Ef3 are compared. This is repeated, and the frequency fn when Efn + 1 ⁇ Efn, that is, the frequency fn at which the output is maximized, is set as the frequency used in the threshold setting step S4 and the AC supply step S5. As a result, the frequency at which the output from the AC bridge circuit 20 is increased corresponding to the subject M having different surface treatment state, shape, etc.
  • Threshold value setting step S4 sets a threshold value used for determining whether the surface state of the subject M is good or bad.
  • a method of setting a threshold value (hereinafter referred to as “initial threshold value”) set in advance for use at the start of the evaluation of the subject M will be described.
  • the reference specimen S is brought close to the reference detector 22, and AC power having a frequency set in the frequency setting step S ⁇ b> 3 is supplied from the AC power supply 10 to the AC bridge circuit 20.
  • the voltage output output from the AC bridge circuit 20 is amplified by the amplifier 31, is subjected to full-wave rectification in the absolute value circuit 32, is subjected to DC conversion in the LPF 33, and is output to the determination means 36.
  • the phase comparator 34 compares the waveform of the AC power supplied from the AC power source 10 with the AC voltage waveform output from the AC bridge circuit 20, and detects the phase difference between them. By monitoring this phase difference, it can be determined whether or not the examination state is good (for example, there is no positional deviation between the examination detector 23 and the subject M). Even if the output from the AC bridge circuit 20 is the same, if the phase difference changes greatly, it can be determined that there is a change in the inspection state and there is a possibility that the inspection is not performed properly.
  • the determination unit 36 determines whether the surface treatment state of the subject M is good or not when the temperature of the subject M detected by the temperature measurement unit 38 is within a predetermined range, and is detected by the temperature measurement unit 38.
  • the predetermined temperature range is a temperature range in which the temperature change of the subject M does not substantially affect the examination, and can be set to 0 to 60 ° C., for example.
  • the subject M waits until the subject M is within the predetermined temperature range, air is blown to the subject M, and the subject M is inspected. It is possible to move to another line.
  • Test data such as measurement values, pass / fail judgment results, measurement date and time, test status (temperature, humidity, differential voltage ⁇ E described later) and the like are associated with identification information of each subject M such as a lot, serial number, history, etc. 30 determination means 36 or storage means (not shown) can be called up as required. That is, an identification display associated with each measurement data may be directly or indirectly given to the subject. For example, the barcode or product management number associated with the measurement data may be represented directly or indirectly on the subject. As described above, the measurement data is associated with the identification display such as the barcode and the product management number, so that the surface treatment state of the subject inspected by the surface property inspection apparatus can be traced after distribution. Traceability can be ensured.
  • the inspection time can be shortened.
  • a quick inspection can be performed non-destructively, and can be suitably used as an in-line inspection.
  • the output value fluctuates due to a change in the examination environment, the influence is equivalent to that of the subject M including the examination detector 23.
  • fluctuations in the output value due to changes in the inspection environment such as temperature, humidity, and magnetism can be canceled, and measurement accuracy can be improved.
  • the output based on the difference in surface condition with the subject M can be increased, and the measurement accuracy can be further improved. It is preferable because the threshold value can be easily set.
  • the initial threshold value Ethi is an output signal EA obtained when an unprocessed subject M is placed on the inspection detector 23 and an output signal EA obtained when a surface-treated subject M having a good surface condition is placed on the inspection detector 23.
  • the output signal EA may approach the average value EAav side of the output signal EA, and there is a possibility that the output width determined as a non-defective product becomes large. Therefore, when it is desired to set a threshold with higher accuracy, it is possible to reset the threshold based on a large amount of inspection data accumulated by performing repeated measurement using the initial threshold Ethi. it can.
  • the threshold value newly set at this time is referred to as an update threshold value Ethn.
  • the update threshold value Ethn is set, for example, after testing 100 or more subjects M.
  • a method for setting the update threshold Ethn is exemplified below.
  • the output signal of the subject M examined using the initial threshold Ethi is EC
  • the minimum value is ECmin
  • the maximum value is ECmax
  • the average value is ECav
  • the standard deviation is ⁇ C.
  • the update threshold Ethn can be set to ECav-3 ⁇ C or ECav-4 ⁇ C using the average value ECav and the standard deviation ⁇ C. Whether ECav-3 ⁇ C or ECav-4 ⁇ C is used is determined in consideration of the distribution of the output signal EC. When ECav-3 ⁇ C or ECav-4 ⁇ C is equal to or smaller than the initial threshold Ethi, the update threshold Ethn is determined. Is used, and the initial threshold value Ethi is used.
  • the update threshold value Ethn can be set as follows based on the magnitude relationship of the minimum value ECmin, the maximum value ECmax, and the average value ECav. Specifically, the average value (ECmin + ECmax) / 2 of the minimum value ECmin and the maximum value ECmax is compared with the average value ECav, and the cases are classified.
  • the update threshold Ethn can be repeatedly updated based on the inspection data of the subject M examined after the update. For example, after the initial threshold value Ethi is set, 100 specimens M are examined, and after the update threshold value Ethn is set, another 100 specimens M are examined, and a new update is performed based on the examination data.
  • the threshold value Ethn can also be set. It is also possible to set a new update threshold Ethn using all 200 pieces of inspection data.
  • the measured value can be calibrated using the initial offset value Ei and the inspection offset value Eik described above.
  • step S101 the test offset value Eik is measured and stored in the determination means 36 before the subject M is placed in the placement step S6.
  • step S103 the subject M is inspected, the measured value (E2-E1) is stored in step S104, and the differential voltage ⁇ E is added to the measured value stored in step S105.
  • step S106 the measured value added with the differential voltage ⁇ E is compared with a threshold value to make a pass / fail judgment.
  • the inspection state is not appropriate and the inspection is properly performed due to a large disturbance or a malfunction of the apparatus. It can be judged that there is a possibility that it has not been broken. In this case, it is possible not to inspect the surface characteristics of the subject M in the inspection state determination step S7.
  • inspection of the reference detector 22 and the inspection detector 23, confirmation of the temperature of the measurement environment, inspection and replacement of the reference specimen S, and the like can be performed.
  • FIG. 6 illustrates the initial value Ei0, the output value En, and the like for the purpose of explanation, and schematically illustrates them, not actual output values.
  • step S202 it is detected that the subject M has been placed on the test detector 23, and a trigger for starting the measurement of the time to start recording the output value (measurement waiting start in FIG. 6A) is triggered. Is detected.
  • the arrangement completion waiting trigger trigger En1 is set, and the waiting time is counted in step S203.
  • the output value (1.500) serving as the arrangement completion waiting trigger En1 is set by back-calculation so that the output value becomes stable when a predetermined waiting time described in the next paragraph elapses.
  • step S204 When a predetermined waiting time until the output value stabilizes (for example, 2 to 3 seconds) elapses, measurement is performed in step S204, and a stable output value En2 (0.370) is detected and stored.
  • a predetermined waiting time until the output value stabilizes for example, 2 to 3 seconds
  • control of taking out the subject M is performed as follows.
  • the measured value is obtained from the output value En2 when the subject M is arranged as shown in FIG. 6B. Begins to rise.
  • the output value Ei1 (3.000) is detected and stored in step S304. At this time, the stored output value Ei1 can be used as the inspection offset value Eik.
  • the surface characteristic inspection apparatus 1 can omit the phase comparator 34.
  • the positional relationship between the test detector 23 and the subject M is detected by position detection means such as a laser displacement meter, and the deviation between the axis of the test detector 23 and the axis of the subject M is within a predetermined range. It can be configured to determine whether or not by a photoelectric sensor (laser) or the like.
  • the phase comparator 34, the frequency adjuster 35, or the display unit 37 can be provided integrally, for example, by being incorporated in the determination unit 36.
  • the output based on the difference in surface condition with the subject M can be increased, and the measurement accuracy can be further improved. It is preferable because the threshold value can be easily set.
  • the inspection time can be shortened.
  • a quick inspection can be performed non-destructively, and can be suitably used as an in-line inspection.
  • an image inspection may be added after the two-stage shot peening process is completed. By adding the image inspection, the reliability of the quality determination of the second shot peening process can be further improved.
  • the frequency can be set as appropriate according to the conductivity and permeability of the subject.
  • the detection depth which is the penetration depth of the eddy current, is 60 to 100 ⁇ m from the outermost surface, so that the residual after the first shot peening treatment It is suitable for checking whether or not stress is properly applied to the deep part.
  • the frequency is set to 200 to 400 kHz, the detection depth is 20 to 30 ⁇ m from the outermost surface, which is suitable for checking whether or not the residual stress after the second shot peening process is properly applied. Therefore, in the first embodiment described above, it is possible to determine whether or not the first shot peening process has been properly performed by setting the frequency to 20 to 50 kHz.
  • the frequency used for the first shot peening process inspection is prepared by preparing the unprocessed material and the subject subjected to the first shot peening process, and there is a large difference in the output voltage of the inspection apparatus in each subject.
  • the frequency f1 which is the first frequency, is set. In the present embodiment, this set value is 20 to 50 kHz.
  • the coil 23b is formed by using a litz wire obtained by collecting and twisting a plurality of thin conductor wires that are covered and insulated with a conductor wire such as a copper wire by enamel or the like, the conductor surface area is increased by subdividing the conductor. , Conductor loss can be reduced and good inspection sensitivity can be maintained.
  • the frequency of the AC power supplied at this time is switched from the frequency f2 used for the second shot peening process inspection to the frequency f1 used for the first shot peening process inspection.
  • an eddy current excitation process is performed in which eddy current is excited in the subject M with AC power of frequency f1, and preparation for performing the first shot peening process inspection is performed.
  • step S408 When a predetermined waiting time until the output value stabilizes (for example, 5 to 6 seconds) elapses, measurement is performed in step S408, and the stable output value En2 (1) is detected and stored.
  • a predetermined waiting time until the output value stabilizes for example, 5 to 6 seconds
  • step S409 as a pass / fail judgment step, the output value En2 (1) is compared with the initial threshold Ethi1, the first shot peening process inspection is performed, and it is determined whether or not the first shot peening process has been performed properly. To do.
  • the process proceeds to step S410, and when it is determined that the second shot peening process is not properly performed (S409: NO).
  • the subject M is taken out from the test detector 23, the measurement is finished, and the subject M is processed as a defective product.
  • the subject M determined to be properly performed in both the first shot peening process and the second shot peening process is taken out from the examination detector 23.
  • the output value starts to rise from the output value En2 (1) when the subject M is arranged.
  • a take-out completion wait trigger En3 which is a reference for starting the waiting time count for confirming the removal of the subject M (start of completion in FIG. 9A), is detected.
  • the output value Ei1 is detected and stored in step S413. Thereby, it is detected that the subject M has been taken out, and the next measurement can be performed in a state where the measurement value has returned to the initial state.
  • the above surface property inspection method it is possible to inspect whether or not the residual stress after the first shot peening treatment is properly applied by the first shot peening treatment inspection step, and by the second shot peening treatment inspection step. It is possible to inspect whether or not the residual stress after the two-shot peening process is properly applied. As a result, it is possible to determine whether or not the first shot peening process and the second shot peening process have been properly performed, and thus a more accurate inspection can be performed. In addition, it is possible to distinguish and determine which shot peening process was inappropriate.
  • the initial threshold Ethi1 used in the first shot peening process inspection process and the threshold Ethi2 used in the second shot peening process inspection process are respectively set according to the frequency used in the inspection, the first shot peening process In addition, it is possible to accurately determine whether or not the second shot peening process is properly performed.
  • the first shot peening process inspection process is performed after the second shot peening process inspection process.
  • the second shot peening process inspection process may be performed after the first shot peening process inspection process. it can.
  • the first shot peening process inspection process is performed in steps S402 to S405
  • the second shot peening process inspection process is performed in steps S407 to S409.
  • the change in the output value is as shown in FIG. The higher the frequency, the faster the response speed of the output value at the time of inspection. Therefore, if the second shot peening process inspection step in which the frequency of the supplied AC power is high is performed first, the time required for the inspection can be shortened. .
  • the surface characteristic inspection method of the second embodiment it is possible to inspect whether or not the residual stress after the first shot peening treatment is properly applied by the first shot peening treatment inspection step. It is possible to inspect whether or not the residual stress after the second shot peening process is properly applied by the process inspection process. As a result, it is possible to determine whether or not the first shot peening process and the second shot peening process have been properly performed, and thus a more accurate inspection can be performed. In addition, it is possible to distinguish and determine which shot peening process was inappropriate.
  • SYMBOLS 1 Surface characteristic inspection apparatus 10 ... AC power supply 20 ... AC bridge circuit 21 ... Variable resistor 22 ... Reference detector 23 ... Inspection detector 23a ... Core 23b ... Coil 23c ... Magnetic shield 30 ... Evaluation apparatus 31 ... Amplifier 32 ... Absolute value Circuit 33 ... LPF 34 ... Phase comparator 35 ... Frequency adjuster 36 ... Judgment means 37 ... Display means 38 ... Temperature measurement means M ... Subject S ... Reference sample

