WO2015145831A1 - Antireflective article and image display device - Google Patents

Antireflective article and image display device Download PDF

Info

Publication number
WO2015145831A1
WO2015145831A1 PCT/JP2014/076465 JP2014076465W WO2015145831A1 WO 2015145831 A1 WO2015145831 A1 WO 2015145831A1 JP 2014076465 W JP2014076465 W JP 2014076465W WO 2015145831 A1 WO2015145831 A1 WO 2015145831A1
Authority
WO
WIPO (PCT)
Prior art keywords
microprojections
microprotrusions
microprojection
height
antireflection
Prior art date
Application number
PCT/JP2014/076465
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 宮崎
増淵 暢
松藤 和夫
ゆり 下嵜
洋一郎 大橋
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2015145831A1 publication Critical patent/WO2015145831A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the present invention relates to an antireflection article for preventing reflection by closely arranging a large number of minute protrusions at an interval equal to or shorter than the shortest wavelength of an electromagnetic wave wavelength band for preventing reflection.
  • an antireflection film which is a film-shaped antireflection article
  • a method for preventing reflection by arranging a large number of microprotrusions closely on the surface of a transparent substrate (transparent film) (patent) Reference 1 to 3).
  • This method uses the principle of the so-called moth-eye structure, and continuously changes the refractive index for incident light in the thickness direction of the substrate, thereby discontinuous interface of the refractive index. Is eliminated to prevent reflection.
  • the microprojections are closely arranged so that the interval d between adjacent microprojections is equal to or less than the shortest wavelength ⁇ min (d ⁇ ⁇ min) of the wavelength band of the electromagnetic wave to prevent reflection. .
  • each microprotrusion is produced so that a cross-sectional area may become small gradually toward the front end side from a transparent base material so that it may be planted on a transparent base material.
  • Such antireflection articles can be placed on the light exit surface of various image display devices to reduce external light reflection such as sunlight on the screen to improve image visibility, or to form the microprojections on a sheet or plate-like transparent substrate
  • a touch panel using an electrode in which a transparent conductive film such as ITO (indium tin oxide) is formed on the microprojection group, light reflection between the touch panel electrode and various adjacent members is performed. It has been proposed to reduce the occurrence of interference fringes, ghost images, and the like.
  • ITO indium tin oxide
  • Patent Document 4 also provides a sufficient antireflection function for this type of antireflection article, even when a plurality of vertices are produced at the tops of the microprojections due to poor resin filling during the molding process. It describes what you can do.
  • this type of anti-reflection article having a moth-eye structure still has a practically insufficient problem with respect to scratch resistance. That is, for example, when an anti-reflective article comes into contact with another object, the anti-reflective function is locally deteriorated, and white turbidity, scratches, etc. occur at the contact location, resulting in poor appearance.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to improve the scratch resistance of an antireflection article having a moth-eye structure as compared with the conventional art.
  • a microprotrusion having a plurality of vertices (referred to as multi-peak microprotrusions) is provided, thereby completing the present invention.
  • a microprojection having only one vertex is referred to as a single-peak microprojection in comparison with a multimodal microprojection.
  • both a single-peak microprojection and a multimodal microprojection are included.
  • each convex part which forms each vertex which concerns on a multimodal microprotrusion and a monomodal microprotrusion is called a peak suitably.
  • the present invention provides the following:
  • the microprotrusions are A multimodal microprojection having a plurality of vertices, and a unimodal microprojection having one vertex,
  • the multimodal microprojections are: When the microprotrusions are viewed in plan from the tip side, the microprotrusions are divided into a plurality of regions by grooves formed outward from the center, and each region of the plurality of regions is a peak associated with each vertex. .
  • the protrusions when a microprojection having excellent mechanical strength compared to a single-peak microprojection is provided, when an impact force is applied, compared to the case of only a single-peak microprojection, The protrusions can be prevented from being damaged, whereby local deterioration of the antireflection function can be reduced, and the occurrence of poor appearance can be reduced. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect.
  • multi-modal micro-projections with such a shape are produced by a mold for molding processing having a corresponding shape, unlike multi-modal micro-projections caused by poor filling of resin during molding processing.
  • the height distribution can be set to a desired distribution to ensure both uniform performance and high mass productivity. Further, since the distance between the protrusions is set wider than in the case of poor filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
  • the multimodal microprotrusions are formed such that the perimeter when the microprotrusions are viewed in plan from the tip side is longer than that of the single-peak microprotrusions.
  • the microprotrusions are At least a part thereof constitutes an annular microprotrusion group comprising an inner core microprojection and a plurality of outer edge microprojections formed around the inner core microprojection and having a height higher than the inner core microprojection. is doing.
  • the microprotrusions are A convex projection group comprising at least a part of one top microprojection and a plurality of peripheral microprojections formed adjacent to the periphery of the top microprojection and having a height lower than that of the top microprojection. It is composed.
  • a plurality of peripheral micro-projections having a lower height are provided adjacent to the periphery of one top micro-projection to form a convex projection group.
  • the top microprotrusions absorb the impact in a concentrated manner, so that a plurality of adjacent peripheral microprotrusions can be prevented from being damaged by the impact. Total loss can be prevented. Thereby, local deterioration of the antireflection function can be reduced, and the occurrence of appearance defects can be further reduced.
  • the antireflection article according to (1), (2), (3), or (4) is disposed on the light exit surface of the image display panel.
  • the scratch resistance can be improved as compared with conventional antireflection articles having a moth-eye structure.
  • FIG. 1 is a conceptual perspective view showing an antireflection article according to a first embodiment of the present invention. It is a figure where it uses for description of an adjacent protrusion. It is a figure where it uses for description of the maximum point. It is a figure which shows a Delaunay figure. It is a frequency distribution figure with which it uses for description of the measurement of the distance between adjacent protrusions. It is a frequency distribution diagram used for description of the microprojection height. It is a conceptual sectional view showing the form in which the envelope surface of the valley bottom of the microprojection exhibits an uneven surface (waviness). It is a figure which shows the manufacturing process of the antireflection article
  • FIG. 20 is a plan view, a front view, and a side view of FIG. 19. It is a perspective view which shows the shape of the microprotrusion based on this invention different from FIG. It is the top view of FIG. 21, a front view, and a side view.
  • FIG. 1 is a diagram (conceptual perspective view) showing an antireflection article according to a first embodiment of the present invention.
  • This antireflection article 1 is an antireflection film whose overall shape is formed by a film shape.
  • the antireflection article 1 is held by being attached to the front side surface of the image display panel, and the reflection of external light such as sunlight and electric light on the screen is reduced by the antireflection article 1. And improve visibility.
  • the antireflection article is not limited to a flat film shape, but may be a flat sheet shape or a flat plate shape (referred to as a film, a sheet, or a plate in order of relatively small thickness).
  • a flat shape instead of a flat shape, a curved shape, a three-dimensional film shape, a sheet shape, or a plate shape can be used, and various lenses, prisms, and other three-dimensional shapes are appropriately used depending on the application. Can be adopted.
  • the antireflection article 1 is produced by closely arranging a large number of microprotrusions 5, 5A, 5B on the surface of the substrate 2 in the shape (form) of a transparent film.
  • a plurality of closely arranged microprotrusions is collectively referred to as a microprotrusion group.
  • the base material 2 is, for example, a cellulose resin such as TAC (Triacetylcellulose), an acrylic resin such as PMMA (polymethyl methacrylate), a polyester resin such as PET (Polyethylene terephthalate), or PP (polypropylene).
  • Polyolefin resins such as PVC, vinyl resins such as PVC (polyvinyl chloride), and various transparent resin films such as PC (polycarbonate) can be applied.
  • the shape of the antireflection article is not limited to the film shape, and various shapes can be employed.
  • the base material 2 is made of various transparent materials such as soda glass, potassium glass, lead glass, ceramics such as PLZT, quartz, meteorite, etc. An inorganic material or the like can be applied.
  • the anti-reflective article 1 forms an uncured resin layer 4 (hereinafter referred to as a receiving layer as appropriate) 4 which forms a fine uneven receiving layer composed of a group of minute protrusions on a base material 2. 4 is subjected to a molding treatment and hardened, whereby the fine protrusions are placed in close contact with the surface of the substrate 2.
  • an acrylate-based ultraviolet curable resin which is one of the molding resins used for the molding process, is applied to the receiving layer 4 to form the ultraviolet curable resin layer 4 on the substrate 2.
  • the antireflection article 1 is manufactured so that the refractive index gradually changes in the thickness direction due to the uneven shape by the microprotrusions, and reduces the reflection of incident light in a wide wavelength range by the principle of the moth-eye structure.
  • the microprotrusions produced in the antireflection article 1 are closely arranged so that the distance d between adjacent microprotrusions is equal to or less than the shortest wavelength ⁇ min (d ⁇ ⁇ min) of the wavelength band of the electromagnetic wave to prevent reflection.
  • the shortest wavelength is set to the shortest wavelength (380 nm) in the visible light region in consideration of individual differences and viewing conditions.
  • the distance d is set to 100 to 300 nm in consideration of variation.
  • the adjacent minute protrusions related to the distance d are so-called adjacent minute protrusions, which are in contact with the hem portions of the minute protrusions, which are the base portions on the base 2 side.
  • the minute protrusions are closely arranged so that when a line segment is formed so as to sequentially follow the valley portions between the minute protrusions, a large number of polygonal regions surrounding each minute protrusion are connected in plan view. Thus, a mesh-like pattern is produced.
  • the adjacent minute protrusions related to the distance d are protrusions that share a part of the line segments constituting the mesh pattern. The more accurate definition of “adjacent” or “adjacent” is based on the following.
  • the minute protrusions are defined in more detail as follows.
  • the effective refractive index at the interface between the transparent substrate surface and the adjacent medium is continuously changed in the thickness direction to prevent reflection. It is necessary to satisfy the following conditions.
  • the protrusion spacing which is one of these conditions, when the minute protrusions are regularly arranged with a constant period as disclosed in, for example, Japanese Patent Application Laid-Open No. 50-70040, Japanese Patent No. 4632589, etc.
  • a preferable condition that can more reliably exhibit an antireflection effect for all wavelengths in the visible light band is d ⁇ 300 nm, and a more preferable condition is d ⁇ 200 nm.
  • the lower limit value of the period d is usually d ⁇ 50 nm, preferably d ⁇ 100 nm, for reasons such as the expression of the antireflection effect and the securing of the isotropic (low angle dependency) of the reflectance.
  • the distance d between the adjacent minute protrusions varies. More specifically, as shown in FIG. 2, when viewed from the normal direction of the front or back surface of the substrate, when the microprojections are not regularly arranged at a constant period, the repetition period P of the protrusions In some cases, the distance d between adjacent protrusions cannot be defined, and even the concept of adjacent protrusions is suspicious. Therefore, in such a case, it is calculated as follows.
  • FIG. 2 is an enlarged photograph actually obtained by an atomic force microscope. Since the AFM data is accompanied by the in-plane distribution data of the height of the microprojections, this photo can be said to be a photo showing the in-plane distribution of height by luminance. 2 to 6 (photographs and frequency distribution graphs) are measured and calculated for the first embodiment of the present invention, and the principle and method for calculating the inter-projection distance and height of the microprotrusions are described. It is used for explanation. Details of the microprojection group according to the second embodiment of the present invention will be described later with reference to FIGS. 16 and 17.
  • a maximum point of the height of each protrusion (hereinafter simply referred to as a maximum point) is detected from the obtained in-plane arrangement.
  • the maximum point means a point where the height is larger (maximum value) than any point around the vicinity.
  • There are various methods for obtaining the maximum point such as a method of sequentially comparing the planar view shape and the enlarged photograph of the corresponding cross-sectional shape to obtain the maximum point, and a method of obtaining the maximum point by image processing of the plan view enlarged photo. Can be applied.
  • FIG. 3 is a diagram showing the detection result of the maximum point by the processing of the image data relating to the enlarged photograph shown in FIG.
  • a Delaunay diagram (Delaunary Diagram) with the detected maximum point as a generating point is created.
  • Delaunay diagram is obtained by dividing the Voronoi region adjacent to the Voronoi region when the Voronoi division is performed with each local maximum as the generating point, and connecting the adjacent generating points with line segments. This is a net-like figure made up of triangular aggregates.
  • Each triangle is called a Delaunay triangle, and a side of each triangle (a line segment connecting adjacent generating points) is called a Delaunay line.
  • FIG. 4 is a diagram in which the Delaunay diagram (represented by white line segments) obtained from FIG. 3 is superimposed on the original image of FIG.
  • the Delaunay diagram has a dual relationship with the Voronoi diagram.
  • Voronoi division means that a plane is divided by a net-like figure made up of a closed polygon aggregate defined by perpendicular bisectors of line segments (Droney lines) connecting between adjacent generating points.
  • a network figure obtained by Voronoi division is a Voronoi diagram, and each closed region is a Voronoi region.
  • FIG. 5 is a histogram of the frequency distribution created from the Delaunay diagram of FIG. As shown in FIG. 2 and FIG. 11, when there is a groove or the like at the top of the protrusion, or when the top is divided into a plurality of peaks, from the obtained frequency distribution, A frequency distribution is created by removing data resulting from a fine structure having a concave portion at the top and a fine structure in which the top is split into a plurality of peaks, and selecting only the data of the projection body itself.
  • the single peak property that does not have such a fine structure From the numerical range in the case of a microprotrusion, the distance between adjacent maximum points is clearly greatly different.
  • the frequency distribution is detected. More specifically, for example, about 5 to 20 adjacent single-peaked microprojections are selected from a magnified photograph of a microprojection (group) in plan view as shown in FIG. 2, and the distance between adjacent maximum points is selected.
  • the average value d AVG and the standard deviation ⁇ are obtained from the frequency distribution of the distance d between adjacent protrusions thus obtained.
  • FIG. 6 is a diagram showing a histogram of the frequency distribution of the protrusion height H with the protrusion root position obtained in this way as a reference (height 0).
  • the average value HAVG of the protrusion height and the standard deviation ⁇ are obtained from the frequency distribution based on the histogram.
  • the mean value H AVG 178 nm
  • the standard deviation sigma 30 nm.
  • the frequency distribution is obtained by adopting the vertex having the highest height from among the plurality of vertices belonging to the same microprotrusion as the protuberance.
  • the reference position for measuring the height of the protrusion described above is based on the bottom of the valley (minimum point of height) between the adjacent minute protrusions as a reference of height 0.
  • the height of the valley bottom itself varies depending on the location (for example, as shown in FIG. 7, when the height of the valley bottom has undulation with a period larger than the distance between adjacent projections of the microprojections)
  • a surface having the height of the average value and parallel to the front surface or the back surface of the substrate 2 is considered as a reference surface.
  • the height of each microprotrusion from the reference surface is calculated by setting the reference surface to a height of 0 again.
  • a preferable condition that can more reliably exhibit the antireflection effect for all wavelengths in the visible light band is dmax ⁇ 300 nm, and a more preferable condition is dmax ⁇ 200 nm. Also, dmax ⁇ 50 nm is usually satisfied and dmax ⁇ 100 nm is preferable because of the antireflection effect and ensuring the isotropic (low angle dependency) of the reflectance.
  • the average inter-protrusion distance dave may be set to beave ⁇ ⁇ min.
  • the shortest wavelength ⁇ min in the visible light band is 380 nm, it can be seen that the sufficient condition dmax ⁇ ⁇ min for exhibiting the antireflection effect in all visible light wavelength bands is also satisfied.
  • the average projection height H AVG 178 nm
  • FIG. 8 is a diagram showing a manufacturing process of the antireflection article 1.
  • an uncured and liquid ultraviolet curable resin that forms a microprojection-shaped receiving layer is applied to the base material 2 in the form of a belt-shaped film by the die 12.
  • coating of an ultraviolet curable resin not only the case by the die
  • the substrate 2 is pressed and pressed onto the peripheral side surface of the roll plate 13 which is a mold for shaping the antireflection article by the pressing roller 14, and thereby the substrate 2 is uncured.
  • the liquid acrylate-based ultraviolet curable resin is brought into close contact, and the fine concavo-convex recesses formed on the peripheral side surface of the roll plate 13 are sufficiently filled with the ultraviolet curable resin.
  • the ultraviolet curable resin is cured by irradiation with ultraviolet rays, and thereby a microprojection group is produced on the surface of the substrate 2.
  • the substrate 2 is peeled off from the roll plate 13 through the peeling roller 15 together with the cured ultraviolet curable resin.
  • an anti-reflection article 1 is produced by producing an adhesive layer or the like on the substrate 2 as necessary, and then cutting it into a desired size. Accordingly, the antireflection article 1 is mass-produced efficiently by sequentially molding the fine shape produced on the peripheral side surface of the roll plate 13 which is a mold for molding on the long base material 2 made of a roll material.
  • FIG. 9 is a perspective view showing the configuration of the roll plate 13.
  • the roll plate 13 has a fine concavo-convex shape formed on the peripheral side surface of the base material, which is a cylindrical metal material, by repeating anodizing treatment and etching treatment, and the fine concavo-convex shape is formed on the substrate 2 as described above. It is shaped. For this reason, a columnar or cylindrical member in which a high-purity aluminum layer is provided at least on the peripheral side surface is used as the base material. More specifically, in this embodiment, a hollow stainless steel pipe is applied to the base material, and a high-purity aluminum layer is provided directly or via various intermediate layers. In addition, it may replace with a stainless steel pipe and may apply pipe materials, such as copper and aluminum.
  • the roll plate 13 fine holes are densely formed on the peripheral side surface of the base material by repeating the anodizing treatment and the etching treatment, and the fine holes are dug, and the diameter of the roll plate 13 increases as it approaches the opening.
  • the concavo-convex shape is produced by gradually increasing the diameter of the fine holes.
  • the roll plate 13 is closely formed with fine holes whose diameter gradually decreases in the depth direction, and the diameter of the antireflection article 1 gradually decreases as it approaches the top corresponding to the fine holes.
  • a fine concavo-convex shape is produced by a microprojection group consisting of a large number of microprojections. At that time, by appropriately adjusting various conditions such as the purity (impurity amount), bath concentration, crystal grain size, anodizing treatment and / or etching treatment of the aluminum layer, the shape of the fine protrusion unique to the present invention is obtained.
  • FIG. 10 is a diagram illustrating a manufacturing process of the roll plate 13.
  • the peripheral side surface of the base material is made into a super mirror surface by an electrolytic composite polishing method that combines electrolytic elution action and abrasion action by abrasive grains (electrolytic polishing).
  • electrolytic composite polishing method that combines electrolytic elution action and abrasion action by abrasive grains (electrolytic polishing).
  • aluminum layer creation step aluminum is sputtered on the peripheral side surface of the base material to produce a high purity aluminum layer.
  • the base material is processed by alternately repeating the anodic oxidation processes A1,..., AN, and the etching processes E1,.
  • a fine hole is produced on the peripheral side surface of the base material by an anodizing method, and the produced fine hole is further dug.
  • various methods applied to the anodic oxidation of aluminum can be widely applied, for example, when a carbon rod, a stainless steel plate, or the like is used for the negative electrode.
  • various neutral and acidic solutions can be used, and more specifically, for example, sulfuric acid aqueous solution, oxalic acid aqueous solution, phosphoric acid aqueous solution and the like can be used.
  • the fine holes are formed in shapes corresponding to the target depth and the shape of the fine protrusions, respectively, by managing the liquid temperature, the applied voltage, the time for anodization, and the like.
  • the mold is immersed in an etching solution, the hole diameter of the fine hole produced and dug in the anodizing process A1,.
  • These fine holes are shaped so that the hole diameter becomes smaller and smoother.
  • the etching solution various etching solutions that are applied to this type of treatment can be widely applied. More specifically, for example, a sulfuric acid aqueous solution, an oxalic acid aqueous solution, a phosphoric acid aqueous solution, or the like can be used.
  • the same solution as the solution used for the anodic oxidation treatment may be used without applying a voltage so that the solution can be used also as an etching solution.
  • the anodizing process and the etching process are alternately performed a plurality of times, so that fine holes for forming are formed on the peripheral side surface of the base material.
  • the multimodal microprotrusions not only have a plurality of vertices, but when the microprotrusions are viewed in plan from the tip side, they are divided into a plurality of regions by grooves formed outward from the center, Each of the plurality of regions is formed to be a peak related to each vertex.
  • this multimodal microprotrusion is produced by a molding process of microholes having a corresponding shape, and the microholes related to such multimodal microprotrusions are repeated in the anodizing process and the etching process. Fine holes made in close proximity are produced integrally by an etching process.
  • the multimodal microprotrusions are formed such that the perimeter when the microprotrusions are viewed in plan view from the tip side is longer than that of the monomodal microprotrusions. This point can be seen from FIG.
  • the shape of these multimodal microprojections is different from the multimodal microprotrusions caused by poor filling of the resin during the molding process disclosed in Japanese Patent Application Laid-Open No. 2012-037670.
  • FIG. 11 is a cross-sectional view (FIG. 11 (a)), a perspective view (FIG. 11 (b)), and a plan view (FIG. 11 (c)) for explaining the multimodal microprotrusions having a plurality of vertices.
  • FIG. 11 is a diagram schematically showing for easy understanding
  • FIG. 11A is a diagram showing a cross section by a broken line connecting the vertices of continuous minute protrusions.
  • the xy direction is the in-plane direction of the substrate 2
  • the z direction is the height direction of the microprojections.
  • microprotrusions 5 are gradually cut in a cross-sectional area (a plane perpendicular to the height direction (a plane parallel to the XY plane in FIG. 11)) toward the apex away from the base material 2.
  • the cross-sectional area) is reduced, and one vertex is produced.
  • a groove g was formed at the tip, and the apex was two (5A), the apex was three (5B), Furthermore, there were those having four or more vertices (not shown).
  • the shape of the unimodal microprotrusions 5 can be approximated by a round shape at the top like a paraboloid of revolution or a sharp shape at the apex like a cone.
  • the shape of the multimodal microprotrusions 5A and 5B is approximately approximated by a shape in which a groove-shaped recess is cut in the vicinity of the top of the single-peak microprotrusion 5 and the top is divided into a plurality of peaks.
  • the shape of the multi-peak microprotrusions 5A and 5B, or the vertical cross-sectional shape when cutting along a virtual cut surface including a plurality of peaks and including the height direction (Z-axis direction in FIG. 11), has a plurality of maximum points.
  • the thickness of the hem portion relative to the size in the vicinity of the vertex is relatively thick (peripheral length is longer) than the single-peak microprojection.
  • the multimodal microprotrusions are superior in mechanical strength to the single-peak microprotrusions.
  • the anti-reflective article has improved scratch resistance as compared to the case of using only monomodal micro-protrusions.
  • the external force when external force is applied to the anti-reflective article specifically, compared to the case of only a single-peaked microprojection, the external force is distributed and received at more vertices, so the external force applied to each vertex is reduced.
  • the microprotrusions can be made difficult to be damaged, thereby reducing the local deterioration of the antireflection function and further reducing the appearance defects.
  • the area of the damaged portion can be reduced.
  • the multi-peak microprojections are higher than the multi-peak micro-projections and lower body parts than the multi-peak micro-projections by first receiving each external force and sacrificing damage. Prevents wear and tear of small microprojections. This also reduces local deterioration of the antireflection function and further reduces the occurrence of appearance defects.
  • the distance d between adjacent protrusions is There are two types of local maxima, short maxima of 20 nm and 40 nm and long maxima of 120 nm and 164 nm.
  • the maximum value of the long distance corresponds to the arrangement of the microprojection bodies (the part from the middle to the heel below the top part), while the maximum value of the short distance exists in the vicinity of the top part.
  • the ratio of the number of multimodal microprotrusions in all the microprotrusions existing on the surface is 10% or more.
  • the ratio of the multimodal microprojections is set to 30% or more, preferably 50% or more.
  • the ratio is preferably 90% or less, more preferably 80% or less.
  • the heights of the microprotrusions are variously different.
  • the height of each microprotrusion is the height of the peak (highest peak) having the highest height at the top of a specific microprotrusion that shares the ridge (root).
  • the peaks which share a collar part are the same height, let it be the height of this microprotrusion with the same height.
  • a single-peak microprojection such as the microprojection 5 in FIG.
  • the height of the only peak (maximum point) at the top is the projection height of the microprojection.
  • the height of the microprotrusions has the height of the highest peak among a plurality of peaks sharing the ridge at the top. Say it.
  • the heights of the microprojections are variously different, for example, even when the shape of the microprojections having a high height is damaged by contact with an object, the shape is maintained in the microprojections having a low height. It will be.
  • the antireflection article local deterioration of the antireflection function can be reduced, and furthermore, occurrence of defective appearance can be reduced, and as a result, scratch resistance can be improved.
  • the dust when dust adheres between the microprojection group on the surface of the antireflection article and the object, when the article slides relative to the antireflection article, the dust functions as an abrasive to form microprojections (Group) wear and damage are promoted.
  • the dust if there is a difference in height between the microprojections constituting the microprojection group, the dust strongly contacts the microprojections having a high height and is damaged.
  • the contact with the microprojections having a low height is weakened, the damage is reduced for the microprojections having a low height, and the antireflection performance is maintained by the microprojections having a low height remaining without being damaged or slightly damaged.
  • the microprotrusion group with distribution (height difference) in the height of each microprotrusion has a broad antireflection performance and has light with multiple wavelengths such as white light or a broadband spectrum.
  • the wavelength band in which good antireflection performance can be exhibited by such a microprojection group depends not only on the distance d between adjacent projections but also on the projection height.
  • the variation needs to be 10 nm or more when defined by the standard deviation.
  • the height variation is preferably 10 nm or more and 50 nm or less.
  • the antireflection performance can be improved as compared with the case of using only single-peak microprojections. That is, the multimodal microprotrusions 5A, 5B, etc. as shown in FIG. 2, FIG. 11, and FIG. 12, etc., even when the distance between adjacent protrusions is the same or when the protrusion height is the same. Compared with a single-peak microprojection, the reflectance of light is further reduced. The reason for this is that the multimodal microprotrusions 5A, 5B, etc. have a smaller change rate in the height direction of the effective refractive index in the vicinity of the apex than the single-peak microprotrusions below the apex (in the middle and the heel). It is to become.
  • n ef (z) 1 ⁇ S A (z) / (S A (z) + S M (z)) + n A ⁇ S M (z) / (S A (z) + S M (z)) (Formula 1 ) It is represented by This is because the refractive index n A of the peripheral medium and the refractive index n M of the constituent material of the microprojections are respectively set to the total sectional area S A (z) of the peripheral medium and the total value S M (z) of the total sectional area of the microprojections. The value is proportionally distributed by ratio.
  • the ratio of the total cross-sectional area S A (z) of the medium is further increased as compared with the ratio of the total cross-sectional area S M (z) of the microprojections having a relatively high refractive index.
  • the difference between the refractive index of the effective refractive index and the surrounding medium multimodal microprotrusions in the plane Z z
  • n A (z) 1,
  • the effective refractive index and the peripheral area of the microprojection group including the multimodal microprojections is smaller than that of the projection group including only the single-peak microprojections.
  • the difference from the refractive index of the medium (air), more specifically, the rate of change of the refractive index per unit distance in the height direction of the microprojections is further reduced, in other words, the direction of the refractive index in the height direction. It can be seen that the continuity of change can be further increased.
  • the antireflection effect is locally impaired.
  • each peak of the multi-peak microprojection has a small ratio of the height of the peak to the width of the buttocks, which is 1/2 to the ratio of the height of the apex to the width of the buttocks of the single-peak microprojection. It is about 1/10. Therefore, for the same external force, the peak of the multimodal microprotrusions is less likely to deform than the single-peak microprotrusions.
  • the main body itself of the multimodal microprotrusions has a greater distance between adjacent protrusions and a greater strength than the ridges. Therefore, after all, the microprojection group composed of multimodal microprotrusions can easily achieve both stickiness and low reflectivity compared to the projection group composed of monomodal microprojections.
  • the antireflection material depends on the assumed antireflection wavelength depending on the environmental conditions where the antireflection material is installed and used.
  • the moth-eye height can be about 50 nm.
  • the top structure of the moth-eye can be improved from the conventional single peak to achieve both height and reflectivity, and it is difficult to cause physical sticking and can effectively reduce reflectivity. Yes.
  • the microholes are dug while enlarging the hole diameter by alternately repeating the anodizing treatment and the etching treatment, thereby providing the microprojections to the mold.
  • Multimodal microprotrusions are produced by microholes having a concave shape corresponding to the top of such a structure, and such microholes are produced in close proximity by etching treatment. Therefore, it is considered that they are manufactured integrally. In this way, multi-peak microprojections and monomodal micro-protrusions can be mixed by greatly varying the interval between microholes produced by anodization, which greatly increases the variation in anodization. This can be realized.
  • the variation in the height of the fine hole is due to the variation in the depth of the fine hole produced in the roll plate, and this variation in the depth of the fine hole is also caused by the variation in the anodizing process. It can be said.
  • the conditions in the anodizing process are set so that the variation is large, the reflection is a mixture of a plurality of microprojections and a single-peak microprojection at the apex, and the height of the microprojections varies. Produce preventive goods.
  • the applied voltage (formation voltage) in the anodic oxidation treatment and the interval between the fine holes are in a proportional relationship, and the variation increases when the applied voltage deviates from a certain range.
  • the voltage is 15 V (first step) to 35 V (second step: about 2.3 times the first step).
  • Applied voltage can be used to produce a roll plate for the production of an antireflective article in which multimodal microprojections and monomodal microprojections coexist and the microprojections vary in height.
  • the anodizing treatment may be performed using a power source having a large voltage fluctuation rate.
  • FIG. 12 is a photograph showing a plurality of minute protrusions at the apex
  • FIG. 12 (a) is based on AFM
  • FIGS. 12 (b) and 12 (c) are based on SEM.
  • FIG. 12 (a) a groove g and a microprotrusion having three vertices and a groove g and a microprotrusion having two vertices can be seen
  • FIG. 12 (b) the groove g and four vertices are present.
  • a microprotrusion and a microprotrusion having a groove g and two vertices can be seen
  • FIG. 12C a microprotrusion having a groove g and three vertices, a microprojection having a groove g and two vertices can be seen. be able to.
  • the aspect ratio is defined as H / W, which is a ratio obtained by dividing the height H of the minute protrusions by the diameter W (also referred to as width or thickness) at the bottom of the valley.
  • W also referred to as width or thickness
  • the diameter at the bottom of the valley coincides with the diameter (at the bottom) of the column if the shape of the microprotrusion near the bottom of the valley is a column.
  • the maximum value is set to the microprojection.
  • the diameter is the major axis.
  • the diameter is the maximum diagonal length.
  • the average value (H / W) ave of the aspect ratio H / W of each microprotrusion is In terms of design, it can be substantially regarded as Have / dave.
