WO2015145829A1 - Antireflective article, image display device, mold for manufacturing antireflective article, and method for manufacturing mold for manufacturing antireflective article - Google Patents
Antireflective article, image display device, mold for manufacturing antireflective article, and method for manufacturing mold for manufacturing antireflective article Download PDFInfo
- Publication number
- WO2015145829A1 WO2015145829A1 PCT/JP2014/076463 JP2014076463W WO2015145829A1 WO 2015145829 A1 WO2015145829 A1 WO 2015145829A1 JP 2014076463 W JP2014076463 W JP 2014076463W WO 2015145829 A1 WO2015145829 A1 WO 2015145829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- microprojections
- height
- altitude region
- microprotrusions
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/118—Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0827—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/022—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
- B29C2059/023—Microembossing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/04—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
- B29C59/046—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
Definitions
- the present invention relates to an antireflection article for preventing reflection by closely arranging a large number of minute protrusions at an interval equal to or shorter than the shortest wavelength of an electromagnetic wave wavelength band for preventing reflection.
- an antireflection film which is a film-shaped antireflection article
- a method for preventing reflection by arranging a large number of microprotrusions closely on the surface of a transparent substrate (transparent film) (patent) Reference 1 to 3).
- This method uses the principle of the so-called moth-eye structure, and continuously changes the refractive index for incident light in the thickness direction of the substrate, thereby discontinuous interface of the refractive index. Is eliminated to prevent reflection.
- the microprojections are closely arranged so that the interval d between adjacent microprojections is equal to or less than the shortest wavelength ⁇ min (d ⁇ ⁇ min) of the wavelength band of the electromagnetic wave to prevent reflection. .
- each microprotrusion is produced so that a cross-sectional area may become small gradually toward the front end side from a transparent base material so that it may be planted on a transparent base material.
- Such antireflection articles can be placed on the light exit surface of various image display devices to reduce external light reflection such as sunlight on the screen to improve image visibility, or to form the microprojections on a sheet or plate-like transparent substrate
- a touch panel using an electrode in which a transparent conductive film such as ITO (indium tin oxide) is formed on the microprojection group, light reflection between the touch panel electrode and various adjacent members is performed. It has been proposed to reduce the occurrence of interference fringes, ghost images, and the like.
- ITO indium tin oxide
- Patent Document 4 discloses a sufficient antireflection function for this type of antireflection article, even when a plurality of vertices are created at the tops of the microprojections due to poor filling of the resin during the molding process. It is described that it can be secured.
- the antireflection article according to this kind of moth-eye structure has a problem that the scratch resistance is still insufficient in practice. That is, for example, when an anti-reflective article comes into contact with another object, the anti-reflective function is locally deteriorated, and white turbidity, scratches, etc. occur at the contact location, resulting in poor appearance. Further, such an antireflection article is required to further improve the antireflection function.
- the present invention has been made in view of such a situation, and an object of the present invention is to improve the anti-reflection function and improve the anti-reflection function of the anti-reflection article according to the moth-eye structure.
- microprojections having a plurality of vertices are provided in a predetermined distribution, thereby completing the present invention. It came to.
- a microprojection having only one vertex is referred to as a single-peak microprojection in comparison with a multimodal microprojection.
- both a single-peak microprojection and a multimodal microprojection are included.
- each convex part which forms each vertex which concerns on a multimodal microprotrusion and a monomodal microprotrusion is called a peak suitably.
- the present invention provides the following:
- the microprotrusions In an antireflection article in which microprotrusions are closely arranged and the interval between adjacent microprotrusions is equal to or less than the shortest wavelength of the wavelength band of electromagnetic waves for antireflection, the microprotrusions have a plurality of vertices.
- the antireflection article has a low ratio (Nm / Nt) between the number of multi-peak microprojections in the middle altitude region (Nm) and the total number of microprojections (Nt) in the entire frequency distribution. Since it is larger than the ratio (Nm / Nt) between the number of altitude regions and the number of multi-peak microprojections in the high altitude region and the total number of microprojections (Nt) in the entire frequency distribution, it is possible to increase the bandwidth of the antireflection function. it can.
- the multimodal microprotrusions having such a shape are produced by a mold for molding process having a corresponding shape.
- the height distribution as designed can be set to ensure uniform and high mass productivity. Furthermore, by setting the distance between the protrusions wider than in the case of defective filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
- the protuberances will not be damaged compared to unimodal microprotrusions alone. As a result, local deterioration of the antireflection function can be reduced, and the occurrence of poor appearance can be reduced. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect.
- the frequency distribution of the height H of the microprojections is bimodal due to two distributions, and the height that becomes the boundary between the two distributions is Hs, and the height H of the microprojections in a distribution less than Hs
- the average value is m1
- the standard deviation is ⁇ 1
- the region of H ⁇ m1 ⁇ 1 is the low altitude region
- the region of m1 ⁇ 1 ⁇ H ⁇ m1 + ⁇ 1 is the medium altitude region
- the region of m1 + ⁇ 1 ⁇ H ⁇ Hs is the high altitude
- the ratio of the number Nm1 of the multi-peak microprojections in each region in the distribution below Hs to the total number Nt of microprojections in the entire frequency distribution is Nm1 / Nt> Nm1 / Nt in the low altitude region and Nm1 / Nt in the medium altitude region> Nm1 / Nt in the high altitude region satisfying the relationship, and the average value of the height H of the microprotrusions in
- the deviation is ⁇ 2 and Hs ⁇ H ⁇ m
- the region of ⁇ 2 is the low altitude region
- the region of m2 ⁇ 2 ⁇ H ⁇ m2 + ⁇ 2 is the medium altitude region
- the region of m2 + ⁇ 2 ⁇ H is the high altitude region
- the ratio between the number Nm2 of peak microprojections and the total number Nt of microprojections in the entire frequency distribution is determined as follows: Nm2 / Nt in the middle altitude region> Nm2 / Nt in the low altitude region and Nm2 / Nt in the middle altitude region>
- the antireflection article according to (1) characterized by satisfying a relationship with Nm2 / Nt in a high altitude region.
- the distribution of the multimodal microprojections in each distribution can be concentrated in the vicinity of the top of each distribution, and the optical characteristics from the oblique direction can be improved to improve the wide viewing angle characteristics.
- the antireflection function having a wider band can be further improved.
- the antireflection article described in (1) or (2) is disposed on the light exit surface of the image display panel.
- a mold for manufacturing an antireflective article used for manufacturing an antireflective article wherein the antireflective article has minute protrusions arranged in close contact with each other, and an interval between adjacent minute protrusions prevents reflection.
- the frequency is equal to or less than the shortest wavelength in the wavelength band of electromagnetic waves, and the microprotrusions are composed of a plurality of multimodal microprotrusions with a single vertex and a single-peak microprotrusion with a single apex.
- the average value of height H in the distribution is m, the standard deviation is ⁇ , the region of H ⁇ m ⁇ is the low altitude region, the region of m ⁇ ⁇ H ⁇ m + ⁇ is the medium altitude region, and m + ⁇ ⁇ H.
- the region is a high altitude region, the ratio between the number Nm of the multi-peaked microprojections in each region and the total number Nt of the microprojections in the entire frequency distribution is Nm / Nt> low in the medium altitude region.
- the mold for manufacturing the antireflection article satisfying the relationship with Nm / Nt is a mold for manufacturing the antireflection article characterized in that the minute holes corresponding to the minute protrusions are closely formed. is there.
- the anti-reflective article manufactured with the mold has a ratio (Nm) of the number of multi-peak microprotrusions in the medium-altitude region to the total number of microprotrusions (Nt) in the entire frequency distribution ( Nm / Nt) is larger than the ratio (Nm / Nt) of the number of multi-peak microprojections in the low altitude region or high altitude region and the total number of microprojections (Nt) in the entire frequency distribution, so that the antireflection function Can be widened.
- the multimodal microprotrusions having such a shape are produced by a mold for molding process having a corresponding shape.
- the height distribution as designed can be set to ensure uniform and high mass productivity. Furthermore, by setting the distance between the protrusions wider than in the case of defective filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
- a microprojection having excellent mechanical strength compared to a single-peak microprojection is provided in the antireflection article, when an impact force is applied to the antireflection article, only in the case of a single peak microprojection. In comparison, it is possible to prevent the protrusions from being damaged, thereby reducing local deterioration of the antireflection function and further reducing the occurrence of appearance defects. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect.
- a method of manufacturing a mold for manufacturing an antireflective article comprising performing an etching process and forming a multi-hole projection micro-hole forming step for forming a plurality of micro-holes on a bottom surface of the micro-hole having a substantially flat bottom surface. is there.
- a fine hole whose bottom surface is substantially flat is formed on the surface of the plate by the flat fine hole forming step, and the bottom surface is substantially flat formed by the multi-hole projection micro hole forming step. Since a plurality of fine holes are formed on the bottom surface of the hole, it is possible to manufacture a mold for manufacturing an antireflective article in which multimodal microprotrusions have a predetermined distribution.