Abstract

 2段ショットピーニング処理が施された被検体の表面特性を検査する表面特性検査方法及び表面特性検査装置において、1段目のショットピーニング処理において残留応力が適切に付与されているかどうかを2段ショットピーニング処理の終了後に1回の検査で判断することができる表面特性検査方法及び表面特性検査装置を提供する。 表面特性検査装置1は、交流電源10、交流ブリッジ回路20及び評価装置30を備え、交流ブリッジ回路20は、分配比γが可変な可変抵抗21、基準検出器22及び検査検出器23により構成されている。検査検出器23は、被検体Mの表面特性検査領域に対向するように巻回されたコイル23bを備えており、交流電源10からの交流電力をコイル23bに供給することにより被検体Mに渦電流を励起する。2段ショットピーニング処理が施された被検体の表面特性を、第2ショットピーニング処理後にのみ検査することにより、第1ショットピーニング処理の良否を判断することができる。

Description

表面特性検査方法及び表面特性検査装置
 本発明は、疲労強度向上等を目的に条件の異なる2段階のショットピーニング処理が施された鋼材製品等の被検体の表面特性を検査する表面特性検査方法及び表面特性検査装置に関する。
 従来より、自動車部品、金型等の鋼材製品に対し、表面に圧縮残留応力を付与することにより疲労強度向上等を行う目的にショットピーニング処理が行われている。
 このようなショットピーニング処理として、大きい投射材を用い比較的強度の高いピーニング条件でショットピーニング処理を行った後に、これより低強度のピーニング条件でショットピーニング処理を行い、残留応力分布の最適化を図る2段ピーニングが行われている。
 例えば、特許文献1には、熱処理後の金型(鋼材製品)に対して、所定硬度・粒子径、の球状投射材(ショット)により、適宜、その硬度・粒子径を変えて、複数回のピーニング処理を行う技術が開示されている。
特開平10-217122号公報
 このような2段ピーニングが適正に行われたか否かを判定する方法として、2段目のピーニング処理後に触針型表面粗さ測定器による検査、レーザー顕微鏡による粗さ検査、X線応力測定を行う方法が採用されているが、いずれも測定時間がかかり、全数検査を行うことが困難である。また、表面処理を行った面全体の評価を行うことができない。さらに、最初に行う1段目のピーニング処理が適切に行われたか否かを判定することができないという問題がある。ここで、1段目のピーニング処理が適切に行われていない場合として、1段目のピーニング処理を実施しなかった場合、所望の残留応力が付与されていない場合など、が考えられる。
 目視検査では、1段目のピーニング処理有無を判定するのは困難であり、1段目のピーニング処理と2段目のピーニング処理後にそれぞれ目視検査を行うと検査工数が増大してしまう。
 そこで、本発明は、2段ショットピーニング処理が施された被検体の表面特性を検査する表面特性検査方法及び表面特性検査装置において、1段目のショットピーニング処理において残留応力が適切に付与されているかどうかを2段ショットピーニング処理の終了後に1回の検査で判断することができる表面特性検査方法及び表面特性検査装置を提供することを目的とする。
 上記目的を達成するために、請求項1に記載の発明では、ショットピーニング処理された被検体の表面特性を検査する表面特性検査方法であって、交流ブリッジ回路と、前記交流ブリッジ回路に交流電力を供給する交流電源と、前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、前記交流ブリッジ回路は、第1の抵抗と第2の抵抗とに分配比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器がブリッジ回路を構成する表面特性検査装置を用意する検査装置準備工程と、前記評価装置における被検体の表面特性の評価に使用するしきい値を決定するしきい値設定工程と、表面から深部に残留応力を付与する第1ショットピーニング処理と、前記第1ショットピーニング処理後に前記第1ショットピーニング処理よりも低強度のショットピーニングを行い表面近傍に更に残留応力を付与する第2ショットピーニング処理と、が施された被検体に、前記検査検出器によって渦電流を励起する渦電流励起工程と、前記第2ショットピーニング処理後に実施された前記渦電流励起工程において前記交流ブリッジ回路から出力された出力信号と前記しきい値とを比較して、前記第1ショットピーニング処理が適正に行われたか否かを前記評価装置により判断する良否判断工程と、を有する、という技術的手段を用いる。
 請求項1に記載の発明によれば、検査検出器のコイルにより被検体に渦電流を励起し、交流ブリッジ回路から出力された出力信号としきい値とを比較することにより被検体の表面特性を評価することができる。これにより、簡単な回路構成で高精度の表面状態の検査が可能である。また、被検体に渦電流を励起して表面特性を検査する方式を採用するため、検査環境の温度変化の影響を小さくすることができる。
 基準検出器において基準状態を検出するために、被検体と同一構造の基準検体を用いているため、温度、湿度、磁気などの検査環境の変化により出力値が変動しても、その影響は被検体と同等になる。これにより、温度、湿度、磁気などの検査環境の変化による出力値の変動をキャンセルすることができ、測定精度を向上させることができる。
 第1ショットピーニング処理と第2ショットピーニング処理との2段ショットピーニング処理が施された被検体の表面特性を、第2ショットピーニング処理後にのみ検査することにより、深部、例えば、表面から30~100μm程度までの範囲で、残留応力が適正に付与されたか否かを検査することができ、第1ショットピーニング処理の良否を判断することができる。これによれば、2段ショットピーニング処理の終了後の1回の検査で2段ピーニング処理が適正に行われているかを判断できるため、検査時間を短縮することができる。また、迅速な検査を非破壊で行うことができ、インラインの検査としても好適に用いることができる。
 ここで、「同一構造」とは、材質、形状が同一のことを意味し、表面処理の有無を問わない。表面特性とは、「被検体の最表面から内面の影響層までの特性」のことをいう。また、「第1ショットピーニング処理が適正に行われたか否か」とは、第1ショットピーニング処理の良否とともに、第1ショットピーニング処理が実施されているか否かも含めた概念である。
 請求項2に記載の発明では、請求項1に記載の表面特性検査方法において、前記渦電流励起工程は、前記基準検体として、表面処理を施していない未処理品を前記基準検出器に配置した状態で実施される、という技術的手段を用いる。
 請求項2に記載の発明のように、基準検体として表面処理を施していない未処理品を用いると、被検体との表面状態の差に基づいた出力を大きくすることができるので、更に測定精度を向上させることができるとともに、しきい値を設定しやすく、好ましい。
 請求項3に記載の発明では、請求項1または請求項2に記載の表面特性検査方法において、前記しきい値設定工程は、前記第1ショットピーニング及び前記第2ショットピーニング処理が適正に行われた被検体に渦電流を励起した際の前記交流ブリッジ回路の出力信号に基づいて前記しきい値を設定する、という技術的手段を用いる。
 請求項3に記載の発明によれば、しきい値の設定を第1ショットピーニング処理及び第2ショットピーニング処理が適正に行われた被検体の出力特性に基づいて行うため、第1ショットピーニング処理、第2ショットピーニング処理がともに適正に行われた否かを正確に判断することができる。
 請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の表面特性検査方法において、更に、前記渦電流励起工程よりも高い周波数の交流電力を前記交流電源によって供給して、被検体に渦電流を励起する第2渦電流励起工程と、この第2渦電流励起工程により渦電流が励起されているときの前記交流ブリッジ回路の出力信号に基づいて、前記第2ショットピーニング処理が適正に行われたか否かを前記評価装置により判断する第2良否判断工程と、を備えた、という技術的手段を用いる。
 本発明の表面特性検査方法においては、交流ブリッジ回路に供給される交流電力の周波数が高い程、表面近傍の残留応力の状態を反映した情報が得られ、交流電力の周波数が低い程、表面から深い領域の残留応力の状態を反映した情報が得られる。請求項4に記載の発明のように、交流ブリッジ回路に供給される交流電力の周波数を低く設定することにより、第1ショットピーニング処理後の残留応力が適正に付与されたか否かの検査を行うことができ、周波数を高く設定することにより、第2ショットピーニング処理後の残留応力が適正に付与されたか否かの検査を行うことができる。これらの検査を組み合わせて行うことにより、第1ショットピーニング処理及び第2ショットピーニング処理がそれぞれ適正に行われたか否かを判断することができるので、より正確な検査が可能となる。また、いずれのショットピーニング処理が不適正であったかを区別して判断することができる。
 請求項5に記載の発明では、請求項4に記載の表面特性検査方法において、前記しきい値設定工程は、所定の第1周波数の交流電力を前記交流ブリッジ回路に供給して得られた出力信号に基づいて決定されるしきい値、及び前記第1周波数よりも高い第2周波数の交流電力を前記交流ブリッジ回路に供給して得られた出力信号に基づいて決定される第2しきい値を決定し、前記しきい値は前記良否判断工程における良否判断に使用され、前記第2しきい値は前記第2良否判断工程における良否判断に使用される、という技術的手段を用いる。
 請求項5に記載の発明によれば、第1ショットピーニング処理の検査で用いられるしきい値及び前記第2ショットピーニング処理の検査で用いられる第2しきい値は、検査で用いる周波数に応じてそれぞれ設定されるため、第1ショットピーニング処理及び第2ショットピーニング処理が適正に行われた否かを正確に判断することができる。
 請求項6に記載の発明では、請求項4に記載の表面特性検査方法において、前記第2良否判断工程は、前記良否判断工程よりも前に実施される、という技術的手段を用いる。
 周波数が高い方が検査時における出力値の応答速度が速いため、請求項6に記載の発明のように、供給する交流電力の周波数が高い第2ショットピーニング処理の検査を先に行うと、検査に要する時間を短縮することができる。
 請求項7に記載の発明では、請求項3または請求項5に記載の表面特性検査方法において、前記しきい値設定工程は、前記検査検出器に未処理の被検体を配置したときの前記交流ブリッジ回路の出力信号EA、及び前記検査検出器に前記第1ショットピーニング及び前記第2ショットピーニング処理が適正に行われた被検体を配置したときの前記交流ブリッジ回路の出力信号EBに基づいて、下式によりしきい値Ethiを設定する、という技術的手段を用いる。
Ethi=(EAav・σB+EBav・σA)/(σA+σB)
  EAav:出力信号EAの平均値、EBav:出力信号EBの平均値、σA:出力信号EAの標準偏差、σB:出力信号EBの標準偏差
 請求項7に記載の発明によれば、少ない測定数により精度の高い適切な初期しきい値を設定することができる。
 請求項8に記載の発明では、請求項1ないし請求項7のいずれか1つに記載の表面特性検査方法において、前記評価装置は記憶手段を備え、この記憶手段には、各被検体の識別情報と該被検体の表面特性の検査データが関連付けて記憶される、という技術的手段を用いる。
 請求項8に記載の発明によれば、ロット、製造番号、履歴などの各被検体の識別情報を、測定値、良否判断結果、測定日時、検査状態などの検査データと関連付けて記憶させておくことができるので、表面特性検査装置により検査した被検体の表面処理の状態を流通後に追跡可能な状態にすることができ、トレーサビリティを担保することができる。
 請求項9に記載の発明では、ショットピーニング装置により表面から深部に残留応力を付与する第1ショットピーニング処理と、前記第1ショットピーニング処理後に前記第1ショットピーニング処理よりも低強度のショットピーニングを行い表面近傍に更に残留応力を付与する第2ショットピーニング処理と、が施された被検体の表面特性を検査する表面特性検査装置であって、交流ブリッジ回路と、前記交流ブリッジ回路に交流電力を供給する交流電源と、前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、前記交流ブリッジ回路は、第1の抵抗と第2の抵抗とに分配比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器はブリッジ回路を構成し、前記評価装置は、前記第2ショットピーニング処理後にのみ、前記交流ブリッジ回路に交流電力が供給され、前記検査検出器が前記被検体の電磁気特性を検出し、前記基準検出器が基準状態を検出している状態における前記交流ブリッジ回路からの出力信号としきい値とを比較して、前記被検体の表面特性を評価し、前記被検体に対する前記第1ショットピーニング処理が適正に行われたか否かを判断する、という技術的手段を用いる。