  • the anti-reflective function of the anti-reflective article depends not only on the interval between the microprojections but also on the aspect ratio. If the aspect ratio is constant, for example, even if a sufficiently small reflectance can be secured in the visible light range, However, the reflectance increases as compared with the visible light region, and the antireflection function is insufficient. In such a case, although it may be possible to set the distance between adjacent protrusions to be further reduced so as to ensure a sufficient antireflection function in the ultraviolet region, in this case, the height is insufficient in the infrared region. The reflectivity will increase.
  • the distance between the peaks existing near the top of the same microprojection is smaller than the distance between adjacent projections (usually about 100 to 200 nm) (usually about 10 to 50 nm).
  • the distance between the peaks it is possible to ensure an antireflection function equivalent to a reduction in the effective distance between adjacent projections compared to a group of minute projections consisting of only single-peaked microprojections having the same distance between adjacent projections.
  • a low reflection rule can be ensured in a wide wavelength band due to the mixture of multimodal microprojections and monomodal microprojections.
  • the distance between adjacent protrusions that contributes to the antireflection performance for light in the wavelength range of 480 to 660 nm in the visible light region that is, d ⁇ It is desirable to mix multimodal microprojections and monomodal microprojections in microprojections with 400 nm, preferably d ⁇ 300 nm.
  • the features of the multimodal microprojections according to these embodiments are unique to the multimodal microprojections produced by the microholes having the corresponding shape of the shaping mold. This is a feature that cannot be obtained by the multi-modal microprotrusions caused by the resin filling failure disclosed in Japanese Patent No. 037670. That is, the multi-peak microprotrusions due to poor filling of the resin are produced by not sufficiently filling the fine holes that are originally produced as single-peak microprotrusions, so that the distance between the vertices is extremely small. Therefore, it hardly contributes to the improvement of scratch resistance, and it is difficult to improve the optical characteristics as described above.
  • the multi-peak microprotrusions due to poor filling have a drawback of poor reproducibility, which makes it impossible to mass-produce a uniform product.
  • the multi-peak microprotrusions according to this embodiment are so-called molds. It is a multi-modal microprotrusion derived from a mold that is produced with high reproducibility using the, and can ensure uniform and high mass productivity. As will be described in detail later, the multimodal microprojections according to this embodiment can control the height distribution, whereas the multimodal microprojections with poor filling can be controlled as described above. Have difficulty.
  • annular microprojections 6 as a group including a plurality of microprojections having different heights. Is configured.
  • the annular microprojection group 6 includes a plurality of (preferably four or more) outer edge microprojections 62 having a relatively high height in a manner of surrounding the inner core microprojections 61 having a relatively low height. It shall be said to be a group of a group of microprotrusions configured by being arranged.
  • the antireflection article can reduce local deterioration of the antireflection function, and further reduce the occurrence of appearance defects. Abrasion property can be improved.
  • the annular microprojection group 6 can reduce the damage due to the adhesion of dust and maintain the antireflection performance.
  • the annular microprojection group 6 only the outer edge microprojections 62 out of the plurality of microprojections come into contact with, for example, various member surfaces arranged to face the antireflection article 1.
  • the slippage can be remarkably improved, and the antireflection article can be easily handled in the manufacturing process.
  • the variation needs to be 10 nm or more when defined by the standard deviation.
  • the height variation is preferably 10 nm or more and 50 nm or less.
  • the annular microprojection group 6 can improve the scratch resistance due to its presence, if it does not exist sufficiently, the effect of improving the scratch resistance cannot be fully exhibited. From such a viewpoint, in the present invention, the proportion of the microprojections constituting the annular microprojection group 6 among the microprojections existing on the surface (hereinafter, this ratio is also referred to as “annular microprojection group constituent ratio”) is 10%. That's it. In particular, in order to sufficiently exhibit the effect of improving the scratch resistance by the annular microprojection group 6, the annular microprojection group constituent ratio is set to 30% or more, preferably 50% or more.
  • a part of the multi-peak microprojection and the single-peak microprojection is a part of one top micro-projection having a relatively high height.
  • a plurality of peripheral minute protrusions having a relatively low height are formed around the protrusions to constitute a group of convex protrusions 7 having a bell shape as a whole.
  • the convex protrusion group 7 is arranged so that the height gradually decreases as the plurality of peripheral microprotrusions move away from the top microprotrusions.
  • the convex projection group 7 constituted by a plurality of microprojections having different heights, for example, even when the shape of the top microprojection 71 having a high height is damaged by contact with an object, the height The shape of the low peripheral microprojection 72 is maintained. Since the convex projection group 7 is configured as described above, the antireflection article can reduce the local deterioration of the antireflection function, and further reduce the occurrence of appearance defects. Abrasion property can be improved.
  • the convex projection group 7 only the top microprojections 71 are brought into contact with, for example, various member surfaces arranged so as to face the antireflection article 1, and as in the case of the annular projection group. Compared with the case where only the minute protrusions having the same height are used, slippage can be remarkably improved, and the antireflection article can be easily handled in the manufacturing process and the like. From the viewpoint of improving the slipping as described above, the variation needs to be 10 nm or more when defined by the standard deviation. However, when the variation is larger than 50 nm, a feeling of surface roughness due to the variation can be felt. Therefore, the height variation is preferably 10 nm or more and 50 nm or less.
  • the convex projection group 7 when the peripheral microprotrusions 72 decrease in height as they move away from the top microprotrusions 71, more preferably, as shown in FIG. (P1, P2,...), And the convex surface of the convex group 7 that is wide from the apex (P1) to the lower end (r0) of the top microprojection 71 has a bell-shaped curved surface.
  • the convex projection group 7 as a whole can exhibit the same function and effect as the effect of a single microprojection in the so-called moth-eye structure. Therefore, the antireflection article 1 including the convex protrusion group 7 exhibits the effect of improving the scratch resistance described above, and is equivalent to or more than when only a single minute protrusion is present. The antireflection effect can be exhibited.
  • the envelope surface of the convex projection group 7 is a part of a free-form surface created by a Bezier curve (or B-spline curve) or the like including each local maximum point of the fine projection of the antireflection article 1.
  • the maximum value of the distances between a plurality of r0 on one envelope surface is defined as the width W of the convex projection group 7.
  • the width W of the convex protrusion group 7 is 780 nm or less, as described above, as in the case where the distance d between adjacent single protrusions is ⁇ max (780 nm) or less.
  • the convex projection group 7 can contribute to the improvement of the antireflection effect at the maximum wavelength in the visible light band.
  • the width W of the convex protrusion group 7 is 380 nm or less, it can contribute to the improvement of the antireflection effect with respect to light of all wavelengths in the visible light band.
  • the convex protrusion group 7 can improve the scratch resistance due to its presence, if it does not exist sufficiently, the effect of improving the scratch resistance cannot be fully exhibited.
  • the proportion of the microprojections constituting the convex projection group 7 out of the microprojections existing on the surface (hereinafter, this ratio is also referred to as “convex projection group constituent ratio”) is 10%. That's it.
  • the convex protrusion group constituent ratio is set to 30% or more, preferably 50% or more.
  • the height distribution of the microprojections is controlled. That is, in the antireflection article, by controlling the height distribution of the minute protrusions, for example, the characteristics in the viewing angle direction that fulfills the antireflection function can be controlled. For this reason, in this embodiment, the applied voltage of this repeated anodizing process is varied in the process of producing the shaping mold by alternately repeating the anodizing process and the etching process.
  • the applied voltage at the time of anodizing and the pitch of the fine holes are in a proportional relationship.
  • a plurality of micro holes are formed on the bottom surface of a micro hole having a large thickness (diameter), and the micro hole related to the multimodal micro protrusion is It is also possible to control the height distribution of multi-peaked microprojections by controlling the height of the fine hole with a large thickness and controlling the depth of the micro hole to be fabricated on the bottom surface. Can do.
  • FIG. 15 is a schematic diagram for explaining the control of such a height distribution, and is a diagram showing fine holes produced by an anodizing process and an etching process in the manufacturing process of the molding die.
  • the pitch of the fine holes varies depending on the grain boundaries of aluminum used for processing.
  • FIGS. 15 (a) to 15 (e) are a plan view and a corresponding cross-sectional view taken along line aa of the fine holes produced by the respective steps.
  • the etching process (hereinafter, referred to as the first process as appropriate) is performed, whereby FIG. As shown, a fine hole f1 with a basic pitch according to this low applied voltage V1 is produced.
  • the first anodic oxidation treatment is to produce a trigger for the subsequent anodic oxidation on the flat surface of aluminum.
  • the etching process in the first step may be omitted as necessary.
  • the second anodic oxidation process is performed with the applied voltage V2 (V2> V1) higher than that during the first anodic oxidation, and then the etching process is performed (hereinafter referred to as a second process as appropriate).
  • V2 the applied voltage
  • the applied voltage related to the second anodizing treatment among the fine holes f1 produced by the first anodizing treatment by increasing the applied voltage. Only the fine hole corresponding to the voltage is dug in the depth direction (indicated by reference numeral f2) and etched. Accordingly, if the applied voltage is varied in two steps, for example, fine holes having different depth distributions can be mixed in the second step.
  • the third anodic oxidation process is performed with the applied voltage V3 (V3> V2) higher than that during the second anodic oxidation, and then the etching process is performed (hereinafter referred to as a third process as appropriate).
  • the third step is a step for producing fine holes having different pitches. Therefore, in this step, the applied voltage is gradually increased from the applied voltage V2 in the second anodic oxidation step.
  • the increase in the applied voltage is executed discretely (stepwise), the height distribution of the microprotrusions can be set discretely, and microholes having different depth distributions can be mixed. Further, when the increase in the applied voltage is continuously changed, the depth distribution can be set to a normal distribution.
  • the application time of the specific voltage related to the anodic oxidation and the time of the etching process are set longer than those in the first and second steps, so that the first step,
  • the fine holes f1 and f2 formed in the two steps are combined with the fine holes f1 and f2 so as to form a substantially flat fine hole at the bottom.
  • the etching process is performed (hereinafter, referred to as a fourth process as appropriate).
  • the fourth step is a step for producing a fine hole with a pitch according to a target interprotrusion interval, and the applied voltage V4 is a voltage corresponding to this pitch.
  • the fourth step by increasing the applied voltage, a part of the fine hole dug deeply in the third step is further dug further, and the dug fine hole becomes a unimodal microprotrusion. The corresponding fine hole f4 is obtained.
  • the fifth anodic oxidation process is performed by the applied voltage V1 in the first step, and then the etching process is performed (FIG. 15E).
  • a fine hole whose bottom surface is flattened by the third step and is not affected by the anodizing treatment of the fourth step, a fine hole is formed on the bottom surface.
  • a plurality of microholes f5 for multi-peak protrusions are formed.
  • the number of fine holes f5 formed on the bottom surface can be increased or decreased.
  • the fine holes f1 and f2 having different depths produced in the first and second steps are dug in the third step to produce a substantially flat microprojection f3 on the bottom surface.
  • a fine hole related to the single-peaked microprojection is formed, and in the fifth step, the bottom surface of the microprojection f3 having a flat bottom surface is processed to form a microhole related to the single-peaked microprojection.
  • the applied voltage, processing time, etching processing time, etc. of the anodic oxidation treatments related to the first to fourth steps are controlled to control the depth of the fine holes produced in each step. By doing so, it is possible to control the height distribution of the microprojections and the height distribution of the multimodal microprojections. Needless to say, these first to fifth steps may be omitted, repeated, or integrated as necessary.
  • FIG. 16 and FIG. 17 are diagrams showing the height distribution of the fine protrusions produced using the roll plate produced by the first to fifth steps.
  • FIG. 16 shows the case where the applied voltage of the anodic oxidation process is continuously changed in the second process, the third process, and the fourth process.
  • the applied voltage is decreased from the applied voltage of the third process. It has been made.
  • FIG. 16 is a case where the anodizing step and the etching step are repeated five times, and the applied voltage of the first anodizing step is V1 (a constant voltage in the range of 15V to 35V). ), The applied voltages in the second, third, fourth, and fifth anodic oxidation steps are 2V1, 3.5V1, 5V1, and V1, respectively.
  • the anodizing treatment was performed for 100 seconds using an oxalic acid aqueous solution having a concentration of 0.02M.
  • an etching process was performed for 45 seconds using an aqueous oxalic acid solution having a concentration of 0.02M, and then an etching process was performed for 110 seconds using an aqueous solution of phosphoric acid having a concentration of 1.0M.
  • the height distribution of the microprojections shows a normal distribution, and the antireflection article is good in a relatively narrow range centered on the vertical line of the surface on which the microprojections are formed.
  • the prevention function can be secured.
  • the multimodal microprojections two and three vertices are indicated by two peaks and three peaks, respectively
  • the multimodal microprojections also have a normal distribution in which the average values of the heights are almost the same. This makes it possible to efficiently exhibit the scratch resistance function of multimodal microprotrusions, and to reduce the reflectivity sufficiently in a wide wavelength band centered on the visible light range. It is possible to improve the function of characteristics.
  • the frequency distribution shown in FIG. 16 shows the characteristics of a normal distribution in which one maximum value exists at 146 nm with respect to the distance d between adjacent protrusions (value on the horizontal axis).
  • the average value m of the height H of the fine protrusions was 145.7 nm, and the standard deviation ⁇ thereof was 22.1 nm. Further, when the average value m and standard deviation ⁇ define H ⁇ m ⁇ for the low altitude region, m ⁇ ⁇ H ⁇ m + ⁇ for the medium altitude region, and H> m + ⁇ for the high altitude region, the total number Nt (263) Among these microprotrusions, multimodal microprotrusions have distributions of 2, 23, and 5 in the medium altitude region, medium altitude region, and high altitude region, respectively. It can be seen that the height distribution is the same as that of the entire microprojection.
  • FIG. 17 shows that among the first to fifth processes described above, the voltage is increased stepwise in the second process and the processes of the third process and the fourth process are executed together.
  • anodization is performed at a voltage higher than the maximum voltage in the example of 16 to produce a deep microhole, and the fifth step is executed in response to the fourth step. is there.
  • the anodizing process and the etching process were executed with the same number of repetitions, aqueous solution, and processing time as in the example of FIG. 16.
  • the applied voltage in the first anodic oxidation step is V1 (a constant voltage in the range of 15V to 35V)
  • the second, third, fourth, In this example, the voltages applied in the second anodic oxidation step are 2.5 V1, 4 V1, 6 V1, and V1 1/2 to V1, respectively.
  • the start voltage of the second anodic oxidation treatment and the end voltage of the fourth anodic oxidation treatment are set to 2.5 V1 and 6 V1, respectively, and the applied voltage is gradually increased. Increased.
  • a frequency distribution with a bimodal characteristic having distribution peaks on the high side and the low side can be obtained, and the distribution of microprojections with high height can be increased.
  • a distribution of multimodal microprojections can be formed corresponding to each distribution.
  • the optical characteristics from the oblique direction can be improved and the wide viewing angle characteristics can be improved.
  • the reflectance can be sufficiently lowered in a wide wavelength band centered on the visible light region.
  • FIG. 18 is a diagram for explaining a process of forming micro holes with different depths related to the control of the height distribution of the microprojections in comparison with FIG.
  • the first step first, the voltage V1 is applied to the aluminum layer on the surface of the molding die to perform the anodizing step A1, and then the etching step E1. To form a fine hole f1.
  • the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum.
  • the etching process may be omitted as appropriate.
  • the etching step E3 is executed.
  • the voltage to be applied is set to the voltage V3, and every other specific minute hole f1 as illustrated between the minute holes f2 arranged in the plane vertically and horizontally is dug wide and deep.
  • the fine hole f1 located at the center of the smallest square surrounded by the four fine holes f2 is selected. Deeply digging deeply.
  • a part of the fine holes f2 having the positional relationship shown in FIG. 18C is further dug down to become fine holes f3.
  • fine holes f2 and f3 (medium respectively) deeper than f1 around the fine hole f1 (which corresponds to the minute protrusion having the lowest height).
  • the depth of the micro holes can be greatly varied by changing the micro holes to be drilled by switching the applied voltage in multiple times of anodizing treatment, thereby controlling the height of the micro protrusions by the intended distribution can do.
  • FIG. 19 and 20 are a perspective view (FIG. 19), a plan view (FIG. 20 (a)), a front view (FIG. 20 (b)), and a side view (FIG. 19) showing the actual shape of the microprotrusions in the present embodiment. 20 (c)).
  • FIG.19 and FIG.20 is a contour map.
  • FIGS. 16 to 18 by switching the applied voltage in a plurality of anodic oxidation processes, in the microprojections according to FIGS. There are two microprotrusions, which are divided into regions related to these three peaks by three radial grooves (swelled local minimum portions) formed outward from the center to produce microprotrusions. You can see that FIG. 19 and FIG. 20 show in detail a partial selection of data based on the measurement result by AFM.
  • the unit of the numbers in FIGS. 19 and 20 is nm.
  • the X coordinate and the Y coordinate are coordinate values from a predetermined reference position.
  • FIGS. 21 and 22 are diagrams showing other measurement results of the microprotrusions in the present embodiment in comparison with FIGS. 19 and 20.
  • three ridges having substantially the same height are combined to form one microprotrusion, and the three ridges extend outward from the substantially central portion of the top. It can be seen that they are separated by three radial grooves.
  • the roughness of the surface is observed to be rougher on the inner side of each peak of the multimodal microprotrusions than on the outer side of each peak. Due to the difference in roughness between the inner side and the outer side of the peak, it is possible to see the difference from the multi-peak microprotrusions caused by poor filling of the resin during the molding process.
  • portions where no contour lines are represented are portions where data is not obtained for convenience of measurement.
  • FIG. 18 is a comparison of the antireflective article according to the example of FIGS. 16 and 17 (indicated by the distribution of the normal distribution and the bimodal characteristic, respectively) with the antireflective article having the same protrusion height distribution by only the single-peak microprotrusions.
  • the antireflection article by the normal distribution of only the single-peaked microprotrusions was produced by setting the applied voltage of the repeated anodizing treatment to the same constant voltage as that in the first step even after the second step.
  • an antireflection article having a bimodal characteristic distribution using only unimodal microprotrusions was produced by executing an applied voltage of repeated anodizing treatment by switching between two stages.
  • the column of steel wool is the result of visually confirming the change in the surface after the steel wool was pressed and reciprocated with a pressing force of 100 g and 200 g.
  • the double circle mark was evaluated to be visually invisible and no turbidity was observed, and the triangle mark was visually visible to 1 to 5 scratches. In the case of x, six or more scratches are observed visually.
  • the evaluation range is a rectangular area with a side of 5 cm. It can be seen that the scratch resistance is sufficiently improved by the multimodal microprotrusions.
  • the column of dry wiping shows 5 ° regular reflectance ( ⁇ Y (%)) when 50 times of wiping in a dry state not containing a solvent is performed 50 times using a nonwoven fabric after attaching a fingerprint.
  • the 5 ° regular reflectance was set to 4%.
  • the nonwoven fabric Savina Minimax (registered trademark) 150 mm ⁇ manufactured by KB Seiren Co., Ltd. was used.
  • the initial value of the 5 ° regular reflectance in a state where no dirt due to fingerprints was attached was 0.5%. According to the results of this study, it was found that the dirt attached by the multimodal microprotrusions was easily wiped off, and the antireflection performance was restored to a state close to that before the fingerprint attachment. In the case where it is provided, it is considered that the dirt does not penetrate deeply into the base side of the minute protrusion. This also improves the stain resistance (easy wiping property) against fingerprints.
  • the present invention is not limited to this, and the number of repetitions is set to other numbers.
  • the present invention can be widely applied to the case where the process is repeated a plurality of times and the final process is anodizing.
  • the present invention is not limited to this.
  • the surface side of the image display panel is a light output surface of the image display panel and also a surface on the image observer side.
  • the back side of the image display panel is the opposite side of the surface of the image display panel.
  • the incident light from the backlight is incident. It is also a surface.
  • an acrylate-based ultraviolet curable resin is applied to the shaping resin.
  • the present invention is not limited thereto, and various ultraviolet curable resins such as epoxy-based and polyester-based resins, or Also when using various materials such as acrylate-based, epoxy-based, polyester-based electron beam curable resins, urethane-based, epoxy-based, polysiloxane-based thermosetting resins, and various types of curing resins
  • the present invention can be widely applied.
  • the present invention can also be widely applied in the case of molding by pressing a thermoplastic resin such as a heated acrylic resin, polycarbonate resin, or polystyrene resin.
  • microprojections are formed on the receiving layer 4 of the laminate formed by laminating the receiving layer (ultraviolet curable resin layer) 4 on one surface of the substrate 2.
  • the groups 5, 5A, 5B,... Are shaped and the receiving layer 4 is cured to form the antireflection article 1.
  • the layer structure is a two-layer laminate.
  • the present invention is not limited to such a form.
  • the antireflection article 1 of the present invention is a single layer in which the microprojections 5, 5A, 5B,... Are directly formed on one surface of the substrate 2 without interposing another layer. It may be a configuration.
  • one or more intermediate layers on one surface of the substrate 2 (layers that improve substrate surface performance such as interlayer adhesion, coating suitability, surface smoothness, etc. Also referred to as primer layer, anchor layer, etc. .) May be formed, and a laminate of three or more layers in which the microprotrusions 5, 5A, 5B,... Are formed on the surface of the receptor layer may be used.
  • the microprojections 5, 5A, 5B,... are formed only on one surface of the base material 2 (directly or via another layer).
  • the microprojection groups 5, 5A, 5B,... May be formed on both surfaces of the substrate 2 (directly or via other layers).
  • the antireflection performance is larger than the form in which the microprojection group is provided only on one surface. improves.
  • the reflectance of light at the interface between air and the substrate 2 itself is 4% and the reflectance of light at the interface between the minute protrusions and the air is 0.2%
  • the total reflectance of the front and back surfaces with respect to light transmitted from the front (or back) surface to the back (or front) surface of 2 is the reflectance at the interface between the layer having the fine protrusion group (receiving layer 4) and the substrate 2
  • the contribution of is 0%, (1) 8% when there are no microprojections on both sides of the substrate. (2) 4.2% when the microprojection group is provided only on one surface of the substrate.
  • the surface opposite to the surface on which the microprojections are formed of the substrate 2 (the lower surface of the substrate 2 in FIG. 1).
  • Various adhesive layers are formed on the adhesive layer, and a release film (release paper) is laminated on the surface of the adhesive layer so as to be peelable.
  • the release film is peeled and removed to expose the adhesive layer, and the antireflection article 1 of the present invention can be laminated and laminated on the desired surface of the desired article by the adhesive layer.
  • the antireflection performance can be easily imparted to a desired article.
  • various types of known adhesive forms such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, a thermosetting adhesive, and a hot melt adhesive can be used. .
  • the protective film may be peeled and removed at an appropriate time after carrying, carrying, buying and selling, post-processing or construction. In such a form, it is possible to prevent the antireflection performance from being deteriorated due to damage or contamination of the microprojection group during storage, transportation and the like.
  • the surface connecting the valley bottoms (minimum heights) between adjacent minute protrusions is a flat surface having a constant height.
  • the envelope surface connecting the valley bottoms between the microprotrusions undulates with a period D (that is, D> ⁇ max) equal to or longer than the longest wavelength ⁇ max of the visible light band. It is good also as a structure.
  • the periodic undulation is constant in one direction (for example, the X direction) in the XY plane (see FIGS.
  • the uneven surface 6 that undulates with a period D satisfying D> ⁇ max is superimposed on a microprojection group composed of a large number of microprojections, so that the reflected light remaining without being completely prevented from being reflected by the microprojection group is scattered, so that Reflected light, particularly specularly reflected light, can be made more difficult to visually recognize, and the antireflection effect can be further improved.
  • D or D MIN is 1 to 600 ⁇ m, preferably 10 to 300 ⁇ m.
  • Rz is 0.4 to 5 ⁇ m.
  • An example of a specific manufacturing method for forming a concavo-convex microprojection group having an uneven surface 6 in which the envelope surface connecting the valley bottoms of each microprojection is D (or D MIN )> ⁇ max is as follows. is there. That is, in the manufacturing process of the roll plate 13, a concavo-convex shape corresponding to the concavo-convex shape of the concavo-convex surface 6 is formed on the surface of a cylindrical (or columnar) base material by sandblasting or mat (matte) plating.
  • an appropriate intermediate layer is formed directly or if necessary on the uneven surface, and then an aluminum layer is laminated. Thereafter, an aluminum layer formed with a surface shape corresponding to the uneven surface is subjected to anodizing treatment and etching treatment in the same manner as in the above embodiment to form a microprojection group including microprojections 5, 5A, 5B. To do.
  • the present invention is not limited to this, and the photolithography technique is applied.
  • the present invention can also be widely applied to molds for mold processing.
  • the above-mentioned embodiment described the case where the anti-reflective article by a film shape was produced by the shaping process using a roll plate, this invention is not limited to this,
  • the transparent base material which concerns on the shape of an anti-reflective article Depending on the shape, for example, when producing an antireflection article by processing a sheet using a flat plate, a mold for shaping with a specific curved surface shape, etc. It can change suitably according to the shape of the transparent base material which concerns on a shape.
  • the present invention is not limited to this and is applied to various applications. be able to. Specifically, it should be applied to applications that are placed on the back surface (image display panel side) of the surface side member such as a touch panel, various window materials, various optical filters, etc. installed on the screen of the image display panel through a gap. Can do. In this case, it is possible to prevent interference fringes such as Newton rings due to light interference between the image display panel and the surface side member, and between the light emission surface of the image display panel and the light incident surface side of the surface side member. Thus, it is possible to prevent ghost images due to multiple reflections, and to achieve effects such as reduction of reflection loss with respect to image light emitted from the screen and entering these surface side members.
  • a transparent electrode constituting the touch panel is formed on a film or plate-like transparent substrate with a group of microprojections specific to the present invention, and a transparent conductive film such as ITO (indium tin oxide) is further formed on the group of microprojections.
  • ITO indium tin oxide
  • the formed one can be used. In this case, it is possible to prevent light reflection between the touch panel electrode and the counter electrode or various members adjacent to the touch panel electrode, thereby reducing the occurrence of interference fringes, ghost images, and the like.
  • the glass plate surface (external side) used for the store show window and product display box of the store, the display window and display box of the exhibition of the museum, or both of the front and back surfaces (product or display side). May be. In this case, it is possible to improve the visibility for customers and spectators of products, artworks, etc. by preventing light reflection on the surface of the glass plate.
  • a lens or prism used in various optical devices such as glasses, a telescope, a camera, a video camera, a gun sighting mirror (sniper scope), binoculars, a periscope.
  • the visibility by preventing light reflection on the lens or prism surface can be improved.
  • it can also be applied to the case where it is arranged on the surface of a printed part (characters, photos, drawings, etc.) of a book to prevent light reflection on the surface of characters and the like and improve the visibility of characters and the like.
  • a light entrance surface of a window material for a lighting fixture using incandescent bulbs, light emitting diodes, fluorescent lamps, mercury lamps, EL (electroluminescence), etc. (in some cases, it also serves as a diffuser plate, condenser lens, optical filter, etc.)
  • it can arrange
  • the window of the cockpits (driver's cabs, wheelhouses) of vehicles such as automobiles, railway vehicles, ships, and aircraft to prevent reflection of indoor and outdoor light from the windows.
  • the outside world of the driver driver
  • it can be arranged on the surface of a night vision device lens or window material used for crime prevention monitoring, gun sighting, astronomical observation, etc. to improve visibility at night and in the dark.
  • the surface of the transparent substrate (window glass, etc.) that constitutes windows, doors, partitions, wall surfaces, etc. of buildings such as houses, stores, offices, schools, hospitals, etc. (inside, outside, or both sides) It is possible to improve the visibility of the outside world or the daylighting efficiency. Furthermore, it stores products or exhibits used in various stores, museums, museums, etc., and arranges them on the front, back, or both sides of the transparent window (or door) of various display boxes or showcases to be displayed, It is possible to improve the visibility of products to be displayed or exhibits. Furthermore, it can arrange
  • the wavelength band of the electromagnetic wave for preventing reflection is exclusively the visible light band (all or part of the visible light band), but the present invention is not limited to this, and the electromagnetic wave for preventing reflection. May be set to a wavelength band other than visible light rays such as infrared rays and ultraviolet rays.
  • the shortest wavelength ⁇ min in the wavelength band of the electromagnetic wave may be set to the shortest wavelength in which the antireflection effect in the wavelength band of infrared rays, ultraviolet rays, etc. is desired in each conditional expression.
  • d (dmax) 800 nm.
  • an antireflection effect cannot be expected in the visible light band (380 to 780 nm), and an antireflection article exhibiting an antireflection effect for infrared rays having a wavelength of 850 nm or more can be obtained.
  • the film-shaped antireflection article of the present invention when the film-shaped antireflection article of the present invention is disposed on the front surface, back surface, or both front and back surfaces of a transparent substrate such as a glass plate, it is disposed and covered over the entire surface of the transparent substrate. In addition, it can be arranged only in a partial area. As an example of this, for example, for a single window glass, a film-shaped antireflection article is attached to the indoor side surface only with an adhesive in a square area at the center, and an antireflection article is provided in the other areas. The case where it does not stick can be mentioned.
  • the antireflection article is arranged only in a partial area of the transparent substrate, it is easy to visually recognize the presence of the transparent substrate without special display or a collision prevention fence, etc.
  • the effect of reducing the risk of collision and injury, and the effect that both the prevention of peeping indoors (indoors) and the transparency of the transparent substrate (in the region where the antireflection article is disposed) can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

This invention improves the abrasion resistance of an antireflective article that has a moth-eye structure. In said antireflective article, in which tiny protrusions (5, 5A, 5B) are densely arrayed and the spacing between adjacent tiny protrusions (5, 5A, 5B) is less than or equal to the shortest wavelength in the wavelength band of electromagnetic waves to prevent the reflection of, said tiny protrusions (5, 5A, 5B) consist of multi-peak tiny protrusions (5A, 5B) that each have a plurality of apices and single-peak tiny protrusions (5) that each have a single apex, and in a planar view from the side corresponding to the tips of the tiny protrusions (5, 5A, 5B), each multi-peak tiny protrusion (5A, 5B) is divided into a plurality of regions by grooves (g) formed from the approximate center of said multi-peak tiny protrusion towards the outside thereof, said regions constituting the peaks associated with the respective apices.