- the antireflection article having the moth-eye structure it is possible to improve the scratch resistance and improve the antireflection function as compared with the conventional one.
- FIG. 1 is a conceptual perspective view showing an antireflection article according to a first embodiment of the present invention. It is a figure where it uses for description of an adjacent protrusion. It is a figure where it uses for description of the maximum point. It is a figure which shows a Delaunay figure. It is a frequency distribution figure with which it uses for description of the measurement of the distance between adjacent protrusions. It is a frequency distribution figure with which it uses for description of minute height. It is a figure which shows the example of the frequency distribution of the height H of the microprotrusion formed in the antireflection article of the present invention. It is a figure which shows the manufacturing process of the antireflection article
- FIG. 18 is a plan view, a front view, and a side view of FIG. 17. It is a perspective view which shows the shape of the microprotrusion of this invention different from FIG.
- FIG. 20 is a plan view, a front view, and a side view of FIG. 19. It is a perspective view which shows the shape of the microprotrusion of this invention different from FIG.17 and FIG.19. It is the top view of FIG. 21, a front view, and a side view. It is a conceptual sectional view showing the form in which the envelope surface of the valley bottom of the microprojection exhibits an uneven surface (waviness).
- FIG. 1 is a diagram (conceptual perspective view) showing an antireflection article according to a first embodiment of the present invention.
- This antireflection article 1 is an antireflection film whose overall shape is formed by a film shape.
- the antireflection article 1 is held by being attached to the front side surface of the image display panel, and the reflection of external light such as sunlight and electric light on the screen is reduced by the antireflection article 1. And improve visibility.
- the antireflection article is not limited to a flat film shape, but may be a flat sheet shape or a flat plate shape (referred to as a film, a sheet, or a plate in order of relatively small thickness).
- a flat shape instead of a flat shape, a curved shape, a three-dimensional film shape, a sheet shape, or a plate shape can be used, and various lenses, prisms, and other three-dimensional shapes are appropriately used depending on the application. Can be adopted.
- the antireflection article 1 is produced by closely arranging a large number of microprotrusions 5, 5A, 5B on the surface of the substrate 2 in the shape (form) of a transparent film.
- a plurality of closely arranged microprotrusions is collectively referred to as a microprotrusion group.
- the base material 2 is, for example, a cellulose resin such as TAC (Triacetylcellulose), an acrylic resin such as PMMA (polymethyl methacrylate), a polyester resin such as PET (Polyethylene terephthalate), or PP (polypropylene).
- Polyolefin resins such as PVC, vinyl resins such as PVC (polyvinyl chloride), and various transparent resin films such as PC (polycarbonate) can be applied.
- the shape of the antireflection article is not limited to the film shape, and various shapes can be employed.
- the base material 2 is made of various transparent materials such as soda glass, potassium glass, lead glass, ceramics such as PLZT, quartz, meteorite, etc. An inorganic material or the like can be applied.
- the anti-reflective article 1 forms an uncured resin layer 4 (hereinafter referred to as a receiving layer as appropriate) 4 which forms a fine uneven receiving layer composed of a group of minute protrusions on a base material 2. 4 is subjected to a molding treatment and hardened, whereby the fine protrusions are placed in close contact with the surface of the substrate 2.
- an acrylate-based ultraviolet curable resin which is one of the molding resins used for the molding process, is applied to the receiving layer 4 to form the ultraviolet curable resin layer 4 on the substrate 2.
- the antireflection article 1 is manufactured so that the refractive index gradually changes in the thickness direction due to the uneven shape by the microprotrusions, and reduces the reflection of incident light in a wide wavelength range by the principle of the moth-eye structure.
- the microprotrusions produced in the antireflection article 1 are closely arranged so that the distance d between adjacent microprotrusions is equal to or less than the shortest wavelength ⁇ min (d ⁇ ⁇ min) of the wavelength band of the electromagnetic wave to prevent reflection.
- the shortest wavelength is set to the shortest wavelength (380 nm) in the visible light region in consideration of individual differences and viewing conditions.
- the distance d is set to 100 to 300 nm in consideration of variation.
- the adjacent minute protrusions related to the distance d are so-called adjacent minute protrusions, which are in contact with the hem portions of the minute protrusions, which are the base portions on the base 2 side.
- the minute projections are closely arranged so that when a line segment is created so as to sequentially follow the valleys between the minute projections, a large number of polygonal regions surrounding each minute projection are connected in plan view. Thus, a mesh-like pattern is produced.
- the adjacent minute protrusions related to the distance d are protrusions that share a part of the line segments constituting the mesh pattern.
- the minute protrusions are defined in more detail as follows.
- the effective refractive index at the interface between the transparent substrate surface and the adjacent medium is continuously changed in the thickness direction to prevent reflection. It is necessary to satisfy the following conditions.
- the protrusion spacing which is one of these conditions, when the minute protrusions are regularly arranged with a constant period as disclosed in, for example, Japanese Patent Application Laid-Open No. 50-70040, Japanese Patent No. 4632589, etc.
- a preferable condition that can more reliably exhibit an antireflection effect for all wavelengths in the visible light band is d ⁇ 300 nm, and a more preferable condition is d ⁇ 200 nm.
- the lower limit value of the period d is usually d ⁇ 50 nm, preferably d ⁇ 100 nm, for reasons such as the expression of the antireflection effect and the securing of the isotropic (low angle dependency) of the reflectance.
- the distance d between the adjacent minute protrusions varies. More specifically, as shown in FIG. 2, when viewed from the normal direction of the front or back surface of the substrate, when the microprojections are not regularly arranged at a constant period, the repetition period P of the protrusions In some cases, the distance d between adjacent protrusions cannot be defined, and even the concept of adjacent protrusions is suspicious. Therefore, in such a case, it is calculated as follows.
- FIG. 2 is an enlarged photograph actually obtained by an atomic force microscope, and is a photograph showing height by luminance. Since the AFM data is accompanied by the in-plane distribution data of the height of the microprojections, this photo can be said to be a photo showing the in-plane distribution of height by luminance. 2 to 6 (photographs and frequency distribution graphs) are measured and calculated for the microprojection group according to the second embodiment of the present invention, but here, between the projections of the microprojections. This is used to explain the principle and method for calculating the distance and height.
- AFM atomic force microscope
- SEM scanning electron microscope
- a maximum point of the height of each protrusion (hereinafter simply referred to as a maximum point) is detected from the obtained in-plane arrangement.
- the maximum point means a point where the height is larger (maximum value) than any point around the vicinity.
- There are various methods for obtaining the maximum point such as a method of sequentially comparing the planar view shape and the enlarged photograph of the corresponding cross-sectional shape to obtain the maximum point, and a method of obtaining the maximum point by image processing of the plan view enlarged photo. Can be applied.
- FIG. 3 is a diagram showing the detection result of the maximum point by the processing of the image data relating to the enlarged photograph shown in FIG.
- Delaunay diagram (Delaunary Diagram) with the detected local maximum as the base point.
- Delaunay diagram is obtained by dividing the Voronoi region adjacent to the Voronoi region when the Voronoi division is performed with each local maximum as the generating point, and connecting the adjacent generating points with line segments. This is a net-like figure made up of triangular aggregates.
- Each triangle is called a Delaunay triangle, and a side of each triangle (a line segment connecting adjacent generating points) is called a Delaunay line.
- FIG. 4 is a diagram in which the Delaunay diagram (represented by white line segments) obtained from FIG. 3 is superimposed on the original image of FIG.
- the Delaunay diagram has a dual relationship with the Voronoi diagram.
- Voronoi division means that a plane is divided by a net-like figure made up of a closed polygon aggregate defined by perpendicular bisectors of line segments (Droney lines) connecting between adjacent generating points.
- a network figure obtained by Voronoi division is a Voronoi diagram, and each closed region is a Voronoi region.
- FIG. 5 is a histogram of the frequency distribution created from the Delaunay diagram of FIG. As shown in FIG. 2 and FIG. 15, when there is a groove-like recess at the top of the projection, or the top is divided into a plurality of peaks, the distribution of such projection is determined from the obtained frequency distribution.
- a frequency distribution is created by removing data resulting from a fine structure having a concave portion at the top and a fine structure in which the top is split into a plurality of peaks, and selecting only the data of the projection body itself.
- the single-peak property that does not have such a fine structure From the numerical range in the case of a microprotrusion, the distance between adjacent maximum points is clearly greatly different. Thus, by removing the corresponding data using this feature, only the data of the projection body itself is selected and the frequency distribution is detected. More specifically, for example, about 5 to 20 adjacent single-peaked microprojections are selected from a magnified photograph of a microprojection (group) in plan view as shown in FIG. 2, and the distance between adjacent maximum points is selected.
- the frequency distribution is detected by excluding the following data.
- data having a distance between adjacent maximal points of 56 nm or less (the leftmost small mountain indicated by the arrow A) is excluded.