 請求項9に記載の発明によれば、検査検出器のコイルにより被検体に渦電流を励起し、交流ブリッジ回路から出力された出力信号としきい値とを比較することにより被検体の表面特性を評価することができる。これにより、簡単な回路構成で高精度の表面状態の検査が可能である。また、被検体に渦電流を励起して表面特性を検査する方式を採用するため、検査環境の温度変化の影響を小さくすることができる。
 基準検出器において基準状態を検出するために、被検体と同一構造の基準検体を用いているため、温度、湿度、磁気などの検査環境の変化により出力値が変動しても、その影響は被検体と同等になる。これにより、温度、湿度、磁気などの検査環境の変化による出力値の変動をキャンセルすることができ、測定精度を向上させることができる。
 第1ショットピーニング処理と第2ショットピーニング処理との2段ショットピーニング処理が施された被検体の表面特性を、第2ショットピーニング処理後にのみ検査することにより、深部、例えば、表面から30~100μm程度までの範囲で、残留応力が適正に付与されたか否かを検査することができ、第1ショットピーニング処理の良否を判断することができる。これによれば、2段ショットピーニング処理の終了後の1回の検査で2段ピーニング処理が適正に行われているかを判断できるため、検査時間を短縮することができる。また、迅速な検査を非破壊で行うことができ、インラインの検査としても好適に用いることができる。
 請求項10に記載の発明では、請求項9に記載の表面特性検査装置において、前記基準検体は、表面処理を施していない未処理品である、という技術的手段を用いる。
 請求項10に記載の発明のように、基準検体として表面処理を施していない未処理品を用いると、被検体との表面状態の差に基づいた出力を大きくすることができるので、更に測定精度を向上させることができるとともに、しきい値を設定しやすく、好ましい。
 請求項11に記載の発明では、請求項9または請求項10に記載の表面特性検査装置において、前記コイルは、リッツ線により形成されている、という技術的手段を用いる。
 請求項11に記載の発明によれば、コイルが、銅線等の導体素線をエナメル等にて覆い絶縁した複数の細い導体素線を集めて撚合わせたリッツ線を用いて形成されているため、導体の細分化によって導体表面積を大きくして、導体損失を軽減し、良好な検査感度を維持することができる。
表面特性検査装置の構成を示す説明図である。図1(A)は表面特性検査装置の回路構成を示す説明図であり、図1(B)は検査検出器の構成を示す透視説明図である。 交流ブリッジ回路からの出力について説明する等価回路図である。 表面特性検査方法を示すフローチャートである。 初期しきい値の設定方法を説明する説明図である。 測定値の校正方法を示すフローチャートである。 被検体の配置から測定開始までの出力値の変化を示す説明図である。 測定終了から被検体の取出しまでの出力値の変化を示す説明図である。 被検体の配置から測定開始までのステップを示すフローチャートである。 測定終了から被検体の取出しまでのステップを示すフローチャートである。 第2実施形態の表面特性検査方法を示すフローチャートである。 第2実施形態の表面特性検査において被検体の配置から測定終了までの出力値の変化を示す説明図であり、第2ショットピーニング処理検査工程を行った後に第1ショットピーニング処理検査工程を行う場合の出力値の変化を示す説明図である。 第2実施形態の表面特性検査において被検体の配置から測定終了までの出力値の変化を示す説明図であり、第1ショットピーニング処理検査工程を行った後に第2ショットピーニング処理検査工程を行う場合の出力値の変化を示す説明図である。
[第1実施形態]
(2段ショットピーニング)
 本発明において表面特性を検査される被検体に施されている表面処理は、比較的高強度のショットピーニングにより表面から所定の深さ以上の領域(以下、深部、という)まで残留応力を付与する第1ショットピーニング処理と、第1ショットピーニング処理後に、第1ショットピーニング処理よりも低強度のショットピーニングにより表面近傍に更に残留応力を付与する第2ショットピーニングである。以下は、被処理材として、ギヤGに2段ショットピーニング処理を施す場合について説明する。
 ここで、第1ショットピーニング処理及び第2ショットピーニング処理は、公知のショットピーニング装置、例えば、直圧式エアノズルを備えたショットピーニング装置を用いて行われる。
 第1ショットピーニング処理では、深部、例えば、表面から30μm~100μm程度の深さまで圧縮残留応力を付与する。
 第1ショットピーニング処理は、比較的粒径が大きく高硬度の投射材(ショット)などを高速度で被処理材に衝突させて行われる。
 投射材は、ビッカース硬さHV500~850、粒径0.5~4.0mmの範囲から適宜選定された、スチールなどを用いることができる。また、投射条件としては、例えば、直圧式ショットピーニング装置を用いた場合、投射圧は0.05~0.7MPa、投射量最大20kg/minノズルという高強度の条件を採用することができる。ビッカース硬さの数値はJISZ2244(2009)により記載された試験方法で測定されたものである。
 例えば、投射材は粒径0.6mm、硬さHV580のものを用い、投射圧0.3MPa、投射量13kg/min、投射時間10秒でショットピーニング処理を行うことができる。
 第2ショットピーニング処理では、第1ショットピーニング処理よりも小さな投射材を用いてショットピーニング処理を行い、表面近傍、例えば表面から30μm程度の深さに、更に残留応力を付与する。
 第2ショットピーニング処理で用いる投射材は、第1ショットピーニング処理で用いる投射材よりも小さな投射材を採用し、投射材は、ビッカース硬さHV500~1200、粒径0.05~0.5mmの範囲から適宜選定された、スチールなどを用いることができる。
 また、投射条件としては、例えば、直圧式ショットピーニング装置を用いた場合、投射圧は0.05~0.7MPa、投射量最大20kg/minノズル、という条件を採用することができる。第2ショットピーニング処理で用いる投射材は、第1ショットピーニング処理で用いる投射材よりも小さいので、第2ショットピーニング処理は第1ショットピーニング処理よりも低強度のショットピーニング処理となる。
 例えば、投射材は粒径0.05mm、硬さHV900のものを用い、投射圧0.2MPa、投射量10kg/min、投射時間10秒でショットピーニング処理を行うことができる。
(表面特性検査装置)
 図1(A)に示すように、本発明の実施形態による表面特性検査装置1は、交流電源10、交流ブリッジ回路20及び評価装置30を備えている。
 交流電源10は、交流ブリッジ回路20に周波数が可変の交流電力を供給可能に構成されている。
 交流ブリッジ回路20は、可変抵抗21、被検体Mに渦電流を励起するようにコイルを配置可能に形成された検査検出器23及び被検体Mと同一構造の基準検体Sを配置可能に形成され、検査検出器23からの出力と比較する基準となる基準状態を検出する基準検出器22を備えている。ここで、「被検体Mと同一構造」とは、材質、形状が同一のことを意味し、表面処理の有無を問わない。
 可変抵抗21は、抵抗RAを抵抗R1と抵抗R2とに分配比γを可変に分配することができるように構成されている。抵抗R1、抵抗R2は、基準検出器22及び検査検出器23とともにブリッジ回路を構成している。本実施形態では、抵抗R1と抵抗R2とを分配する点A及び基準検出器22と検査検出器23との間の点Bが評価装置30の交流電源10に接続され、抵抗R1と基準検出器22との間の点C及び抵抗R2と検査検出器23との間の点Dが増幅器31に接続されている。また、ノイズの低減のため、基準検出器22及び検査検出器23側が接地されている。
 評価装置30は、交流ブリッジ回路20から出力される電圧信号を増幅する増幅器31、全波整流を行う絶対値回路32、直流変換を行うローパスフィルタ(LPF)33、交流電源10から供給される交流電圧と増幅器31から出力される電圧の位相を比較する位相比較器34、交流電源10から供給される交流電圧の周波数を調整する周波数調整器35、R1とR2の分配を最適化する非平衡調整を行うとともに、LPF33からの出力に基づいて被検体Mの表面状態の良否を判断する判断手段36及び判断手段36による判断結果を表示、警告する表示手段37、評価位置の温度を検出する温度測定手段38を備えている。また、判断手段36内部または図示しない領域に記憶手段を備えている。
 増幅器31は、点C及び点Dに接続され、点Cと点Dとの間の電位差が入力される。また、絶対値回路32、LPF33の順に判断手段36に接続されている。位相比較器34は、交流電源10、増幅器31及び判断手段36に接続されている。周波数調整器35は、交流電源10及び増幅器31に接続されている。また、判断手段36は、制御信号を出力することにより、交流ブリッジ回路20の点Aの位置、即ち、抵抗R1と抵抗R2の分配比γを変更することができるように構成されており、これにより、後述する可変抵抗設定工程が実行される。
 温度測定手段38は、非接触式の赤外センサや熱電対などからなり、被検体Mの表面の温度信号を判断手段36に出力する。判断手段36は、温度測定手段38で検出された被検体Mの温度が所定範囲内である場合に、被検体Mの表面処理状態の良否を判断し、温度測定手段38で検出された温度が所定範囲外である場合に、被検体Mの表面処理状態の良否の判断を行わない。これにより、被検体Mの温度が検査の精度に影響を及ぼすような場合に被検体の表面処理状態の良否の判断を行わないようにすることができるので、精度の高い検査を行うことができる。ここで、熱電対などで評価位置Tsの温度を測定し、被検体Mの表面の温度を代表する温度として被検体Mの表面処理状態の良否を判断するか否かの判断を行う構成を採用することもできる。
 検査検出器23及び検査検出器23と同様の構成の基準検出器22として、被検体Mの評価部を挿通可能なコアの外周にコイルが巻回されて形成され、コイルを被検体Mの表面と対向させて近接させ被検体Mに渦電流を励起可能な検出器を用いる。すなわち、このコイルは、被検体の表面特性検査領域を囲むように対向されて巻回されている。ここで、被検体の表面特性検査領域を囲むとは、少なくとも表面特性検査領域の一部を包囲する(包むよう囲む)ことで、表面特性検査領域に渦電流を励起することを含むことを意味している。
 ここでは、被検体Mとして歯車部を備えた被検体、例えば、歯車部が表面処理されたギヤGの表面特性を検査するために用いる検査検出器23について説明する。検査検出器23は、図1(B)に示すように、ギヤGの歯車部を覆うように形成された円筒状のコア23aと、コア23aの外周面に巻回されたコイル23bと、を備えている。コア23aは非磁性材料、例えば、樹脂により形成されている。なお、コア23aの形状は、ギヤGを内側に配置できれば円筒状に限らない。なお、基準検出器22では、被検体Mは配置されず、基準出力を出力するための基準検体Sを配置することができる。
 本発明の検査検出器23は、渦電流の反応を高精度に捉えて表面特性を評価することを特徴としているため、表面特性を検査したい領域に渦電流が流れるように、被検体Mに対して配置することが好ましい。つまり、コイル23bの巻方向が渦電流を流したい方向と同方向となるように配置することが好ましい。
 ギヤGはショットピーニング処理により歯車部に残留応力層が形成される。被検体MとしてギヤGを評価する場合には、歯先だけではなく、歯面及び歯底の表面特性を評価することが好ましい。そのため、コイル23bの巻方向がギヤGの回転軸とほぼ直交するようにコイル23bを配置するとよい。これにより、回転軸の方向に磁界ループが発生するため、ギヤGの回転方向に渦電流を励起させることができるので、歯先だけではなく、歯面及び歯底の表面特性を評価することができる。従来の接触型の検出器では、歯の形状に合わせて数種類の検出器を用意する必要があるとともに、接触部近傍の表面特性しか検査することができなかったが、検査検出器23によれば、単一の検出器で広い範囲の表面特性を一度に検査することができる。
 検査検出器23は、コイル23bが形状を維持できればコア23aを備えていなくてもよい。このようなコイル23bは、例えば、硬化性のエポキシ樹脂等にて、空芯にて巻回したエナメル銅線を接着、若しくは、熱にて硬化する作用のある融着エナメル銅線を用いて空芯にて巻回した後に熱風や乾燥炉等の熱にて硬化させて形成することができる。