Description

反射防止物品、及び画像表示装置Antireflection article and image display device
 本発明は、反射防止を図る電磁波の波長帯域の最短波長以下の間隔で多数の微小突起を密接配置して反射防止を図る反射防止物品に関するものである。 The present invention relates to an antireflection article for preventing reflection by closely arranging a large number of minute protrusions at an interval equal to or shorter than the shortest wavelength of an electromagnetic wave wavelength band for preventing reflection.
 近年、フィルム形状の反射防止物品である反射防止フィルムに関して、透明基材(透明フィルム)の表面に多数の微小突起を密接して配置することにより、反射防止を図る方法が提案されている(特許文献1~3参照)。この方法は、いわゆるモスアイ(moth eye(蛾の目))構造の原理を利用したものであり、入射光に対する屈折率を基板の厚み方向に連続的に変化させ、これにより屈折率の不連続界面を消失させて反射防止を図るものである。 In recent years, regarding an antireflection film, which is a film-shaped antireflection article, there has been proposed a method for preventing reflection by arranging a large number of microprotrusions closely on the surface of a transparent substrate (transparent film) (patent) Reference 1 to 3). This method uses the principle of the so-called moth-eye structure, and continuously changes the refractive index for incident light in the thickness direction of the substrate, thereby discontinuous interface of the refractive index. Is eliminated to prevent reflection.
 このモスアイ構造に係る反射防止物品では、隣接する微小突起の間隔dが、反射防止を図る電磁波の波長帯域の最短波長Λmin以下(d≦Λmin)となるよう、微小突起が密接して配置される。また各微小突起は、透明基材に植立するように、さらに透明基材より先端側に向かうに従って徐々に断面積が小さくなるように(先細りとなるように)作製される。 In the antireflection article according to this moth-eye structure, the microprojections are closely arranged so that the interval d between adjacent microprojections is equal to or less than the shortest wavelength Λmin (d ≦ Λmin) of the wavelength band of the electromagnetic wave to prevent reflection. . Moreover, each microprotrusion is produced so that a cross-sectional area may become small gradually toward the front end side from a transparent base material so that it may be planted on a transparent base material.
 かかる反射防止物品には各種用途が提案されている。例えば、各種画像表示裝置の出光面上に配置して画面における日光等の外光反射を低減して画像視認性を向上させたり、シート又は板状の透明基材上に該微小突起群を形成し、更に該微小突起群上にITO(酸化インジウム錫)等の透明導電膜を形成した電極を用いてタッチパネルを構成することにより、該タッチパネル電極とこれと隣接する各種部材との間の光反射を防止して、干渉縞、ゴースト像等の発生を低減させること等が提案されている。 Various uses have been proposed for such antireflection articles. For example, it can be placed on the light exit surface of various image display devices to reduce external light reflection such as sunlight on the screen to improve image visibility, or to form the microprojections on a sheet or plate-like transparent substrate Furthermore, by constructing a touch panel using an electrode in which a transparent conductive film such as ITO (indium tin oxide) is formed on the microprojection group, light reflection between the touch panel electrode and various adjacent members is performed. It has been proposed to reduce the occurrence of interference fringes, ghost images, and the like.
 また特許文献4には、この種の反射防止物品に関して、賦型処理時の樹脂の充填不良により微小突起の頂部に複数の頂点が作製される場合であっても、十分に反射防止機能を確保できることが記載されている。 Patent Document 4 also provides a sufficient antireflection function for this type of antireflection article, even when a plurality of vertices are produced at the tops of the microprojections due to poor resin filling during the molding process. It describes what you can do.
 ところでこの種のモスアイ構造に係る反射防止物品では、耐擦傷性に実用上未だ不十分な問題がある。すなわち反射防止物品は、例えば他の物体が接触等した場合に、反射防止機能が局所的に劣化し、また接触個所に白濁、傷等が発生して外観不良が発生する。 By the way, this type of anti-reflection article having a moth-eye structure still has a practically insufficient problem with respect to scratch resistance. That is, for example, when an anti-reflective article comes into contact with another object, the anti-reflective function is locally deteriorated, and white turbidity, scratches, etc. occur at the contact location, resulting in poor appearance.
特開昭50-70040号公報Japanese Patent Laid-Open No. 50-70040 特表2003-531962号公報Special Table 2003-531962 特許第4632589号公報Japanese Patent No. 4632589 特開2012-037670号公報JP 2012-037670 A
 本発明はこのような状況に鑑みてなされたものであり、モスアイ構造に係る反射防止物品に関して、従来に比して耐擦傷性を向上することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to improve the scratch resistance of an antireflection article having a moth-eye structure as compared with the conventional art.
 本発明者は、上記課題を解決するために鋭意研究を重ね、頂点を複数有する微小突起(多峰性微小突起と呼ぶ)を設ける、との着想に至り、本発明を完成するに至った。なお以下において、多峰性微小突起との対比により、頂点が1つのみの微小突起を単峰性微小突起と呼ぶ。また以下において、単に微小突起と呼称する場合は単峰性微小突起及び多峰性微小突起の両方を包含するものとする。また多峰性微小突起、単峰性微小突起に係る各頂点を形成する各凸部を、適宜、峰と呼ぶ。 The present inventor has conducted extensive research to solve the above problems, and has come up with the idea that a microprotrusion having a plurality of vertices (referred to as multi-peak microprotrusions) is provided, thereby completing the present invention. In the following, a microprojection having only one vertex is referred to as a single-peak microprojection in comparison with a multimodal microprojection. Further, in the following, when simply referred to as a microprojection, both a single-peak microprojection and a multimodal microprojection are included. Moreover, each convex part which forms each vertex which concerns on a multimodal microprotrusion and a monomodal microprotrusion is called a peak suitably.
  具体的には、本発明では、以下のようなものを提供する Specifically, the present invention provides the following:
 (1) 微小突起が密接して配置され、隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下である反射防止物品において、
 前記微小突起が、
 頂点を複数有する多峰性微小突起と、頂点が1つの単峰性微小突起とであり、
 前記多峰性微小突起は、
 前記微小突起を先端側より平面視した場合に、ほぼ中央より外方に向かって形成された溝により複数の領域に分割され、前記複数の領域の各領域が、それぞれ各頂点に係る峰である。
(1) In an antireflection article in which microprotrusions are closely arranged, and an interval between the adjacent microprotrusions is equal to or less than the shortest wavelength of the wavelength band of electromagnetic waves for antireflection,
The microprotrusions are
A multimodal microprojection having a plurality of vertices, and a unimodal microprojection having one vertex,
The multimodal microprojections are:
When the microprotrusions are viewed in plan from the tip side, the microprotrusions are divided into a plurality of regions by grooves formed outward from the center, and each region of the plurality of regions is a peak associated with each vertex. .
 (1)によれば、単峰性微小突起に比して機械的強度が優れた微小突起が設けられることにより、衝撃力が加わった場合、単峰性微小突起のみの場合に比して、突起が損傷しないようにすることができ、これにより反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。また仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができ、これによっても反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。またこのような形状による多峰性微小突起は、賦型処理時の樹脂の充填不良により生じる多峰性微小突起とは異なり、対応する形状を備えている賦型処理用の金型により作製されることにより、高さの分布を所望する分布に設定して均一な性能とかつ高い量産性を合わせて確保することができる。またさらに充填不良による場合に比して突起間の間隔が広く設定されることにより、十分に耐擦傷性を向上することができ、さらには光学特性を向上することができる。 According to (1), when a microprojection having excellent mechanical strength compared to a single-peak microprojection is provided, when an impact force is applied, compared to the case of only a single-peak microprojection, The protrusions can be prevented from being damaged, whereby local deterioration of the antireflection function can be reduced, and the occurrence of poor appearance can be reduced. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect. In addition, multi-modal micro-projections with such a shape are produced by a mold for molding processing having a corresponding shape, unlike multi-modal micro-projections caused by poor filling of resin during molding processing. Thus, the height distribution can be set to a desired distribution to ensure both uniform performance and high mass productivity. Further, since the distance between the protrusions is set wider than in the case of poor filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
 (2) (1)において、
 前記多峰性微小突起は、前記微小突起を先端側より平面視した場合の周囲長が、単峰性微小突起に比して長く形成されている。
(2) In (1),
The multimodal microprotrusions are formed such that the perimeter when the microprotrusions are viewed in plan from the tip side is longer than that of the single-peak microprotrusions.
 (2)によれば、より具体的に、対応する形状による賦型用金型より作製される多峰性微小突起であることにより、より十分に耐擦傷性を向上することができ、さらには光学特性を向上することができる。 According to (2), more specifically, it is possible to improve the scratch resistance more sufficiently by being multi-modal microprotrusions produced from a mold for molding with a corresponding shape, Optical characteristics can be improved.
 (3) (1)又は(2)において、
 前記微小突起は、
 少なくともその一部が、内核微小突起と、該内核微小突起の周囲を環囲して形成されており該内核微小突起よりも高さの高い複数の外縁微小突起とからなる環状微小突起群を構成している。
(3) In (1) or (2),
The microprotrusions are
At least a part thereof constitutes an annular microprotrusion group comprising an inner core microprojection and a plurality of outer edge microprojections formed around the inner core microprojection and having a height higher than the inner core microprojection. is doing.
 (3)によれば、1つの内核微小突起の周囲を環囲して、より高さの高い外縁微小突起が設けられることにより、各種の部材との接触等により、衝撃力が加わった場合、複数の外縁微小突起が衝撃を吸収することによって、少なくとも1つの内核微小突起については衝撃による破損を防ぐことができ、一定範囲内における微小突起の全損を防ぐことができる。これにより反射防止機能の局所的な劣化を低減し、更に外観不良の発生を低減することができる。 According to (3), when an impact force is applied by contact with various members or the like by surrounding the periphery of one inner core microprotrusion and providing an outer edge microprotrusion having a higher height, By absorbing the impact by the plurality of outer edge microprotrusions, at least one inner core microprotrusion can be prevented from being damaged by the impact, and the entire loss of the microprotrusions within a certain range can be prevented. Thereby, local deterioration of the antireflection function can be reduced, and the occurrence of appearance defects can be further reduced.
 (4) (1)、(2)又は(2)において、
 前記微小突起は、
 少なくともその一部が、1つの頂部微小突起と、該頂部微小突起の周囲に隣接して形成されており該頂部微小突起よりも高さが低い複数の周辺微小突起とからなる凸状突起群を構成している。
(4) In (1), (2) or (2),
The microprotrusions are
A convex projection group comprising at least a part of one top microprojection and a plurality of peripheral microprojections formed adjacent to the periphery of the top microprojection and having a height lower than that of the top microprojection. It is composed.
 (4)によれば、1つの頂部微小突起の周囲に隣接して、より高さの低い複数の周辺微小突起が設けられて凸状突起群が構成されていることにより、各種の部材との接触等により、衝撃力が加わった場合、頂部微小突起が集中的に衝撃を吸収することによって、隣接する複数の周辺微小突起については衝撃による破損を防ぐことができ、一定範囲内における微小突起の全損を防ぐことができる。これにより反射防止機能の局所的な劣化を低減し、更に外観不良の発生を低減することができる。 According to (4), a plurality of peripheral micro-projections having a lower height are provided adjacent to the periphery of one top micro-projection to form a convex projection group. When an impact force is applied due to contact or the like, the top microprotrusions absorb the impact in a concentrated manner, so that a plurality of adjacent peripheral microprotrusions can be prevented from being damaged by the impact. Total loss can be prevented. Thereby, local deterioration of the antireflection function can be reduced, and the occurrence of appearance defects can be further reduced.
 (5) 画像表示装置において、画像表示パネルの出光面上に(1)、(2)、(3)、又は(4)に記載の反射防止物品を配置する。 (5) In the image display device, the antireflection article according to (1), (2), (3), or (4) is disposed on the light exit surface of the image display panel.
 (5)によれば、耐擦傷性を向上した反射防止物品による画像表示装置を提供することができる。 According to (5), it is possible to provide an image display device using an antireflection article with improved scratch resistance.
 モスアイ構造に係る反射防止物品に関して、従来に比して耐擦傷性を向上することができる。 The scratch resistance can be improved as compared with conventional antireflection articles having a moth-eye structure.
本発明の第1実施形態に係る反射防止物品を示す概念斜視図である。1 is a conceptual perspective view showing an antireflection article according to a first embodiment of the present invention. 隣接突起の説明に供する図である。It is a figure where it uses for description of an adjacent protrusion. 極大点の説明に供する図である。It is a figure where it uses for description of the maximum point. ドロネー図を示す図である。It is a figure which shows a Delaunay figure. 隣接突起間距離の計測の説明に供する度数分布図である。It is a frequency distribution figure with which it uses for description of the measurement of the distance between adjacent protrusions. 微小突起高さの説明に供する度数分布図である。It is a frequency distribution diagram used for description of the microprojection height. 微小突起の谷底の包絡面が凹凸面(うねり)を呈する形態を示す概念断面図である。It is a conceptual sectional view showing the form in which the envelope surface of the valley bottom of the microprojection exhibits an uneven surface (waviness). 図1の反射防止物品の製造工程を示す図である。It is a figure which shows the manufacturing process of the antireflection article | item of FIG. 図1の反射防止物品に係るロール版を示す図である。It is a figure which shows the roll plate which concerns on the reflection preventing article of FIG. 図9のロール版の作製工程を示す図である。It is a figure which shows the preparation process of the roll plate of FIG. 微小突起の説明に供する図である。It is a figure where it uses for description of a microprotrusion. 多峰性微小突起の写真である。It is a photograph of multimodal microprotrusions. 環状微小突起群の説明に供する図である。It is a figure where it uses for description of a cyclic | annular microprotrusion group. 凸状突起群の説明に供する図である。It is a figure where it uses for description of a convex-shaped protrusion group. 第2実施形態に係るロール版の作製工程の説明に供する図である。It is a figure where it uses for description of the production process of the roll plate which concerns on 2nd Embodiment. 第2実施形態に係る反射防止物品の微小突起の高さHの度数分布を示す図である。It is a figure which shows frequency distribution of the height H of the microprotrusion of the antireflection article which concerns on 2nd Embodiment. 図16とは異なる例による高さ分布を示す図である。It is a figure which shows the height distribution by an example different from FIG. 深さの異なる微細穴の作成に供する図である。It is a figure with which it uses for preparation of the fine hole from which depth differs. 本発明に係る微小突起の形状を示す斜視図である。It is a perspective view which shows the shape of the microprotrusion which concerns on this invention. 図19の平面図、正面図、側面図である。FIG. 20 is a plan view, a front view, and a side view of FIG. 19. 図19とは異なる本発明に係る微小突起の形状を示す斜視図である。It is a perspective view which shows the shape of the microprotrusion based on this invention different from FIG. 図21の平面図、正面図、側面図である。It is the top view of FIG. 21, a front view, and a side view.
 〔第1実施形態〕
 図1は、本発明の第1実施形態に係る反射防止物品を示す図(概念斜視図)である。この反射防止物品1は、全体形状がフィルム形状により形成された反射防止フィルムである。この実施形態に係る画像表示装置では、この反射防止物品1が画像表示パネルの表側面に貼り付けられて保持され、この反射防止物品1により日光、電燈光等の外来光の画面における反射を低減して視認性を向上する。なお反射防止物品は、その形状を平坦なフィルム形状とする場合に限らず、平坦なシート形状、平板形状(相対的に厚みの薄い順に、フィルム、シート、板と呼称する)とすることもでき、また平坦な形状に代えて、湾曲形状、立体形状を呈したフィルム形状、シート形状、板形状とすることもでき、さらには各種レンズ、各種プリズム等の立体形状のものを用途に応じて適宜採用することができる。
[First Embodiment]
FIG. 1 is a diagram (conceptual perspective view) showing an antireflection article according to a first embodiment of the present invention. This antireflection article 1 is an antireflection film whose overall shape is formed by a film shape. In the image display apparatus according to this embodiment, the antireflection article 1 is held by being attached to the front side surface of the image display panel, and the reflection of external light such as sunlight and electric light on the screen is reduced by the antireflection article 1. And improve visibility. The antireflection article is not limited to a flat film shape, but may be a flat sheet shape or a flat plate shape (referred to as a film, a sheet, or a plate in order of relatively small thickness). In addition, instead of a flat shape, a curved shape, a three-dimensional film shape, a sheet shape, or a plate shape can be used, and various lenses, prisms, and other three-dimensional shapes are appropriately used depending on the application. Can be adopted.
 ここで反射防止物品1は、透明フィルムの形状(形態)の基材2の表面に多数の微小突起5、5A、5Bを密接配置して作製される。尚、密接配置された複数の微小突起を総称して微小突起群とも呼称する。ここで基材2は、例えばTAC(Triacetylcellulose)、等のセルロース(纖維素)系樹脂、PMMA(ポリメチルメタクリレート)等のアクリル系樹脂、PET(Polyethylene terephthalate)等のポリエステル系樹脂、PP(ポリプロピレン)等のポリオレフィン系樹脂、PVC(ポリ塩化ビニル)等のビニル系樹脂、PC(Polycarbonate)等の各種透明樹脂フィルムを適用することができる。なお上述したように反射防止物品の形状はフィルム形状に限らず、種々の形状を採用可能である。基材2は、このような反射防止物品の形状に応じて、これらの材料の他に、例えばソーダ硝子、カリ硝子、鉛ガラス等の硝子、PLZT等のセラミックス、石英、螢石等の各種透明無機材料等を適用することができる。 Here, the antireflection article 1 is produced by closely arranging a large number of microprotrusions 5, 5A, 5B on the surface of the substrate 2 in the shape (form) of a transparent film. A plurality of closely arranged microprotrusions is collectively referred to as a microprotrusion group. Here, the base material 2 is, for example, a cellulose resin such as TAC (Triacetylcellulose), an acrylic resin such as PMMA (polymethyl methacrylate), a polyester resin such as PET (Polyethylene terephthalate), or PP (polypropylene). Polyolefin resins such as PVC, vinyl resins such as PVC (polyvinyl chloride), and various transparent resin films such as PC (polycarbonate) can be applied. As described above, the shape of the antireflection article is not limited to the film shape, and various shapes can be employed. Depending on the shape of such an antireflection article, the base material 2 is made of various transparent materials such as soda glass, potassium glass, lead glass, ceramics such as PLZT, quartz, meteorite, etc. An inorganic material or the like can be applied.
 反射防止物品1は、基材2上に、微小突起群からなる微細な凹凸形状の受容層となる未硬化状態の樹脂層(以下、適宜、受容層と呼ぶ)4を形成し、該受容層4を賦型処理して硬化せしめ、これにより基材2の表面に微小突起が密接して配置される。この実施形態では、この受容層4に、賦型処理に供する賦型用樹脂の1つであるアクリレート系紫外線硬化性樹脂が適用され、基材2上に紫外線硬化性樹脂層4が形成される。反射防止物品1は、この微小突起による凹凸形状により厚み方向に徐々に屈折率が変化するように作製され、モスアイ構造の原理により広い波長範囲で入射光の反射を低減する。 The anti-reflective article 1 forms an uncured resin layer 4 (hereinafter referred to as a receiving layer as appropriate) 4 which forms a fine uneven receiving layer composed of a group of minute protrusions on a base material 2. 4 is subjected to a molding treatment and hardened, whereby the fine protrusions are placed in close contact with the surface of the substrate 2. In this embodiment, an acrylate-based ultraviolet curable resin, which is one of the molding resins used for the molding process, is applied to the receiving layer 4 to form the ultraviolet curable resin layer 4 on the substrate 2. . The antireflection article 1 is manufactured so that the refractive index gradually changes in the thickness direction due to the uneven shape by the microprotrusions, and reduces the reflection of incident light in a wide wavelength range by the principle of the moth-eye structure.
 [隣接突起間距離]
 なおこれにより反射防止物品1に作製される微小突起は、隣接する微小突起の間隔dが、反射防止を図る電磁波の波長帯域の最短波長Λmin以下(d≦Λmin)となるよう密接して配置される。この実施形態では、画像表示パネルに配置して視認性を向上させることを主目的とするため、この最短波長は、個人差、視聴条件を加味した可視光領域の最短波長(380nm)に設定され、間隔dは、ばらつきを考慮して100~300nmとされる。またこの間隔dに係る隣接する微小突起は、いわゆる隣り合う微小突起であり、基材2側の付け根部分である微小突起の裾の部分が接している突起である。反射防止物品1では微小突起が密接して配置されることにより、微小突起間の谷の部位を順次辿るようにして線分を作製すると、平面視において各微小突起を囲む多角形状領域を多数連結してなる網目状の模様が作製されることになる。間隔dに係る隣接する微小突起は、この網目状の模様を構成する一部の線分を共有する突起である。なお「隣り合う」或いは「隣接」の、より正確な定義は以下に基づく。
[Distance between adjacent protrusions]
In this way, the microprotrusions produced in the antireflection article 1 are closely arranged so that the distance d between adjacent microprotrusions is equal to or less than the shortest wavelength Λmin (d ≦ Λmin) of the wavelength band of the electromagnetic wave to prevent reflection. The In this embodiment, since the main purpose is to improve visibility by arranging the image display panel, the shortest wavelength is set to the shortest wavelength (380 nm) in the visible light region in consideration of individual differences and viewing conditions. The distance d is set to 100 to 300 nm in consideration of variation. The adjacent minute protrusions related to the distance d are so-called adjacent minute protrusions, which are in contact with the hem portions of the minute protrusions, which are the base portions on the base 2 side. In the anti-reflective article 1, the minute protrusions are closely arranged so that when a line segment is formed so as to sequentially follow the valley portions between the minute protrusions, a large number of polygonal regions surrounding each minute protrusion are connected in plan view. Thus, a mesh-like pattern is produced. The adjacent minute protrusions related to the distance d are protrusions that share a part of the line segments constituting the mesh pattern. The more accurate definition of “adjacent” or “adjacent” is based on the following.
 なお微小突起に関しては、より詳細には以下のように定義される。モスアイ構造による反射防止では、透明基材表面とこれに隣接する媒質との界面における有効屈折率を、厚み方向に連続的に変化させて反射防止を図るものであることから、微小突起に関しては一定の条件を満足することが必要である。この条件のうちの1つである突起の間隔に関して、例えば特開昭50-70040号公報、特許第4632589号公報等に開示のように、微小突起が一定周期で規則正しく配置されている場合、隣接する微小突起の間隔dは、突起配列の周期P(d=P)となる。これにより可視光線帯域の最長波長をλmax、最短波長をλminとした場合に、最低限、可視光線帯域の最長波長において反射防止効果を奏し得る必要最小限の条件は、Λmin=λmaxであるため、P≦λmaxとなり、可視光線帯域の全波長に対して反射防止効果を奏し得る必要十分の条件は、Λmin=λminであるため、P≦λminとなる。 Note that the minute protrusions are defined in more detail as follows. In the antireflection by the moth-eye structure, the effective refractive index at the interface between the transparent substrate surface and the adjacent medium is continuously changed in the thickness direction to prevent reflection. It is necessary to satisfy the following conditions. With respect to the protrusion spacing, which is one of these conditions, when the minute protrusions are regularly arranged with a constant period as disclosed in, for example, Japanese Patent Application Laid-Open No. 50-70040, Japanese Patent No. 4632589, etc. The interval d between the minute projections to be performed is the projection arrangement period P (d = P). Thus, when the longest wavelength in the visible light band is λmax and the shortest wavelength is λmin, the minimum necessary condition that can exhibit the antireflection effect at the longest wavelength in the visible light band is Λmin = λmax. P ≦ λmax, and the necessary and sufficient condition that can exhibit the antireflection effect for all wavelengths in the visible light band is Λmin = λmin, and therefore P ≦ λmin.
 なお波長λmax、λminは、観察条件、光の強度(輝度)、個人差等にも依存して多少幅を持ち得るが、標準的には、λmax=780nm及びλmin=380nmとされる。これらにより可視光線帯域の全波長に対する反射防止効果をより確実に奏し得る好ましい条件は、d≦300nmであり、より好ましい条件は、d≦200nmとなる。なお反射防止効果の発現及び反射率の等方性(低角度依存性)の確保等の理由から、周期dの下限値は、通常、d≧50nm、好ましくは、d≧100nmとされる。これに対して突起の高さHは、十分な反射防止効果を発現させる観点より、H≧0.2×λmax=156nm(λmax=780nmとして)とされる。 Note that the wavelengths λmax and λmin may vary depending on observation conditions, light intensity (luminance), individual differences, and the like, but are typically λmax = 780 nm and λmin = 380 nm. A preferable condition that can more reliably exhibit an antireflection effect for all wavelengths in the visible light band is d ≦ 300 nm, and a more preferable condition is d ≦ 200 nm. Note that the lower limit value of the period d is usually d ≧ 50 nm, preferably d ≧ 100 nm, for reasons such as the expression of the antireflection effect and the securing of the isotropic (low angle dependency) of the reflectance. On the other hand, the height H of the protrusion is set to H ≧ 0.2 × λmax = 156 nm (assuming λmax = 780 nm) from the viewpoint of exhibiting a sufficient antireflection effect.
 しかしながらこの実施形態のように、微小突起が不規則に配置されている場合には、隣接する微小突起間の間隔dはばらつきを有することになる。より具体的には、図2に示すように、基材の表面又は裏面の法線方向から見て平面視した場合に、微小突起が一定周期で規則正しく配列されていない場合、突起の繰り返し周期Pによっては隣接突起間の間隔dは規定し得ず、また隣接突起の概念すら疑念が生じることになる。そこでこのような場合、以下のように算定される。 However, when the minute protrusions are irregularly arranged as in this embodiment, the distance d between the adjacent minute protrusions varies. More specifically, as shown in FIG. 2, when viewed from the normal direction of the front or back surface of the substrate, when the microprojections are not regularly arranged at a constant period, the repetition period P of the protrusions In some cases, the distance d between adjacent protrusions cannot be defined, and even the concept of adjacent protrusions is suspicious. Therefore, in such a case, it is calculated as follows.
 (1)すなわち先ず、原子間力顕微鏡(Atomic Force Microscope(以下、AFMと呼ぶ))又は走査型電子顕微鏡(Scanning Electron Microscope(以下、SEMと呼ぶ))を用いて突起の面内配列(突起配列の平面視形状)を検出する。なお図2は、実際に原子間力顕微鏡により求められた拡大写真である。AFMのデータには微小突起群の高さの面内分布データを付随するため、この写真は輝度により高さの面内分布を示す写真であると言える。なお、図2から図6の図(写真及び度数分布グラフ)は本発明の第1実施形態について計測及び算出されたものではあり、微小突起の突起間距離及び高さを算出する原理及び手法を説明する為に援用するものである。本発明の第2実施形態に係る微小突起群については、図16、図17を参照して詳細を後述する。 (1) That is, first, an in-plane arrangement of projections (projection arrangement) using an atomic force microscope (hereinafter referred to as AFM) or a scanning electron microscope (hereinafter referred to as SEM). ) Is detected. FIG. 2 is an enlarged photograph actually obtained by an atomic force microscope. Since the AFM data is accompanied by the in-plane distribution data of the height of the microprojections, this photo can be said to be a photo showing the in-plane distribution of height by luminance. 2 to 6 (photographs and frequency distribution graphs) are measured and calculated for the first embodiment of the present invention, and the principle and method for calculating the inter-projection distance and height of the microprotrusions are described. It is used for explanation. Details of the microprojection group according to the second embodiment of the present invention will be described later with reference to FIGS. 16 and 17.
 (2)続いてこの求められた面内配列から各突起の高さの極大点(以下、単に極大点と呼ぶ)を検出する。極大点とは、高さが、其の近傍周辺の何れの点と比べても大(極大値)となる点を意味する。なお極大点を求める方法としては、平面視形状と対応する断面形状の拡大写真とを逐次対比して極大点を求める方法、平面視拡大写真の画像処理によって極大点を求める方法等、種々の手法を適用することができる。図3は、図2に示した拡大写真に係る画像データの処理による極大点の検出結果を示す図であり、この図において黒点により示す個所がそれぞれ各突起の極大点である。なおこの処理では4.5×4.5画素のガウシアン特性によるローパスフィルタにより事前に画像データを処理し、これによりノイズによる極大点の誤検出を防止した。また8画素×8画素による最大値検出用のフィルタを順次スキャンすることにより1nm(=1画素)単位で極大点を求めた。 (2) Subsequently, a maximum point of the height of each protrusion (hereinafter simply referred to as a maximum point) is detected from the obtained in-plane arrangement. The maximum point means a point where the height is larger (maximum value) than any point around the vicinity. There are various methods for obtaining the maximum point, such as a method of sequentially comparing the planar view shape and the enlarged photograph of the corresponding cross-sectional shape to obtain the maximum point, and a method of obtaining the maximum point by image processing of the plan view enlarged photo. Can be applied. FIG. 3 is a diagram showing the detection result of the maximum point by the processing of the image data relating to the enlarged photograph shown in FIG. 2, and the portions indicated by black dots in this figure are the maximum points of the respective protrusions. In this process, image data is processed in advance by a low-pass filter having a Gaussian characteristic of 4.5 × 4.5 pixels, thereby preventing erroneous detection of the maximum point due to noise. Further, a maximum point was obtained in units of 1 nm (= 1 pixel) by sequentially scanning a filter for detecting a maximum value of 8 pixels × 8 pixels.
 (3)次に検出した極大点を母点とするドロネー図(Delaunary Diagram)を作製する。ここでドロネー図とは、各極大点を母点としてボロノイ分割を行った場合に、ボロノイ領域が隣接する母点同士を隣接母点と定義し、各隣接母点同士を線分で結んで得られる3角形の集合体からなる網状図形である。各3角形は、ドロネー3角形と呼ばれ、各3角形の辺(隣接母点同士を結ぶ線分)は、ドロネー線と呼ばれる。図4は、図3から求められるドロネー図(白色の線分により表される図である)を図3による原画像と重ね合わせた図である。ドロネー図は、ボロノイ図(Voronoi diagram)と双対の関係に有る。またボロノイ分割とは、各隣接母点間を結ぶ線分(ドロネー線)の垂直2等分線同士によって画成される閉多角形の集合体からなる網状図形で平面を分割することを言う。ボロノイ分割により得られる網状図形がボロノイ図であり、各閉領域がボロノイ領域である。 (3) A Delaunay diagram (Delaunary Diagram) with the detected maximum point as a generating point is created. Here, Delaunay diagram is obtained by dividing the Voronoi region adjacent to the Voronoi region when the Voronoi division is performed with each local maximum as the generating point, and connecting the adjacent generating points with line segments. This is a net-like figure made up of triangular aggregates. Each triangle is called a Delaunay triangle, and a side of each triangle (a line segment connecting adjacent generating points) is called a Delaunay line. FIG. 4 is a diagram in which the Delaunay diagram (represented by white line segments) obtained from FIG. 3 is superimposed on the original image of FIG. The Delaunay diagram has a dual relationship with the Voronoi diagram. Voronoi division means that a plane is divided by a net-like figure made up of a closed polygon aggregate defined by perpendicular bisectors of line segments (Droney lines) connecting between adjacent generating points. A network figure obtained by Voronoi division is a Voronoi diagram, and each closed region is a Voronoi region.
 (4)次に、各ドロネー線の線分長の度数分布、すなわち隣接する極大点間の距離(以下、隣接突起間距離と呼ぶ)の度数分布を求める。図5は、図4のドロネー図から作製した度数分布のヒストグラムである。なお図2、図11に示すように、突起の頂部に溝状等の凹部が存在したり、あるいは頂部が複数の峰に分裂している場合は、求めた度数分布から、このような突起の頂部に凹部が存在する微細構造、頂部が複数の峰に分裂している微細構造に起因するデータを除去し、突起本体自体のデータのみを選別して度数分布を作製する。 (4) Next, the frequency distribution of the line segment length of each Delaunay line, that is, the frequency distribution of the distance between adjacent maximum points (hereinafter referred to as the distance between adjacent protrusions) is obtained. FIG. 5 is a histogram of the frequency distribution created from the Delaunay diagram of FIG. As shown in FIG. 2 and FIG. 11, when there is a groove or the like at the top of the protrusion, or when the top is divided into a plurality of peaks, from the obtained frequency distribution, A frequency distribution is created by removing data resulting from a fine structure having a concave portion at the top and a fine structure in which the top is split into a plurality of peaks, and selecting only the data of the projection body itself.
 具体的には、突起の頂部に凹部が存在する微細構造、頂部が複数の峰に分裂している多峰性微小突起に係る微細構造においては、このような微細構造を備えてい無い単峰性微小突起の場合の数値範囲から、隣接極大点間距離が明らかに大きく異なることになる。これによりこの特徴を利用して対応するデータを除去することにより突起本体自体のデータのみを選別して度数分布を検出する。より具体的には、例えば図2に示すような微小突起(群)の平面視の拡大写真から、5~20個程度の互いに隣接する単峰性微小突起を選んで、その隣接極大点間距離の値を標本抽出し、この標本抽出して求められる数値範囲から明らかに小さい方向に外れる値(通常、標本抽出して求められる隣接極大点間距離平均値に対して、値が1/2以下のデータ)を除外して度数分布を検出する。図5の例では、隣接極大点間距離が56nm以下のデータ(矢印Aにより示す左端の小山)を除外する。なお図5は、このような除外する処理を行う前の度数分布を示すものである。因みに上述の極大点検用のフィルタの設定により、このような除外する処理を実行してもよい。 Specifically, in the fine structure in which there is a concave portion on the top of the protrusion, or in the fine structure related to a multi-peak microprotrusion in which the top is divided into a plurality of peaks, the single peak property that does not have such a fine structure From the numerical range in the case of a microprotrusion, the distance between adjacent maximum points is clearly greatly different. Thus, by removing the corresponding data using this feature, only the data of the projection body itself is selected and the frequency distribution is detected. More specifically, for example, about 5 to 20 adjacent single-peaked microprojections are selected from a magnified photograph of a microprojection (group) in plan view as shown in FIG. 2, and the distance between adjacent maximum points is selected. A value that deviates in a direction that is clearly smaller than the numerical range obtained by sampling this value (usually the value is ½ or less of the average distance between adjacent maximum points obtained by sampling) Frequency distribution is detected. In the example of FIG. 5, data having a distance between adjacent maximal points of 56 nm or less (the leftmost small mountain indicated by the arrow A) is excluded. FIG. 5 shows a frequency distribution before performing such exclusion processing. Incidentally, such exclusion processing may be executed by setting the above-described maximum inspection filter.