- FIG. 5 shows a frequency distribution before performing such exclusion processing.
- exclusion processing may be executed by setting the above-described maximum inspection filter.
- the average value d AVG and the standard deviation ⁇ are obtained from the frequency distribution of the distance d between adjacent protrusions thus obtained.
- FIG. 6 is a diagram showing a histogram of the frequency distribution of the protrusion height H with the protrusion root position obtained in this way as a reference (height 0).
- the average value HAVG of the protrusion height and the standard deviation ⁇ are obtained from the frequency distribution based on the histogram.
- the mean value H AVG 178 nm
- the standard deviation sigma 30 nm.
- the frequency distribution is obtained by adopting the vertex having the highest height from among the plurality of vertices belonging to the same microprotrusion as the protuberance.
- the reference position for measuring the height of the protrusion described above is based on the bottom of the valley (minimum point of height) between the adjacent minute protrusions as a reference of height 0.
- the height of the valley bottom itself varies depending on the location (for example, as described later with reference to FIG. 23, when the height of the valley bottom has undulation with a period larger than the distance between adjacent projections of the microprojections, etc.)
- (1) First, the average value of the height of each valley bottom measured from the front surface or the back surface of the base material 2 is calculated within an area sufficient for the average value to converge.
- a surface having the height of the average value and parallel to the front surface or the back surface of the substrate 2 is considered as a reference surface.
- the height of each microprotrusion from the reference surface is calculated by setting the reference surface to a height of 0 again.
- a preferable condition that can more reliably exhibit the antireflection effect for all wavelengths in the visible light band is dmax ⁇ 300 nm, and a more preferable condition is dmax ⁇ 200 nm. Also, dmax ⁇ 50 nm is usually satisfied and dmax ⁇ 100 nm is preferable because of the antireflection effect and ensuring the isotropic (low angle dependency) of the reflectance.
- the average inter-protrusion distance dave may be set so that dave ⁇ ⁇ min.
- the shortest wavelength ⁇ min in the visible light band is 380 nm, it can be seen that the sufficient condition dmax ⁇ ⁇ min for exhibiting the antireflection effect in all visible light wavelength bands is also satisfied.
- dave ⁇ dmax it can be seen that the condition of dave ⁇ ⁇ min is also satisfied.
- the average projection height H AVG 178 nm
- the conditions regarding the height of the protrusions to satisfy are also satisfied.
- the standard deviation ⁇ 30 nm
- the multi-peak microprojections tend to be generated more frequently in the microprojections having a higher height than the microprojections having a relatively low height. It has been found.
- the aspect ratio is defined as H / W, which is a ratio obtained by dividing the height H of the minute protrusions by the diameter W (also referred to as width or thickness) at the bottom of the valley.
- W also referred to as width or thickness
- the diameter at the bottom of the valley coincides with the diameter (at the bottom) of the column if the shape of the microprotrusion near the bottom of the valley is a column.
- the maximum value is set to the microprojection.
- the diameter is the major axis.
- the diameter is the maximum diagonal length.
- the average value (H / W) ave of the aspect ratio H / W of each microprotrusion is In terms of design, it can be substantially regarded as Have / dave.
- the anti-reflective function of the anti-reflective article depends not only on the interval between the microprojections but also on the aspect ratio, and when the aspect ratio is constant, for example, even when a sufficiently low reflectance can be secured in the visible light range, However, the reflectance increases as compared with the visible light region, and the antireflection function is insufficient. If the distance between adjacent protrusions is further reduced so that a sufficient antireflection function can be secured in the ultraviolet region, the antireflection function will be lowered in the infrared region.
- the distance between the peaks existing near the top of the same microprojection is smaller than the distance between adjacent projections (usually about 100 to 200 nm) (usually about 10 to 50 nm). Due to the contribution of the distance between the peaks, it is possible to ensure an antireflection function that reduces the effective spacing between adjacent projections compared to a group of minute projections consisting only of single-peaked microprojections having the same distance between adjacent projections. Thereby, a low reflectance can be ensured in a wide wavelength band by mixing the multimodal microprojections and the monomodal microprojections.
- the distance between adjacent protrusions that contributes to the antireflection performance for light in the wavelength range of 480 to 660 nm in the visible light region that is, d ⁇ It is desirable to mix multimodal microprojections and monomodal microprojections in microprojections with 400 nm, preferably d ⁇ 300 nm.
- FIG. 7 is a diagram illustrating an example of the frequency distribution of the height H of the fine protrusions formed on the antireflection article. As shown in FIG.
- the average value of the height in the frequency distribution of the height H of the microprojections is m, the standard deviation is ⁇ , the region of H ⁇ m ⁇ is the low altitude region of the microprojections, and m ⁇
- the region of ⁇ ⁇ H ⁇ m + ⁇ is a medium altitude region and the region of m + ⁇ ⁇ H is a high altitude region
- the number Nm of multimodal microprojections in each region and the total number Nt of microprojections in the entire frequency distribution It is necessary for the ratio to satisfy the following relationships (a) and (b).
- FIG. 8 is a diagram showing a manufacturing process of the antireflection article 1.
- an uncured and liquid ultraviolet curable resin that forms a microprojection-shaped receiving layer is applied to the base material 2 in the form of a belt-shaped film by the die 12.
- coating of an ultraviolet curable resin not only the case by the die
- the substrate 2 is pressed and pressed onto the peripheral side surface of the roll plate 13 which is a mold for shaping the antireflection article by the pressing roller 14, and thereby the substrate 2 is uncured.
- the liquid acrylate-based ultraviolet curable resin is brought into close contact, and the fine concavo-convex recesses formed on the peripheral side surface of the roll plate 13 are sufficiently filled with the ultraviolet curable resin.
- the ultraviolet curable resin is cured by irradiation with ultraviolet rays, and thereby a microprojection group is produced on the surface of the substrate 2.
- the substrate 2 is peeled off from the roll plate 13 through the peeling roller 15 together with the cured ultraviolet curable resin.
- an anti-reflection article 1 is produced by producing an adhesive layer or the like on the substrate 2 as necessary, and then cutting it into a desired size. Accordingly, the antireflection article 1 is mass-produced efficiently by sequentially molding the fine shape produced on the peripheral side surface of the roll plate 13 which is a mold for molding on the long base material 2 made of a roll material.
- FIG. 9 is a perspective view showing the configuration of the roll plate 13.
- the roll plate 13 has a fine concavo-convex shape formed on the peripheral side surface of the base material, which is a cylindrical metal material, by repeating anodizing treatment and etching treatment, and the fine concavo-convex shape is formed on the substrate 2 as described above. It is shaped. For this reason, a columnar or cylindrical member in which a high-purity aluminum layer is provided at least on the peripheral side surface is used as the base material. More specifically, in this embodiment, a hollow stainless steel pipe is applied to the base material, and a high-purity aluminum layer is provided directly or via various intermediate layers. In addition, it may replace with a stainless steel pipe and may apply pipe materials, such as copper and aluminum.
- the roll plate 13 fine holes are densely formed on the peripheral side surface of the base material by repeating the anodizing treatment and the etching treatment, and the fine holes are dug, and the diameter of the roll plate 13 increases as it approaches the opening.
- the concavo-convex shape is produced by gradually increasing the diameter of the fine holes.
- the roll plate 13 is closely formed with fine holes whose diameter gradually decreases in the depth direction, and the diameter of the antireflection article 1 gradually decreases as it approaches the top corresponding to the fine holes.
- a fine concavo-convex shape is produced by a microprojection group consisting of a large number of microprojections. At that time, by appropriately adjusting various conditions such as the purity (impurity amount), bath concentration, crystal grain size, anodizing treatment and / or etching treatment of the aluminum layer, the shape of the fine protrusion unique to the present invention is obtained.
- FIG. 10 is a diagram illustrating a manufacturing process of the roll plate 13.
- the peripheral side surface of the base material is made into a super mirror surface by an electrolytic composite polishing method that combines electrolytic elution action and abrasion action by abrasive grains (electrolytic polishing).
- electrolytic composite polishing method that combines electrolytic elution action and abrasion action by abrasive grains (electrolytic polishing).
- aluminum layer forming step aluminum is sputtered on the peripheral side surface of the base material to produce a high-purity aluminum layer.
- the base material is processed by alternately repeating the anodic oxidation processes A1,..., AN, and the etching processes E1,.
- a fine hole is produced on the peripheral side surface of the base material by an anodizing method, and the produced fine hole is further dug.
- various methods applied to the anodic oxidation of aluminum can be widely applied, for example, when a carbon rod, a stainless steel plate, or the like is used for the negative electrode.
- various neutral and acidic solutions can be used, and more specifically, for example, sulfuric acid aqueous solution, oxalic acid aqueous solution, phosphoric acid aqueous solution and the like can be used.
- the fine holes are formed in shapes corresponding to the target depth and the shape of the fine protrusions, respectively, by managing the liquid temperature, the applied voltage, the time for anodization, and the like.