 コイル23bが被検体Mの検査対象面を囲むように対向させて検査検出器23を配置し、交流電源10によりコイル23bに所定の周波数の交流電力を供給すると交流磁界が発生し、被検体Mの表面に交流磁界に交差する方向に流れる渦電流が励起される。渦電流は残留応力層の電磁気特性に応じて変化するため、残留応力層の特性(表面処理状態)に応じて増幅器31から出力される出力波形(電圧波形)の位相及び振幅(インピーダンス)が変化する。この出力波形の変化により表面処理層の電磁気特性を検出し、検査を行うことができる。
 検査検出器23の外方であって被検体Mを囲んで配置される磁気シールド23cを設けることもできる。磁気シールド23cを用いると、外部磁気を遮蔽することができるため、誤検知を防止することができる。
(交流ブリッジ回路からの出力)
 次に、非平衡状態に調整された交流ブリッジ回路20からの出力について、図2の等価回路を参照して説明する。基準検出器22には基準出力を出力するための基準検体Sが近接され、検査検出器23には表面処理状態の良否を判定すべき被検体Mが近接されている。
 ここで、基準検体Sは被検体Mと同一構造であり、好ましくは表面処理を行っていない未処理品を用いる。
 可変抵抗RAの分配比をγとした場合、抵抗R1はRA/(1+γ)、抵抗R2はRAγ/(1+γ)となる。基準検出器22のインピーダンスをRS+jωLS、検査検出器23のインピーダンスをRT+jωLTとする。また、点Aの電位をEとし、基準検出器22、検査検出器23に各検体(基準検体S、被検体M)を近接させていないときのブリッジの各辺に流れる励磁電流をそれぞれi1、i2、各検体を基準検出器22、検査検出器23に近接させることにより磁気量が変化し、その変化量に応じて流れる電流をそれぞれiα、iβとする。このときの基準検出器22及び検査検出器23の電位E1、E2及び励起電流i1、i2は以下の式(1)~(4)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 増幅器31に出力される電圧はE1、E2の差分であり、次式で表される。
Figure JPOXMLDOC01-appb-M000005
 式(3)~(5)より次式が導かれる。
Figure JPOXMLDOC01-appb-M000006
 式(6)の右辺を次の成分A、Bに分けて差分電圧の各成分について考える。
成分A:  
Figure JPOXMLDOC01-appb-I000007
成分B : 
Figure JPOXMLDOC01-appb-I000008
 成分Aは、各検出器成分:(RS+jωLS)、(RT+jωLT)、各検出器に各検体が近接したときに変化する電流量:iα、iβにより構成される。iα、iβは各検体の透磁率、導電率などの電磁気特性に起因する検体を通る磁気量によって大きさが変化する。このため各検出器から発生する磁気量を左右する励磁電流i1、i2を変えることでiα、iβの大きさを変化させることができる。また、式(3)、式(4)より、励磁電流i1、i2は可変抵抗の分配比γによって変わるので、可変抵抗の分配比γを調整することにより成分Aの大きさを変化させることができる。
 成分Bは、各検出器成分:(RS+jωLS)、(RT+jωLT)、可変抵抗の分配比γで分けられた抵抗のパラメーターにより構成される。このため、成分A同様に可変抵抗の分配比γの調整により成分Bの大きさを変化させることができる。
 被検体Mを所定の位置に配置し、交流電源10により検査検出器23のコイル23bに所定の周波数の交流電力を供給すると、被検体Mの表面に交流磁界に交差する方向に流れる渦電流が励起される。渦電流は残留応力層の電磁気特性に応じて変化するため、残留応力層の特性(表面処理状態)に応じて増幅器31から出力される出力波形(電圧波形)の位相及び振幅(インピーダンス)が変化する。この出力波形の変化により残留応力層の電磁気特性を検出し、表面処理層の検査を行うことができる。
 ブリッジの増幅器31から出力される信号は、基準検出器22及び検査検出器23の電圧波形の差分面積を抽出した信号であり、検出器を流れる電流(励磁電流)を一定にする回路構成になっている。また、抽出された電圧信号は電力信号として考えることができる。
 また、検出器へ供給する電力は常に一定となる。これにより、被検体Mへ供給する磁気エネルギーも一定とすることができる。
(表面特性検査方法)
 次に、表面特性検査装置1による被検体の表面特性検査方法について図3を参照して説明する。
 まず、検査装置準備工程である準備工程S1では、表面特性検査装置1と基準検体Sとを用意する。
 次に、可変抵抗設定工程S2を行う。可変抵抗設定工程S2では、まず、交流電源10から交流ブリッジ回路20に交流電力を供給する。この状態で、表面特性検査装置1による検体の検出感度が高くなるように、可変抵抗21の分配比γを調整する。即ち、検査検出器23に検体を近接させずに、交流ブリッジ回路20の出力信号が小さくなるように、可変抵抗21の分配比γを調整する。このように可変抵抗21を設定しておくことにより、検査検出器23に近接した被検体Mの表面処理状態が不良である場合と、表面処理状態が良好である場合の出力信号の差異が大きくなり、検出精度を高くすることができる。具体的には、オシロスコープなど波形表示機能を持つ表示装置(例えば、判断手段36が備えている)にて交流ブリッジ回路20からの出力信号の電圧振幅、またはLPF33からの電圧出力をモニターし、出力が小さくなるように分配比γを調整する。好ましくは、出力が最小値又は極小値(局所平衡点)をとるように、可変抵抗21の分配比γを調整して、設定する。
 可変抵抗21の分配比γの調整は、差分電圧(E2-E1)を小さくすることにより表面状態の差異に応じた出力差を増大させ、検査精度を向上させるために行われる。上述したように成分A、Bは分配比γを調整することにより変化するため、基準検出器22、検査検出器23のインピーダンス(RS+jωLS)、(RT+jωLT)に応じて、可変抵抗21の分配比γを調整し、交流ブリッジ回路20からの出力である差分電圧(E2-E1)を小さくすることができる。これにより、基準検出器22と検査検出器23との特性の違いを軽減して、被検体Mの本来の特性を少しでも大きく抽出することができるので、検査精度を向上させることができる。
 周波数設定工程S3では、基準検体Sを基準検出器22に近接させた状態で、交流電源10から交流ブリッジ回路20に交流電力を供給し、周波数調整器35により交流ブリッジ回路20に供給する交流電力の周波数を変化させて交流ブリッジ回路20から電圧振幅出力またはLPF33からの電圧出力をモニターする。
 周波数調整器35は、周波数調整器35において設定された初期周波数f1になるように交流電源10へ制御信号を出力し、周波数f1における増幅器31からの出力電圧Ef1が周波数調整器35に入力され、記憶される。続いて、周波数f1よりも所定の値、例えば100Hz高い周波数f2になるように交流電源10へ制御信号を出力し、周波数f2における増幅器31からの出力電圧Ef2が周波数調整器35に入力され、記憶される。
 続いて、Ef1とEf2との比較を行い、Ef2>Ef1であれば、周波数f2よりも所定の値高い周波数f3になるように制御信号を出力し、周波数f3における増幅器31からの出力電圧Ef3が周波数調整器35に入力され、記憶される。そして、Ef2とEf3との比較を行う。これを繰り返し、Efn+1<Efnとなったときの周波数fn、つまり出力が最大となる周波数fnを、しきい値設定工程S4及び交流供給工程S5で用いる周波数として設定する。これにより、表面処理状態、形状などが異なりインピーダンスが異なる被検体Mに対応して交流ブリッジ回路20からの出力を大きくする周波数を一度の操作により設定することができる。最適な周波数は、被検体の材料、形状、表面処理状態により、変化することとなるが、これがあらかじめわかっている場合、周波数の設定は不要である。これにより、表面処理状態の変化に出力が敏感に対応し、検査の感度を向上させることができる。
 ここで、周波数設定工程S3は、可変抵抗設定工程S2よりも先に実施することもできる。
 しきい値設定工程S4では、被検体Mの表面状態の良否を判断するために用いるしきい値を設定する。ここでは、被検体Mの評価開始時に用いるためあらかじめ設定しておくしきい値(以下、「初期しきい値」という。)の設定方法について説明する。まず、基準検体Sを基準検出器22に近接させ、周波数設定工程S3において設定された周波数の交流電力を交流電源10から交流ブリッジ回路20に供給する。交流ブリッジ回路20から出力された電圧出力は、増幅器31で増幅され、絶対値回路32において全波整流を行い、LPF33において直流変換を行い、判断手段36へ出力される。未処理の被検体と2段ピーニング処理された被検体のうち、第1ショットピーニング、第2ショットピーニング処理がともに適正に行われた良品と判断されるものとをそれぞれ10~数10個程度用意し、検査検出器23にそれぞれの被検体を近接させたときに判断手段36へ出力された出力値から、出力値の分布データを取得する。図4に模式的に示す。
 初期しきい値Ethiは、検査検出器23に未処理の被検体Mを配置したときの出力信号EA及び検査検出器23に良品である表面処理後の被検体Mを配置したときの出力信号EBに基づいて、それぞれの出力信号のばらつきを考慮し、次式により定める。図4に未処理の被検体の出力信号EA及び表面処理後の被検体の出力信号EBの分布を模式的に示す。
(数7)
Ethi=(EAav・σB+EBav・σA)/(σA+σB)
  EAav:出力信号EAの平均値、EBav:出力信号EBの平均値、σA:出力信号EAの標準偏差、σB:出力信号EBの標準偏差
 これにより、少ない測定数により精度の高い適切なしきい値を設定することができる。この初期しきい値Ethiをしきい値として設定し、判断手段36に記憶させておく。ここで、初期しきい値Ethiは、出力信号EAの最大値EAmax及び出力信号EBの最小値EBminとの間に、
EAmax<Ethi<EBmin
の関係を持つ。
 なお、上記関係が成立しない場合にも、出力信号EA及び出力信号EBのばらつき、分布から大きく外れた特異的な測定値がないか、など考慮して、適切な初期しきい値Ethiを設定することができる。例えば、同じ被検体の未処理状態、表面処理状態を複数個測定し、これを用いて初期しきい値Ethiを再度算出する等の方法がある。
 また、適当なしきい値があらかじめわかっている場合には、その値を採用することもできる。
 更に、しきい値設定工程S4では検査検出器23に被検体Mが近接していない状態での出力信号を初期オフセット値Eiとして判断手段36に記憶させておく。
 交流供給工程S5では、周波数設定工程S3において設定された周波数の交流電力を交流電源10から交流ブリッジ回路20に供給する。ここで、基準検体Sは基準検出器22に近接している。
 次いで、配置工程S6では、表面処理状態の良否を判定すべき被検体Mを検査検出器23に近接させ、被検体Mに渦電流が励起されるように配置する。従って、交流供給工程S5及び配置工程S6は、渦電流励起工程として機能する。このとき、交流ブリッジ回路20から電圧出力信号が出力され、出力信号は、増幅器31で増幅され、絶対値回路32において全波整流され、LPF33において直流変換される。
 温度測定手段38は、被検体Mが検査検出器23に近接する前、または被検体Mの配置後に被検体Mの表面の温度を測定し、被検体Mの表面の温度信号を判断手段36に出力する。
 検査状態判断工程S7では、位相比較器34により交流電源10から供給される交流電力の波形と交流ブリッジ回路20から出力される交流電圧波形を比較し、それらの位相差を検出する。この位相差をモニターすることにより、検査状態が良好である(例えば、検査検出器23と被検体Mの位置ずれがない)か否かを判断することができる。交流ブリッジ回路20からの出力が同じであっても、位相差が大きく変化した場合には、検査状態に変化があり、検査が適正に行われていない可能性があると判断することができる。また、判断手段36は、温度測定手段38で検出された被検体Mの温度が所定範囲内である場合に、被検体Mの表面処理状態の良否を判断し、温度測定手段38で検出された温度が所定範囲外である場合に、被検体Mの表面処理状態の良否の判断を行わない。ここで、所定の温度範囲は、被検体Mの温度変化が検査に実質的に影響を及ぼさない温度範囲であり、例えば、0~60℃と設定することができる。被検体Mの表面の温度が所定の温度範囲外であった場合には、被検体Mが所定の温度範囲内になるまで待機する、被検体Mにエアを吹き付ける、被検体Mの検査を行わず別のラインに移動させる、などを行うことができる。