 (5)このようにして求めた隣接突起間距離dの度数分布から平均値dAVG及び標準偏差σを求める。ここでこのようにして得られる度数分布を正規分布とみなして平均値dAVG及び標準偏差σを求めると、図5の例では、平均値dAVG=158nm、標準偏差σ=38nmとなった。これにより隣接突起間距離dの最大値を、dmax=dAVG+2σとし、この例ではdmax=234nmとなる。 (5) The average value d AVG and the standard deviation σ are obtained from the frequency distribution of the distance d between adjacent protrusions thus obtained. Here, when the frequency distribution obtained in this way is regarded as a normal distribution and the average value d AVG and the standard deviation σ are obtained, the average value d AVG = 158 nm and the standard deviation σ = 38 nm are obtained in the example of FIG. As a result, the maximum value of the distance d between adjacent protrusions is set to dmax = d AVG + 2σ, and in this example, dmax = 234 nm.
 なお同様の手法を適用して突起の高さを定義する。この場合、上述の(2)により求められる極大点から、特定の基準位置からの各極大点位置の相対的な高さの差を取得してヒストグラム化する。図6は、このようにして求められる突起付け根位置を基準(高さ0)とした突起高さHの度数分布のヒストグラムを示す図である。このヒストグラムによる度数分布から突起高さの平均値HAVG、標準偏差σを求める。ここでこの図6の例では、平均値HAVG=178nm、標準偏差σ=30nmである。これによりこの例では、突起の高さは、平均値HAVG=178nmとなる。なお図6に示す突起高さHのヒストグラムにおいて、多峰性微小突起の場合は、頂点を複数有していることにより、1つの突起に対してこれら複数のデータが混在することになる。そこでこの場合は麓部が同一の微小突起に属するそれぞれ複数の頂点の中から高さの最も高い頂点を、当該微小突起の突起高さとして採用して度数分布を求める。 The same method is applied to define the height of the protrusion. In this case, a relative height difference of each local maximum point position from a specific reference position is acquired from the local maximum point obtained by the above (2), and is histogrammed. FIG. 6 is a diagram showing a histogram of the frequency distribution of the protrusion height H with the protrusion root position obtained in this way as a reference (height 0). The average value HAVG of the protrusion height and the standard deviation σ are obtained from the frequency distribution based on the histogram. Here in the example of FIG. 6, the mean value H AVG = 178 nm, the standard deviation sigma = 30 nm. Thus in this example, the height of the projections is an average value H AVG = 178 nm. In the histogram of the protrusion height H shown in FIG. 6, in the case of a multi-peak microprotrusion, the plurality of data are mixed for one protrusion because of having a plurality of vertices. Therefore, in this case, the frequency distribution is obtained by adopting the vertex having the highest height from among the plurality of vertices belonging to the same microprotrusion as the protuberance.
 なお上述した突起の高さを測る際の基準位置は、隣接する微小突起の間の谷底(高さの極小点)を高さ0の基準とする。但し、係る谷底の高さ自体が場所によって異なる場合(例えば、図7に示すように、谷底の高さが微小突起の隣接突起間距離に比べて大きな周期でウネリを有する場合等)は、(1)先ず、基材2の表面又は裏面から測った各谷底の高さの平均値を、該平均値が收束するに足る面積の中で算出する。(2)次いで、該平均値の高さを持ち、基材2の表面又は裏面と平行な面を基準面として考える。(3)その後、該基準面を改めて高さ0として、該基準面からの各微小突起の高さを算出する。 Note that the reference position for measuring the height of the protrusion described above is based on the bottom of the valley (minimum point of height) between the adjacent minute protrusions as a reference of height 0. However, when the height of the valley bottom itself varies depending on the location (for example, as shown in FIG. 7, when the height of the valley bottom has undulation with a period larger than the distance between adjacent projections of the microprojections), 1) First, the average value of the height of each valley bottom measured from the front surface or the back surface of the base material 2 is calculated within an area sufficient for the average value to converge. (2) Next, a surface having the height of the average value and parallel to the front surface or the back surface of the substrate 2 is considered as a reference surface. (3) Then, the height of each microprotrusion from the reference surface is calculated by setting the reference surface to a height of 0 again.
 突起が不規則に配置されている場合には、このようにして求められる隣接突起間距離の最大値dmax=dAVG+2σ、突起の高さの平均値HAVGが、規則正しく配置されている場合の上述の条件を満足することが必要であることが判った。具体的には、反射防止効果を発現する微小突起間距離の条件は、dmax≦Λminとなる。最低限、可視光線帯域の最長波長において反射防止効果を奏し得る必要最短限の条件は、Λmin=λmaxであるため、dmax≦λmaxとなり、可視光線帯域の全波長に対して反射防止効果を奏し得る必要十分の条件は、Λmin=λminであるため、dmax≦λminとなる。そして、可視光線帯域の全波長に対する反射防止効果をより確実に奏し得る好ましい条件は、dmax≦300nmであり、更に好ましい条件は、dmax≦200nmである。また反射防止効果の発現及び反射率の等方性(低角度依存性)の確保等の理由から、通常、dmax≧50nmであり、好ましくは、dmax≧100nmとされる。また突起高さについては、十分な反射防止効果を発現する為には、HAVG≧0.2×λmax=156nm(λmax=780nmとして)とされる。しかしながら実用上十分な程度に反射防止機能を確保する観点からは、平均突起間距離daveを、dave≦λminとしても良い。 If the protrusions are irregularly arranged, when this way the maximum value of the adjacent protrusions distance obtained by dmax = d AVG + 2σ, average H AVG height of projections are arranged regularly It has been found necessary to satisfy the above conditions. Specifically, the condition of the distance between the microprotrusions that exhibits the antireflection effect is dmax ≦ Λmin. The minimum necessary condition that can exhibit the antireflection effect at the longest wavelength in the visible light band is Λmin = λmax, and therefore dmax ≦ λmax, and the antireflection effect can be achieved for all wavelengths in the visible light band. The necessary and sufficient condition is Λmin = λmin, and therefore dmax ≦ λmin. A preferable condition that can more reliably exhibit the antireflection effect for all wavelengths in the visible light band is dmax ≦ 300 nm, and a more preferable condition is dmax ≦ 200 nm. Also, dmax ≧ 50 nm is usually satisfied and dmax ≧ 100 nm is preferable because of the antireflection effect and ensuring the isotropic (low angle dependency) of the reflectance. The height of the protrusion is set to HAVG ≧ 0.2 × λmax = 156 nm (assuming λmax = 780 nm) in order to exhibit a sufficient antireflection effect. However, from the viewpoint of ensuring the antireflection function to a practically sufficient level, the average inter-protrusion distance dave may be set to beave ≦ λmin.
 因みに、図2~図6の例により説明するとdmax=234nm≦λmax=780nmとなり、dmax≦λmaxの条件を満足して十分に反射防止効果を奏し得ることが判る。また可視光線帯域の最短波長λminが380nmであることから、可視光線の全波長帯域において反射防止効果を発現する十分条件dmax≦λminも満たすことが判る。また平均突起高さHAVG=178nmであることにより、平均突起高さHAVG≧0.2×λmax=156nmとなり(可視光波長帯域の最長波長λmax=780nmとして)、十分な反射防止効果を実現するための突起の高さに関する条件も満足していることが判る。またdave≦dmaxであることから、dave≦λminの条件も満足していることが判る。なお標準偏差σ=30nmであることから、HAVG-σ=148nm<0.2×λmax=156nmとの関係式が成立することから、統計学上、全突起の50%以上、84%以下が、突起の高さに係る条件(178nm以上)の条件を満足していることが判る。なおAFM及びSEMによる観察結果、並びに微小突起の高さ分布の解析結果から、多峰性微小突起は相対的に高さの低い微小突起よりも高さの高い微小突起でより多く生じる傾向にあることが判明した。 2 to 6, dmax = 234 nm ≦ λmax = 780 nm, and it can be seen that the antireflection effect can be sufficiently achieved by satisfying the condition of dmax ≦ λmax. In addition, since the shortest wavelength λmin in the visible light band is 380 nm, it can be seen that the sufficient condition dmax ≦ λmin for exhibiting the antireflection effect in all visible light wavelength bands is also satisfied. When the average protrusion the height H AVG = 178 nm Also, the average projection height H AVG ≧ 0.2 × λmax = 156nm becomes (as the longest wavelength .lambda.max = 780 nm in the visible light wavelength band), realizing a sufficient antireflection effect It can be seen that the conditions regarding the height of the protrusions to satisfy are also satisfied. Since dave ≦ dmax, it can be seen that the condition of dave ≦ λmin is also satisfied. Since the standard deviation σ = 30 nm, the relational expression H AVG -σ = 148 nm <0.2 × λmax = 156 nm is established, and therefore, statistically, 50% or more and 84% or less of all protrusions It can be seen that the condition of the height of the protrusion (178 nm or more) is satisfied. In addition, from the observation result by AFM and SEM and the analysis result of the height distribution of the microprojections, the multi-peak microprojections tend to be generated more frequently in the microprojections having a higher height than the microprojections having a relatively low height. It has been found.
 図8は、この反射防止物品1の製造工程を示す図である。この製造工程10は、樹脂供給工程において、ダイ12により帯状フィルム形態の基材2に微小突起形状の受容層を構成する未硬化で液状の紫外線硬化性樹脂を塗布する。なお紫外線硬化性樹脂の塗布については、ダイ12による場合に限らず、各種の手法を適用することができる。続いてこの製造工程10は、押圧ローラ14により、反射防止物品の賦型用金型であるロール版13の周側面に基材2を加圧押圧し、これにより基材2に未硬化状態で液状のアクリレート系紫外線硬化性樹脂を密着させると共に、ロール版13の周側面に作製された微細な凹凸形状の凹部に紫外線硬化性樹脂を充分に充填する。この製造工程は、この状態で、紫外線の照射により紫外線硬化性樹脂を硬化させ、これにより基材2の表面に微小突起群を作製する。この製造工程は、続いて剥離ローラ15を介してロール版13から、硬化した紫外線硬化性樹脂と一体に基材2を剥離する。製造工程10は、必要に応じてこの基材2に粘着層等を作製した後、所望の大きさに切断して反射防止物品1を作製する。これにより反射防止物品1は、ロール材による長尺の基材2に、賦型用金型であるロール版13の周側面に作製された微細形状を順次賦型して、効率良く大量生産される。 FIG. 8 is a diagram showing a manufacturing process of the antireflection article 1. In the manufacturing process 10, in the resin supply process, an uncured and liquid ultraviolet curable resin that forms a microprojection-shaped receiving layer is applied to the base material 2 in the form of a belt-shaped film by the die 12. In addition, about application | coating of an ultraviolet curable resin, not only the case by the die | dye 12 but various methods are applicable. Subsequently, in this manufacturing process 10, the substrate 2 is pressed and pressed onto the peripheral side surface of the roll plate 13 which is a mold for shaping the antireflection article by the pressing roller 14, and thereby the substrate 2 is uncured. The liquid acrylate-based ultraviolet curable resin is brought into close contact, and the fine concavo-convex recesses formed on the peripheral side surface of the roll plate 13 are sufficiently filled with the ultraviolet curable resin. In this state, in this manufacturing process, the ultraviolet curable resin is cured by irradiation with ultraviolet rays, and thereby a microprojection group is produced on the surface of the substrate 2. In this manufacturing process, the substrate 2 is peeled off from the roll plate 13 through the peeling roller 15 together with the cured ultraviolet curable resin. In the production process 10, an anti-reflection article 1 is produced by producing an adhesive layer or the like on the substrate 2 as necessary, and then cutting it into a desired size. Accordingly, the antireflection article 1 is mass-produced efficiently by sequentially molding the fine shape produced on the peripheral side surface of the roll plate 13 which is a mold for molding on the long base material 2 made of a roll material. The
 図9は、ロール版13の構成を示す斜視図である。ロール版13は、円筒形状の金属材料である母材の周側面に、陽極酸化処理、エッチング処理の繰り返しにより、微細な凹凸形状が作製され、この微細な凹凸形状が上述したように基材2に賦型される。このため母材は、少なくとも周側面に純度の高いアルミニウム層が設けられた円柱形状又は円筒形状の部材が適用される。より具体的に、この実施形態では、母材に中空のステンレスパイプが適用され、直接に又は各種の中間層を介して、純度の高いアルミニウム層が設けられる。なおステンレスパイプに代えて、銅やアルミニウム等のパイプ材等を適用してもよい。ロール版13は、陽極酸化処理とエッチング処理との繰り返しにより、母材の周側面に微細穴が密に作製され、この微細穴を掘り進めると共に、開口部に近付くに従ってより大きな径となるようにこの微細穴の穴径を徐々に拡大して凹凸形状が作製される。これによりロール版13は、深さ方向に徐々に穴径が小さくなる微細穴が密に作製され、反射防止物品1には、この微細穴に対応して、頂部に近付くに従って徐々に径が小さくなる多数の微小突起からなる微小突起群により微細な凹凸形状が作製される。その際に、アルミニウム層の純度(不純物量)や浴濃度、結晶粒径、陽極酸化処理及び/又はエッチング処理等の諸条件を適宜調整することによって、本発明特有の微小突起形状とする。 FIG. 9 is a perspective view showing the configuration of the roll plate 13. The roll plate 13 has a fine concavo-convex shape formed on the peripheral side surface of the base material, which is a cylindrical metal material, by repeating anodizing treatment and etching treatment, and the fine concavo-convex shape is formed on the substrate 2 as described above. It is shaped. For this reason, a columnar or cylindrical member in which a high-purity aluminum layer is provided at least on the peripheral side surface is used as the base material. More specifically, in this embodiment, a hollow stainless steel pipe is applied to the base material, and a high-purity aluminum layer is provided directly or via various intermediate layers. In addition, it may replace with a stainless steel pipe and may apply pipe materials, such as copper and aluminum. In the roll plate 13, fine holes are densely formed on the peripheral side surface of the base material by repeating the anodizing treatment and the etching treatment, and the fine holes are dug, and the diameter of the roll plate 13 increases as it approaches the opening. The concavo-convex shape is produced by gradually increasing the diameter of the fine holes. As a result, the roll plate 13 is closely formed with fine holes whose diameter gradually decreases in the depth direction, and the diameter of the antireflection article 1 gradually decreases as it approaches the top corresponding to the fine holes. A fine concavo-convex shape is produced by a microprojection group consisting of a large number of microprojections. At that time, by appropriately adjusting various conditions such as the purity (impurity amount), bath concentration, crystal grain size, anodizing treatment and / or etching treatment of the aluminum layer, the shape of the fine protrusion unique to the present invention is obtained.
 〔陽極酸化処理、エッチング処理〕
 図10は、ロール版13の製造工程を示す図である。この製造工程は、電解溶出作用と、砥粒による擦過作用の複合による電解複合研磨法によって母材の周側面を超鏡面化する(電解研磨)。続いてこの工程は、アルミニウム層作成工程において、母材の周側面にアルミニウムをスパッタリングし、純度の高いアルミニウム層を作製する。続いてこの工程は、陽極酸化工程A1、…、AN、エッチング工程E1、…、ENを交互に繰り返して母材を処理し、ロール版13を作製する。
[Anodic oxidation treatment, etching treatment]
FIG. 10 is a diagram illustrating a manufacturing process of the roll plate 13. In this manufacturing process, the peripheral side surface of the base material is made into a super mirror surface by an electrolytic composite polishing method that combines electrolytic elution action and abrasion action by abrasive grains (electrolytic polishing). Subsequently, in this step, in the aluminum layer creation step, aluminum is sputtered on the peripheral side surface of the base material to produce a high purity aluminum layer. Subsequently, in this process, the base material is processed by alternately repeating the anodic oxidation processes A1,..., AN, and the etching processes E1,.
 この製造工程において、陽極酸化工程A1、…、ANでは、陽極酸化法により母材の周側面に微細な穴を作製し、さらにこの作製した微細な穴を掘り進める。ここで陽極酸化工程では、例えば負極に炭素棒、ステンレス板材等を使用する場合のように、アルミニウムの陽極酸化に適用される各種の手法を広く適用することができる。また溶解液についても、中性、酸性の各種溶解液を使用することができ、より具体的には、例えば硫酸水溶液、シュウ(蓚)酸水溶液、リン酸水溶液等を使用することができる。この製造工程A1、…、ANは、液温、印加する電圧、陽極酸化に供する時間等の管理により、微細な穴をそれぞれ目的とする深さ及び微小突起形状に対応する形状に作製する。 In this manufacturing process, in the anodizing step A1,..., AN, a fine hole is produced on the peripheral side surface of the base material by an anodizing method, and the produced fine hole is further dug. Here, in the anodic oxidation step, various methods applied to the anodic oxidation of aluminum can be widely applied, for example, when a carbon rod, a stainless steel plate, or the like is used for the negative electrode. Further, as the solution, various neutral and acidic solutions can be used, and more specifically, for example, sulfuric acid aqueous solution, oxalic acid aqueous solution, phosphoric acid aqueous solution and the like can be used. In the manufacturing steps A1,..., AN, the fine holes are formed in shapes corresponding to the target depth and the shape of the fine protrusions, respectively, by managing the liquid temperature, the applied voltage, the time for anodization, and the like.
 続くエッチング工程E1、…、ENは、金型をエッチング液に浸漬し、陽極酸化工程A1、…、ANにより作製、掘り進めた微細な穴の穴径をエッチングにより拡大し、深さ方向に向かって滑らか、かつ徐々に穴径が小さくなるように、これら微細な穴を整形する。なおエッチング液については、この種の処理に適用される各種エッチング液を広く適用することができ、より具体的には、例えば硫酸水溶液、シュウ酸水溶液、リン酸水溶液等を使用することができる。なお陽極酸化処理に用いる溶解液と同じ液を、電圧印加無しで用いることにより、溶解液をエッチング液としても兼用してもよい。これらによりこの製造工程では、陽極酸化処理とエッチング処理とを交互にそれぞれ複数回実行することにより、賦型に供する微細穴を母材の周側面に作製する。 In the subsequent etching process E1,..., EN, the mold is immersed in an etching solution, the hole diameter of the fine hole produced and dug in the anodizing process A1,. These fine holes are shaped so that the hole diameter becomes smaller and smoother. As the etching solution, various etching solutions that are applied to this type of treatment can be widely applied. More specifically, for example, a sulfuric acid aqueous solution, an oxalic acid aqueous solution, a phosphoric acid aqueous solution, or the like can be used. Note that the same solution as the solution used for the anodic oxidation treatment may be used without applying a voltage so that the solution can be used also as an etching solution. As a result, in this manufacturing process, the anodizing process and the etching process are alternately performed a plurality of times, so that fine holes for forming are formed on the peripheral side surface of the base material.
〔耐擦傷性の向上〕
 ところでこの陽極酸化処理及びエッチング処理の交互の繰り返しにより微細穴を作製して反射防止物品を作製したところ、上述したように耐擦傷性に改善の余地が見られた。そこで反射防止物品を詳細に観察したところ、従来のこの種の反射防止物品のように、多角錘形状や回転放物面形状のような1つの頂点のみを持つ単峰性微小突起のみからなり、各頂点の高さも一様に作製されている場合には、例えば他の物体が接触した場合に、広い範囲で微小突起の形状が一様に損なわれ、これにより反射防止機能が局所的に劣化し、また接触個所に白濁、傷等が発生して外観不良が発生することが判った。しかしながらロール版の製造条件を変更すると、このような耐擦傷性が改善されることが判った。
[Improved scratch resistance]
By the way, when the anti-reflective article was produced by producing fine holes by alternately repeating the anodizing treatment and the etching treatment, there was room for improvement in the scratch resistance as described above. Therefore, when the antireflection article was observed in detail, it consists only of single-peaked microprojections having only one apex, such as a polygonal pyramid shape and a rotating paraboloid shape, as in this type of conventional antireflection article, If the height of each vertex is also made uniform, for example, when another object comes into contact, the shape of the microprojections is uniformly damaged over a wide range, thereby locally deteriorating the antireflection function. In addition, it was found that white spots, scratches, etc. occurred at the contact points, resulting in poor appearance. However, it has been found that such scratch resistance is improved by changing the production conditions of the roll plate.
 このような耐擦傷性が改善された反射防止物品の表面形状をAFM(Atomic Force Microscope:原子間力顕微鏡)及びSEM(Scanning Electron Microscope:走査型電子顕微鏡)により観察したところ、多数の微小突起の中に、頂点を複数有する多峰性微小突起が存在することが判った。なおここで微細形状の観察のために、種々の方式の顕微鏡が提供されているものの、微細構造を損なわないようにして反射防止物品の表面形状を観察する場合には、AFM及びSEMが適している。 When the surface shape of such an antireflection article with improved scratch resistance was observed with an AFM (Atomic Force Microscope) and SEM (Scanning Electron Microscope), a number of microprojections were observed. It was found that there are multimodal microprojections having a plurality of vertices. Although various types of microscopes are provided here for observing the fine shape, AFM and SEM are suitable for observing the surface shape of the antireflection article without damaging the fine structure. Yes.
 ここで多峰性微小突起は、単に頂点を複数有するだけでなく、微小突起を先端側より平面視した場合に、ほぼ中央より外方に向かって形成された溝により複数の領域に分割され、この複数の領域の各領域が、それぞれ各頂点に係る峰であるように形成される。またこの多峰性微小突起は、対応する形状を備えた微細穴の賦型処理により作製され、このような多峰性微小突起に係る微細穴は、陽極酸化処理とエッチング処理との繰り返しにおいて、極めて近接して作製された微細穴が、エッチング処理により、一体化して作製される。これにより多峰性微小突起は、微小突起を先端側より平面視した場合の周囲長が、単峰性微小突起に比して長く形成されている。この点については、後述する図12により見て取ることができる。なおこれら多峰性微小突起の形状は、特開2012-037670号公報に開示の賦型処理時の樹脂の充填不良により生じる多峰性微小突起とは異なる特徴である。 Here, the multimodal microprotrusions not only have a plurality of vertices, but when the microprotrusions are viewed in plan from the tip side, they are divided into a plurality of regions by grooves formed outward from the center, Each of the plurality of regions is formed to be a peak related to each vertex. In addition, this multimodal microprotrusion is produced by a molding process of microholes having a corresponding shape, and the microholes related to such multimodal microprotrusions are repeated in the anodizing process and the etching process. Fine holes made in close proximity are produced integrally by an etching process. As a result, the multimodal microprotrusions are formed such that the perimeter when the microprotrusions are viewed in plan view from the tip side is longer than that of the monomodal microprotrusions. This point can be seen from FIG. The shape of these multimodal microprojections is different from the multimodal microprotrusions caused by poor filling of the resin during the molding process disclosed in Japanese Patent Application Laid-Open No. 2012-037670.
 図11は、この頂点を複数有する多峰性微小突起の説明に供する断面図(図11(a))、斜視図(図11(b))、平面図(図11(c))である。なおこの図11は、理解を容易にするために模式的に示す図であり、図11(a)は、連続する微小突起の頂点を結ぶ折れ線により断面を取って示す図である。この図11(b)及び(c)において、xy方向は、基材2の面内方向であり、z方向は微小突起の高さ方向である。反射防止物品1において、多くの微小突起5は、基材2より離れて頂点に向かうに従って徐々に断面積(高さ方向に直交する面(図11においてXY平面と平行な面)で切断した場合の断面積)が小さくなって、頂点が1つにより作製される。しかしながら中には、複数の微小突起が結合したかのように、先端部分に溝gが形成され、頂点が2つになったもの(5A)、頂点が3つになったもの(5B)、さらには頂点が4つ以上のもの(図示略)が存在した。なお単峰性微小突起5の形状は、概略、回転放物面の様な頂部の丸い形状、或いは円錐の様な頂点の尖った形状で近似することができる。一方、多峰性微小突起5A、5Bの形状は、概略、単峰性微小突起5の頂部近傍に溝状の凹部を切り込んで、頂部を複数の峰に分割したような形状で近似される。多峰性微小突起5A、5Bの形状は、或いは、複数の峰を含み高さ方向(図11ではZ軸方向)を含む仮想的切断面で切断した場合の縦断面形状が、極大点を複数個含み各極大点近傍が上に凸の曲線になる代数曲線Z=a+a+・・+a2n2n+・・で近似されるような形状である。 FIG. 11 is a cross-sectional view (FIG. 11 (a)), a perspective view (FIG. 11 (b)), and a plan view (FIG. 11 (c)) for explaining the multimodal microprotrusions having a plurality of vertices. Note that FIG. 11 is a diagram schematically showing for easy understanding, and FIG. 11A is a diagram showing a cross section by a broken line connecting the vertices of continuous minute protrusions. In FIGS. 11B and 11C, the xy direction is the in-plane direction of the substrate 2, and the z direction is the height direction of the microprojections. In the antireflection article 1, many microprotrusions 5 are gradually cut in a cross-sectional area (a plane perpendicular to the height direction (a plane parallel to the XY plane in FIG. 11)) toward the apex away from the base material 2. The cross-sectional area) is reduced, and one vertex is produced. However, in some cases, as if a plurality of microprotrusions were combined, a groove g was formed at the tip, and the apex was two (5A), the apex was three (5B), Furthermore, there were those having four or more vertices (not shown). The shape of the unimodal microprotrusions 5 can be approximated by a round shape at the top like a paraboloid of revolution or a sharp shape at the apex like a cone. On the other hand, the shape of the multimodal microprotrusions 5A and 5B is approximately approximated by a shape in which a groove-shaped recess is cut in the vicinity of the top of the single-peak microprotrusion 5 and the top is divided into a plurality of peaks. The shape of the multi-peak microprotrusions 5A and 5B, or the vertical cross-sectional shape when cutting along a virtual cut surface including a plurality of peaks and including the height direction (Z-axis direction in FIG. 11), has a plurality of maximum points. The shape is approximated by an algebraic curve Z = a 2 X 2 + a 4 X 4 +... + A 2n X 2n +.
 このような頂点を複数有する多峰性微小突起は、単峰性微小突起に比して、頂点近傍の寸法に対する裾の部分の太さが相対的に太くなる(周囲長が長くなる)。これにより、多峰性微小突起は、単峰性微小突起に比して機械的強度が優れていると言える。これにより頂点を複数有する多峰性微小突起が存在する場合、反射防止物品では、単峰性微小突起のみによる場合に比して耐擦傷性が向上するものと考えられる。さらに、具体的に反射防止物品に外力が加わった場合、単峰性微小突起のみの場合に比して、外力をより多くの頂点で分散して受ける為、各頂点に加わる外力を低減し、微小突起が損傷し難いようにすることができ、これにより反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。また仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができる。更に、多峰性微小突起は、外力を先ず各峰部分が受止めて犠牲的に損傷することによって、該多峰性微小突起の峰より低い本体部分、及び該多峰性微小突起よりも高さの低い微小突起の損耗を防ぐ。これによっても反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。 In such a multi-peak microprojection having a plurality of vertices, the thickness of the hem portion relative to the size in the vicinity of the vertex is relatively thick (peripheral length is longer) than the single-peak microprojection. Thereby, it can be said that the multimodal microprotrusions are superior in mechanical strength to the single-peak microprotrusions. As a result, when there are multi-modal microprotrusions having a plurality of vertices, it is considered that the anti-reflective article has improved scratch resistance as compared to the case of using only monomodal micro-protrusions. Furthermore, when external force is applied to the anti-reflective article specifically, compared to the case of only a single-peaked microprojection, the external force is distributed and received at more vertices, so the external force applied to each vertex is reduced. The microprotrusions can be made difficult to be damaged, thereby reducing the local deterioration of the antireflection function and further reducing the appearance defects. Moreover, even if a microprotrusion is damaged, the area of the damaged portion can be reduced. In addition, the multi-peak microprojections are higher than the multi-peak micro-projections and lower body parts than the multi-peak micro-projections by first receiving each external force and sacrificing damage. Prevents wear and tear of small microprojections. This also reduces local deterioration of the antireflection function and further reduces the occurrence of appearance defects.
 なお上述した図2~図6に係る測定結果は、本実施形態に係る反射防止物品の測定結果であり、図5に示す度数分布においては、隣接突起間距離d(横軸の値)について、20nm及び40nmの短距離の極大値と120nm及び164nmの長距離の極大値との2種類の極大値が存在する。これらの極大値のうちの長距離の極大値は、微小突起本体(頂部よりも下の中腹から麓にかけての部分)の配列に対応し、一方、短距離の極大値は頂部近傍に存在する複数の頂点(峰)に対応する。これにより極大点間距離の度数分布によっても、多峰性微小突起の存在を見て取ることができる。 2 to 6 described above are the measurement results of the antireflection article according to the present embodiment. In the frequency distribution shown in FIG. 5, the distance d between adjacent protrusions (value on the horizontal axis) is There are two types of local maxima, short maxima of 20 nm and 40 nm and long maxima of 120 nm and 164 nm. Among these maximum values, the maximum value of the long distance corresponds to the arrangement of the microprojection bodies (the part from the middle to the heel below the top part), while the maximum value of the short distance exists in the vicinity of the top part. Corresponds to the apex (peak) of. As a result, the presence of multimodal microprotrusions can also be seen from the frequency distribution of the distance between the maximal points.
 なお多峰性微小突起は、その存在により耐擦傷性を向上できるものの、充分に存在しない場合には、この耐擦傷性を向上する効果を十分に発揮できないことは言うまでもない。係る観点より、本発明においては、表面に存在する全微小突起中における多峰性微小突起の個数の比率は10%以上とする。特に多峰性微小突起による耐擦傷性を向上する効果を十分に奏する為には、該多峰性微小突起の比率は30%以上、好ましくは50%以上とする。又、多峰性微小突起の比率を増やすに伴い製造工程の管理の難度が増す為、当該比率は好ましくは90%以下、より好ましくは80%以下とする。 Needless to say, although the multimodal microprotrusions can improve the scratch resistance due to their presence, if they do not exist sufficiently, the effect of improving the scratch resistance cannot be fully exhibited. From such a viewpoint, in the present invention, the ratio of the number of multimodal microprotrusions in all the microprotrusions existing on the surface is 10% or more. In particular, in order to sufficiently exhibit the effect of improving the scratch resistance by the multimodal microprojections, the ratio of the multimodal microprojections is set to 30% or more, preferably 50% or more. Further, since the difficulty of managing the manufacturing process increases as the ratio of the multimodal microprotrusions increases, the ratio is preferably 90% or less, more preferably 80% or less.
 さらにこのような多峰性微小突起5A、5Bを含む微小突起群(5、5A、5B、・・)を有する反射防止物品を詳細に検討したところ、各微小突起の高さが種々に異なることが判った(図6、図11(a)参照)。なおここで各微小突起の高さとは、上述したように、麓(付け根)部を共有するある特定の微小突起について、その頂部に存在する最高高さを有する峰(最高峰)の高さを言う。また麓部を共有する全峰が同一高さの場合は、其の同一の高さを以って該微小突起の高さとする。図11(a)の微小突起5の如くの単峰性微小突起の場合は、頂部における唯一の峰(極大点)の高さが該微小突起の突起高さとなる。また図11(a)の微小突起5A、5Bのような多峰性微小突起の場合は、頂部に在る麓部を共有する複数の峰のうちの最高峰の高さをもって該微小突起の高さとする。このように微小突起の高さが種々に異なる場合には、例えば物体の接触により高さの高い微小突起の形状が損なわれた場合でも、高さの低い微小突起においては、形状が維持されることになる。これによっても反射防止物品では、反射防止機能の局所的な劣化を低減し、さらには外観不良の発生を低減することができ、その結果、耐擦傷性を向上することができる。 Furthermore, when an anti-reflective article having such a microprotrusion group (5, 5A, 5B,...) Including the multimodal microprotrusions 5A and 5B is examined in detail, the heights of the microprotrusions are variously different. (See FIGS. 6 and 11 (a)). Here, as described above, the height of each microprotrusion is the height of the peak (highest peak) having the highest height at the top of a specific microprotrusion that shares the ridge (root). To tell. Moreover, when all the peaks which share a collar part are the same height, let it be the height of this microprotrusion with the same height. In the case of a single-peak microprojection such as the microprojection 5 in FIG. 11A, the height of the only peak (maximum point) at the top is the projection height of the microprojection. In addition, in the case of multimodal microprotrusions such as microprotrusions 5A and 5B in FIG. 11 (a), the height of the microprotrusions has the height of the highest peak among a plurality of peaks sharing the ridge at the top. Say it. In this way, when the heights of the microprojections are variously different, for example, even when the shape of the microprojections having a high height is damaged by contact with an object, the shape is maintained in the microprojections having a low height. It will be. Also in this case, in the antireflection article, local deterioration of the antireflection function can be reduced, and furthermore, occurrence of defective appearance can be reduced, and as a result, scratch resistance can be improved.
 また反射防止物品表面の微小突起群と物体との間に塵埃が付着すると、当該物品が反射防止物品に対して相対的に摺動した際に、該塵埃が研磨剤として機能して微小突起(群)の磨耗、損傷が促進されることになる。この場合に、微小突起群を構成する各微小突起間に高低差が有ると、塵埃は高さの高い微小突起に強く接触し、これを損傷させる。一方で高さの低い微小突起との接触は弱まり、高さの低い微小突起については損傷が軽減され、無傷ないしは軽微な傷で残存した高さの低い微小突起によって反射防止性能が維持される。 Further, when dust adheres between the microprojection group on the surface of the antireflection article and the object, when the article slides relative to the antireflection article, the dust functions as an abrasive to form microprojections ( Group) wear and damage are promoted. In this case, if there is a difference in height between the microprojections constituting the microprojection group, the dust strongly contacts the microprojections having a high height and is damaged. On the other hand, the contact with the microprojections having a low height is weakened, the damage is reduced for the microprojections having a low height, and the antireflection performance is maintained by the microprojections having a low height remaining without being damaged or slightly damaged.