- the mold is immersed in an etching solution, the hole diameter of the fine hole produced and dug in the anodizing process A1,.
- These fine holes are shaped so that the hole diameter becomes smaller and smoother.
- the etching solution various etching solutions that are applied to this type of treatment can be widely applied. More specifically, for example, a sulfuric acid aqueous solution, an oxalic acid aqueous solution, a phosphoric acid aqueous solution, or the like can be used.
- the same solution as the solution used for the anodic oxidation treatment may be used without applying a voltage so that the solution can be used also as an etching solution.
- the anodizing process and the etching process are alternately performed a plurality of times, so that fine holes for forming are formed on the peripheral side surface of the base material.
- the fine hole formed in the shaping mold is formed by alternately repeating the anodizing treatment and the etching treatment, and the applied voltage in the repeated anodizing treatment is varied.
- the depth of the fine holes can be controlled.
- the applied voltage in the anodizing process and the interval (pitch) between the fine holes to be formed are in a proportional relationship, the applied voltage of the anodizing process can be varied in the repetition of the anodizing process and the etching process. For example, it is possible to mix fine holes having different times for digging in the depth direction and control the ratio.
- the applied voltage in the anodizing process is varied in this way, a plurality of micro holes are created on the bottom surface of the micro hole having a large thickness (diameter), and the micro hole related to the multimodal micro protrusion is formed. It can be.
- the height distribution can be controlled also for the multimodal microprojections.
- FIG. 11 is a schematic diagram for explaining the microholes related to the multimodal microprojections, and is a diagram showing the microholes produced by the anodic oxidation process and the etching process in the molding die manufacturing process.
- the relationship between the applied voltage in the anodic oxidation process and the pitch of the fine holes is proportional, but in practice, the pitch of the fine holes varies due to the grain boundaries of the aluminum used for the treatment.
- the fine holes are formed in a regular arrangement, assuming that this variation does not exist.
- FIGS. 11 (a) to 11 (e) the left figure shows an enlarged view of the surface of the roll plate 13, and the right figure shows an aa cross-sectional view in the left figure.
- (First step) As shown in FIG. 11A, first, the voltage V1 is applied to the aluminum layer on the surface of the shaping mold to perform the anodic oxidation step A1, and then the etching step E1 is performed to form the fine holes f1. Form.
- the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum. In this case, the etching process may be omitted as appropriate.
- the etching step E3 is executed.
- fine holes with different pitches are produced.
- the voltage to be applied is gradually increased from the voltage V2 to the voltage V3, and the increase in the applied voltage is executed discretely (stepwise)
- the height distribution of the fine protrusions can be produced discretely, and when the applied voltage is continuously increased, the height distribution of the microprotrusions can be set to a normal distribution.
- the application time of the applied voltage in the anodizing step A3 and the processing time of the etching step are set longer than those in the first step and the second step described above, as shown in FIG.
- two fine holes f1 formed in the first anodic oxidation step A1 are dug wide and deep so as to be combined into one, and the bottom surface of the fine hole f3 integrated into one is substantially flat.
- substantially flat means not only a state where the bottom surface of the fine hole is flat but also a state where the bottom surface is curved with a large curvature radius.
- the etching step E4 is executed.
- fine holes are created with a pitch based on the desired interprotrusion spacing.
- the applied voltage is gradually increased from the voltage V3 to the voltage V4.
- a part of the fine hole f3 dug by the third step is further dug, and as a result, as shown in FIG. 11 (d), the fine hole f4 is formed. High unimodal microprotrusions are formed.
- the etching step E5 is performed.
- this step as shown in FIG. 11 (e), on the bottom surface of the fine hole f3 formed in the anodizing step A3 and not affected by the anodizing step A4 of the fourth step, A plurality of fine holes are formed to form a fine hole f5 corresponding to the multi-peak microprotrusions (a multi-hole protrusion micro-hole forming step).
- the magnitude of the voltage V1 to be applied the number of fine holes formed in the bottom surface of the fine hole f5 can be increased or decreased, and the interval between the fine holes can be adjusted.
- the fine holes f1, f2, and f4 for forming the minute protrusions having different heights and the minute holes f5 for forming the multimodal minute protrusions are formed on the surface of the molding die.
- the fine holes f1 and f2 having different depths produced in the first step and the second step are dug in the third step to form a substantially flat fine hole f3 on the bottom surface.
- the minute hole f3 is dug to produce the minute hole f4 related to the single-peaked minute protrusion.
- the bottom surface of the minute hole f3 is processed to obtain a large number of holes.
- the minute hole f5 related to the ridge-like minute protrusion is produced.
- the depth of the fine hole produced in each process is controlled.
- FIG. 12 is a diagram for explaining the process of forming micro holes with different depths related to the control of the height distribution of the microprotrusions in comparison with FIG.
- the first step first, the voltage V1 is applied to the aluminum layer on the surface of the molding die to perform the anodizing step A1, and then the etching step E1. To form a fine hole f1.
- the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum.
- the etching process may be omitted as appropriate.
- the etching step E3 is executed.
- the voltage to be applied is set to the voltage V3, and every other specific minute hole f1 as illustrated between the minute holes f2 arranged in the plane vertically and horizontally is dug wide and deep.
- the fine hole f1 located at the center of the smallest square surrounded by the four fine holes f2 is selected. Deeply digging deeply.
- a part of the fine holes f2 having the positional relationship shown in FIG. 12C is further dug down to become fine holes f3.
- fine holes f2 and f3 (medium respectively) deeper than f1 around the fine hole f1 (which corresponds to the minute protrusion having the lowest height).
- the depth of the micro holes can be greatly varied by changing the micro holes to be drilled by switching the applied voltage in multiple times of anodizing treatment, thereby controlling the height of the micro protrusions by the intended distribution can do.
- FIG. 13 is a diagram showing a frequency distribution of the height H of the microprojections of the antireflection article of Example 1.
- the shaping mold for producing the antireflection article of Example 1 is obtained by continuously changing the applied voltage of the anodizing treatment in the second step, the third step, and the fourth step. In the fifth step, the voltage is reduced from the applied voltage in the fourth step.
- the example of FIG. 13 is a case where the anodizing step and the etching step are repeated five times, and the applied voltage of the first anodizing step is V1 (a constant voltage in the range of 15V to 35V). ), The applied voltages in the second, third, fourth, and fifth anodic oxidation steps are 2V1, 3.5V1, 5V1, and V1, respectively.
- the anodizing treatment was performed for 100 seconds using an oxalic acid aqueous solution having a concentration of 0.02M.
- an etching process was performed for 45 seconds using an aqueous oxalic acid solution having a concentration of 0.02M, and then an etching process was performed for 110 seconds using an aqueous solution of phosphoric acid having a concentration of 1.0M.
- the height distribution of the microprojections shows a normal distribution, and in a relatively narrow range centered on the vertical line of the surface on which the microprojections are formed, A good antireflection function can be ensured.
- the multimodal microprojections two and three vertices are indicated by two peaks and three peaks, respectively
- the scratch resistance function and the optical property improvement function of the multi-modal microprotrusions can be efficiently exhibited. Thereby, it can be used for a small display used in a mobile phone, a portable game machine, and the like.
- the total number Nt of microprojections in the entire frequency distribution is 263.
- Nm / Nt in the middle altitude region is 0.087. Since the number Nm of the multimodal microprotrusions in the low altitude region is two, Nm / Nt in the low altitude region is 0.008. Since the number Nm of multimodal microprojections in the high altitude region is 5, the Nm / Nt in the high altitude region is 0.019.
- the ratio (Nm / Nt) of the number (Nm) of multimodal microprotrusions in the medium altitude region and the total number of microprotrusions (Nt) in the frequency distribution is low in the low altitude region. Since the multi-peak microprotrusions are formed so as to be larger than the ratio of the high altitude region, the reflectance for incident light in the visible light region can be reduced, and the antireflection product has a wide antireflection function. Can be achieved.
- this antireflection article has such a height distribution that the average value of the heights of the multimodal microprotrusions (two and three vertices are indicated by two peaks and three peaks, respectively) is almost the same. Since the matched normal distribution can be obtained, the viewing angle characteristic can be limited, and it can be used for a small display used in a mobile phone, a portable game machine, or the like. In addition, the scratch resistance of the multimodal microprotrusions can be improved efficiently. Further, by adopting the above-described configuration, the antireflection article has a small ratio of multi-peak microprojections distributed in microprojections having a high height (180 nm or more) and a large ratio of single-peak microprojections. Even if the object is in frictional contact with the microprotrusions, the high unimodal microprotrusions come into contact first, and the contact with the multimodal microprotrusions that mainly improve the antireflection function is suppressed. can do.
- FIG. 14 is a diagram showing a frequency distribution of the height H of the microprojections of the antireflection article of Example 2.
- the shaping mold for producing the antireflection article of Example 2 performs the anodizing process by gradually changing the applied voltage, and in the fourth step, it is more than the maximum voltage according to the example of FIG.