 良否判断工程S8では、LPF33において直流変換された信号が判断手段36に入力され、判断手段36は、入力された信号に基づいて被検体Mの表面状態の良否を判断する。
 つまり、本工程は交流ブリッジ回路20から出力された出力信号に基づいて、被検体Mの表面特性を評価する評価工程である。判断手段36による判断結果は、表示手段37により表示され、表面状態が不良である場合(第1ショットピーニング処理が適正に実施されていない場合)には警告する。
 被検体Mの表面処理状態の良否の判断は、LPF33からの出力値(測定値)と、しきい値設定工程S4において設定されたしきい値と、を比較することにより行われる。判断手段36はLPF33からの出力値(測定値)がしきい値を超えている場合には、表面状態が良好である(第1ショットピーニング処理が適正に実施されている)と判断し、LPF33からの出力値(測定値)がしきい値以下である場合には、表面状態が不良である(第1ショットピーニング処理が適正に実施されていない)と判断する。なお、「第1ショットピーニング処理が適正に行われたか否か」とは、第1ショットピーニング処理の良否とともに、第1ショットピーニング処理が実施されているか否かも含めた概念である。
 測定値、良否判断結果、測定日時、検査状態(温度、湿度、後述する差分電圧ΔEなど)などの検査データは、ロット、製造番号、履歴などの各被検体Mの識別情報と関連付けて評価装置30の判断手段36、または、図示しない記憶手段に記憶され、必要に応じて呼び出すことができる。すなわち、被検体には、それぞれの測定データと対応付けられる識別表示が直接若しくは間接的に付与されるようにしてもよい。例えば、測定データに対応付けられたバーコードや製品管理番号を被検体に直接的に表したり、間接的に表したりしてもよい。このように、バーコード、製品管理番号等の識別表示に測定データが対応付けられることにより、表面特性検査装置により検査した被検体の表面処理の状態を流通後に追跡可能な状態にすることができ、トレーサビリティを担保することができる。
 以上の工程により、第1ショットピーニング処理と第2ショットピーニング処理との2段ショットピーニング処理が施された被検体Mの表面特性を、第2ショットピーニング処理後にのみ検査することにより、深部、例えば、表面から30~100μm程度までの範囲で、残留応力が適正に付与されたか否かを検査することができ、第1ショットピーニング処理の良否を判断するために好適に用いることができる。これによれば、2段ショットピーニング処理の終了後の1回の検査で2段ピーニング処理が適正に行われているかを判断できるため、検査時間を短縮することができる。また、迅速な検査を非破壊で行うことができ、インラインの検査としても好適に用いることができる。
 検査を継続するには、被検体Mのみを交換して、配置工程S6、検査状態判断工程S7、良否判断工程S8を繰り返し行えばよい。被検体Mの種類、表面処理の種類などを変更する場合には、再度、可変抵抗設定工程S2、周波数設定工程S3、しきい値設定工程S4を実施する。
 検査検出器23は、被検体Mの表面を流れる渦電流の変化を捉えることにより、表面抵抗変化を間接的に捉えている。つまり、被検体Mの導電率、透磁率の変化を検出することにより、ショットピーニング処理が適正に行われ、所望の残留応力が付与された状態であるか否かを検出する。ここで、本表面特性検査方法は、交流電力の周波数を変えることにより、渦電流の浸透深さを変化させることができるので、表面から所望の深さまでの表面特性を検査することができ、残留応力が適正に付与されたか否かの検査に好適に用いることができる。
 基準検出器22において基準状態を検出するために、検査検出器23を含めた被検体Mと同一構造の基準検出器22を含めた基準検体Sを用いているため、温度、湿度、磁気などの検査環境の変化により出力値が変動しても、その影響は検査検出器23を含めた被検体Mと同等になる。これにより、温度、湿度、磁気などの検査環境の変化による出力値の変動をキャンセルすることができ、測定精度を向上させることができる。特に、基準検体Sとして表面処理を行っていない未処理品を用いると、被検体Mとの表面状態の差に基づいた出力を大きくすることができるので、更に測定精度を向上させることができるとともに、しきい値を設定しやすく、好ましい。
(しきい値の更新設定)
 初期しきい値Ethiは、検査検出器23に未処理の被検体Mを配置したときの出力信号EA及び検査検出器23に表面状態が良好である表面処理後の被検体Mを配置したときの出力信号EBの差が大きい場合などには、出力信号EAの平均値EAav側に近づいて、良品と判定される出力の幅が大きくなる可能性がある。そのため、更に精度の高いしきい値を設定したい場合には、初期しきい値Ethiを用いて繰り返し測定を行うことにより蓄積された数多くの検査データに基づいて、しきい値を設定し直すことができる。このとき新たに設定されるしきい値を更新しきい値Ethnという。
 更新しきい値Ethnの設定は、例えば、100個以上の被検体Mの検査を行った後に実施する。更新しきい値Ethnの設定方法を以下に例示する。ここで、初期しきい値Ethiを用いて検査した被検体Mの出力信号をEC、その最小値をECmin、最大値をECmax、平均値をECav、標準偏差をσCとする。
 一つの方法として、初期しきい値Ethiと最小値ECminとを比較し、以下のように更新しきい値Ethnを算出する。
 ECmin≦ Ethiの場合には、更新しきい値Ethnを設定せず初期しきい値Ethiを用いる。
 ECmin>Ethiの場合には、ECminを更新しきい値Ethnとして設定することができる。
 また、平均値ECav及び標準偏差σCを用いて、更新しきい値EthnをECav-3σCまたはECav-4σCとすることができる。ECav-3σC、ECav-4σCのいずれを用いるかは出力信号ECの分布を考慮して判断し、ECav-3σCまたはECav-4σCが初期しきい値Ethi以下である場合には、更新しきい値Ethnを設定せず初期しきい値Ethiを用いる。
 また、最小値ECmin、最大値ECmax、平均値ECavの大小関係に基づいて、以下のように更新しきい値Ethnを設定することもできる。具体的には、最小値ECminと最大値ECmaxとの平均値(ECmin+ECmax)/2と平均値ECavとの比較を行い、場合分けをする。
 (ECmin+ECmax)/2≦ECavの場合:ECav-3σCを更新しきい値Ethnとして設定
 (ECmin+ECmax)/2>ECavの場合:ECav-4σCを更新しきい値Ethnとして設定
 ここで、ECav-3σCまたはECav-4σCが初期しきい値Ethi以下である場合には、更新しきい値Ethnを設定せず初期しきい値Ethiを用いる。
 更新しきい値Ethnは更新後に検査した被検体Mの検査データに基づいて繰り返し更新することができる。例えば、初期しきい値Ethi設定後に100個の被検体Mの検査を行い、更新しきい値Ethnを設定した後に、更に100個の被検体Mの検査を行い、その検査データに基づいて新しい更新しきい値Ethnを設定することもできる。また、200個の検査データすべてを用いて新しい更新しきい値Ethnを設定することもできる。
(測定値の校正)
 前述した初期オフセット値Eiと検査オフセット値Eikとを用いて測定値の校正を行うことができる。
 図5に示すように、ステップS101では、配置工程S6で被検体Mを配置する前に検査オフセット値Eikを測定し判断手段36に記憶させる。
 続くステップS102では、初期オフセット値Eiと検査オフセット値Eikとを比較、差分電圧ΔE=Ei-Eikを算出する。ステップS102以降は、良否判断工程S8に対応する。
 続くステップS103で被検体Mの検査を行いステップS104において測定値(E2-E1)を記憶し、ステップS105において記憶された測定値に差分電圧ΔEを加算する。
 そして、ステップS106において、差分電圧ΔEが加算された測定値をしきい値と比較して良否判断を行う。
 これにより、温度、湿度、磁気などの測定環境の変化により、オフセット電圧が変化した場合でも、その影響を排除した精度の高い測定を行うことができる。すなわち、検量機器(検査装置)としての校正(calibration)を毎回行った状態で適切で精度の高い測定を行うことができる。
 また、差分電圧ΔEが表面特性検査装置1の使用条件に基づいて設定された許容値を超えた場合には、外乱が大きい、装置の不具合など、検査状態が適切でなく、検査が適正に行われていない可能性があると判断することができる。この場合、検査状態判断工程S7において被検体Mの表面特性の検査を行わないようにすることができる。このとき、基準検出器22、検査検出器23の点検、測定環境の温度の確認、基準検体Sの点検や交換などを行うことができる。当該許容値は、検査が適正に行われる条件として設定し、例えば、初期オフセット値Eiの5%(ΔE=0.05Ei)と設定することができる。
(被検体の配置、取出しの制御)
 被検体Mの検査検出器23への配置及び検査検出器23からの取出しを測定値En(En=E2-E1)を用いて制御することができる。
 被検体の配置、取出しの制御方法を図6及び図7を参照して説明する。なお、図6は、初期値Ei0、出力値Enなどを説明のために例示し、模式的に示したもので、実際の出力値ではない。
 まず、図7(A)に示すステップS201で検査検出器23に被検体Mを配置すると、図6(A)に示すように出力値が被検体Mが配置されていないときの初期値Ei0=3.000から低下し始める。
 次にステップS202において、被検体Mが検査検出器23に配置されたことを検出し、出力値の記録を開始する時間のカウントを開始する基準(図6(A)の測定待ち開始)のトリガーを検出する。図6(A)では、出力値が1.500になったときを配置完了待ちトリガートリガーEn1とし、ステップS203において待ち時間をカウントする。なお、配置完了待ちトリガーEn1となる出力値(1.500)は、次段落で説明する所定の待ち時間が経過すれば出力値が安定するように、逆算して設定する。
 出力値が安定するまでの所定の待ち時間(例えば、2~3秒)が経過すると、ステップS204において測定を行い、安定した出力値En2(0.370)を検出し、記憶する。
 これにより、検査検出器23への被検体Mの配置状態、すなわち、被検体Mが適切な検査可能な状態に配置されたこと、を検出して被検体の表面特性の評価を開始することができるため、測定条件を統一し、安定した出力値En2を検出することができるので、作業者によるばらつきなどをなくすことができ、精度の高い測定を行うことができる。
 また、被検体Mの取出しの制御は以下のように行う。
 まず、図7(B)に示すステップS301で検査検出器23から被検体Mを取り出すと、図6(B)に示すように測定値が被検体Mが配置されているときの出力値En2から上昇し始める。
 次にステップS302において、被検体の取出し確認を行うための待ち時間のカウントを開始する基準(図6(B)の完了待ち開始)の取り出し完了待ちトリガーEn3を検出する。図6(B)では、測定値が2.500になったときを取り出し完了待ちトリガーEn3とし、ステップS303において待ち時間をカウントする。なお、取り出し完了待ちトリガーEn3となる出力値(2.500)は、次段落で説明する所定の待ち時間が経過すれば出力値が安定するように、逆算して設定する。
 測定値が初期値Ei0近傍まで回復するまでの所定の待ち時間(例えば、2~3秒)が経過すると、ステップS304において出力値Ei1(3.000)を検出し、記憶する。
 このとき、記憶された出力値Ei1を検査オフセット値Eikとして用いることができる。
 これにより、被検体Mが取り出されたことを検出し、測定値が初期状態に戻った状態で次の測定を行うことができる。
 上述のような被検体Mの配置、取出しの制御を行う構成によれば、被検体Mが検査検出器23に対して適切に配置されたかどうかを検出するための位置センサなどを設ける必要がなく、装置を簡単な構成にすることができる。また、表面処理を行う表面処理装置から表面特性検査装置1に被検体Mを搬送する搬送手段(例えば、ベルトコンベア)や検査後の被検体Mを良品と不良品とに仕分ける選別手段などと組み合わせたシステムとすることにより、被検体Mの表面処理から検査までを一貫して行い、自動化可能なシステムとして構築することができる。
(変更例)
 検査状態判断工程S7を実施しない場合には、表面特性検査装置1は位相比較器34を省略することができる。例えば、レーザー変位計などの位置検出手段にて検査検出器23と被検体Mの位置関係の検出を行い、検査検出器23の軸と被検体Mの軸とのずれが所定の範囲内であるか否かを光電センサ(レーザ)等で判定する、などを行う構成とすることができる。また、位相比較器34、周波数調整器35または表示手段37は、判断手段36に内蔵させるなど一体的に設けることもできる。