 またこれに加えて、各微小突起の高さに分布(高低差)の有る微小突起群は、反射防止性能が広帯域化され、白色光のような多波長の混在する光、あるいは広帯域スペクトルを持つ光に対して、全スペクトル帯域で低反射率を実現するのに有利である。これは、かかる微小突起群によって良好な反射防止性能を発現し得る波長帯域が、隣接突起間距離dの他に、突起高さにも依存する為である。 In addition to this, the microprotrusion group with distribution (height difference) in the height of each microprotrusion has a broad antireflection performance and has light with multiple wavelengths such as white light or a broadband spectrum. For light, it is advantageous to realize a low reflectance in the entire spectral band. This is because the wavelength band in which good antireflection performance can be exhibited by such a microprojection group depends not only on the distance d between adjacent projections but also on the projection height.
 またこの場合には、多数の微小突起のうちの高さの高い微小突起のみが、例えば反射防止物品1と対向するように配置された各種の部材表面と接触することになる。これにより高さが同一の微小突起のみによる場合に比して格段的に滑りを良くすることができ、製造工程等における反射防止物品の取り扱いを容易とすることができる。なおこのように滑りを良くする観点から、ばらつきは、標準偏差により規定した場合に、10nm以上必要であるものの、50nmより大きくなると、このばらつきによる表面のざらつき感が感じられるようになる。従ってこの高さのばらつきは、10nm以上、50nm以下であることが好ましい。 Further, in this case, only the high microprojections out of the many microprojections come into contact with the surface of various members arranged to face the antireflection article 1, for example. Thereby, it is possible to remarkably improve the slip as compared with the case where only the minute protrusions having the same height are used, and it is possible to easily handle the antireflection article in the manufacturing process or the like. From the viewpoint of improving the slip as described above, the variation needs to be 10 nm or more when defined by the standard deviation. However, when the variation is larger than 50 nm, the surface becomes rough. Therefore, the height variation is preferably 10 nm or more and 50 nm or less.
 またこのように多峰性微小突起が混在する場合には、単峰性微小突起のみによる場合に比して反射防止の性能を向上することができる。すなわち図2、図11、及び図12等に示すような多峰性微小突起5A、5B等は、隣接突起間距離が同じ場合であっても、また突起高さが同じ場合であっても、単峰性微小突起と比べて、より光の反射率が低減することになる。その理由は、多峰性微小突起5A、5B等は、頂部より下(中腹及び麓)の形状が同じ単峰性微小突起よりも、頂部近傍における有効屈折率の高さ方向の変化率が小さくなる為である。 In addition, when multi-peak microprojections coexist in this way, the antireflection performance can be improved as compared with the case of using only single-peak microprojections. That is, the multimodal microprotrusions 5A, 5B, etc. as shown in FIG. 2, FIG. 11, and FIG. 12, etc., even when the distance between adjacent protrusions is the same or when the protrusion height is the same, Compared with a single-peak microprojection, the reflectance of light is further reduced. The reason for this is that the multimodal microprotrusions 5A, 5B, etc. have a smaller change rate in the height direction of the effective refractive index in the vicinity of the apex than the single-peak microprotrusions below the apex (in the middle and the heel). It is to become.
 すなわち図11において、z=0を高さH=0とおき、高さ方向(Z軸方向)に直交する仮想的切断面Z=zで微小突起5、5A等を切断したと仮定した場合の面Z=zにおける微小突起と周辺の媒質(通常は空気)との屈折率の平均値として得られる有効屈折率nefは、切断面Z=zにおける周辺媒質(ここでは空気とする)の屈折率をn=1、微小突起5、5A、・・の構成材料の屈折率をn>1とし、又周辺媒質(空気)の断面積の合計値をS(z)、微小突起5、5A、・・の断面積の合計値をS(z)としたとき、
ef(z)=1×S(z)/(S(z)+S(z))+n×S(z)/(S(z)+S(z))(式1)
で表される。これは、周辺媒質の屈折率n及び微小突起構成材料の屈折率nを、各々周辺媒質の合計断面積S(z)及び微小突起の合計断面積の合計値S(z)の比で比例配分した値となる。
That is, in FIG. 11, when z = 0 is set as height H = 0, and it is assumed that the minute protrusions 5, 5 </ b> A, etc. are cut at a virtual cutting plane Z = z orthogonal to the height direction (Z-axis direction). The effective refractive index n ef obtained as an average value of the refractive indexes of the microprojections on the surface Z = z and the surrounding medium (usually air) is the refraction of the surrounding medium (here, air) on the cut surface Z = z. The refractive index of the constituent material of n A = 1, the minute protrusions 5, 5A,... Is n M > 1, and the total value of the sectional area of the peripheral medium (air) is S A (z). When the total value of the cross-sectional areas of 5A,... Is S M (z),
n ef (z) = 1 × S A (z) / (S A (z) + S M (z)) + n A × S M (z) / (S A (z) + S M (z)) (Formula 1 )
It is represented by This is because the refractive index n A of the peripheral medium and the refractive index n M of the constituent material of the microprojections are respectively set to the total sectional area S A (z) of the peripheral medium and the total value S M (z) of the total sectional area of the microprojections. The value is proportionally distributed by ratio.
 ここで、単峰性微小突起5を基準にして考えたときに、多峰性微小突起5A、5B、・・は、頂部近傍が複数の峰に分裂している。そのため、頂部近傍を切断する仮想的切断面Z=zにおいて、多峰性微小突起5A、5B、・・は、単峰性微小突起5、・・に比べて相対的に低屈折率である周辺媒質の合計断面積S(z)の比率が、相対的に高屈折率である微小突起の合計断面積S(z)の比率に比べて、より増大することになる。 Here, when considered on the basis of the single-peak microprotrusions 5, the multi-peak microprotrusions 5A, 5B,... Are split into a plurality of peaks near the top. Therefore, in the virtual cutting plane Z = z that cuts the vicinity of the apex, the multimodal microprotrusions 5A, 5B,... Have a lower refractive index than the single-peak microprotrusions 5,. The ratio of the total cross-sectional area S A (z) of the medium is further increased as compared with the ratio of the total cross-sectional area S M (z) of the microprojections having a relatively high refractive index.
 その結果、仮想的切断面Z=zにおける有効屈折率nef(z)は、多峰性微小突起5A、5B、・・の方が単峰性微小突起5、・・に比べて、より周辺媒質の屈折率nに近くなる。面Z=zにおける多峰性微小突起の有効屈折率と周辺媒質の屈折率との差を|nef(z)-n(z)|multi、単峰性微小突起の有効屈折率と周辺媒質の屈折率との差を|nef(z)-n(z)|monoとすると、
|nef(z)-n(z)|multi<|nef(z)-n(z)|mono(式2)
となる。ここでn(z)=1とすると、
|nef(z)-1|multi<|nef(z)-1|mono(式2A)
となる。
As a result, the effective refractive index n ef (z) at the virtual cut surface Z = z is more peripheral in the multimodal microprotrusions 5A, 5B,. It becomes close to the refractive index n A of the medium. The difference between the refractive index of the effective refractive index and the surrounding medium multimodal microprotrusions in the plane Z = z | n ef (z ) -n A (z) | multi, effective refractive index and surrounding unimodal microprojection When mono, | a difference between the refractive index of the medium | n ef (z) -n a (z)
| N ef (z) −n A (z) | multi <| n ef (z) −n A (z) | mono (Expression 2)
It becomes. Here, if n A (z) = 1,
| N ef (z) -1 | multi <| n ef (z) -1 | mono (Formula 2A)
It becomes.
 これにより頂部近傍において、多峰性微小突起を含む微小突起群(各微小突起間に周辺媒質を含む)については、単峰性微小突起のみからなる突起群に比べて、その有効屈折率と周辺媒質(空気)の屈折率との差、より詳細に言えば、微小突起の高さ方向の単位距離当たりの屈折率の変化率をより低減化すること、換言すれば、屈折率の高さ方向変化の連続性をより高めること)が可能になることが判る。 As a result, in the vicinity of the top portion, the effective refractive index and the peripheral area of the microprojection group including the multimodal microprojections (including the peripheral medium between the microprojections) is smaller than that of the projection group including only the single-peak microprojections. The difference from the refractive index of the medium (air), more specifically, the rate of change of the refractive index per unit distance in the height direction of the microprojections is further reduced, in other words, the direction of the refractive index in the height direction. It can be seen that the continuity of change can be further increased.
 一般に、隣接する屈折率nの媒質と屈折率nの媒質との界面に光が入射する場合に、該界面における光の反射率Rは、入射角=0として、
R=(n-n/(n+n(式3)
となる。この式より界面両側の媒質の屈折率差n-nが小さいほど界面での光の反射率Rは減少し、(n-n)が値0に近づけばRも値0に近づくことになる。
In general, when light is incident on an interface between an adjacent medium having a refractive index n 0 and a medium having a refractive index n 1 , the reflectance R of the light at the interface is set as an incident angle = 0.
R = (n 1 −n 0 ) 2 / (n 1 + n 0 ) 2 (Formula 3)
It becomes. From this formula, the smaller the refractive index difference n 1 -n 0 between the media on both sides of the interface, the smaller the reflectivity R of the light at the interface, and when (n 1 -n 0 ) approaches 0, R also approaches 0. It will be.
 (式2)、(式2A)及び(式3)より、多峰性微小突起5A、5B、・・を含む微小突起群(各微小突起間に周辺媒質を含む)については、単峰性微小突起5、・・のみからなる突起群に比べて光の反射率が低減する。 From (Formula 2), (Formula 2A), and (Formula 3), for the microprojection group including the multimodal microprotrusions 5A, 5B,. The light reflectance is reduced as compared with the projection group consisting only of the projections 5.
 なお単峰性微小突起5のみからなる微小突起群を用いても、隣接突起間距離の最大値dmaxを反射防止を図る電磁波の波長帯域の最短波長λmin以下の十分小さな値にすることによって、十分な反射防止効果を発現することは可能である。但し、その場合、隣接峰間の距離と隣接微小突起間距離とが同一となる為、隣接微小突起間が接触、一体複合化する現象(いわゆるスティッキング)が発生し易くなる。スティッキングを生じると、実質上の隣接突起間距離dは一体複合化した微小突起数の分だけ増加する。 Even if a microprojection group consisting of only the single-peak microprojections 5 is used, it is sufficient to make the maximum value dmax of the distance between adjacent projections sufficiently small below the shortest wavelength λmin of the wavelength band of the electromagnetic wave for preventing reflection. It is possible to exhibit an excellent antireflection effect. However, in this case, since the distance between adjacent peaks and the distance between adjacent minute protrusions are the same, a phenomenon (so-called sticking) in which adjacent minute protrusions are brought into contact with each other and integrated together is likely to occur. When sticking occurs, the substantial distance d between adjacent protrusions increases by the number of minute protrusions integrated together.
 例えば、d=200nmの微小突起が4個スティッキングすると、実質上、スティッキングして一体化した突起の大きさは、d=4×200nm=800nm>可視光線帯域の最長波長(780nm)となり、これにより局所的に反射防止効果を損なうことになる。 For example, when four microprojections with d = 200 nm are stuck, the size of the stuck and integrated projection is substantially d = 4 × 200 nm = 800 nm> the longest wavelength in the visible light band (780 nm). The antireflection effect is locally impaired.
 一方、多峰性微小突起5A、5B、・・からなる微小突起群の場合、頂部近傍の各峰間の隣接突起間距離dPEAKは、麓から中腹にかけての微小突起本体部の隣接突起間距離dBASEよりも小さくなり(dPEAK<dBASE)、通常、dPEAK=dBASE/4~dBASE/2程度である。その為、各峰間の隣接突起間距離dPEAK≪λminとすることで十分な反射防止性能を得ることができる。但し、多峰性微小突起の各峰部は、麓部の幅に対する峰部の高さの比が小さく、単峰性微小突起の麓部の幅に対する頂点の高さの比の1/2~1/10程度である。従って、同じ外力に対して、多峰性微小突起の峰部は単峰性微小突起に比べての変形し難い。且つ、多峰性微小突起の本体部自体は峰部よりも隣接突起間距離は大であり、且つ強度も大である。その為、結局、多峰性微小突起からなる微小突起群は、単峰性微小突起からなる突起群に比べて、スティッキングの生じ難さと低反射率とを容易に両立させることができる。 On the other hand, in the case of a microprotrusion group consisting of multimodal microprotrusions 5A, 5B,..., The distance between adjacent protrusions d PEAK between each peak near the top is the distance between adjacent protrusions of the microprotrusion main body from the heel to the middle. It becomes smaller than d BASE (d PEAK <d BASE ), and is usually about d PEAK = d BASE / 4 to d BASE / 2. Therefore, sufficient antireflection performance can be obtained by setting the distance d PEAK << λmin between adjacent protrusions between the peaks. However, each peak of the multi-peak microprojection has a small ratio of the height of the peak to the width of the buttocks, which is 1/2 to the ratio of the height of the apex to the width of the buttocks of the single-peak microprojection. It is about 1/10. Therefore, for the same external force, the peak of the multimodal microprotrusions is less likely to deform than the single-peak microprotrusions. In addition, the main body itself of the multimodal microprotrusions has a greater distance between adjacent protrusions and a greater strength than the ridges. Therefore, after all, the microprojection group composed of multimodal microprotrusions can easily achieve both stickiness and low reflectivity compared to the projection group composed of monomodal microprojections.
 なお可視光の反射防止用途の他の用途であっても、又は可視光環境下であっても、当該反射防止材料が設置、使用される環境条件に応じて、想定する反射防止波長に応じたモスアイ構造を形成し、高さ分布を持たせる事により、前記の通り、従来のものより耐擦性があり、かつ、プロセス要件などで低硬度の材料を使用した場合においても互いのスティッキングを防止し、光学的必要性能を合わせ持つ反射防止材料を作製する事が可能となる。例えば、380nm前後の紫外領域について反射防止性能を得たい場合はモスアイの高さが約50nmでも可能であり、同様に700nm前後の赤外領域については約150nm~実用上を考慮し400nmであれば可能である。なお、前記の通りモスアイの配置ピッチについては高さについて飽和するような製作条件を見出し、モスアイの反射率を効果的に操作する事が可能である。さらに、モスアイの頂部構造についても、従来の単峰から改良を加える事で高さと反射率を両立し、かつ物理的にスティッキングを起こしにくく、効果的に反射率を低減する事が可能となっている。 In addition, even if it is other uses for antireflection of visible light, or under a visible light environment, the antireflection material depends on the assumed antireflection wavelength depending on the environmental conditions where the antireflection material is installed and used. By forming a moth-eye structure and having a height distribution, as described above, even when using materials that are more resistant to abrasion than conventional products and have low hardness due to process requirements, etc., prevent sticking to each other In addition, it is possible to produce an antireflection material having both optically required performance. For example, when it is desired to obtain antireflection performance in the ultraviolet region around 380 nm, the moth-eye height can be about 50 nm. Similarly, in the infrared region around 700 nm, about 150 nm to 400 nm in consideration of practical use. Is possible. As described above, it is possible to find manufacturing conditions that saturate the height of the arrangement pitch of the moth-eye, and to effectively control the reflectance of the moth-eye. In addition, the top structure of the moth-eye can be improved from the conventional single peak to achieve both height and reflectivity, and it is difficult to cause physical sticking and can effectively reduce reflectivity. Yes.
 ところでこのような微小突起の作製に供するロール版では、陽極酸化処理とエッチング処理との交互の繰り返しにより、穴径を拡大しながら微細穴を掘り進め、これにより微小突起の賦型に供する微細穴が作製される。多峰性微小突起は、係る構造の頂部に対応する形状の凹部を備えた微細穴により作製されるものであり、このような微細穴は、極めて近接して作製された微細穴が、エッチング処理により、一体化して作製されると考えられる。これにより多峰性微小突起と単峰性微小突起とを混在させるには、陽極酸化により作製される微細穴の間隔を大きくばらつかせることにより実現することができ、陽極酸化処理におけるばらつきを大きくすることにより実現することができる。 By the way, in the roll plate used for the production of such microprojections, the microholes are dug while enlarging the hole diameter by alternately repeating the anodizing treatment and the etching treatment, thereby providing the microprojections to the mold. Is produced. Multimodal microprotrusions are produced by microholes having a concave shape corresponding to the top of such a structure, and such microholes are produced in close proximity by etching treatment. Therefore, it is considered that they are manufactured integrally. In this way, multi-peak microprojections and monomodal micro-protrusions can be mixed by greatly varying the interval between microholes produced by anodization, which greatly increases the variation in anodization. This can be realized.
 また微細穴の高さのばらつきは、ロール版に作製される微細穴の深さのばらつきによるものであり、このような微細穴の深さのばらつきについても、陽極酸化処理におけるばらつきに起因するものと言える。 In addition, the variation in the height of the fine hole is due to the variation in the depth of the fine hole produced in the roll plate, and this variation in the depth of the fine hole is also caused by the variation in the anodizing process. It can be said.
 これらによりこの実施形態では、ばらつきが大きくなるように、陽極酸化処理における条件を設定し、頂点が複数の微小突起と単峰性微小突起とが混在し、かつ微小突起の高さがばらついた反射防止物品を生産する。 Accordingly, in this embodiment, the conditions in the anodizing process are set so that the variation is large, the reflection is a mixture of a plurality of microprojections and a single-peak microprojection at the apex, and the height of the microprojections varies. Produce preventive goods.
 ここで陽極酸化処理における印加電圧(化成電圧)と微細穴の間隔とは比例関係にあり、さらに一定範囲より印加電圧が逸脱するとばらつきが大きくなる。これにより濃度0.01M~0.03Mの硫酸、シュウ酸、リン酸の水溶液を使用して、電圧15V(第1工程)~35V(第2工程:第1工程に対して約2.3倍)の印加電圧により、多峰性微小突起と単峰性微小突起とが混在し、かつ微小突起の高さがばらついた反射防止物品生産用のロール版を作製することができる。なお印加電圧が変動すると、微細穴の間隔のばらつきが大きくなることにより、例えば直流電源によりバイアスした交流電源を使用して印加用電圧を生成する場合等、印加電圧を意図的に変動させてもよい。また電圧変動率の大きな電源を使用して陽極酸化処理を実行してもよい。 Here, the applied voltage (formation voltage) in the anodic oxidation treatment and the interval between the fine holes are in a proportional relationship, and the variation increases when the applied voltage deviates from a certain range. By using an aqueous solution of sulfuric acid, oxalic acid, and phosphoric acid having a concentration of 0.01 M to 0.03 M, the voltage is 15 V (first step) to 35 V (second step: about 2.3 times the first step). ) Applied voltage can be used to produce a roll plate for the production of an antireflective article in which multimodal microprojections and monomodal microprojections coexist and the microprojections vary in height. When the applied voltage fluctuates, the variation in the spacing between the micro holes increases, so that the applied voltage can be varied intentionally, for example, when the applied voltage is generated using an alternating current power source biased by a direct current power source. Good. The anodizing treatment may be performed using a power source having a large voltage fluctuation rate.
 図12は、頂点が複数の微小突起を示す写真であり、図12(a)は、AFMによるものであり、図12(b)及び(c)は、SEMによるものである。図12(a)では、溝g及び3つの頂点を有する微小突起、及び溝g及び2つの頂点を有する微小突起を見て取ることができ、図12(b)では、溝g及び4つの頂点を有する微小突起、及び溝g及び2つの頂点を有する微小突起を見て取ることができ、図12(c)では、溝g及び3つの頂点を有する微小突起、溝g及び2つの頂点を有する微小突起を見て取ることができる。 FIG. 12 is a photograph showing a plurality of minute protrusions at the apex, FIG. 12 (a) is based on AFM, and FIGS. 12 (b) and 12 (c) are based on SEM. In FIG. 12 (a), a groove g and a microprotrusion having three vertices and a groove g and a microprotrusion having two vertices can be seen, and in FIG. 12 (b), the groove g and four vertices are present. A microprotrusion and a microprotrusion having a groove g and two vertices can be seen, and in FIG. 12C, a microprotrusion having a groove g and three vertices, a microprojection having a groove g and two vertices can be seen. be able to.
 またさらにこの実施形態のように、単峰性微小突起と多峰性微小突起とを混在させる場合には、アスペクト比の異なる単峰性微小突起を混在させた場合と同様に、広い波長帯域で反射率を低減することができる。なおアスペクト比とは、微小突起の高さHを谷底における径W(幅又は太さと言う事もできる)で除した比、H/Wとして定義される。ここで、谷底における径とは、微小突起の谷底近傍の形状が円柱であれば、該円柱の(底面の)直径と一致する。微小突起の谷底近傍形状が円柱では無く、谷底を連ねた仮想的平面と微小突起とが交叉して得られる底面の径の大きさが面内方向によって異なる場合は、その最大値を該微小突起の径とする。例えば、微小突起の底面形状が楕円の場合は、径はその長径となる。又、微小突起の底面形状が多角形の場合は、径はその最大の対角線長となる。又、谷底部(高さの極小点からなる領域)の幅が径に比べて小さく2割以下の場合には、各微小突起のアスペクト比H/Wの平均値(H/W)aveは、設計上は実質、Have/daveと見做すことができる。 Furthermore, as in this embodiment, when unimodal microprojections and multimodal microprojections are mixed, as in the case of mixing unimodal microprojections with different aspect ratios, in a wide wavelength band. The reflectance can be reduced. The aspect ratio is defined as H / W, which is a ratio obtained by dividing the height H of the minute protrusions by the diameter W (also referred to as width or thickness) at the bottom of the valley. Here, the diameter at the bottom of the valley coincides with the diameter (at the bottom) of the column if the shape of the microprotrusion near the bottom of the valley is a column. If the shape of the vicinity of the valley bottom of the microprojection is not a cylinder and the diameter of the bottom surface obtained by crossing the virtual plane connecting the valley bottom and the microprojection differs depending on the in-plane direction, the maximum value is set to the microprojection. Of the diameter. For example, when the bottom shape of the microprojection is an ellipse, the diameter is the major axis. In addition, when the bottom surface shape of the minute protrusion is a polygon, the diameter is the maximum diagonal length. In addition, when the width of the bottom of the valley (region consisting of the minimum point of the height) is smaller than the diameter and 20% or less, the average value (H / W) ave of the aspect ratio H / W of each microprotrusion is In terms of design, it can be substantially regarded as Have / dave.
 すなわち陽極酸化処理により微細穴を作製する場合、特開2003-43203号公報等で既に知られている様に、隣接微細穴間距離(一定値で分布の無い場合はピッチに相当)と深さとは比例する関係になる。これにより陽極酸化処理とエッチング処理との繰り返しにより賦型用金型を作製し、この賦型用金型を使用した賦型処理によりこの種の反射防止物品を作製する場合、作製される単峰性微小突起は、付け根部分の幅と高さとの比であるアスペクト比がほぼ一定に保持される。 That is, when a microhole is produced by anodizing treatment, as already known in Japanese Patent Application Laid-Open No. 2003-43203, etc., the distance between adjacent microholes (corresponding to a pitch when there is no distribution with a constant value) and depth Is a proportional relationship. Thus, when a mold for molding is produced by repeating anodization treatment and etching treatment, and this type of antireflection article is produced by molding process using this mold for molding, a single peak produced The aspect ratio, which is the ratio between the width and height of the base portion, is maintained substantially constant in the sexual microprojections.
 反射防止物品の反射防止機能は、微小突起の間隔だけでなく、アスペクト比にも依存し、アスペクト比が一定であると、例えば可視光域では十分に小さな反射率を確保できる場合でも、紫外線域では可視光域に比して反射率が増大して反射防止機能が不足する。なおこのような場合において、隣接突起間距離を一段と小さくして紫外線域で十分な反射防止機能を確保できるように設定することも考えられるものの、この場合は、赤外線域で高さが不足して反射率が増大することになる。 The anti-reflective function of the anti-reflective article depends not only on the interval between the microprojections but also on the aspect ratio. If the aspect ratio is constant, for example, even if a sufficiently small reflectance can be secured in the visible light range, However, the reflectance increases as compared with the visible light region, and the antireflection function is insufficient. In such a case, although it may be possible to set the distance between adjacent protrusions to be further reduced so as to ensure a sufficient antireflection function in the ultraviolet region, in this case, the height is insufficient in the infrared region. The reflectivity will increase.
 しかしながら多峰性微小突起を含む微小突起群では、同一微小突起の頂部近傍に存在する峰間距離が隣接突起間距離(通常100~200nm程度)よりも小さい(通常10~50nm程度)。かかる峰間距離の寄与によって、同一隣接突起間距離の単峰性微小突起のみからなる微小突起群に比べて、実効的な隣接突起間間隔を低下させたと等価な反射防止機能を確保することができ、これにより多峰性微小突起と単峰性微小突起との混在により広い波長帯域で低い反射律を確保することができる。なお可視光域を中心にした広い波長帯域で十分に小さな反射率を確保する場合、可視光域に係る波長480~660nm帯域の光に対する反射防止性能に寄与する隣接突起間間隔、すなわち、d≦400nm、好ましくはd≦300nmとなる微小突起において、多峰性の微小突起と単峰性の微小突起とを混在させることが望ましい。 However, in a group of microprojections including multimodal microprojections, the distance between the peaks existing near the top of the same microprojection is smaller than the distance between adjacent projections (usually about 100 to 200 nm) (usually about 10 to 50 nm). By the contribution of the distance between the peaks, it is possible to ensure an antireflection function equivalent to a reduction in the effective distance between adjacent projections compared to a group of minute projections consisting of only single-peaked microprojections having the same distance between adjacent projections. Thus, a low reflection rule can be ensured in a wide wavelength band due to the mixture of multimodal microprojections and monomodal microprojections. When a sufficiently small reflectance is ensured in a wide wavelength band centered on the visible light region, the distance between adjacent protrusions that contributes to the antireflection performance for light in the wavelength range of 480 to 660 nm in the visible light region, that is, d ≦ It is desirable to mix multimodal microprojections and monomodal microprojections in microprojections with 400 nm, preferably d ≦ 300 nm.
 なおこれらこの実施形態に係る多峰性微小突起の特徴は、賦型用金型の対応する形状を備えた微細穴により作製される多峰性微小突起に固有の特徴であり、特開2012-037670号公報に開示の樹脂の充填不良により生じる多峰性微小突起によっては得ることができない特徴である。すなわち樹脂の充填不良による多峰性微小突起は、本来、単峰性微小突起として作製される微細穴に十分に樹脂が充填されないことにより作製されるものであることにより、頂点間の間隔が極めて微小であり、これにより耐擦傷性の向上に殆んど寄与することができず、また上述したような光学特性の向上も困難である。 Note that the features of the multimodal microprojections according to these embodiments are unique to the multimodal microprojections produced by the microholes having the corresponding shape of the shaping mold. This is a feature that cannot be obtained by the multi-modal microprotrusions caused by the resin filling failure disclosed in Japanese Patent No. 037670. That is, the multi-peak microprotrusions due to poor filling of the resin are produced by not sufficiently filling the fine holes that are originally produced as single-peak microprotrusions, so that the distance between the vertices is extremely small. Therefore, it hardly contributes to the improvement of scratch resistance, and it is difficult to improve the optical characteristics as described above.
 また充填不良による多峰性微小突起にあっては、再現性が乏しく、これにより均一な製品を量産できない欠点もあり、これに対してこの実施形態に係る多峰性微小突起は、いわゆる金型を使用した高い再現性により作製される金型由来の多峰性微小突起であり、均一かつ高い量産性を確保することができる。また後述の実施形態について詳述するように、この実施形態に係る多峰性微小突起は、高さ分布を制御できるのに対し、充填不良の多峰性微小突起については、このような制御が困難である。 In addition, the multi-peak microprotrusions due to poor filling have a drawback of poor reproducibility, which makes it impossible to mass-produce a uniform product. On the other hand, the multi-peak microprotrusions according to this embodiment are so-called molds. It is a multi-modal microprotrusion derived from a mold that is produced with high reproducibility using the, and can ensure uniform and high mass productivity. As will be described in detail later, the multimodal microprojections according to this embodiment can control the height distribution, whereas the multimodal microprojections with poor filling can be controlled as described above. Have difficulty.
 なおこれら多峰性微小突起及び単峰性微小突起は、その一部が、図11との対比により図13に示すように、高さの異なる複数の微小突起を含む一群として環状微小突起群6を構成している。ここで環状微小突起群6とは、相対的に高さの低い内核微小突起61の周囲を環囲する態様で相対的に高さの高い複数(好ましくは4つ以上)の外縁微小突起62が配置されることにより構成されている一群の微小突起の集合のことを言うものとする。 In addition, as shown in FIG. 13, a part of these multimodal microprojections and unimodal microprojections are annular microprojections 6 as a group including a plurality of microprojections having different heights. Is configured. Here, the annular microprojection group 6 includes a plurality of (preferably four or more) outer edge microprojections 62 having a relatively high height in a manner of surrounding the inner core microprojections 61 having a relatively low height. It shall be said to be a group of a group of microprotrusions configured by being arranged.
 このように高さが種々に異なる複数の微小突起により構成される環状微小突起群6においては、例えば物体の接触により高さの高い外縁微小突起62の形状が損なわれた場合でも、高さの低い内核微小突起61の形状は維持されることになる。このような環状微小突起群6が構成されていることより、反射防止物品では、反射防止機能の局所的な劣化を低減し、更には外観不良の発生を低減することができ、その結果、耐擦傷性を向上することができる。 Thus, in the annular microprojection group 6 constituted by a plurality of microprojections having different heights, for example, even when the shape of the outer edge microprojection 62 having a high height is damaged by contact with an object, the height The shape of the low inner core microprojection 61 is maintained. Since such an annular microprojection group 6 is configured, the antireflection article can reduce local deterioration of the antireflection function, and further reduce the occurrence of appearance defects. Abrasion property can be improved.
 また多峰性微小突起について上述したと同様に、環状微小突起群6により、塵埃の付着による損傷を低減して反射防止性能を維持することができる。また環状微小突起群6においては、複数の微小突起のうちの外縁微小突起62のみが、例えば反射防止物品1と対向するように配置された各種の部材表面と接触することになり、これにより高さが同一の微小突起のみによる場合に比して格段的に滑りを良くすることができ、製造工程等における反射防止物品の取り扱いを容易とすることができる。尚、このように滑りを良くする観点から、ばらつきは、標準偏差により規定した場合に、10nm以上必要であるものの、50nmより大きくなると、このばらつきによる表面のざらつき感が感じられるようになる。従ってこの高さのばらつきは、10nm以上、50nm以下であることが好ましい。 Also, as described above for the multimodal microprojections, the annular microprojection group 6 can reduce the damage due to the adhesion of dust and maintain the antireflection performance. In the annular microprojection group 6, only the outer edge microprojections 62 out of the plurality of microprojections come into contact with, for example, various member surfaces arranged to face the antireflection article 1. Compared with the case where only the same minute protrusions are used, the slippage can be remarkably improved, and the antireflection article can be easily handled in the manufacturing process. From the viewpoint of improving the slipping as described above, the variation needs to be 10 nm or more when defined by the standard deviation. However, when the variation is larger than 50 nm, a feeling of surface roughness due to the variation can be felt. Therefore, the height variation is preferably 10 nm or more and 50 nm or less.
 環状微小突起群6は、その存在により耐擦傷性を向上できるものの、充分に存在しない場合には、この耐擦傷性を向上する効果を十分に発揮できないことは言うまでもない。係る観点より、本発明においては、表面に存在する微小突起のうち、環状微小突起群6を構成する微小突起の割合(以下、この割合を「環状微小突起群構成比率」とも言う)は10%以上とする。特に環状微小突起群6による耐擦傷性を向上する効果を十分に奏する為には、環状微小突起群構成比率は30%以上、好ましくは50%以上とする。 Needless to say, although the annular microprojection group 6 can improve the scratch resistance due to its presence, if it does not exist sufficiently, the effect of improving the scratch resistance cannot be fully exhibited. From such a viewpoint, in the present invention, the proportion of the microprojections constituting the annular microprojection group 6 among the microprojections existing on the surface (hereinafter, this ratio is also referred to as “annular microprojection group constituent ratio”) is 10%. That's it. In particular, in order to sufficiently exhibit the effect of improving the scratch resistance by the annular microprojection group 6, the annular microprojection group constituent ratio is set to 30% or more, preferably 50% or more.
 またさらに多峰性微小突起及び単峰性微小突起の一部は、図11及び図13との対比により図14に示すように、その一部が、相対的に高さの高い1つ頂部微小突起の周囲に相対的に高さの低い複数の周辺微小突起が形成されて、全体として釣鐘形状の一群の凸状突起群7を構成する。なお凸状突起群7は、複数の周辺微小突起が、頂部微小突起から離れるに連れて、順次高さが低くなっていくように配置されていることが好ましい。 Furthermore, as shown in FIG. 14 in comparison with FIG. 11 and FIG. 13, a part of the multi-peak microprojection and the single-peak microprojection is a part of one top micro-projection having a relatively high height. A plurality of peripheral minute protrusions having a relatively low height are formed around the protrusions to constitute a group of convex protrusions 7 having a bell shape as a whole. In addition, it is preferable that the convex protrusion group 7 is arranged so that the height gradually decreases as the plurality of peripheral microprotrusions move away from the top microprotrusions.
 このように高さが種々に異なる複数の微小突起により構成される凸状突起群7においては、例えば物体の接触により高さの高い頂部微小突起71の形状が損なわれた場合でも、高さの低い周辺微小突起72の形状は維持されることになる。このような凸状突起群7が構成されていることより、反射防止物品では、反射防止機能の局所的な劣化を低減し、更には外観不良の発生を低減することができ、その結果、耐擦傷性を向上することができる。 Thus, in the convex projection group 7 constituted by a plurality of microprojections having different heights, for example, even when the shape of the top microprojection 71 having a high height is damaged by contact with an object, the height The shape of the low peripheral microprojection 72 is maintained. Since the convex projection group 7 is configured as described above, the antireflection article can reduce the local deterioration of the antireflection function, and further reduce the occurrence of appearance defects. Abrasion property can be improved.