- the anodizing treatment is performed with a high voltage.
- the anodizing process and the etching process were performed with the same number of repetitions, solution, and processing time as in the example of FIG. 13.
- the applied voltage in the first anodic oxidation step is V1 (a constant voltage in the range of 15V to 35V)
- the second, third, fourth, In this example, the voltages applied in the second anodic oxidation step are 2.5 V1, 4 V1, 6 V1, and V1 1/2 to V1, respectively.
- the start voltage of the second anodic oxidation treatment and the end voltage of the fourth anodic oxidation treatment are set to 2.5 V1 and 6 V1, respectively, and the applied voltage is gradually increased. Increased.
- the height distribution of the microprotrusions having distribution peaks on the high side and the low side is discrete, that is, a bimodal distribution.
- a bimodal distribution Corresponding to the distribution of multimodal microprojections.
- the total number Nt of fine protrusions in the entire frequency distribution is 131.
- the Nm / Nt in the middle altitude region is 0.160. Since the number Nm of the multimodal microprotrusions in the low altitude region is 3, Nm / Nt in the low altitude region is 0.023.
- the frequency distribution of the height H of the microprojections of the antireflection article of Example 2 is bimodal, that is, there are two distribution peaks.
- a low altitude region, a medium altitude region, and a high altitude region are also defined for the peaks of each distribution, and the number of multi-peak microprojections in each region of each peak and the total number Nt of microprojections in the entire frequency distribution, It is necessary to evaluate the size of the ratio.
- the average value of the height H is m1 for the peaks of the distribution below Hs (the peaks of the distribution on the lower side)
- the region of H ⁇ m1 ⁇ 1 is the low altitude region
- the region of m1 ⁇ 1 ⁇ H ⁇ m1 + ⁇ 1 is the medium altitude region
- the region of m1 + ⁇ 1 ⁇ H ⁇ Hs is the high altitude region
- the ratio between the number Nm1 of the multimodal microprojections in each region in the peak of the distribution below Hs and the total number Nt of microprojections in the entire frequency distribution needs to satisfy the following relationships (c) and (d). .
- D Nm1 / Nt in the medium altitude region> Nm1 / Nt in the high altitude region
- the average value of height H is m2, the standard deviation is ⁇ 2, the region where Hs ⁇ H ⁇ m2- ⁇ 2 is the low altitude region, and m2
- the region of ⁇ 2 ⁇ H ⁇ m2 + ⁇ 2 is a medium altitude region and the region of m2 + ⁇ 2 ⁇ H is a high altitude region
- the ratio with the total number Nt of microprojections needs to satisfy the following relationships (e) and (f).
- Nm1 of the multi-modal microprotrusions in the middle altitude region is two, Nm1 / Nt in the middle altitude region is 0.015. Since the number Nm1 of the multi-modal microprojections in the low altitude region is 0, Nm1 / Nt in the low altitude region is 0. Since the number Nm1 of the multimodal microprotrusions in the high altitude region is 0, Nm1 / Nt in the high altitude region is 0.
- Nm2 of the multi-modal microprotrusions in the middle altitude region is 19, Nm2 / Nt in the middle altitude region is 0.145. Since the number Nm2 of the multimodal microprojections in the low altitude region is 3, Nm2 / Nt in the low altitude region is 0.023. Since the number Nm2 of multimodal microprojections in the high altitude region is 0, Nm2 / Nt in the high altitude region is 0.
- the ratio (Nm / Nt) of the number (Nm) of multimodal microprojections in the medium altitude region and the total number of microprojections (Nt) in the frequency distribution is low in the low altitude region. Since the multi-peak microprotrusions are formed so as to be larger than the ratio of the high altitude region, the reflectance for incident light in the visible light region can be reduced, and the antireflection product has a wide antireflection function. Can be achieved.
- the antireflection article of Example 2 has a bimodal distribution of frequencies and satisfies the above relationships (c) to (f). It can be concentrated near the top.
- the optical characteristic from an oblique direction can be improved and the wide viewing angle characteristic can be improved.
- the antireflection function in the ultraviolet region is improved by the multimodal microprotrusions on the lower side distribution, and the antireflection function in the visible light region is improved by the multimodal microprojections present on the higher side distribution. Therefore, the antireflection function having a wider band can be further improved.
- the infrared region it is necessary to form single-peaked microprojections having a wide arrangement interval (pitch) and a high height in order to ensure the antireflection function. Since the ratio of the multimodal microprotrusions distributed to the microprojections having a high height is small, it is possible to prevent the deterioration of the antireflection function in the infrared region due to the presence of the multimodal microprotrusions. In addition, with such a configuration, even if another object comes into frictional contact with the microprotrusions, the high single-peak microprotrusions come into contact first, and the contact with the multimodal microprotrusions is suppressed. can do.
- the characteristics of these multimodal microprotrusions are unique characteristics of the multimodal microprotrusions produced by the microholes having the corresponding shape of the shaping mold, and Japanese Patent Application Laid-Open No. 2012-037670 discloses.
- This is a feature that cannot be obtained by the multimodal microprotrusions caused by poor filling of the disclosed resin. That is, the multi-peak microprotrusions due to poor filling of the resin are produced by not sufficiently filling the fine holes that are originally produced as single-peak microprotrusions, so the distance between the vertices is extremely small. Thus, it is difficult to sufficiently improve the scratch resistance, and it is also difficult to improve the optical characteristics as described above.
- the multi-peak microprotrusions due to poor filling also have the disadvantage that the reproducibility is poor, thereby making it impossible to mass-produce a uniform product, whereas the multi-peak microprotrusions according to this embodiment are so-called High reproducibility can be ensured by the mold.
- the height distribution of the multimodal microprotrusions can be controlled, while such control is difficult for the poorly filled multimodal microprotrusions.
- the multimodal microprotrusions not only have a plurality of vertices, but when the microprotrusions are viewed in plan from the tip side, they are divided into a plurality of regions by grooves formed outward from the center, Each of the plurality of regions is formed to be a peak related to each vertex.
- this multimodal microprotrusion is produced by a molding process of microholes having a corresponding shape, and the microholes related to such multimodal microprotrusions are repeated in the anodizing process and the etching process. Fine holes made in close proximity are produced integrally by an etching process.
- the multimodal microprotrusions are formed such that the perimeter when the microprotrusions are viewed in plan from the tip side is longer than that of the single-peak microprotrusions. This point can be seen from FIG. 16 described later.
- the shape of these multimodal microprojections is different from the multimodal microprotrusions caused by poor filling of the resin during the molding process disclosed in Japanese Patent Application Laid-Open No. 2012-037670.
- FIG. 15 is a cross-sectional view (FIG. 15 (a)), a perspective view (FIG. 15 (b)), and a plan view (FIG. 15 (c)) for explaining the multimodal microprotrusions having a plurality of vertices.
- FIG. 15 is a diagram schematically showing for easy understanding
- FIG. 15A is a diagram showing a cross section by a broken line connecting the vertices of continuous minute protrusions.
- the xy direction is the in-plane direction of the substrate 2
- the z direction is the height direction of the microprojections.
- microprotrusions 5 are gradually cut along a cross-sectional area (a plane perpendicular to the height direction (a plane parallel to the XY plane in FIG. 15) as they move away from the base material 2 toward the top.
- the cross-sectional area is reduced, and one vertex is produced.
- a groove g was formed at the tip, and the apex was two (5A), the apex was three (5B), Furthermore, there were those having four or more vertices (not shown).
- the shape of the unimodal microprotrusions 5 can be approximated by a round shape at the top like a paraboloid of revolution or a sharp shape at the apex like a cone.
- the shape of the multimodal microprotrusions 5A and 5B is approximately approximated by a shape in which a groove-shaped recess is cut in the vicinity of the top of the single-peak microprotrusion 5 and the top is divided into a plurality of peaks.
- the shape of the multi-peak microprotrusions 5A and 5B, or the vertical cross-sectional shape when cutting along a virtual cut surface including a plurality of peaks and including the height direction (Z-axis direction in FIG. 15), has a plurality of maximum points.
- the thickness of the skirt portion relative to the size in the vicinity of the vertices is relatively thicker than that of the single-peak microprojections.
- the multimodal microprotrusions are superior in mechanical strength to the single-peak microprotrusions.
- the anti-reflective article has improved scratch resistance as compared to the case of using only monomodal micro-protrusions.
- the external force when external force is applied to the anti-reflective article specifically, compared to the case of only a single-peaked microprojection, the external force is distributed and received at more vertices, so the external force applied to each vertex is reduced.
- the microprotrusions can be made difficult to be damaged, thereby reducing the local deterioration of the antireflection function and further reducing the appearance defects. Moreover, even if a microprotrusion is damaged, the area of the damaged portion can be reduced.
- each peak portion is received and sacrificially damaged, thereby preventing wear of the main body portion lower than the peak of the microprojection and the microprojection having a height lower than that of the multi-peak microprojection. This also reduces local deterioration of the antireflection function and further reduces the occurrence of appearance defects.