 被検体Mの測定時の交流ブリッジ回路20からの出力が十分に大きい場合には、可変抵抗設定工程S2、周波数設定工程S3を省略することもできる。周波数設定工程S3を省略する場合には、表面特性検査装置1は周波数調整器35を省略することができる。
[第1実施形態の効果]
 本発明の表面特性検査装置1及び表面特性検査方法によれば、検査検出器23のコイル23bにより被検体Mに渦電流を励起し、交流ブリッジ回路20から出力された出力信号としきい値とを比較して、被検体Mの表面特性を評価することができる。これにより、簡単な回路構成で高精度の表面状態の検査が可能である。
 基準検出器22において基準状態を検出するために、被検体Mと同一構造の基準検体Sを用いているため、温度、湿度、磁気などの検査環境の変化により出力値が変動しても、その影響は被検体Mと同等になる。これにより、温度、湿度、磁気などの検査環境の変化による出力値の変動をキャンセルすることができ、測定精度を向上させることができる。特に、基準検体Sとして表面処理を行っていない未処理品を用いると、被検体Mとの表面状態の差に基づいた出力を大きくすることができるので、更に測定精度を向上させることができるとともに、しきい値を設定しやすく、好ましい。
 第1ショットピーニング処理と第2ショットピーニング処理との2段ショットピーニング処理が施された被検体の表面特性を、第2ショットピーニング処理後にのみ検査することにより、深部、例えば、表面から30~100μm程度までの範囲で、残留応力が適正に付与されたか否かを検査することができ、第1ショットピーニング処理の良否を判断することができる。これによれば、2段ショットピーニング処理の終了後の1回の検査で2段ピーニング処理が適正に行われているかを判断できるため、検査時間を短縮することができる。また、迅速な検査を非破壊で行うことができ、インラインの検査としても好適に用いることができる。
 上述の構成に加えて、2段ショットピーニング処理の終了後に画像検査を加えてもよい。
 画像検査を加えることにより、第2ショットピーニング処理の良否判断の信頼性をより向上させることができる。
[第2実施形態]
 交流ブリッジ回路20に供給される交流電力の周波数を2水準設定し、周波数が異なる交流電力を供給した状態で検査を行い、第1ショットピーニング処理後の残留応力が適正に付与されたか否かの検査に加え、第2ショットピーニング処理後の残留応力が適正に付与されたか否かの検査を行うこともできる。
 本発明の表面特性検査方法においては、交流ブリッジ回路20に供給される交流電力の周波数が高い程、表面近傍の残留応力の状態を反映した情報が得られ、交流電力の周波数が低い程、表面から深い領域の残留応力の状態を反映した情報が得られる。従って、交流ブリッジ回路20に供給される交流電力の周波数を低く設定することにより、第1ショットピーニング処理後の残留応力が適正に付与されたか否かの検査(第1ショットピーニング処理検査工程)を行うことができ、周波数を高く設定することにより、第2ショットピーニング処理後の残留応力が適正に付与されたか否かの検査(第2ショットピーニング処理検査工程)を行うことができる。これらの検査を組み合わせて行うことにより、第1ショットピーニング処理及び第2ショットピーニング処理がそれぞれ適正に行われたか否かを判断することができるので、より正確な検査が可能となる。また、いずれのショットピーニング処理が不適正であったかを区別して判断することができる。
 ここで、周波数は、被検体の導電率、透磁率に応じて適宜設定することができる。被検体が鉄鋼材料からなる場合には、周波数を20~50kHzに設定すると、渦電流の浸透深さである検出深さが最表面から60~100μmとなるため、第1ショットピーニング処理後の残留応力が深部まで適正に付与されたか否かの検査に適している。また、周波数を200~400kHzに設定すると、検出深さが最表面から20~30μmとなるため、第2ショットピーニング処理後の残留応力が適正に付与されたか否かの検査に適している。従って、上述した第1実施形態において、周波数を20~50kHzに設定することにより、第1ショットピーニング処理が適正に行われたか否かを判断することができる。
(測定前の各種設定)
 第1ショットピーニング処理検査工程及び第2ショットピーニング処理検査工程を行う場合、周波数設定工程S3及びしきい値設定工程S4において、それぞれの検査工程に応じた設定を行う。
 周波数設定工程S3においては、第1ショットピーニング処理検査に用いる周波数の設定は、未処理材と第1ショットピーニング処理された被検体を準備し、各被検体における検査装置の出力電圧の差が大きな第1周波数である周波数f1を設定する。本実施形態では、この設定値が20~50kHzとなる。
 第2ショットピーニング処理検査に用いる周波数の設定は、未処理材と第2ショットピーニング処理のみ施された被検体を準備し、各被検体における検査装置の出力電圧の差が大きな第2周波数である周波数f2を設定する。本実施形態では、この設定値が200~400kHzとなる。
 第2ショットピーニング処理検査のように、100kHz以上の周波数の交流電力にて検査するような場合、高い周波数による表皮効果が発生し導体損失が増え検査感度が低下するおそれがある。コイル23bを、銅線等の導体素線をエナメル等にて覆い絶縁した複数の細い導体素線を集めて撚合わせたリッツ線を用いて形成すると、導体の細分化によって導体表面積を大きくして、導体損失を軽減し、良好な検査感度を維持することができる。
 しきい値設定工程S4においては、第1ショットピーニング処理検査に用いるしきい値である初期しきい値Ethi1の設定は、未処理品と2段ショットピーニング処理された良品を準備し、周波数設定工程S3にて設定した周波数f1を用いて行う。
 第2ショットピーニング処理検査に用いる第2しきい値である初期しきい値Ethi2の設定は、未処理品と2段ショットピーニング処理された良品を準備し、周波数設定工程S3にて設定した周波数f2を用いて行う。
(表面特性検査方法)
 第2実施形態における表面特性検査方法を、図8及び図9を参照して説明する。ここでは、第2ショットピーニング処理検査を先に実施し、その後、第1ショットピーニング処理検査を実施する場合(図9(A))について説明する。なお、図9の出力値の変化は、説明のために模式的に示したものである。
 ステップS401では、被検体Mを検査検出器23に配置する。このとき供給されている交流電力は、第2ショットピーニング処理検査に用いる周波数f2の交流電力である。このように、周波数f2の交流電力で被検体Mに渦電流を励起する工程は、第2渦電流励起工程に相当する。検査検出器23に被検体Mを配置すると、図9(A)に示すように、出力値が、被検体Mが配置されていないときの初期値Ei0から低下し始める。
 次に、ステップS402において、被検体Mが検査検出器23に配置されたことを検出し、出力値の記録を開始する時間のカウントを開始する基準となる(図9(A)の測定待ち開始)配置完了待ちトリガートリガーEn1を検出する。
 続くステップS403において待ち時間をカウントする。
 出力値が安定するまでの所定の待ち時間(例えば、2~3秒)が経過すると、ステップS404において測定を行い、安定した出力値En2(1)を検出し、記憶する。
 続くステップS405では、第2良否判断工程として、出力値En2(2)を初期しきい値Ethi2と比較し、第2ショットピーニング処理検査を行い、第2ショットピーニング処理が適正に行われたか否かを判断する。第2ショットピーニング処理が適正に行われていると判断した場合(S405:YES)には、ステップS406に進み、第2ショットピーニング処理が適正に行われていないと判断した場合(S405:NO)には、被検体Mを検査検出器23から取出して測定を終了し、被検体Mを不良品として処理する。
 続くステップS406では、このとき供給されている交流電力の周波数を、第2ショットピーニング処理検査に用いる周波数f2から第1ショットピーニング処理検査に用いる周波数f1に切り換える。これにより、周波数f1の交流電力で被検体Mに渦電流を励起する渦電流励起工程が行われ、第1ショットピーニング処理検査を実施する準備が行われる。
 続くステップS407において、周波数を切換えたときを起点として、待ち時間をカウントする。図9(A)に示すように、出力値は周波数を切換えたときを起点として、出力値En2(2)から上昇し始める。
 出力値が安定するまでの所定の待ち時間(例えば、5~6秒)が経過すると、ステップS408において測定を行い、安定した出力値En2(1)を検出し、記憶する。
 続くステップS409では、良否判断工程として、出力値En2(1)を初期しきい値Ethi1と比較し、第1ショットピーニング処理検査を行い、第1ショットピーニング処理が適正に行われたか否かを判断する。第1ショットピーニング処理が適正に行われていると判断した場合(S409:YES)には、ステップS410に進み、第2ショットピーニング処理が適正に行われていないと判断した場合(S409:NO)には、被検体Mを検査検出器23から取出して測定を終了し、被検体Mを不良品として処理する。
 続くステップS410では、第1ショットピーニング処理及び第2ショットピーニング処理ともに適正に行われていると判断された被検体Mを検査検出器23から取り出す。被検体Mを検査検出器23から取り出すと、出力値は被検体Mが配置されているときの出力値En2(1)から上昇し始める。
 続くステップS411において、被検体Mの取出し確認を行うための待ち時間のカウントを開始する基準となる(図9(A)の完了待ち開始)取り出し完了待ちトリガーEn3を検出する。
 続くステップS412において待ち時間をカウントする。
 測定値が初期値Ei0近傍まで回復するまでの所定の待ち時間(例えば、1~2秒)が経過すると、ステップS413において出力値Ei1を検出し、記憶する。これにより、被検体Mが取り出されたことを検出し、測定値が初期状態に戻った状態で次の測定を行うことができる。
 以上の表面特性検査方法により、第1ショットピーニング処理検査工程により第1ショットピーニング処理後の残留応力が適正に付与されたか否かの検査を行うことができ、第2ショットピーニング処理検査工程により第2ショットピーニング処理後の残留応力が適正に付与されたか否かの検査を行うことができる。これにより、第1ショットピーニング処理及び第2ショットピーニング処理がそれぞれ適正に行われたか否かを判断することができるので、より正確な検査が可能となる。また、いずれのショットピーニング処理が不適正であったかを区別して判断することができる。第1ショットピーニング処理検査工程で用いられる初期しきい値Ethi1及び第2ショットピーニング処理検査工程で用いられるしきい値Ethi2は、検査で用いる周波数に応じてそれぞれ設定されるため、第1ショットピーニング処理及び第2ショットピーニング処理が適正に行われた否かを正確に判断することができる。
(変更例)
 上述した実施形態では、第2ショットピーニング処理検査工程の実施後に第1ショットピーニング処理検査工程を実施したが、第1ショットピーニング処理検査工程の実施後に第2ショットピーニング処理検査工程を実施することもできる。この場合ステップS402-S405において第1ショットピーニング処理検査工程を実施し、ステップS407-S409において第2ショットピーニング処理検査工程を実施する。その場合、出力値の変化は図9(B)のようになる。なお、周波数が高い方が検査時における出力値の応答速度が速いため、供給する交流電力の周波数が高い第2ショットピーニング処理検査工程を先に行うと、検査に要する時間を短縮することができる。
[第2実施形態の効果]
 第2実施形態の表面特性検査方法によれば、第1ショットピーニング処理検査工程により第1ショットピーニング処理後の残留応力が適正に付与されたか否かの検査を行うことができ、第2ショットピーニング処理検査工程により第2ショットピーニング処理後の残留応力が適正に付与されたか否かの検査を行うことができる。これにより、第1ショットピーニング処理及び第2ショットピーニング処理がそれぞれ適正に行われたか否かを判断することができるので、より正確な検査が可能となる。また、いずれのショットピーニング処理が不適正であったかを区別して判断することができる。
1…表面特性検査装置
10…交流電源
20…交流ブリッジ回路
21…可変抵抗
22…基準検出器
23…検査検出器
23a…コア
23b…コイル
23c…磁気シールド
30…評価装置
31…増幅器
32…絶対値回路
33…LPF
34…位相比較器
35…周波数調整器
36…判断手段
37…表示手段
38…温度測定手段
M…被検体
S…基準検体