 また、多峰性微小突起、環状突起群と同様に、塵埃の付着による損傷を低減して反射防止性能を維持することができる。また凸状突起群7においては、頂部微小突起71のみが、例えば反射防止物品1と対向するように配置された各種の部材表面と接触することになり、これにより環状突起群の場合と同様に、高さが同一の微小突起のみによる場合に比して格段的に滑りを良くすることができ、製造工程等における反射防止物品の取り扱いを容易とすることができる。尚、このように滑りを良くする観点から、ばらつきは、標準偏差により規定した場合に、10nm以上必要であるものの、50nmより大きくなると、このばらつきによる表面のざらつき感が感じられるようになる。従ってこの高さのばらつきは、10nm以上、50nm以下であることが好ましい。 Also, like the multi-peak microprojections and the annular projection group, it is possible to reduce the damage due to the adhesion of dust and maintain the antireflection performance. Further, in the convex projection group 7, only the top microprojections 71 are brought into contact with, for example, various member surfaces arranged so as to face the antireflection article 1, and as in the case of the annular projection group. Compared with the case where only the minute protrusions having the same height are used, slippage can be remarkably improved, and the antireflection article can be easily handled in the manufacturing process and the like. From the viewpoint of improving the slipping as described above, the variation needs to be 10 nm or more when defined by the standard deviation. However, when the variation is larger than 50 nm, a feeling of surface roughness due to the variation can be felt. Therefore, the height variation is preferably 10 nm or more and 50 nm or less.
 さらに凸状突起群7において、周辺微小突起72が、頂部微小突起71から離れるに連れて高さが低くなっている場合、より好ましくは、図14に示す場合のように、微小突起の各頂点(P1、P2、..)を含んで構成され、頂部微小突起71の頂点(P1)から下端部(r0)へ向けて幅広となっている凸状突起群7の包絡面が釣鐘形状の曲面である場合には、凸状突起群7は、群全体として、いわゆるモスアイ構造における単一の微小突起が発揮する効果と同様の作用効果を発揮しうる。よって、凸状突起群7を備える反射防止物品1は、上記において説明した耐擦傷性向上等の効果を発揮しながら、尚且つ、単一の微小突起のみが存在するときと、同等若しくはそれ以上の反射防止効果をも発揮しうるものである。 Furthermore, in the convex projection group 7, when the peripheral microprotrusions 72 decrease in height as they move away from the top microprotrusions 71, more preferably, as shown in FIG. (P1, P2,...), And the convex surface of the convex group 7 that is wide from the apex (P1) to the lower end (r0) of the top microprojection 71 has a bell-shaped curved surface. In this case, the convex projection group 7 as a whole can exhibit the same function and effect as the effect of a single microprojection in the so-called moth-eye structure. Therefore, the antireflection article 1 including the convex protrusion group 7 exhibits the effect of improving the scratch resistance described above, and is equivalent to or more than when only a single minute protrusion is present. The antireflection effect can be exhibited.
 ここで、凸状突起群7の包絡面とは、反射防止物品1の微細突起の各極大点を含んでなるベジェ曲線(又は、Bスプライン曲線)等によって作成される自由曲面の一部であり、曲線の一の下端部r0から頂部微小突起71の頂点(P1)を経て、他の下端部r0に至る部分に形成される曲面のことを言う。又、一の包絡面における複数のr0間の距離の最大値を凸状突起群7の幅Wと定義する。 Here, the envelope surface of the convex projection group 7 is a part of a free-form surface created by a Bezier curve (or B-spline curve) or the like including each local maximum point of the fine projection of the antireflection article 1. The curved surface formed in the part which reaches the other lower end part r0 through the vertex (P1) of the top microprotrusion 71 from the lower end part r0 of the curve. Further, the maximum value of the distances between a plurality of r0 on one envelope surface is defined as the width W of the convex projection group 7.
 そして、凸状突起群7の幅Wが、780nm以下であるときには、上記において、説明した通り、単一の微小突起の間における隣接突起間距離dがλmax(780nm)以下であるときと同様に、凸状突起群7は、可視光線帯域の最大波長において反射防止効果の向上に寄与しうる。又、凸状突起群7の幅Wが、380nm以下であれば、同様に、可視光線帯域の全波長の光線に対する反射防止効果の向上に寄与することできる。 When the width W of the convex protrusion group 7 is 780 nm or less, as described above, as in the case where the distance d between adjacent single protrusions is λmax (780 nm) or less. The convex projection group 7 can contribute to the improvement of the antireflection effect at the maximum wavelength in the visible light band. Moreover, if the width W of the convex protrusion group 7 is 380 nm or less, it can contribute to the improvement of the antireflection effect with respect to light of all wavelengths in the visible light band.
 凸状突起群7は、その存在により耐擦傷性を向上できるものの、充分に存在しない場合には、この耐擦傷性を向上する効果を十分に発揮できないことは言うまでもない。係る観点より、本発明においては、表面に存在する微小突起のうち、凸状突起群7を構成する微小突起の割合(以下、この割合を「凸状突起群構成比率」とも言う)は10%以上とする。特に凸状突起群7による耐擦傷性を向上する効果を十分に奏する為には、凸状突起群構成比率は30%以上、好ましくは50%以上とする。 Needless to say, although the convex protrusion group 7 can improve the scratch resistance due to its presence, if it does not exist sufficiently, the effect of improving the scratch resistance cannot be fully exhibited. From such a viewpoint, in the present invention, the proportion of the microprojections constituting the convex projection group 7 out of the microprojections existing on the surface (hereinafter, this ratio is also referred to as “convex projection group constituent ratio”) is 10%. That's it. In particular, in order to sufficiently exhibit the effect of improving the scratch resistance by the convex protrusion group 7, the convex protrusion group constituent ratio is set to 30% or more, preferably 50% or more.
 [第2実施形態]
 この実施形態では、微小突起の高さの分布を制御する。すなわち反射防止物品では、微小突起の高さ分布の制御により、例えば反射防止機能を果たす視野角方向の特性を制御することができる。このためこの実施形態では、陽極酸化処理、エッチング処理との交互の繰り返しにより賦型用金型を作製する工程において、この繰り返しの陽極酸化処理の印加電圧を可変する。ここで陽極酸化処理により微細穴を作製する場合、陽極酸化時の印加電圧と微細穴のピッチとは、比例する関係にある。これによりこのように陽極酸化処理、エッチング処理との繰り返しにおいて、陽極酸化処理の印加電圧を可変すれば、深さ方向に掘り進める時間が異なる微細穴を混在させてその比率を制御することができ、これにより微小突起の高さの分布を制御することができる。
[Second Embodiment]
In this embodiment, the height distribution of the microprojections is controlled. That is, in the antireflection article, by controlling the height distribution of the minute protrusions, for example, the characteristics in the viewing angle direction that fulfills the antireflection function can be controlled. For this reason, in this embodiment, the applied voltage of this repeated anodizing process is varied in the process of producing the shaping mold by alternately repeating the anodizing process and the etching process. Here, when the fine holes are produced by anodizing treatment, the applied voltage at the time of anodizing and the pitch of the fine holes are in a proportional relationship. Thus, if the applied voltage of the anodizing process is varied in the repetition of the anodizing process and the etching process in this way, it is possible to control the ratio by mixing fine holes with different digging times in the depth direction. This makes it possible to control the height distribution of the microprojections.
 またこのように陽極酸化処理における印加電圧を可変する場合にあっては、太さ(径)の大きな微細穴の底面に、複数の微細穴を作製して多峰性微小突起に係る微細穴とすることも可能であり、この太さの太い微細穴の高さの制御、底面に作製する微細穴の深さの制御等により、多峰性微小突起についても、高さの分布を制御することができる。 Further, in the case where the applied voltage in the anodizing process is varied in this way, a plurality of micro holes are formed on the bottom surface of a micro hole having a large thickness (diameter), and the micro hole related to the multimodal micro protrusion is It is also possible to control the height distribution of multi-peaked microprojections by controlling the height of the fine hole with a large thickness and controlling the depth of the micro hole to be fabricated on the bottom surface. Can do.
 図15は、このような高さの分布の制御の説明に供する模式図であり、賦型用金型の製造工程における陽極酸化工程とエッチング工程とにより作製される微細穴を示す図である。陽極酸化処理の印加電圧と作製される微細穴のピッチとは比例関係である。しかしながら実際上、処理に供するアルミニウムの粒界等により微細穴のピッチは種々にばらつく。但し、この図15においては、このようなばらつきが無いものとして、また微細穴が規則正しい配列により作製されるものとして説明する。なお図15(a)~(e)は、それぞれ各工程により作製される微細穴を平面視した図、及びa-a線により切り取って示す対応する断面図である。 FIG. 15 is a schematic diagram for explaining the control of such a height distribution, and is a diagram showing fine holes produced by an anodizing process and an etching process in the manufacturing process of the molding die. There is a proportional relationship between the applied voltage of the anodizing treatment and the pitch of the fine holes to be produced. In practice, however, the pitch of the fine holes varies depending on the grain boundaries of aluminum used for processing. However, in FIG. 15, it is assumed that there is no such variation, and that the fine holes are produced by a regular arrangement. FIGS. 15 (a) to 15 (e) are a plan view and a corresponding cross-sectional view taken along line aa of the fine holes produced by the respective steps.
 ここで始めにこの実施形態では、低い印加電圧V1により第1の陽極酸化処理を実行した後、エッチング処理(以下、適宜、第1工程と呼ぶ)を実行し、これにより図15(a)に示すように、この低い印加電圧V1に係る基本ピッチによる微細穴f1を作製する。ここでこの第1の陽極酸化処理は、アルミニウムのフラット面に、後続する陽極酸化のきっかけを作製するものである。なおこの場合、必要に応じてこの第1工程のエッチング処理を省略してもよい。 First, in this embodiment, after performing the first anodizing process with the low applied voltage V1, the etching process (hereinafter, referred to as the first process as appropriate) is performed, whereby FIG. As shown, a fine hole f1 with a basic pitch according to this low applied voltage V1 is produced. Here, the first anodic oxidation treatment is to produce a trigger for the subsequent anodic oxidation on the flat surface of aluminum. In this case, the etching process in the first step may be omitted as necessary.
 続いてこの実施形態では、第1の陽極酸化時より高い印加電圧V2(V2>V1)により第2の陽極酸化処理を実行した後、エッチング処理を実行する(以下、適宜、第2工程と呼ぶ)。ここでこの場合、図15(b)に示すように、印加電圧を上昇させたことにより、第1の陽極酸化処理により作製された微細穴f1のうち、この第2の陽極酸化処理に係る印加電圧に対応する微細穴のみ深さ方向に掘り進められ(符号f2により示す)、エッチング処理されることになる。これによりこの第2の工程により、例えば2段階により印加電圧を可変すれば、深さの異なる分布を呈する微細穴を混在させることができる。 Subsequently, in this embodiment, the second anodic oxidation process is performed with the applied voltage V2 (V2> V1) higher than that during the first anodic oxidation, and then the etching process is performed (hereinafter referred to as a second process as appropriate). ). Here, in this case, as shown in FIG. 15 (b), the applied voltage related to the second anodizing treatment among the fine holes f1 produced by the first anodizing treatment by increasing the applied voltage. Only the fine hole corresponding to the voltage is dug in the depth direction (indicated by reference numeral f2) and etched. Accordingly, if the applied voltage is varied in two steps, for example, fine holes having different depth distributions can be mixed in the second step.
 続いてこの実施形態では、第2の陽極酸化時より高い印加電圧V3(V3>V2)により第3の陽極酸化処理を実行した後、エッチング処理を実行する(以下、適宜、第3工程と呼ぶ)(図15(c))。ここでこの第3工程は、ピッチの異なる微細穴を作製するための工程である。このためこの工程では、第2の陽極酸化工程における印加電圧V2から徐々に印加電圧を上昇させる。ここでこの印加電圧の上昇を離散的に(段階的に)実行すると、微小突起の高さ分布を離散的に設定することができ、深さの分布が異なる微細穴を混在させることができる。またこの印加電圧の上昇を連続的に変化させると、深さ分布を正規分布に設定することができる。 Subsequently, in this embodiment, the third anodic oxidation process is performed with the applied voltage V3 (V3> V2) higher than that during the second anodic oxidation, and then the etching process is performed (hereinafter referred to as a third process as appropriate). (FIG. 15 (c)). Here, the third step is a step for producing fine holes having different pitches. Therefore, in this step, the applied voltage is gradually increased from the applied voltage V2 in the second anodic oxidation step. Here, when the increase in the applied voltage is executed discretely (stepwise), the height distribution of the microprotrusions can be set discretely, and microholes having different depth distributions can be mixed. Further, when the increase in the applied voltage is continuously changed, the depth distribution can be set to a normal distribution.
 さらにこの第3の工程において、陽極酸化に係る特定電圧の印加時間、エッチング処理の時間が、第1、第2工程よりも長く設定され、これにより符号f3により示すように、第1工程、第2工程で作製された微細穴f1、f2を飲み込むように、これら微細穴f1、f2と合体して底部の略平坦な微細穴が作製される。 Further, in this third step, the application time of the specific voltage related to the anodic oxidation and the time of the etching process are set longer than those in the first and second steps, so that the first step, The fine holes f1 and f2 formed in the two steps are combined with the fine holes f1 and f2 so as to form a substantially flat fine hole at the bottom.
 続いてこの実施形態では、第3の陽極酸化時より高い印加電圧V4(V4>V3)により第4の陽極酸化処理を実行した後、エッチング処理を実行する(以下、適宜、第4工程と呼ぶ)(図15(d))。ここでこの第4工程は、目的とする突起間間隔によるピッチにより微細穴を作製するための工程であり、これによりこの印加電圧V4はこのピッチに対応する電圧である。この第4工程において、印加電圧を上昇させることにより、第3工程により大きく掘り進められた微細穴の一部がさらに一段と掘り進められて、この掘り進められた微細穴が単峰性微小突起に対応する微細穴f4となる。 Subsequently, in this embodiment, after performing the fourth anodic oxidation process with the applied voltage V4 (V4> V3) higher than that in the third anodic oxidation, the etching process is performed (hereinafter, referred to as a fourth process as appropriate). (FIG. 15 (d)). Here, the fourth step is a step for producing a fine hole with a pitch according to a target interprotrusion interval, and the applied voltage V4 is a voltage corresponding to this pitch. In this fourth step, by increasing the applied voltage, a part of the fine hole dug deeply in the third step is further dug further, and the dug fine hole becomes a unimodal microprotrusion. The corresponding fine hole f4 is obtained.
 続いてこの実施形態では、第1工程における印加電圧V1により第5の陽極酸化処理を実行した後、エッチング処理を実行する(図15(e))。ここでこの第5の工程において、第3工程により底面が平坦面とされた微細穴であって、第4の工程の陽極酸化処理の影響を受けていない微細穴について、底面に微細な穴が複数個形成され、これにより多峰突起用の微細穴f5が作製される。ここでこの第5工程の印加電圧V1の大きさを調整することによって、底面に形成される微細な穴f5の数を増やしたり、減らしたりすることができる。 Subsequently, in this embodiment, the fifth anodic oxidation process is performed by the applied voltage V1 in the first step, and then the etching process is performed (FIG. 15E). Here, in the fifth step, a fine hole whose bottom surface is flattened by the third step and is not affected by the anodizing treatment of the fourth step, a fine hole is formed on the bottom surface. A plurality of microholes f5 for multi-peak protrusions are formed. Here, by adjusting the magnitude of the applied voltage V1 in the fifth step, the number of fine holes f5 formed on the bottom surface can be increased or decreased.
 ここでこの一連の工程では、第1及び第2の工程により作製された深さの異なる微細穴f1、f2を、第3の工程で掘り進めて底面の略平坦な微小突起f3を作製し、第4の工程において、単峰性微小突起に係る微細穴を作製し、また第5の工程において、底面が平坦な微小突起f3の底面を加工して単峰性微小突起に係る微細穴を作製していることにより、これら第1~第4の工程に係る陽極酸化処理の印加電圧、処理時間、エッチング処理の処理時間等を制御して各工程で作製される微細穴の深さ等を制御することにより、微小突起の高さの分布、多峰性微小突起の高さの分布を制御することができる。なおこれら第1~第5の工程は、必要に応じて省略したり、繰り返したり、工程を一体化してもよいことは言うまでも無い。 In this series of steps, the fine holes f1 and f2 having different depths produced in the first and second steps are dug in the third step to produce a substantially flat microprojection f3 on the bottom surface. In the fourth step, a fine hole related to the single-peaked microprojection is formed, and in the fifth step, the bottom surface of the microprojection f3 having a flat bottom surface is processed to form a microhole related to the single-peaked microprojection. As a result, the applied voltage, processing time, etching processing time, etc. of the anodic oxidation treatments related to the first to fourth steps are controlled to control the depth of the fine holes produced in each step. By doing so, it is possible to control the height distribution of the microprojections and the height distribution of the multimodal microprojections. Needless to say, these first to fifth steps may be omitted, repeated, or integrated as necessary.
 図16及び図17は、この第1~第5の工程により作製されたロール版を使用して生産された微小突起の高さの分布を示す図である。 FIG. 16 and FIG. 17 are diagrams showing the height distribution of the fine protrusions produced using the roll plate produced by the first to fifth steps.
 図16は、第2工程、第3工程、第4工程で陽極酸化処理の印加電圧を連続的に変化させたものであり、また第4工程では、第3工程の印加電圧から印加電圧を低下させたものである。 FIG. 16 shows the case where the applied voltage of the anodic oxidation process is continuously changed in the second process, the third process, and the fourth process. In the fourth process, the applied voltage is decreased from the applied voltage of the third process. It has been made.
 より具体的に、図16の例は、陽極酸化工程とエッチング工程とを5回繰り返した場合であり、第1回目の陽極酸化工程の印加電圧をV1(15V~35Vの範囲の一定電圧である)とした場合に、第2回目、第3回目、第4回目、第5回目の陽極酸化工程の印加電圧をそれぞれ2V1、3.5V1、5V1、V1とした例である。なお陽極酸化処理は、濃度0.02Mのシュウ酸水溶液を使用して100秒実施した。エッチング工程は、濃度0.02Mのシュウ酸水溶液を使用して45秒間エッチング処理した後、濃度1.0Mのリン酸水溶液を使用して110秒間エッチング処理した。 More specifically, the example of FIG. 16 is a case where the anodizing step and the etching step are repeated five times, and the applied voltage of the first anodizing step is V1 (a constant voltage in the range of 15V to 35V). ), The applied voltages in the second, third, fourth, and fifth anodic oxidation steps are 2V1, 3.5V1, 5V1, and V1, respectively. The anodizing treatment was performed for 100 seconds using an oxalic acid aqueous solution having a concentration of 0.02M. In the etching step, an etching process was performed for 45 seconds using an aqueous oxalic acid solution having a concentration of 0.02M, and then an etching process was performed for 110 seconds using an aqueous solution of phosphoric acid having a concentration of 1.0M.
 この図16に示す反射防止物品では、微小突起の高さ分布が正規分布を示しており、微小突起が作製されてなる面の鉛直線を中心とした比較的狭い範囲で、良好な反射防止物品防止機能を確保することができる。またこのときこのような高さ分布において、多峰性微小突起(頂点数が2つ及び3つのものをそれぞれ二峰、三峰により示す)についても、ほぼ高さの平均値が一致した正規分布とすることができ、これにより効率良く多峰性微小突起の耐擦傷性の機能を発揮させることができ、また可視光域を中心とした広い波長帯域で十分に反射率を低減する等の、光学特性の機能向上を図ることができる。これにより携帯電話機や携帯ゲーム機等に使用される小型ディスプレイに使用することができる。より具体的に、図16に示す度数分布においては、隣接突起間距離d(横軸の値)について、146nmに1つの極大値が存在する正規分布の特性を示す。 In the antireflection article shown in FIG. 16, the height distribution of the microprojections shows a normal distribution, and the antireflection article is good in a relatively narrow range centered on the vertical line of the surface on which the microprojections are formed. The prevention function can be secured. Also, at this time, in such a height distribution, the multimodal microprojections (two and three vertices are indicated by two peaks and three peaks, respectively) also have a normal distribution in which the average values of the heights are almost the same. This makes it possible to efficiently exhibit the scratch resistance function of multimodal microprotrusions, and to reduce the reflectivity sufficiently in a wide wavelength band centered on the visible light range. It is possible to improve the function of characteristics. Thereby, it can be used for a small display used in a mobile phone, a portable game machine, and the like. More specifically, the frequency distribution shown in FIG. 16 shows the characteristics of a normal distribution in which one maximum value exists at 146 nm with respect to the distance d between adjacent protrusions (value on the horizontal axis).
 なおこの図16の例では、微小突起の高さHの平均値mが145.7nmであり、その標準偏差δが22.1nmであった。またこの平均値m及び標準偏差δにより低高度領域をH<m-σ、中高度領域をm-σ≦H≦m+σ、高高度領域をH>m+σを定義したとき、総数Nt(263個)の微小突起のうち、多峰性微小突起は、中高度領域、中高度領域、高高度領域にそれぞれ2個、23個、5個の分布が得られ、これによっても多峰性微小突起が概ね微小突起全体と同一の高さ分布を示していることが判る。 In the example of FIG. 16, the average value m of the height H of the fine protrusions was 145.7 nm, and the standard deviation δ thereof was 22.1 nm. Further, when the average value m and standard deviation δ define H <m−σ for the low altitude region, m−σ ≦ H ≦ m + σ for the medium altitude region, and H> m + σ for the high altitude region, the total number Nt (263) Among these microprotrusions, multimodal microprotrusions have distributions of 2, 23, and 5 in the medium altitude region, medium altitude region, and high altitude region, respectively. It can be seen that the height distribution is the same as that of the entire microprojection.
 図17は、上述の第1~第5の工程のうちで、第2工程では段階的に電圧を上昇させて第3工程及び第4工程の処理を併せて実行し、第4工程では、図16の例による最高電圧に比して一段とより高い電圧により陽極酸化処理を実行して深さの深い微細穴を作製し、またさらにこの第4工程に対応して第5工程を実行したものである。 FIG. 17 shows that among the first to fifth processes described above, the voltage is increased stepwise in the second process and the processes of the third process and the fourth process are executed together. In this example, anodization is performed at a voltage higher than the maximum voltage in the example of 16 to produce a deep microhole, and the fifth step is executed in response to the fourth step. is there.
 より具体的に図17の例は、図16の例と同一の繰り返し回数、水溶液及び処理時間により陽極酸化工程、エッチング工程を実行した。この図17の例では、第1回目の陽極酸化工程の印加電圧をV1(15V~35Vの範囲の一定電圧である)とした場合に、第2回目、第3回目、第4回目、第5回目の陽極酸化工程の印加電圧をそれぞれ2.5V1、4V1、6V1、V11/2~V1とした例である。2回目から4回目の陽極酸化工程では、2回目の陽極酸化処理の開始電圧及び4回目の陽極酸化処理の終了電圧がそれぞれ2.5V1及び6V1となるように設定して、徐々に印加電圧を増大させた。 More specifically, in the example of FIG. 17, the anodizing process and the etching process were executed with the same number of repetitions, aqueous solution, and processing time as in the example of FIG. 16. In the example of FIG. 17, when the applied voltage in the first anodic oxidation step is V1 (a constant voltage in the range of 15V to 35V), the second, third, fourth, In this example, the voltages applied in the second anodic oxidation step are 2.5 V1, 4 V1, 6 V1, and V1 1/2 to V1, respectively. In the second to fourth anodic oxidation steps, the start voltage of the second anodic oxidation treatment and the end voltage of the fourth anodic oxidation treatment are set to 2.5 V1 and 6 V1, respectively, and the applied voltage is gradually increased. Increased.
 この図17の例では、高さの高い側と低い側とに分布のピークを有する双峰性の特性による度数分布が得られ、高さの高い微小突起の分布を増大させることができ、さらに各分布に対応して多峰性微小突起の分布を形成することができる。これにより斜め方向からの光学特性を向上して広い視野角特性を向上することができる。また可視光域を中心とした広い波長帯域で十分に反射率を低下させることができる。 In the example of FIG. 17, a frequency distribution with a bimodal characteristic having distribution peaks on the high side and the low side can be obtained, and the distribution of microprojections with high height can be increased. A distribution of multimodal microprojections can be formed corresponding to each distribution. As a result, the optical characteristics from the oblique direction can be improved and the wide viewing angle characteristics can be improved. Further, the reflectance can be sufficiently lowered in a wide wavelength band centered on the visible light region.
 図18は、図15との対比により微小突起の高さ分布の制御に係る深さの異なる微細穴が形成される過程の説明に供する図である。 FIG. 18 is a diagram for explaining a process of forming micro holes with different depths related to the control of the height distribution of the microprojections in comparison with FIG.
 (第1の工程)
 ここで図18(a)に示すように、第1の工程において、先ず、賦型用金型の表面のアルミニウム層に、電圧V1を印加して陽極酸化工程A1を実行した後に、エッチング工程E1を実行し、微細な穴f1を形成する。ここで、陽極酸化工程A1は、アルミニウムのフラット面に後続する陽極酸化処理のきっかけを作製するものである。なお、この場合、エッチング工程を適宜省略してもよい。
(First step)
Here, as shown in FIG. 18A, in the first step, first, the voltage V1 is applied to the aluminum layer on the surface of the molding die to perform the anodizing step A1, and then the etching step E1. To form a fine hole f1. Here, the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum. In this case, the etching process may be omitted as appropriate.
 (第2の工程)
 次に、電圧V1よりも高い電圧V2(V2>V1)を印加して陽極酸化工程A2を実行した後に、エッチング工程E2を実行する。これにより、陽極酸化工程A2では、図18(b)に示すように、先の陽極酸化工程A1により形成された微細な穴f1のうち、陽極酸化工程A2に対応する間隔の微細な穴f1を更に掘り下げる。
(Second step)
Next, after applying the voltage V2 (V2> V1) higher than the voltage V1 to execute the anodic oxidation step A2, the etching step E2 is executed. As a result, in the anodizing step A2, as shown in FIG. 18B, among the fine holes f1 formed in the previous anodizing step A1, fine holes f1 having an interval corresponding to the anodizing step A2 are formed. Dig further.
 ここで印加電圧V2をV2=2×V1に設定すると、陽極酸化工程A2によって、先の陽極酸化工程A1で形成された微細な穴f1を一つ置きに掘り進める処理が行われる。従って、賦型用金型の表面には、一つ置きに広くかつ深く掘り下げられた微細な穴f2が形成され、成形型の表面には、微細な穴f1と微細な穴2とが混在する状態となる。 Here, when the applied voltage V2 is set to V2 = 2 × V1, a process of digging every other minute hole f1 formed in the previous anodizing process A1 is performed by the anodizing process A2. Accordingly, every other wide and deeply drilled fine hole f2 is formed on the surface of the molding die, and the minute hole f1 and the minute hole 2 are mixed on the surface of the mold. It becomes a state.
 (第3の工程)
 続いて、電圧V1と電圧V2の間の電圧V3(V2>V3>V1)を印加して陽極酸化工程A3を実行した後に、エッチング工程E3を実行する。この工程では、ピッチの異なる微細な穴を作製する。具体的には、印加する電圧を、電圧V3として、縦横に面内に配列した微細な穴f2の間に存在する図示の如くの特定の微細な穴f1を一つ置きに広く且つ深く掘り下げる。ここで印加電圧V3をV3=(V1)1/2に設定すると、陽極酸化工程A3における印加電圧の印加時間、エッチング工程の処理時間を上述の第1の工程よりも長く設定することにより、図18(c)に示すように、最初の陽極酸化工程A1において形成された微細な穴f1のうち、4個の微細な穴f2で囲まれる最小の四角形の中心に位置する微細な穴f1が選択的に深く掘り下げられる。且つ同時に、第2の陽極酸化工程A2形成された微細な穴f2のうちで図18(c)で図示される位置関係に有る一部のものが更に掘り下げられ、微細な穴f3となる。
(Third step)
Subsequently, after applying the voltage V3 (V2>V3> V1) between the voltage V1 and the voltage V2 to execute the anodic oxidation step A3, the etching step E3 is executed. In this step, fine holes with different pitches are produced. Specifically, the voltage to be applied is set to the voltage V3, and every other specific minute hole f1 as illustrated between the minute holes f2 arranged in the plane vertically and horizontally is dug wide and deep. Here, when the applied voltage V3 is set to V3 = (V1) 1/2 , the application time of the applied voltage in the anodizing step A3 and the processing time of the etching step are set longer than those in the first step described above. As shown in FIG. 18C, among the fine holes f1 formed in the first anodizing step A1, the fine hole f1 located at the center of the smallest square surrounded by the four fine holes f2 is selected. Deeply digging deeply. At the same time, among the fine holes f2 formed in the second anodic oxidation step A2, a part of the fine holes f2 having the positional relationship shown in FIG. 18C is further dug down to become fine holes f3.
 その結果、図18(c)に示すように、微細な穴f1(これが最も高さの低い微小突起に対応する穴となる)の周囲をf1よりも深い微細な穴f2及びf3(それぞれ中程度及び高程度の高さの微小突起に対応する穴となる)によって周囲を包囲された穴群が面内に配列した表面構造を有する成形型が得られる。 As a result, as shown in FIG. 18 (c), fine holes f2 and f3 (medium respectively) deeper than f1 around the fine hole f1 (which corresponds to the minute protrusion having the lowest height). And a mold having a surface structure in which a group of holes surrounded by a small projection having a high height is arranged in a plane.
 このように複数回の陽極酸化処理における印加電圧の切り替えにより掘り進める微細穴が異なることにより、微細穴の深さを大きく異ならせることができ、これにより意図する分布により微小突起の高さを制御することができる。 In this way, the depth of the micro holes can be greatly varied by changing the micro holes to be drilled by switching the applied voltage in multiple times of anodizing treatment, thereby controlling the height of the micro protrusions by the intended distribution can do.
 図19及び図20は、本実施形態における実際の微小突起の形状を示す斜視図(図19)、平面図(図20(a))、正面図(図20(b))及び側面図(図20(c))である。これら図19及び図20は、等高線図である。図16~図18について上述したように、複数回の陽極酸化処理における印加電圧を切り替えることにより、この図19及び図20による微小突起においては、高さの大きく異なる3つの峰が合体して1つの微小突起が形成されており、ほぼ中央より外方に向かって形成された3本の放射状の溝(沢状の極小部)によりこの3つの峰に係る領域に分割されて微小突起が作製されていることが判る。なおこの図19及び図20は、AFMによる計測結果によるデータを部分的に選択して詳細に示したものである。またこの図19及び図20における数字の単位はnmである。X座標及びY座標は、所定の基準位置からの座標値である。 19 and 20 are a perspective view (FIG. 19), a plan view (FIG. 20 (a)), a front view (FIG. 20 (b)), and a side view (FIG. 19) showing the actual shape of the microprotrusions in the present embodiment. 20 (c)). These FIG.19 and FIG.20 is a contour map. As described above with reference to FIGS. 16 to 18, by switching the applied voltage in a plurality of anodic oxidation processes, in the microprojections according to FIGS. There are two microprotrusions, which are divided into regions related to these three peaks by three radial grooves (swelled local minimum portions) formed outward from the center to produce microprotrusions. You can see that FIG. 19 and FIG. 20 show in detail a partial selection of data based on the measurement result by AFM. The unit of the numbers in FIGS. 19 and 20 is nm. The X coordinate and the Y coordinate are coordinate values from a predetermined reference position.
 図21及び図22は、図19及び図20との対比により、本実施形態における微小突起の他の計測結果を示す図である。この図21及び図22の微小突起においては、ほぼ高さの等しい3つの峰が合体して1つの微小突起が作製され、該3つの峰は、頂部のほぼ中央部より外方に向かって延びた3本の放射状の溝によって区分さていることが判る。 FIGS. 21 and 22 are diagrams showing other measurement results of the microprotrusions in the present embodiment in comparison with FIGS. 19 and 20. In the microprotrusions shown in FIGS. 21 and 22, three ridges having substantially the same height are combined to form one microprotrusion, and the three ridges extend outward from the substantially central portion of the top. It can be seen that they are separated by three radial grooves.
 なおこのようにして観察される結果によれば、多峰性微小突起の各峰の内側にあっては、各峰の外側に比して表面の粗さが荒いように観察され、このように峰の内側と外側との粗さの相違により、賦型処理時の樹脂の充填不良により生じる多峰性微小突起との相違を見て取ることができる。なおこれらの斜視図等において、等高線が表されていない箇所は、計測の都合上、データが得られていない箇所である。 According to the results observed in this way, the roughness of the surface is observed to be rougher on the inner side of each peak of the multimodal microprotrusions than on the outer side of each peak. Due to the difference in roughness between the inner side and the outer side of the peak, it is possible to see the difference from the multi-peak microprotrusions caused by poor filling of the resin during the molding process. In these perspective views and the like, portions where no contour lines are represented are portions where data is not obtained for convenience of measurement.
〔耐擦傷性の評価〕
 表1は、耐擦傷性の評価結果を示す図である。図16及び図17の例による反射防止物品(それぞれ正規分布及び双峰特性の分布により示す)を単峰性微小突起のみによる同様の突起高さ分布による反射防止物品との比較によるものである。なお単峰性微小突起のみの正規分布による反射防止物品は、繰り返しの陽極酸化処理の印加電圧を第2の工程以下においても第1の工程と同一の一定電圧として作製した。また単峰性微小突起のみによる双峰特性の分布による反射防止物品は、繰り返しの陽極酸化処理の印加電圧を2段階の切り替えにより実行して作製した。
[Evaluation of scratch resistance]
Table 1 shows the evaluation results of the scratch resistance. FIG. 18 is a comparison of the antireflective article according to the example of FIGS. 16 and 17 (indicated by the distribution of the normal distribution and the bimodal characteristic, respectively) with the antireflective article having the same protrusion height distribution by only the single-peak microprotrusions. In addition, the antireflection article by the normal distribution of only the single-peaked microprotrusions was produced by setting the applied voltage of the repeated anodizing treatment to the same constant voltage as that in the first step even after the second step. In addition, an antireflection article having a bimodal characteristic distribution using only unimodal microprotrusions was produced by executing an applied voltage of repeated anodizing treatment by switching between two stages.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1において、スチールウールの欄は、押し付け力100g及び200gによりスチールウールを押し付けて往復させた後の表面の変化を目視により確認した結果である。二重丸の印は、目視上傷、濁りは見られないとの評価が得られたものであり、三角の印は、目視上、1~5本の傷を見る事ができるものであり、×の印は、目視上、6本以上の傷が観察されるものである。なお評価の範囲は、1辺5cmの矩形の領域である。これにより多峰性微小突起により充分に耐擦傷性が向上していることが判る。 In Table 1, the column of steel wool is the result of visually confirming the change in the surface after the steel wool was pressed and reciprocated with a pressing force of 100 g and 200 g. The double circle mark was evaluated to be visually invisible and no turbidity was observed, and the triangle mark was visually visible to 1 to 5 scratches. In the case of x, six or more scratches are observed visually. The evaluation range is a rectangular area with a side of 5 cm. It can be seen that the scratch resistance is sufficiently improved by the multimodal microprotrusions.
 また乾拭きの欄は、指紋を付着させた後、不織布を用いて溶剤を含まない乾いた状態での拭きを50往復させた時の、5°正反射率(ΔY(%))である。指紋を付着させた状態で、5°正反射率が4%となるように設定した。なお不織布は、KBセーレン社製、ザヴィーナミニマックス(登録商標)150mm□を使用した。また何ら指紋による汚れを付着させない状態における5°正反射率の初期値は、0.5%であった。この検討結果によれば、多峰性微小突起により付着した汚れがふき取り易くなって反射防止性能を指紋付着前に近い状態にまで回復していることが判り、このことは多峰性微小突起を設けた場合には、微小突起の付け根側に汚れが深くもぐり込まないことによるものと考えられる。これにより指紋に対する耐汚染性(易拭取り性)にも向上が見られる。
 