- the distance d between adjacent protrusions is There are two types of local maxima, short maxima of 20 nm and 40 nm and long maxima of 120 nm and 164 nm.
- the maximum value of the long distance corresponds to the arrangement of the microprojection bodies (the part from the middle to the heel below the top part), while the maximum value of the short distance exists in the vicinity of the top part.
- the ratio of the number of multimodal microprotrusions in all the microprotrusions existing on the surface is 10% or more.
- the ratio of the multimodal microprojections is set to 30% or more, preferably 50% or more.
- the ratio is preferably 90% or less, more preferably 80% or less.
- the microprotrusions whose height is controlled are formed as described above.
- fine protrusions having different heights are distributed.
- the height of each microprotrusion is the height of the peak (highest peak) having the highest height at the top of a specific microprotrusion that shares the ridge (root).
- the height of the only peak (maximum point) at the top is the projection height of the microprojection.
- the height of the microprotrusions has the height of the highest peak among a plurality of peaks sharing the ridge at the top. Say it. Moreover, when all the peaks which share a collar part are the same height, let it be the height of this microprotrusion with the same height. In this way, when the heights of the microprojections are variously different, for example, even when the shape of the microprojections having a high height is damaged by contact with an object, the shape is maintained in the microprojections having a low height. It will be. Also in this case, in the antireflection article, local deterioration of the antireflection function can be reduced, and furthermore, occurrence of defective appearance can be reduced, and as a result, scratch resistance can be improved.
- the dust when dust adheres between the microprojection group on the surface of the antireflection article and the object, when the article slides relative to the antireflection article, the dust functions as an abrasive to form microprojections (Group) wear and damage are promoted. In this case, if there is a difference in height between the microprojections constituting the microprojection group, the dust strongly contacts the microprojections having a high height and is damaged. On the other hand, the contact with the low-height microprotrusions is weakened, and damage to the low-height microprotrusions is reduced, and the antireflection performance is maintained by the low-height microprotrusions that remain intact or light.
- the microprotrusion group with distribution (height difference) in the height of each microprotrusion has a broad antireflection performance and has light with multiple wavelengths such as white light or a broadband spectrum.
- the wavelength band in which good antireflection performance can be exhibited by such a microprojection group depends not only on the distance d between adjacent projections but also on the projection height.
- the variation needs to be 10 nm or more when defined by the standard deviation.
- the height variation is preferably 10 nm or more and 50 nm or less.
- the antireflection performance can be improved as compared with the case of using only single-peak microprojections. That is, the multimodal microprotrusions 5A, 5B, etc. as shown in FIG. 2, FIG. 15, FIG. 16, etc., even when the distance between adjacent protrusions is the same or when the protrusion height is the same. Compared with a single-peak microprojection, the reflectance of light is further reduced. The reason for this is that the multimodal microprotrusions 5A, 5B, etc. have a smaller change rate in the height direction of the effective refractive index in the vicinity of the apex than the single-peak microprotrusions below the apex (in the middle and the heel). It is to become.
- the ratio of the total cross-sectional area S A (z) of the medium is further increased as compared with the ratio of the total cross-sectional area S M (z) of the microprojections having a relatively high refractive index.
- the difference between the refractive index of the effective refractive index and the surrounding medium multimodal microprotrusions in the plane Z z
- n A (z) 1,
- the effective refractive index and the peripheral area of the microprojection group including the multimodal microprojections is smaller than that of the projection group including only the single-peak microprojections.
- the difference from the refractive index of the medium (air), more specifically, the rate of change of the refractive index per unit distance in the height direction of the microprojections is further reduced, in other words, the direction of the refractive index in the height direction. It can be seen that the continuity of change can be further increased.
- the antireflection effect is locally impaired.
- each peak of the multi-peak microprojection has a small ratio of the height of the peak to the width of the buttocks, which is 1/2 to the ratio of the height of the apex to the width of the buttocks of the single-peak microprojection. It is about 1/10. Therefore, for the same external force, the peak of the multimodal microprotrusions is less likely to deform than the single-peak microprotrusions.
- the main body itself of the multimodal microprotrusions has a greater distance between adjacent protrusions and a greater strength than the ridges. Therefore, after all, the microprojection group composed of multimodal microprotrusions can easily achieve both stickiness and low reflectivity compared to the projection group composed of monomodal microprojections.
- the antireflection material depends on the assumed antireflection wavelength depending on the environmental conditions where the antireflection material is installed and used.
- the height of the moth eye can be about 50 n.
- the infrared region around 700 nm is about 150 nm to 400 nm in consideration of practical use. Is possible. As described above, it is possible to find manufacturing conditions that saturate the height of the arrangement pitch of the moth-eye, and to effectively control the reflectance of the moth-eye. In addition, the top structure of the moth-eye can be improved from the conventional single peak to achieve both height and reflectivity, and it is difficult to cause physical sticking and can effectively reduce reflectivity. Yes.
- FIG. 16 is a photograph showing a plurality of minute protrusions at the apex, and FIG. 16 is an example of a minute protrusion different from that of the embodiment, but FIG. 16A is based on AFM, and FIG. (B) and (c) are by SEM.
- FIG. 16 (a) a groove g and a microprotrusion having three vertices and a microprotrusion having a groove g and two vertices can be seen, and in FIG. 16 (b), the groove g and four vertices are present.
- a microprotrusion and a microprotrusion having a groove g and two vertices can be seen, and in FIG.
- a microprotrusion having a groove g and three vertices a microprotrusion having a groove g and two vertices can be seen. be able to.
- an aqueous oxalic acid solution having a water temperature of 20 ° C. and a concentration of 0.02 M is applied, and an anodizing process is executed for 120 seconds with an applied voltage of 40V.
- an anodic oxidation solution was applied to the first step, and an aqueous phosphoric acid solution having a water temperature of 20 ° C. and a concentration of 1.0 M was applied to the second step.
- the number of times of anodizing treatment and etching treatment is 3 ( ⁇ 5) times.
- FIG. 16 and 17 are a perspective view (FIG. 16), a plan view (FIG. 17 (a)), a front view (FIG. 17 (b)), and a side view (FIG. 17 (c)).
- FIG.16 and FIG.17 is a contour map.
- three peaks having greatly different heights are combined to form one microprotrusion. It can be seen that microprojections are produced by dividing the region into three peak areas by three radial grooves (swelled local minimum portions) formed outward from the center.
- FIG. 16 and FIG. 17 show data in detail by partially selecting data based on measurement results by AFM.
- the unit of the numbers in FIGS. 16 and 17 is nm.
- the X coordinate and the Y coordinate are coordinate values from a predetermined reference position.
- FIGS. 18 and 19 are diagrams showing other measurement results of the microprotrusions in the present embodiment in comparison with FIGS. 16 and 17.
- three ridges having substantially the same height are combined to form one microprotrusion, and the three ridges extend outward from the substantially central portion of the top. It can be seen that it is divided by three radial grooves.
- 20 and 21 are diagrams showing the measurement results of other microprotrusions in the same embodiment in the same manner as in comparison with FIGS. 16 to 19.
- 20 and FIG. 21 is formed in a shape as if a plurality of microprojections arranged in a row horizontally are combined, and the aspect ratio between the arrangement direction and the direction orthogonal to the arrangement direction is the same. Created differently.
- the antireflection characteristic can be given directionality.
- the grooves between the peaks extend in a direction perpendicular to the alignment direction.
- the roughness of the surface is observed to be rougher than the outer side of each peak, and the inner side and the outer side of the peak are thus observed. Due to the difference in roughness, it is possible to see the difference from the multimodal microprotrusions caused by poor filling of the resin during the shaping process.
- portions where no contour lines are represented are portions where data is not obtained for convenience of measurement.
- Table 1 shows the evaluation results of the scratch resistance.
- the antireflective article according to the example of FIGS. 13 and 14 was compared with an antireflective article having a similar protrusion height distribution using only single-peaked microprotrusions.
- the anti-reflective article only of the single peak microprotrusion produced the applied voltage of the repetition anodizing process as the same constant voltage as the 1st process also after the 2nd process.
- an antireflection article having a bimodal characteristic distribution using only unimodal microprotrusions was produced by executing an applied voltage of repeated anodizing treatment by switching between two stages.
- the column of steel wool is the result of visually confirming the change in the surface after the steel wool was pressed and reciprocated with a pressing force of 100 g and 200 g.
- the double circle mark was evaluated to be visually invisible and no turbidity was observed, and the triangle mark was visually visible to 1 to 5 scratches. In the case of x, six or more scratches are observed visually.
- the evaluation range is a rectangular area with a side of 5 cm. It can be seen that the scratch resistance is sufficiently improved by the multimodal microprotrusions.
- the column of dry wiping shows 5 ° regular reflectance ( ⁇ Y (%)) when fingerprints are attached and then wiped 50 times in a dry state containing no solvent using a nonwoven fabric.
- the 5 ° regular reflectance was set to 4%.