Claims (11)

  1.  ショットピーニング処理された被検体の表面特性を検査する表面特性検査方法であって、
     交流ブリッジ回路と、
     前記交流ブリッジ回路に交流電力を供給する交流電源と、
     前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、
     前記交流ブリッジ回路は、第1の抵抗と第2の抵抗とに分配比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器がブリッジ回路を構成する表面特性検査装置を用意する検査装置準備工程と、
     前記評価装置における被検体の表面特性の評価に使用するしきい値を決定するしきい値設定工程と、
     表面から深部に残留応力を付与する第1ショットピーニング処理と、前記第1ショットピーニング処理後に前記第1ショットピーニング処理よりも低強度のショットピーニングを行い表面近傍に更に残留応力を付与する第2ショットピーニング処理と、が施された被検体に、前記検査検出器によって渦電流を励起する渦電流励起工程と、
     前記第2ショットピーニング処理後に実施された前記渦電流励起工程において前記交流ブリッジ回路から出力された出力信号と前記しきい値とを比較して、前記第1ショットピーニング処理が適正に行われたか否かを前記評価装置により判断する良否判断工程と、
     を有することを特徴とする表面特性検査方法。
  2.  前記渦電流励起工程は、前記基準検体として、表面処理を施していない未処理品を前記基準検出器に配置した状態で実施されることを特徴とする請求項1に記載の表面特性検査方法。
  3.  前記しきい値設定工程は、前記第1ショットピーニング及び前記第2ショットピーニング処理が適正に行われた被検体に渦電流を励起した際の前記交流ブリッジ回路の出力信号に基づいて前記しきい値を設定することを特徴とする請求項1または請求項2に記載の表面特性検査方法。
  4.  更に、前記渦電流励起工程よりも高い周波数の交流電力を前記交流電源によって供給して、被検体に渦電流を励起する第2渦電流励起工程と、この第2渦電流励起工程により渦電流が励起されているときの前記交流ブリッジ回路の出力信号に基づいて、前記第2ショットピーニング処理が適正に行われたか否かを前記評価装置により判断する第2良否判断工程と、を備えたことを特徴とする請求項1ないし3のいずれか1つに記載の表面特性検査方法。
  5.  前記しきい値設定工程は、所定の第1周波数の交流電力を前記交流ブリッジ回路に供給して得られた出力信号に基づいて決定されるしきい値、及び前記第1周波数よりも高い第2周波数の交流電力を前記交流ブリッジ回路に供給して得られた出力信号に基づいて決定される第2しきい値を決定し、前記しきい値は前記良否判断工程における良否判断に使用され、前記第2しきい値は前記第2良否判断工程における良否判断に使用されることを特徴とする請求項4に記載の表面特性検査方法。
  6.  前記第2良否判断工程は、前記良否判断工程よりも前に実施されることを特徴とする請求項4に記載の表面特性検査方法。
  7.  前記しきい値設定工程は、前記検査検出器に未処理の被検体を配置したときの前記交流ブリッジ回路の出力信号EA、及び前記検査検出器に前記第1ショットピーニング及び前記第2ショットピーニング処理が適正に行われた被検体を配置したときの前記交流ブリッジ回路の出力信号EBに基づいて、下式によりしきい値Ethiを設定することを特徴とする請求項3または請求項5に記載の表面特性検査方法。
    Ethi=(EAav・σB+EBav・σA)/(σA+σB)
      EAav:出力信号EAの平均値、EBav:出力信号EBの平均値、σA:出力信号EAの標準偏差、σB:出力信号EBの標準偏差
  8.  前記評価装置は記憶手段を備え、この記憶手段には、各被検体の識別情報と該被検体の表面特性の検査データが関連付けて記憶されることを特徴とする請求項1ないし請求項7のいずれか1つに記載の表面特性検査方法。
  9.  ショットピーニング装置により表面から深部に残留応力を付与する第1ショットピーニング処理と、前記第1ショットピーニング処理後に前記第1ショットピーニング処理よりも低強度のショットピーニングを行い表面近傍に更に残留応力を付与する第2ショットピーニング処理と、が施された被検体の表面特性を検査する表面特性検査装置であって、
     交流ブリッジ回路と、
     前記交流ブリッジ回路に交流電力を供給する交流電源と、
     前記交流ブリッジ回路からの出力信号に基づいて、被検体の表面特性を評価する評価装置と、を備え、
     前記交流ブリッジ回路は、第1の抵抗と第2の抵抗とに分配比が可変に構成された可変抵抗と、交流磁気を励起可能なコイルを備え被検体に渦電流を励起するように当該コイルを配置可能に形成された検査検出器と、被検体と同一構造の基準検体を配置し、前記検査検出器からの出力と比較する基準となる基準状態を検出する基準検出器とを有し、前記第1の抵抗、前記第2の抵抗、前記基準検出器及び前記検査検出器はブリッジ回路を構成し、前記評価装置は、前記第2ショットピーニング処理後にのみ、前記交流ブリッジ回路に交流電力が供給され、前記検査検出器が前記被検体の電磁気特性を検出し、前記基準検出器が基準状態を検出している状態における前記交流ブリッジ回路からの出力信号としきい値とを比較して、前記被検体の表面特性を評価し、前記被検体に対する前記第1ショットピーニング処理が適正に行われたか否かを判断することを特徴とする表面特性検査装置。
  10.  前記基準検体は、表面処理を施していない未処理品であることを特徴とする請求項9に記載の表面特性検査装置。
  11.  前記コイルは、リッツ線により形成されていることを特徴とする請求項9または請求項10に記載の表面特性検査装置。
PCT/JP2014/076901 2014-03-24 2014-10-08 表面特性検査方法及び表面特性検査装置 WO2015145833A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/128,573 US10048227B2 (en) 2014-03-24 2014-10-08 Surface property inspection method and apparatus
EP14887432.4A EP3124964A4 (en) 2014-03-24 2014-10-08 Surface characteristic inspection method and surface characteristic inspection device
JP2016509889A JP6181851B2 (ja) 2014-03-24 2014-10-08 表面特性検査方法及び表面特性検査装置
CN201480077492.2A CN106164666B (zh) 2014-03-24 2014-10-08 表面特性检查方法和表面特性检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060368 2014-03-24
JP2014-060368 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015145833A1 true WO2015145833A1 (ja) 2015-10-01