Further, the column of dry wiping shows 5 ° regular reflectance (ΔY (%)) when 50 times of wiping in a dry state not containing a solvent is performed 50 times using a nonwoven fabric after attaching a fingerprint. With the fingerprint attached, the 5 ° regular reflectance was set to 4%. As the nonwoven fabric, Savina Minimax (registered trademark) 150 mm □ manufactured by KB Seiren Co., Ltd. was used. In addition, the initial value of the 5 ° regular reflectance in a state where no dirt due to fingerprints was attached was 0.5%. According to the results of this study, it was found that the dirt attached by the multimodal microprotrusions was easily wiped off, and the antireflection performance was restored to a state close to that before the fingerprint attachment. In the case where it is provided, it is considered that the dirt does not penetrate deeply into the base side of the minute protrusion. This also improves the stain resistance (easy wiping property) against fingerprints.
 〔他の実施形態〕
 以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態を組み合わせ、上述の実施形態の構成を種々に変更し、さらには従来構成と組み合わせることができる。
[Other Embodiments]
The specific configuration suitable for the implementation of the present invention has been described in detail above. However, the present invention can be combined with the above-described embodiments and variously modified the configuration of the above-described embodiments without departing from the spirit of the present invention. Furthermore, it can be combined with the conventional configuration.
 すなわち上述の実施形態では、陽極酸化処理とエッチング処理との繰り返し回数をそれぞれ3(~5)回に設定する場合について述べたが、本発明はこれに限らず、繰り返し回数をこれ以外の回数に設定してもよく、またこのように複数回処理を繰り返して、最後の処理を陽極酸化処理とする場合にも広く適用することができる。 That is, in the above-described embodiment, the case where the number of repetitions of the anodizing process and the etching process is set to 3 (to 5) each is described. However, the present invention is not limited to this, and the number of repetitions is set to other numbers. In addition, the present invention can be widely applied to the case where the process is repeated a plurality of times and the final process is anodizing.
 また上述の実施形態では、反射防止物品を液晶表示パネル、電場発光表示パネル、プラズマ表示パネル等の各種画像表示パネルの表側面に配置して視認性を向上する場合について述べたが、本発明はこれに限らず、例えば液晶表示パネルの裏面側に配置してバックライトから液晶表示パネルへの入射光の反射損失を低減させる場合(入射光利用効率を増大させる場合)にも広く適用することができる。尚、ここで画像表示パネルの表面側とは、該画像表示パネルの画像光の出光面であり、画像観察者側の面でもある。又、画像表示パネルの裏面側とは、該画像表示パネルの表面の反対側面であり、バックライト(背面光源)を用いる透過型画像表示裝置の場合は、該バックライトからの照明光の入光面でもある。 Further, in the above-described embodiment, the case where the antireflection article is arranged on the front side surface of various image display panels such as a liquid crystal display panel, an electroluminescent display panel, a plasma display panel, and the like is described, but the present invention is described. However, the present invention is not limited to this. For example, it can be widely applied to a case where the reflection loss of incident light from the backlight to the liquid crystal display panel is reduced by reducing the reflection loss of incident light from the backlight (increasing incident light utilization efficiency). it can. Here, the surface side of the image display panel is a light output surface of the image display panel and also a surface on the image observer side. The back side of the image display panel is the opposite side of the surface of the image display panel. In the case of a transmissive image display apparatus using a backlight (back light source), the incident light from the backlight is incident. It is also a surface.
 また上述の実施形態では、賦型用樹脂にアクリレート系の紫外線硬化性樹脂を適用する場合について述べたが、本発明はこれに限らず、エポキシ系、ポリエステル系等の各種紫外線硬化性樹脂、或いはアクリレート系、エポキシ系、ポリエステル系等の電子線硬化性樹脂、ウレタン系、エポキシ系、ポリシロキサン系等の熱硬化性樹脂等の各種材料及び各種硬化形態の賦型用樹脂を使用する場合にも広く適用することができ、さらには例えば加熱したアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂等の熱可塑性の樹脂を押圧して賦型する場合等にも広く適用することができる。 In the above-described embodiment, the case where an acrylate-based ultraviolet curable resin is applied to the shaping resin has been described. However, the present invention is not limited thereto, and various ultraviolet curable resins such as epoxy-based and polyester-based resins, or Also when using various materials such as acrylate-based, epoxy-based, polyester-based electron beam curable resins, urethane-based, epoxy-based, polysiloxane-based thermosetting resins, and various types of curing resins The present invention can be widely applied. Further, for example, the present invention can also be widely applied in the case of molding by pressing a thermoplastic resin such as a heated acrylic resin, polycarbonate resin, or polystyrene resin.
 また、上述の実施形態では、図1に図示の如く、基材2の一方の面上に受容層(紫外線硬化性樹脂層)4を積層してなる積層体の該受容層4上に微小突起群5、5A、5B、・・を賦形し、該受容層4を硬化せしめて反射防止物品1を形成している。層構成としては2層の積層体となる。但し、本発明は、かかる形態のみに限定される訳では無い。本発明の反射防止物品1は、図示は略すが、基材2の一方の面上に、他の層を介さずに直接、微小突起群5、5A、5B、・・を賦形した単層構成であっても良い。或いは、基材2の一方の面に1層以上の中間層(層間の密着性、塗工適性、表面平滑性等の基材表面性能を向上させる層。プライマー層、アンカー層等とも呼称される。)を介して受容層4を形成し、該受容層表面に微小突起群5、5A、5B、・・を賦形した3層以上の積層体であっても良い。 Further, in the above-described embodiment, as shown in FIG. 1, microprojections are formed on the receiving layer 4 of the laminate formed by laminating the receiving layer (ultraviolet curable resin layer) 4 on one surface of the substrate 2. The groups 5, 5A, 5B,... Are shaped and the receiving layer 4 is cured to form the antireflection article 1. The layer structure is a two-layer laminate. However, the present invention is not limited to such a form. Although not shown, the antireflection article 1 of the present invention is a single layer in which the microprojections 5, 5A, 5B,... Are directly formed on one surface of the substrate 2 without interposing another layer. It may be a configuration. Alternatively, one or more intermediate layers on one surface of the substrate 2 (layers that improve substrate surface performance such as interlayer adhesion, coating suitability, surface smoothness, etc. Also referred to as primer layer, anchor layer, etc. .) May be formed, and a laminate of three or more layers in which the microprotrusions 5, 5A, 5B,... Are formed on the surface of the receptor layer may be used.
 更に、上述の実施形態では、図1にも図示の如く、基材2の一方の面上にのみ(直接或いは他の層を介して)微小突起群5、5A、5B、・・を形成しているが、本発明はかかる形態には限定され無い。基材2の両面上に(直接或いは他の層を介して)各々微小突起群5、5A、5B、・・を形成した構成であっても良い。基材2の両面上に微小突起群5、5A、5B、・・を有する形態の場合、該微小突起群を一方の面上にのみ該微小突起群を有する形態に比べ、反射防止性能が大きく向上する。例えば、空気と基材2自体との界面に於ける光の反射率が4%であり、微小突起群と空気との界面に於ける光の反射率が0.2%である場合、基材2の表(又は裏)面から裏(又は表)面に透過する光に対する表裏両面を合計した反射率は、微小突起群を有する層(受容層4)と基材2との界面の反射率の寄与を0%と見做すと、
  (1)基材の表裏両面上に微小突起群が無い場合は、8%。
  (2)基材の一方の面上にのみ微小突起群を有する場合は、4.2%。
  (3)基材の表裏両面上に微小突起群を有する場合は、0.4%。
となる。
 また、図示は略すが、図1等に図示の如き本発明の反射防止物品1において、基材2の微小突起群形成面とは反対側の面(図1においては基材2の下側面)に各種接着剤層を形成し、更に該接着剤層表面に離型フィルム(離型紙)を剥離可能に積層してなる接着加工品の形態とすることも出来る。かかる形態においては、離型フィルムを剥離除去して接着剤層を露出せしめ、該接着剤層により所望の物品の所望の表面上に本発明の反射防止物品1を貼り合わせ、積層することが出来、簡便に所望の物品に反射防止性能を付与することが出来る。接着剤としては、粘着剤(感圧接着剤)、2液硬化型接着剤、紫外線硬化型接着剤、熱硬化型接着剤、熱熔融型接着剤等の公知の接着形態のものが各種使用出来る。
Further, in the above-described embodiment, as shown in FIG. 1, the microprojections 5, 5A, 5B,... Are formed only on one surface of the base material 2 (directly or via another layer). However, the present invention is not limited to such a form. The microprojection groups 5, 5A, 5B,... May be formed on both surfaces of the substrate 2 (directly or via other layers). In the case of the form having the microprojection groups 5, 5A, 5B,... On both surfaces of the substrate 2, the antireflection performance is larger than the form in which the microprojection group is provided only on one surface. improves. For example, when the reflectance of light at the interface between air and the substrate 2 itself is 4% and the reflectance of light at the interface between the minute protrusions and the air is 0.2%, The total reflectance of the front and back surfaces with respect to light transmitted from the front (or back) surface to the back (or front) surface of 2 is the reflectance at the interface between the layer having the fine protrusion group (receiving layer 4) and the substrate 2 Assuming that the contribution of is 0%,
(1) 8% when there are no microprojections on both sides of the substrate.
(2) 4.2% when the microprojection group is provided only on one surface of the substrate.
(3) 0.4% in the case of having microprojections on both the front and back surfaces of the substrate.
It becomes.
Although not shown, in the antireflection article 1 of the present invention as shown in FIG. 1 and the like, the surface opposite to the surface on which the microprojections are formed of the substrate 2 (the lower surface of the substrate 2 in FIG. 1). Various adhesive layers are formed on the adhesive layer, and a release film (release paper) is laminated on the surface of the adhesive layer so as to be peelable. In such a form, the release film is peeled and removed to expose the adhesive layer, and the antireflection article 1 of the present invention can be laminated and laminated on the desired surface of the desired article by the adhesive layer. The antireflection performance can be easily imparted to a desired article. As the adhesive, various types of known adhesive forms such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, a thermosetting adhesive, and a hot melt adhesive can be used. .
 また、図示は略すが、図1等に図示の如き本発明の反射防止物品1において、微小突起群5、5A、5B、・・形成面上に剥離可能な保護フィルムを仮接着した状態で保管、搬送、売買、後加工乃至施工を行い、しかる後に適時、該保護フィルムを剥離除去する形態とすることも出来る。かかる形態においては、保管、搬送等の間に微小突起群が損傷乃至は汚染して反射防止性能が低下することを防止することが出来る。 Although not shown, in the antireflection article 1 of the present invention as shown in FIG. 1 etc., the microprojections 5, 5 A, 5 B,... The protective film may be peeled and removed at an appropriate time after carrying, carrying, buying and selling, post-processing or construction. In such a form, it is possible to prevent the antireflection performance from being deteriorated due to damage or contamination of the microprojection group during storage, transportation and the like.
 また、上述の実施形態では、図1、図11(a)に示すように、各隣接微小突起間の谷底(高さの極小点)を連ねた面は高さが一定な平面であったが、本発明はこれに限らず、図7に示すように、各微小突起間の谷底を連ねた包絡面が、可視光線帯域の最長波長λmax以上の周期D(すなわちD>λmaxである)でうねった構成としてもよい。又該周期的なうねりは、基材2の表裏面に平行なXY平面(図11、図7参照)における1方向(例えばX方向)のみでこれと直交する方向(例えばY方向)には一定高さであっても良いし、或いはXY平面における2方向(X方向及びY方向)共にうねりを有していても良い。D>λmaxを満たす周期Dでうねった凹凸面6が多数の微小突起からなる微小突起群に重畳することによって、微小突起群で完全に反射防止し切れずに残った反射光を散乱し、殘留反射光、とくに鏡面反射光を更に視認し難くし、以って、反射防止効果を一段と向上させることができる。 In the above-described embodiment, as shown in FIGS. 1 and 11A, the surface connecting the valley bottoms (minimum heights) between adjacent minute protrusions is a flat surface having a constant height. However, the present invention is not limited to this, and as shown in FIG. 7, the envelope surface connecting the valley bottoms between the microprotrusions undulates with a period D (that is, D> λmax) equal to or longer than the longest wavelength λmax of the visible light band. It is good also as a structure. Further, the periodic undulation is constant in one direction (for example, the X direction) in the XY plane (see FIGS. 11 and 7) parallel to the front and back surfaces of the substrate 2 and in a direction orthogonal to the direction (for example, the Y direction). The height may be sufficient, or the two directions (X direction and Y direction) in the XY plane may have undulations. The uneven surface 6 that undulates with a period D satisfying D> λmax is superimposed on a microprojection group composed of a large number of microprojections, so that the reflected light remaining without being completely prevented from being reflected by the microprojection group is scattered, so that Reflected light, particularly specularly reflected light, can be made more difficult to visually recognize, and the antireflection effect can be further improved.
 尚、係る凹凸面6の周期Dが全面に亙って一定では無く分布を有する場合は、該凹凸面について凸部間距離の度数分布を求め、その平均値をDAVG、標準偏差をΣとしたときの、
MIN=DAVG―2Σ
として定義する最小隣接突起間距離を以って周期Dの代わりとして設計する。即ち、微小突起群の殘留反射光の散乱効果を十分奏し得る条件は、
MIN>λmax
又、該凹凸の高低差に相当するJIS B0601(1994年)規定のRz値(10点平均粗さ)は、
        Rz≧λmin
である。通常、D又はDMINは1~600μm、好ましくは10~300μmとされる。又、通常、Rzは0.4~5μmとされる。
 各微小突起の谷底を連ねた包絡面形が、D(又はDMIN)>λmax、なる凹凸面6を呈する樣な微小突起群を形成する具体的な製造方法の一例を挙げると以下の通りである。即ち、ロール版13の製造工程において、円筒(又は円柱)形状の母材の表面にサンドブラスト又はマット(つや消し)メッキによって凹凸面6の凹凸形状に対応する凹凸形状を賦形する。次いで、該凹凸形状の面上に、直接或いは必要に応じて適宜の中間層を形成した後、アルミニウム層を積層する。その後、該凹凸形状表面に対応した表面形状を賦形されたアルミニウム層に上述の実施形態と同様にして陽極酸化処理及びエッチング処理を施して微小突起5、5A、5Bを含む微小突起群を形成する。
In addition, when the period D of the uneven surface 6 is not constant over the entire surface and has a distribution, the frequency distribution of the distance between the protrusions is obtained for the uneven surface, and the average value is D AVG and the standard deviation is Σ. When
D MIN = D AVG -2Σ
Designed as an alternative to period D with a minimum inter-protrusion distance defined as That is, conditions that can sufficiently exhibit the scattering effect of the reflected light of the microprojections are as follows:
D MIN > λmax
Also, the Rz value (10-point average roughness) defined in JIS B0601 (1994) corresponding to the height difference of the unevenness is
Rz ≧ λmin
It is. Usually, D or D MIN is 1 to 600 μm, preferably 10 to 300 μm. Usually, Rz is 0.4 to 5 μm.
An example of a specific manufacturing method for forming a concavo-convex microprojection group having an uneven surface 6 in which the envelope surface connecting the valley bottoms of each microprojection is D (or D MIN )> λmax is as follows. is there. That is, in the manufacturing process of the roll plate 13, a concavo-convex shape corresponding to the concavo-convex shape of the concavo-convex surface 6 is formed on the surface of a cylindrical (or columnar) base material by sandblasting or mat (matte) plating. Next, an appropriate intermediate layer is formed directly or if necessary on the uneven surface, and then an aluminum layer is laminated. Thereafter, an aluminum layer formed with a surface shape corresponding to the uneven surface is subjected to anodizing treatment and etching treatment in the same manner as in the above embodiment to form a microprojection group including microprojections 5, 5A, 5B. To do.
 また上述の実施形態では、陽極酸化処理とエッチング処理との繰り返しにより賦型処理用の金型を作製する場合について述べたが、本発明はこれに限らず、フォトリソグラフィーの手法を適用して賦型処理用の金型を作製する場合にも広く適用することができる。 In the above-described embodiment, the case where the mold for the shaping process is manufactured by repeating the anodizing process and the etching process has been described. However, the present invention is not limited to this, and the photolithography technique is applied. The present invention can also be widely applied to molds for mold processing.
 また上述の実施形態では、ロール版を使用した賦型処理によりフィルム形状による反射防止物品を生産する場合について述べたが、本発明はこれに限らず、反射防止物品の形状に係る透明基材の形状に応じて、例えば平板、特定の曲面形状による賦型用金型を使用した枚葉の処理により反射防止物品を作製する場合等、賦型処理に係る工程、金型は、反射防止物品の形状に係る透明基材の形状に応じて適宜変更することができる。 Moreover, although the above-mentioned embodiment described the case where the anti-reflective article by a film shape was produced by the shaping process using a roll plate, this invention is not limited to this, The transparent base material which concerns on the shape of an anti-reflective article Depending on the shape, for example, when producing an antireflection article by processing a sheet using a flat plate, a mold for shaping with a specific curved surface shape, etc. It can change suitably according to the shape of the transparent base material which concerns on a shape.
 また上述の実施形態では、画像表示パネルの表側面、或いは照明光の入射面にフィルム形状による反射防止物品を配置する場合について述べたが、本発明はこれに限らず、種々の用途に適用することができる。具体的には、画像表示パネルの画面上に間隙を介して設置されるタッチパネル、各種の窓材、各種光学フィルタ等による表面側部材の裏面(画像表示パネル側)に配置する用途に適用することができる。なおこの場合には、画像表示パネルと表面側部材との間の光の干渉によるニュートンリング等の干渉縞の発生の防止、画像表示パネルの出光面と表面側部材の入光面側との間の多重反射によるゴースト像の防止、さらには画面から出光されてこれら表面側部材に入光する画像光について、反射損失の低減等の効果を奏することができる。 In the above-described embodiment, the case where the antireflection article with the film shape is arranged on the front side surface of the image display panel or the incident surface of the illumination light has been described. However, the present invention is not limited to this and is applied to various applications. be able to. Specifically, it should be applied to applications that are placed on the back surface (image display panel side) of the surface side member such as a touch panel, various window materials, various optical filters, etc. installed on the screen of the image display panel through a gap. Can do. In this case, it is possible to prevent interference fringes such as Newton rings due to light interference between the image display panel and the surface side member, and between the light emission surface of the image display panel and the light incident surface side of the surface side member. Thus, it is possible to prevent ghost images due to multiple reflections, and to achieve effects such as reduction of reflection loss with respect to image light emitted from the screen and entering these surface side members.
 或いは、タッチパネルを構成する透明電極を、フィルム或いは板状の透明基材上に本発明特定の微小突起群を形成し、更に該微小突起群上にITO(酸化インジウム錫)等の透明導電膜を形成したものを用いることが出来る。この場合には、該タッチパネル電極とこれと隣接する対向電極又は各種部材との間での光反射を防止して、干渉縞、ゴースト像等の発生を低減させる効果を奏することが出来る。 Alternatively, a transparent electrode constituting the touch panel is formed on a film or plate-like transparent substrate with a group of microprojections specific to the present invention, and a transparent conductive film such as ITO (indium tin oxide) is further formed on the group of microprojections. The formed one can be used. In this case, it is possible to prevent light reflection between the touch panel electrode and the counter electrode or various members adjacent to the touch panel electrode, thereby reducing the occurrence of interference fringes, ghost images, and the like.
 また店舗のショウウインドウや商品展示箱、美術館の展示物の展示窓や展示箱等に使用する硝子板表面(外界側)、或いは表面及び裏面(商品又は展示物側面)の両面に配置するようにしても良い。なおこの場合、該硝子板表面の光反射防止による商品、美術品等の顧客や観客に対する視認性を向上することができる。 In addition, it is arranged on the glass plate surface (external side) used for the store show window and product display box of the store, the display window and display box of the exhibition of the museum, or both of the front and back surfaces (product or display side). May be. In this case, it is possible to improve the visibility for customers and spectators of products, artworks, etc. by preventing light reflection on the surface of the glass plate.
 また眼鏡、望遠鏡、写真機、ビデオカメラ、銃砲の照準鏡(狙撃用スコープ)、双眼鏡、潜望鏡等の各種光学機器に用いるレンズ又はプリズムの表面に配置する場合にも広く適用することができる。この場合、レンズ又はプリズム表面の光反射防止による視認性を向上することができる。またさらに書籍の印刷部(文字、写真、図等)表面に配置する場合にも適用して、文字等の表面の光反射を防止し、文字等の視認性向上することができる。また看板、ポスター、其の他各種店頭、街頭、外壁等における各種表示(道案内、地図、或いは禁煙、入口、非常口、立入禁止等)の表面に配置して、これらの視認性を向上することができる。またさらに白熱電球、発光ダイオード、螢光燈、水銀燈、EL(電場発光)等を用いた照明器具の窓材(場合によっては、拡散板、集光レンズ、光学フィルタ等も兼ねる)の入光面側に配置するようにして、窓材入光面の光反射を防止し、光源光の反射損失を低減し、光利用効率を向上することができる。またさらに時計、其の他各種計測機器の表示窓表面(表示観察者側)に配置して、これら表示窓表面の光反射を防止し、視認性を向上することができる。 Also, it can be widely applied to the case where it is arranged on the surface of a lens or prism used in various optical devices such as glasses, a telescope, a camera, a video camera, a gun sighting mirror (sniper scope), binoculars, a periscope. In this case, the visibility by preventing light reflection on the lens or prism surface can be improved. Furthermore, it can also be applied to the case where it is arranged on the surface of a printed part (characters, photos, drawings, etc.) of a book to prevent light reflection on the surface of characters and the like and improve the visibility of characters and the like. In addition, it should be placed on the surface of signs (posters, posters, various other stores, streets, exterior walls, etc.) (road guidance, maps, smoking cessation, entrances, emergency exits, no entry, etc.) to improve visibility. Can do. In addition, a light entrance surface of a window material for a lighting fixture using incandescent bulbs, light emitting diodes, fluorescent lamps, mercury lamps, EL (electroluminescence), etc. (in some cases, it also serves as a diffuser plate, condenser lens, optical filter, etc.) By arranging it on the side, it is possible to prevent the light reflection of the light incident surface of the window material, reduce the reflection loss of the light source light, and improve the light utilization efficiency. Furthermore, it can arrange | position on the display window surface (display observer side) of a timepiece and other various measuring devices, the light reflection of these display window surfaces can be prevented, and visibility can be improved.
 またさらに、自動車、鉄道車両、船舶、航空機等の乗物の操縦室(運転室、操舵室)の窓の室内側、室外側、あるいはその両側の表面に配置して窓における室内外光を反射防止して、操縦者(運転者、操舵者)の外界視認性を向上することができる。またさらに、防犯等の監視、銃砲の照準、天体観測等に用いる暗視装置のレンズないしは窓材表面に配置して、夜間、暗闇での視認性を向上することができる。 Furthermore, it is placed on the inside, outside, or both sides of the windows of the cockpits (driver's cabs, wheelhouses) of vehicles such as automobiles, railway vehicles, ships, and aircraft to prevent reflection of indoor and outdoor light from the windows. Thus, it is possible to improve the visibility of the outside world of the driver (driver, driver). Furthermore, it can be arranged on the surface of a night vision device lens or window material used for crime prevention monitoring, gun sighting, astronomical observation, etc. to improve visibility at night and in the dark.
 またさらに、住宅、店舗、事務所、学校、病院等の建築物の窓、扉、間仕切、壁面等を構成する透明基板(窓硝子等)の表面(室内側、室外側、あいはその両側)の表面に配置して、外界の視認性、あるいは採光効率を向上することができる。またさらに、各種店舗、美術館、博物館等で用いる商品乃至展示品を収納し、展示する各種の展示箱乃至ショウケースの透明窓(又は扉)部の表面、裏面、又は表裏両面に配置して、展示する商品乃至展示品の視認性向上することができる。またさらに、温室、農業用ビニールハウスの透明シート、ないしは透明板(窓材)の表面に配置して、太陽光の採光効率を向上することができる。さらにまた、太陽電池表面に配置して、太陽光の利用効率(発電効率)を向上することができる。 Furthermore, the surface of the transparent substrate (window glass, etc.) that constitutes windows, doors, partitions, wall surfaces, etc. of buildings such as houses, stores, offices, schools, hospitals, etc. (inside, outside, or both sides) It is possible to improve the visibility of the outside world or the daylighting efficiency. Furthermore, it stores products or exhibits used in various stores, museums, museums, etc., and arranges them on the front, back, or both sides of the transparent window (or door) of various display boxes or showcases to be displayed, It is possible to improve the visibility of products to be displayed or exhibits. Furthermore, it can arrange | position on the surface of a greenhouse, the transparent sheet | seat of an agricultural greenhouse, or a transparent board (window material), and can improve the sunlight lighting efficiency. Furthermore, it can arrange | position on the solar cell surface and can improve the utilization efficiency (power generation efficiency) of sunlight.
 またさらに、上述の実施形態においては、反射防止を図る電磁波の波長帯域を、専ら、可視光線帯域(の全域又は一部帯域)としたが、本発明はこれに限らず、反射防止を図る電磁波の波長帯域を赤外線、紫外線等の可視光線以外の波長帯域に設定しても良い。その場合は前記の各条件式中において、電磁波の波長帯域の最短波長Λminを、それぞれ、赤外線、紫外線等の波長帯域における反射防止効果を希望する最短波長に設定すれば良い。例えば、最短波長Λminが850nmの赤外線帯域の反射防止を希望する場合は、隣接突起間距離d(乃至は其の最大値dmax)を850nm以下、例えば、d(dmax)=800nmと設計すれば良い。尚、この場合は、可視光線帯域(380~780nm)に於いては反射防止効果は期待し得ず、專ら波長850nm以上の赤外線に対しての反射防止効果を奏する反射防止物品が得られる。 Furthermore, in the above-described embodiment, the wavelength band of the electromagnetic wave for preventing reflection is exclusively the visible light band (all or part of the visible light band), but the present invention is not limited to this, and the electromagnetic wave for preventing reflection. May be set to a wavelength band other than visible light rays such as infrared rays and ultraviolet rays. In that case, the shortest wavelength Λmin in the wavelength band of the electromagnetic wave may be set to the shortest wavelength in which the antireflection effect in the wavelength band of infrared rays, ultraviolet rays, etc. is desired in each conditional expression. For example, when it is desired to prevent reflection in the infrared band where the shortest wavelength Λmin is 850 nm, the distance d between adjacent protrusions (or its maximum value dmax) may be designed to be 850 nm or less, for example, d (dmax) = 800 nm. . In this case, an antireflection effect cannot be expected in the visible light band (380 to 780 nm), and an antireflection article exhibiting an antireflection effect for infrared rays having a wavelength of 850 nm or more can be obtained.
 以上例示の各種実施形態において、硝子板等の透明基板の表面、裏面、或いは表裏両面に本発明のフィルム状の反射防止物品を配置する場合、該透明基板の全面に亙って配置、被覆する以外に、一部分の領域にのみ配置することも出来る。かかる例としては、例えば、1枚の窓硝子について、其の中央部分の正方形領域において、室内側表面にのみフィルム状の反射防止物品を粘着剤で貼着し、その他領域には反射防止物品を貼着し無い場合を挙げることが出来る。透明基板の一部分の領域にのみ反射防止物品を配置する形態の場合は、特別な表示や衝突防止柵等の設置無しでも、該透明基板の存在を視認し易くして、人が該透明基板に衝突、負傷する危険性を低減する効果、及び室内(屋内)の覗き見防止と該透明基板の(該反射防止物品の配置領域における)透視性とが両立出来ると言う効果を奏し得る。 In the various exemplary embodiments described above, when the film-shaped antireflection article of the present invention is disposed on the front surface, back surface, or both front and back surfaces of a transparent substrate such as a glass plate, it is disposed and covered over the entire surface of the transparent substrate. In addition, it can be arranged only in a partial area. As an example of this, for example, for a single window glass, a film-shaped antireflection article is attached to the indoor side surface only with an adhesive in a square area at the center, and an antireflection article is provided in the other areas. The case where it does not stick can be mentioned. In the case where the antireflection article is arranged only in a partial area of the transparent substrate, it is easy to visually recognize the presence of the transparent substrate without special display or a collision prevention fence, etc. The effect of reducing the risk of collision and injury, and the effect that both the prevention of peeping indoors (indoors) and the transparency of the transparent substrate (in the region where the antireflection article is disposed) can be achieved.
 1 反射防止物品
 2 基材
 4 紫外線硬化性樹脂層、受容層
 5、5A、5B 微小突起
 6 凹凸面
 10 製造工程
 12 ダイ
 13 ロール版
 14、15 ローラ
 g 溝
DESCRIPTION OF SYMBOLS 1 Anti-reflective article 2 Base material 4 Ultraviolet curable resin layer, receiving layer 5, 5A, 5B Minute protrusion 6 Uneven surface 10 Manufacturing process 12 Die 13 Roll plate 14, 15 Roller g Groove