- the nonwoven fabric Savina Minimax (registered trademark) 150 mm ⁇ manufactured by KB Seiren Co., Ltd. was used.
- the initial value of the 5 ° regular reflectance in a state where no dirt due to fingerprints was attached was 0.5%. According to the results of this study, it was found that the dirt attached by the multimodal microprotrusions was easily wiped off, and the antireflection performance was restored to a state close to that before the fingerprint attachment. In the case where it is provided, it is considered that the dirt does not penetrate deeply into the base side of the minute protrusion.
- the scratch resistance can be improved as compared with the prior art by mixing a multi-peak microprojection having a plurality of vertices and a single-peak microprojection having one vertex.
- the stain resistance (easy wiping property) against fingerprints is also improved.
- the slipperiness can be improved by giving a distribution to the heights of the microprojections.
- the present invention is not limited to this, and the number of repetitions is set to other numbers.
- the present invention can be widely applied to the case where the process is repeated a plurality of times and the final process is anodizing.
- the present invention is not limited to this.
- the surface side of the image display panel is a light output surface of the image display panel and also a surface on the image observer side.
- the back side of the image display panel is the opposite side of the surface of the image display panel.
- the incident light from the backlight is incident. It is also a surface.
- an acrylate-based ultraviolet curable resin is applied to the shaping resin.
- the present invention is not limited thereto, and various ultraviolet curable resins such as epoxy-based and polyester-based resins, or Also when using various materials such as acrylate-based, epoxy-based, polyester-based electron beam curable resins, urethane-based, epoxy-based, polysiloxane-based thermosetting resins, and various types of curing resins
- the present invention can be widely applied.
- the present invention can also be widely applied in the case of molding by pressing a thermoplastic resin such as a heated acrylic resin, polycarbonate resin, or polystyrene resin.
- microprojections are formed on the receiving layer 4 of the laminate formed by laminating the receiving layer (ultraviolet curable resin layer) 4 on one surface of the substrate 2.
- the groups 5, 5A, 5B,... Are shaped and the receiving layer 4 is cured to form the antireflection article 1.
- the layer structure is a two-layer laminate.
- the present invention is not limited to such a form.
- the antireflection article 1 of the present invention is a single layer in which the microprojections 5, 5A, 5B,... Are directly formed on one surface of the substrate 2 without interposing another layer. It may be a configuration.
- one or more intermediate layers on one surface of the substrate 2 (layers that improve substrate surface performance such as interlayer adhesion, coating suitability, surface smoothness, etc. Also referred to as primer layer, anchor layer, etc. .) May be formed, and a laminate of three or more layers in which the microprotrusions 5, 5A, 5B,... Are formed on the surface of the receptor layer may be used.
- the microprojections 5, 5A, 5B,... are formed only on one surface of the base material 2 (directly or via another layer).
- the microprojection groups 5, 5A, 5B,... May be formed on both surfaces of the substrate 2 (directly or via other layers).
- the antireflection performance is larger than the form in which the microprojection group is provided only on one surface. improves.
- the reflectance of light at the interface between air and the substrate 2 itself is 4% and the reflectance of light at the interface between the minute protrusions and the air is 0.2%
- the total reflectance of the front and back surfaces with respect to light transmitted from the front (or back) surface to the back (or front) surface of 2 is the reflectance at the interface between the layer having the fine protrusion group (receiving layer 4) and the substrate 2
- the contribution of is 0%, (1) 8% when there are no microprojections on both sides of the substrate. (2) 4.2% when the microprojection group is provided only on one surface of the substrate.
- the surface opposite to the surface on which the microprojections are formed of the substrate 2 (the lower surface of the substrate 2 in FIG. 1).
- Various adhesive layers are formed on the adhesive layer, and a release film (release paper) is laminated on the surface of the adhesive layer so as to be peelable.
- the release film is peeled and removed to expose the adhesive layer, and the antireflection article 1 of the present invention can be laminated and laminated on the desired surface of the desired article by the adhesive layer.
- the antireflection performance can be easily imparted to a desired article.
- various types of known adhesive forms such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, a thermosetting adhesive, and a hot melt adhesive can be used. .
- the protective film may be peeled and removed at an appropriate time after carrying, carrying, buying and selling, post-processing or construction. In such a form, it is possible to prevent the antireflection performance from being deteriorated due to damage or contamination of the microprojection group during storage, transportation and the like.
- the surface connecting the valley bottoms (minimum points of height) between the adjacent minute protrusions is a flat surface having a constant height.
- the envelope surface connecting the valley bottoms between the microprojections has a period D (that is, D> ⁇ max) that is equal to or longer than the longest wavelength ⁇ max of the visible light band. It is good also as a structure.
- the periodic undulation is constant in only one direction (for example, the X direction) on the XY plane (see FIGS.
- the uneven surface 6 that undulates with a period D satisfying D> ⁇ max is superimposed on a microprojection group composed of a large number of microprojections, so that the reflected light remaining without being completely prevented from being reflected by the microprojection group is scattered, so that Reflected light, particularly specularly reflected light, can be made more difficult to visually recognize, and the antireflection effect can be further improved.
- D or D MIN is 1 to 600 ⁇ m, preferably 10 to 300 ⁇ m.
- Rz is 0.4 to 5 ⁇ m.
- An example of a specific manufacturing method for forming a concavo-convex microprojection group having an uneven surface 6 in which the envelope surface connecting the valley bottoms of each microprojection is D (or D MIN )> ⁇ max is as follows. is there. That is, in the manufacturing process of the roll plate 13, a concavo-convex shape corresponding to the concavo-convex shape of the concavo-convex surface 6 is formed on the surface of a cylindrical (or columnar) base material by sandblasting or mat (matte) plating.
- an appropriate intermediate layer is formed directly or if necessary on the uneven surface, and then an aluminum layer is laminated. Thereafter, an aluminum layer formed with a surface shape corresponding to the uneven surface is subjected to anodizing treatment and etching treatment in the same manner as in the above embodiment to form a microprojection group including microprojections 5, 5A, 5B. To do.
- the present invention is not limited to this, and the photolithography technique is applied.
- the present invention can also be widely applied to molds for mold processing.
- the above-mentioned embodiment described the case where the anti-reflective article by a film shape was produced by the shaping process using a roll plate, this invention is not limited to this,
- the transparent base material which concerns on the shape of an anti-reflective article Depending on the shape, for example, when creating an antireflection article by processing a sheet using a shaping mold with a specific curved shape, such as a flat plate, the process related to the shaping process, the mold is the antireflection article It can change suitably according to the shape of the transparent base material which concerns on a shape.
- the present invention is not limited to this and is applied to various applications. be able to. Specifically, it should be applied to applications that are placed on the back surface (image display panel side) of the surface side member such as a touch panel, various window materials, various optical filters, etc. installed on the screen of the image display panel through a gap. Can do. In this case, it is possible to prevent interference fringes such as Newton rings due to light interference between the image display panel and the surface side member, and between the light emission surface of the image display panel and the light incident surface side of the surface side member. Thus, it is possible to prevent ghost images due to multiple reflections, and to achieve effects such as reduction of reflection loss with respect to image light emitted from the screen and entering these surface side members.
- a transparent electrode constituting the touch panel is formed on a film or plate-like transparent substrate with a group of microprojections specific to the present invention, and a transparent conductive film such as ITO (indium tin oxide) is further formed on the group of microprojections.
- ITO indium tin oxide
- the formed one can be used. In this case, it is possible to prevent light reflection between the touch panel electrode and the counter electrode or various members adjacent to the touch panel electrode, thereby reducing the occurrence of interference fringes, ghost images, and the like.
- the glass plate surface (external side) used for the store show window and product display box of the store, the display window and display box of the exhibition of the museum, or both of the front and back surfaces (product or display side). May be. In this case, it is possible to improve the visibility for customers and spectators of products, artworks, etc. by preventing light reflection on the surface of the glass plate.
- a lens or prism used in various optical devices such as glasses, a telescope, a camera, a video camera, a gun sighting mirror (sniper scope), binoculars, a periscope.
- the visibility by preventing light reflection on the lens or prism surface can be improved.
- it can also be applied to the case where it is arranged on the surface of a printed part (characters, photos, drawings, etc.) of a book to prevent light reflection on the surface of characters and the like and improve the visibility of characters and the like.
- a light entrance surface of a window material for a lighting fixture using incandescent bulbs, light emitting diodes, fluorescent lamps, mercury lamps, EL (electroluminescence), etc. (in some cases, it also serves as a diffuser plate, condenser lens, optical filter, etc.)
- it can arrange
- the window of the cockpits (driver's cabs, wheelhouses) of vehicles such as automobiles, railway vehicles, ships, and aircraft to prevent reflection of indoor and outdoor light from the windows.
- the outside world of the driver driver
- it can be arranged on the surface of a night vision device lens or window material used for crime prevention monitoring, gun sighting, astronomical observation, etc. to improve visibility at night and in the dark.