Family

ID=54194407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076901 WO2015145833A1 (ja) 2014-03-24 2014-10-08 表面特性検査方法及び表面特性検査装置

Country Status (6)

Country Link
US (1) US10048227B2 (ja)
EP (1) EP3124964A4 (ja)
JP (1) JP6181851B2 (ja)
CN (1) CN106164666B (ja)
TW (1) TWI645188B (ja)
WO (1) WO2015145833A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791126A (zh) * 2016-10-06 2019-05-21 新东工业株式会社 表面特性检查方法和表面特性检查装置
US20200182814A1 (en) * 2017-07-10 2020-06-11 Sintokogio, Ltd. Surface property inspection method, surface property inspection apparatus, and surface property inspection system
US11389930B2 (en) * 2017-05-16 2022-07-19 Sintokogio, Ltd. Surface treatment processing method and surface treatment processing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647683B2 (ja) * 2015-06-25 2020-02-14 新東工業株式会社 鋼材の表面特性評価装置及び表面特性評価方法
JP6618046B2 (ja) * 2015-08-06 2019-12-11 新東工業株式会社 鋼材製品の表面特性検査方法及び表面特性検査装置
JP6117398B1 (ja) * 2016-03-30 2017-04-19 日新製鋼株式会社 鋼板の表面欠陥検査装置および表面欠陥検査方法
FR3081553B1 (fr) * 2018-05-23 2020-12-04 Beweis Procede pour securiser une methode de detection par ressuage ou magnetoscopie
JP6881420B2 (ja) * 2018-11-07 2021-06-02 新東工業株式会社 劣化評価方法
CN112629728A (zh) * 2020-12-21 2021-04-09 湖南航天天麓新材料检测有限责任公司智能检测装备分公司 基于涡流的铝合金残余应力测试装置及其测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557630A (en) * 1978-06-30 1980-01-19 Sumitomo Metal Ind Ltd Inspection method of depth for peening machined layer at internal surface of tube
JPH05203503A (ja) * 1991-11-27 1993-08-10 Toyota Motor Corp 鋼材の残留応力分布の測定装置
JPH10217122A (ja) * 1997-01-31 1998-08-18 Sintokogio Ltd 金型表面の処理方法
US5898302A (en) * 1997-11-25 1999-04-27 Cleveland State University Residual stress measurements in metal objects using four coils
JP2008002973A (ja) * 2006-06-22 2008-01-10 Fuji Seisakusho:Kk ショットピーニング処理面の非破壊検査方法及び装置
JP2013529286A (ja) * 2011-05-10 2013-07-18 新東工業株式会社 表面特性検査装置及び表面特性検査方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135914A (en) * 1959-09-04 1964-06-02 Magnetic Analysis Corp Multi-frequency testing method and apparatus for selectively detecting flaws at different depths
US5744954A (en) * 1996-11-25 1998-04-28 Cleveland State University Magnetic field generation in ferromagnetic metal objects
US7112960B2 (en) * 2003-07-31 2006-09-26 Applied Materials, Inc. Eddy current system for in-situ profile measurement
GB201006475D0 (en) * 2010-04-19 2010-06-02 Wesby Philip System and method for a surface strain gauge
US8928316B2 (en) * 2010-11-16 2015-01-06 Jentek Sensors, Inc. Method and apparatus for non-destructive evaluation of materials
US9964520B2 (en) 2014-01-20 2018-05-08 Sintokogio, Ltd. Surface property inspection device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557630A (en) * 1978-06-30 1980-01-19 Sumitomo Metal Ind Ltd Inspection method of depth for peening machined layer at internal surface of tube
JPH05203503A (ja) * 1991-11-27 1993-08-10 Toyota Motor Corp 鋼材の残留応力分布の測定装置
JPH10217122A (ja) * 1997-01-31 1998-08-18 Sintokogio Ltd 金型表面の処理方法
US5898302A (en) * 1997-11-25 1999-04-27 Cleveland State University Residual stress measurements in metal objects using four coils
JP2008002973A (ja) * 2006-06-22 2008-01-10 Fuji Seisakusho:Kk ショットピーニング処理面の非破壊検査方法及び装置
JP2013529286A (ja) * 2011-05-10 2013-07-18 新東工業株式会社 表面特性検査装置及び表面特性検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124964A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791126A (zh) * 2016-10-06 2019-05-21 新东工业株式会社 表面特性检查方法和表面特性检查装置
EP3489673A4 (en) * 2016-10-06 2020-03-04 Sintokogio, Ltd. SURFACE PROPERTY INSPECTION METHOD AND SURFACE PROPERTY INSPECTION DEVICE
US10962503B2 (en) 2016-10-06 2021-03-30 Sintokogio, Ltd. Surface characteristic inspection method and surface characteristic inspection device
CN109791126B (zh) * 2016-10-06 2023-10-24 新东工业株式会社 表面特性检查方法和表面特性检查装置
US11389930B2 (en) * 2017-05-16 2022-07-19 Sintokogio, Ltd. Surface treatment processing method and surface treatment processing device
US20200182814A1 (en) * 2017-07-10 2020-06-11 Sintokogio, Ltd. Surface property inspection method, surface property inspection apparatus, and surface property inspection system
US11442033B2 (en) * 2017-07-10 2022-09-13 Sintokogio, Ltd. Surface property inspection method, surface property inspection apparatus, and surface property inspection system

Also Published As

Publication number Publication date
JP6181851B2 (ja) 2017-08-16
US10048227B2 (en) 2018-08-14
EP3124964A4 (en) 2017-11-29
TW201537169A (zh) 2015-10-01
US20170108470A1 (en) 2017-04-20
CN106164666B (zh) 2019-07-23
TWI645188B (zh) 2018-12-21
EP3124964A1 (en) 2017-02-01
CN106164666A (zh) 2016-11-23
JPWO2015145833A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6181851B2 (ja) 表面特性検査方法及び表面特性検査装置
JP6421808B2 (ja) 表面特性検査装置及び表面特性検査方法
JP5850414B2 (ja) 表面特性検査装置及び表面特性検査方法
JP5877505B2 (ja) 表面特性検査装置、表面特性検査システム及び表面特性検査方法
KR20170120167A (ko) 로프 손상 진단 검사 장치 및 로프 손상 진단 검사 방법
CN110869756A (zh) 表面特性评价方法、表面特性评价装置以及表面特性评价系统
JP6176596B2 (ja) 表面特性検査選別装置、表面特性検査選別システム及び表面特性検査選別方法
JP6618046B2 (ja) 鋼材製品の表面特性検査方法及び表面特性検査装置
JP6880538B2 (ja) 表面特性検査方法及び表面特性検査装置
Ismail et al. Development of crack on composite detection sensor using magnetic induction concept

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509889

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15128573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014887432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887432

Country of ref document: EP