Claims (5)

  1.  微小突起が密接して配置され、隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下である反射防止物品において、
     前記微小突起が、
     頂点を複数有する多峰性微小突起と、頂点が1つの単峰性微小突起とであり、
     前記多峰性微小突起は、
     前記微小突起を先端側より平面視した場合に、ほぼ中央より外方に向かって形成された溝により複数の領域に分割され、前記複数の領域の各領域が、それぞれ各頂点に係る峰である
     反射防止物品。
    In the antireflection article in which the microprotrusions are closely arranged and the interval between the adjacent microprotrusions is equal to or less than the shortest wavelength of the wavelength band of the electromagnetic wave to prevent reflection,
    The microprotrusions are
    A multimodal microprojection having a plurality of vertices, and a unimodal microprojection having one vertex,
    The multimodal microprojections are:
    When the microprotrusions are viewed in plan from the tip side, the microprotrusions are divided into a plurality of regions by grooves formed outward from the center, and each region of the plurality of regions is a peak associated with each vertex. Anti-reflective article.
  2.  前記多峰性微小突起は、前記微小突起を先端側より平面視した場合の周囲長が、単峰性微小突起に比して長く形成されている
     請求項1に記載の反射防止物品。
    The antireflection article according to claim 1, wherein the multi-peak microprojections are formed such that a perimeter when the micro-projections are viewed in plan view from the tip side is longer than that of the single-peak microprojections.
  3.  前記微小突起は、
     少なくともその一部が、内核微小突起と、該内核微小突起の周囲を環囲して形成されており該内核微小突起よりも高さの高い複数の外縁微小突起とからなる環状微小突起群を構成している
     請求項1、又は請求項2に記載の反射防止物品。
    The microprotrusions are
    At least a part thereof constitutes an annular microprotrusion group comprising an inner core microprojection and a plurality of outer edge microprojections formed around the inner core microprojection and having a height higher than the inner core microprojection. The antireflection article according to claim 1 or 2.
  4.  前記微小突起は、
     少なくともその一部が、1つの頂部微小突起と、該頂部微小突起の周囲に隣接して形成されており該頂部微小突起よりも高さが低い複数の周辺微小突起とからなる凸状突起群を構成している
     請求項1、請求項2、請求項3の何れかに記載の反射防止物品。
    The microprotrusions are
    A convex projection group comprising at least a part of one top microprojection and a plurality of peripheral microprojections formed adjacent to the periphery of the top microprojection and having a height lower than that of the top microprojection. The antireflection article according to any one of claims 1, 2, and 3.
  5.  画像表示パネルの出光面上に、請求項1、請求項2、請求項3、請求項4の何れかに記載の反射防止物品を配置した
     画像表示装置。
    An image display device in which the antireflection article according to any one of claims 1, 2, 3, and 4 is disposed on a light exit surface of an image display panel.
PCT/JP2014/076465 2014-03-28 2014-10-02 Antireflective article and image display device WO2015145831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069612A JP5655967B2 (en) 2013-03-28 2014-03-28 Antireflection article and image display device
JP2014-069612 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015145831A1 true WO2015145831A1 (en) 2015-10-01

Family

ID=54198793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076465 WO2015145831A1 (en) 2014-03-28 2014-10-02 Antireflective article and image display device

Country Status (2)

Country Link
JP (1) JP5655967B2 (en)
WO (1) WO2015145831A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210048561A1 (en) * 2019-08-14 2021-02-18 The Government Of The United States, As Represented By The Secretary Of The Navy Wideband antireflective surface structures for optics and methods of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458051B2 (en) * 2014-11-25 2019-01-23 シャープ株式会社 Mold, mold manufacturing method and antireflection film
JP2016126066A (en) * 2014-12-26 2016-07-11 大日本印刷株式会社 Anti-reflection article and image display device
JP7190249B2 (en) * 2016-12-06 2022-12-15 凸版印刷株式会社 optical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021376A1 (en) * 2012-07-31 2014-02-06 大日本印刷株式会社 Antireflective article, image display device, production mold for antireflective article, and production method for antireflective article production mold
WO2014021377A1 (en) * 2012-07-31 2014-02-06 大日本印刷株式会社 Antireflective article, image display device, and production mold for antireflective article

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053511A (en) * 2004-07-16 2006-02-23 Sumitomo Chemical Co Ltd Antidazzle polarizing film layered body and liquid crystal display using the same
JP4612842B2 (en) * 2005-01-19 2011-01-12 キヤノン株式会社 Optical scanning device
JP2007264594A (en) * 2006-03-01 2007-10-11 Nissan Motor Co Ltd Anti-reflection fine structure, anti-reflection molded body, method of producing the same
WO2010143503A1 (en) * 2009-06-12 2010-12-16 シャープ株式会社 Antireflection film, display device and light transmissive member
JP2011237469A (en) * 2010-04-30 2011-11-24 Hoya Corp Optical element and method of manufacturing the same
JP2012014084A (en) * 2010-07-02 2012-01-19 Hoya Corp Optical element, manufacturing method thereof, and optical system, optical device, imaging apparatus, and camera with interchangeable lenses using the same
JP2012014083A (en) * 2010-07-02 2012-01-19 Hoya Corp Optical element, imaging apparatus using the same, and lens interchangeable camera
JP4849183B1 (en) * 2010-08-05 2012-01-11 大日本印刷株式会社 Method for producing mold for producing antireflection film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021376A1 (en) * 2012-07-31 2014-02-06 大日本印刷株式会社 Antireflective article, image display device, production mold for antireflective article, and production method for antireflective article production mold
WO2014021377A1 (en) * 2012-07-31 2014-02-06 大日本印刷株式会社 Antireflective article, image display device, and production mold for antireflective article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210048561A1 (en) * 2019-08-14 2021-02-18 The Government Of The United States, As Represented By The Secretary Of The Navy Wideband antireflective surface structures for optics and methods of manufacturing the same

Also Published As

Publication number Publication date
JP5655967B2 (en) 2015-01-21
JP2014209235A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
WO2014021376A1 (en) Antireflective article, image display device, production mold for antireflective article, and production method for antireflective article production mold
WO2014021377A1 (en) Antireflective article, image display device, and production mold for antireflective article
JP2014029391A (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP5261596B1 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP2014153524A (en) Antireflection article and image display unit
JP5655967B2 (en) Antireflection article and image display device
JP5747928B2 (en) Method for manufacturing antireflection article
JP5261597B1 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP5644974B2 (en) Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method
JP6349830B2 (en) Method for manufacturing antireflection article and method for manufacturing mold for manufacturing antireflection article
JP5261598B1 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP2015187637A (en) Antireflective article, image display device, method for manufacturing antireflective article, molding die for antireflective article, and method for manufacturing molding die
JP5641161B2 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP5641162B2 (en) Anti-reflective article, image display device, mold for manufacturing anti-reflective article
JP5655966B2 (en) Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method
JP5652564B2 (en) Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method
JP5633617B1 (en) Antireflection article, image display device, antireflection article manufacturing mold, antireflection article manufacturing method, and antireflection article manufacturing mold manufacturing method
JP2015184427A (en) Antireflection article, image display device, manufacturing method of antireflection article, mold for shaping antireflection article, and manufacturing method of mold for shaping
JP2014139667A (en) Transparent body and fitting
JP5700309B2 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP2015084096A (en) Antireflective article, image display device, and mold for manufacturing antireflective article
JP6764635B2 (en) Anti-reflective articles and image display devices
JP6447001B2 (en) Method for producing antireflection article, method for producing mold for shaping antireflection article
JP2015064493A (en) Anti-reflection article, image display device, and mold for manufacturing anti-reflection article
JP2016024287A (en) Antireflection article and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887499

Country of ref document: EP

Kind code of ref document: A1