- the surface of the transparent substrate (window glass, etc.) that constitutes windows, doors, partitions, wall surfaces, etc. of buildings such as houses, stores, offices, schools, hospitals, etc. (inside, outside, or both sides) It is possible to improve the visibility of the outside world or the daylighting efficiency. Furthermore, it stores products or exhibits used in various stores, museums, museums, etc., and arranges them on the front, back, or both sides of the transparent window (or door) of various display boxes or showcases to be displayed, It is possible to improve the visibility of products to be displayed or exhibits. Furthermore, it can arrange
- the wavelength band of the electromagnetic wave for preventing reflection is exclusively the visible light band (all or part of the visible light band), but the present invention is not limited to this, and the electromagnetic wave for preventing reflection. May be set to a wavelength band other than visible light rays such as infrared rays and ultraviolet rays.
- the shortest wavelength ⁇ min in the wavelength band of the electromagnetic wave may be set to the shortest wavelength in which the antireflection effect in the wavelength band of infrared rays, ultraviolet rays, etc. is desired in each conditional expression.
- d (dmax) 800 nm.
- an antireflection effect cannot be expected in the visible light band (380 to 780 nm), and an antireflection article exhibiting an antireflection effect for infrared rays having a wavelength of 850 nm or more can be obtained.
- the film-shaped antireflection article of the present invention when the film-shaped antireflection article of the present invention is disposed on the front surface, back surface, or both front and back surfaces of a transparent substrate such as a glass plate, it is disposed and covered over the entire surface of the transparent substrate. In addition, it can be arranged only in a partial area. As an example of this, for example, for a single window glass, a film-shaped antireflection article is attached to the indoor side surface only with an adhesive in a square area at the center, and an antireflection article is provided in the other areas. The case where it does not stick can be mentioned.
- the antireflection article is arranged only in a partial area of the transparent substrate, it is easy to visually recognize the presence of the transparent substrate without special display or a collision prevention fence, etc.
- the effect of reducing the risk of collision and injury, and the effect that both the prevention of peeping indoors (indoors) and the transparency of the transparent substrate (in the region where the antireflection article is disposed) can be achieved.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
The purpose of this invention is to improve, relative to existing antireflective articles, the abrasion resistance and antireflective functionality of an antireflective article that has a moth-eye structure. Said antireflective article, in which tiny protrusions are densely arrayed and the spacing between adjacent tiny protrusions is less than or equal to the shortest wavelength in the wavelength band of electromagnetic waves to prevent the reflection of, is characterized in that: said tiny protrusions comprise multi-peak tiny protrusions that each have a plurality of apices and single-peak tiny protrusions that each have a single apex; and letting m represent the mean height (H) of the frequency distribution of the heights (H) of the tiny protrusions and letting σ represent the standard deviation of said frequency distribution, the ratio (Nm/Nt) of the number (Nm) of multi-peak tiny protrusions in a given region, namely a low-height region, i.e. the region in which H < m−σ, a medium-height region, i.e. the region in which m−σ ≤ H ≤ m+σ, or a high-height region, i.e. the region in which m+σ < H, to the total number (Nt) of tiny protrusions in the entire frequency distribution is higher for the medium-height region than for either the low-height region or the high-height region.
Description
本発明は、反射防止を図る電磁波の波長帯域の最短波長以下の間隔で多数の微小突起を密接配置して反射防止を図る反射防止物品に関するものである。
The present invention relates to an antireflection article for preventing reflection by closely arranging a large number of minute protrusions at an interval equal to or shorter than the shortest wavelength of an electromagnetic wave wavelength band for preventing reflection.
近年、フィルム形状の反射防止物品である反射防止フィルムに関して、透明基材(透明フィルム)の表面に多数の微小突起を密接して配置することにより、反射防止を図る方法が提案されている(特許文献1~3参照)。この方法は、いわゆるモスアイ(moth eye(蛾の目))構造の原理を利用したものであり、入射光に対する屈折率を基板の厚み方向に連続的に変化させ、これにより屈折率の不連続界面を消失させて反射防止を図るものである。
In recent years, regarding an antireflection film, which is a film-shaped antireflection article, there has been proposed a method for preventing reflection by arranging a large number of microprotrusions closely on the surface of a transparent substrate (transparent film) (patent) Reference 1 to 3). This method uses the principle of the so-called moth-eye structure, and continuously changes the refractive index for incident light in the thickness direction of the substrate, thereby discontinuous interface of the refractive index. Is eliminated to prevent reflection.
このモスアイ構造に係る反射防止物品では、隣接する微小突起の間隔dが、反射防止を図る電磁波の波長帯域の最短波長Λmin以下(d≦Λmin)となるよう、微小突起が密接して配置される。また各微小突起は、透明基材に植立するように、さらに透明基材より先端側に向かうに従って徐々に断面積が小さくなるように(先細りとなるように)作製される。
In the antireflection article according to this moth-eye structure, the microprojections are closely arranged so that the interval d between adjacent microprojections is equal to or less than the shortest wavelength Λmin (d ≦ Λmin) of the wavelength band of the electromagnetic wave to prevent reflection. . Moreover, each microprotrusion is produced so that a cross-sectional area may become small gradually toward the front end side from a transparent base material so that it may be planted on a transparent base material.
かかる反射防止物品には各種用途が提案されている。例えば、各種画像表示裝置の出光面上に配置して画面における日光等の外光反射を低減して画像視認性を向上させたり、シート又は板状の透明基材上に該微小突起群を形成し、更に該微小突起群上にITO(酸化インジウム錫)等の透明導電膜を形成した電極を用いてタッチパネルを構成することにより、該タッチパネル電極とこれと隣接する各種部材との間の光反射を防止して、干渉縞、ゴースト像等の発生を低減させること等が提案されている。
Various uses have been proposed for such antireflection articles. For example, it can be placed on the light exit surface of various image display devices to reduce external light reflection such as sunlight on the screen to improve image visibility, or to form the microprojections on a sheet or plate-like transparent substrate Furthermore, by constructing a touch panel using an electrode in which a transparent conductive film such as ITO (indium tin oxide) is formed on the microprojection group, light reflection between the touch panel electrode and various adjacent members is performed. It has been proposed to reduce the occurrence of interference fringes, ghost images, and the like.
また、特許文献4には、この種の反射防止物品に関して、賦型処理時の樹脂の充填不良により微小突起の頂部に複数の頂点が作成される場合であっても、十分に反射防止機能を確保できることが記載されている。
Further, Patent Document 4 discloses a sufficient antireflection function for this type of antireflection article, even when a plurality of vertices are created at the tops of the microprojections due to poor filling of the resin during the molding process. It is described that it can be secured.
ところでこの種のモスアイ構造に係る反射防止物品では、耐擦傷性に実用上未だ不十分な問題がある。すなわち反射防止物品は、例えば他の物体が接触等した場合に、反射防止機能が局所的に劣化し、また接触個所に白濁、傷等が発生して外観不良が発生する。
また、このような反射防止物品には、更なる反射防止機能の向上が求められている。 By the way, the antireflection article according to this kind of moth-eye structure has a problem that the scratch resistance is still insufficient in practice. That is, for example, when an anti-reflective article comes into contact with another object, the anti-reflective function is locally deteriorated, and white turbidity, scratches, etc. occur at the contact location, resulting in poor appearance.
Further, such an antireflection article is required to further improve the antireflection function.
また、このような反射防止物品には、更なる反射防止機能の向上が求められている。 By the way, the antireflection article according to this kind of moth-eye structure has a problem that the scratch resistance is still insufficient in practice. That is, for example, when an anti-reflective article comes into contact with another object, the anti-reflective function is locally deteriorated, and white turbidity, scratches, etc. occur at the contact location, resulting in poor appearance.
Further, such an antireflection article is required to further improve the antireflection function.
本発明はこのような状況に鑑みてなされたものであり、モスアイ構造に係る反射防止物品に関して、従来に比して耐擦傷性を向上するとともに、反射防止機能を向上させることを目的とする。
The present invention has been made in view of such a situation, and an object of the present invention is to improve the anti-reflection function and improve the anti-reflection function of the anti-reflection article according to the moth-eye structure.
本発明者は、上記課題を解決するために鋭意研究を重ね、頂点を複数有する微小突起(多峰性微小突起と呼ぶ)を所定の分布で設ける、との着想に至り、本発明を完成するに至った。なお以下において、多峰性微小突起との対比により、頂点が1つのみの微小突起を単峰性微小突起と呼ぶ。また以下において、単に微小突起と呼称する場合は単峰性微小突起及び多峰性微小突起の両方を包含するものとする。また多峰性微小突起、単峰性微小突起に係る各頂点を形成する各凸部を、適宜、峰と呼ぶ。
The present inventor has intensively studied to solve the above-mentioned problems, and has arrived at the idea that microprojections having a plurality of vertices (called multimodal microprojections) are provided in a predetermined distribution, thereby completing the present invention. It came to. In the following, a microprojection having only one vertex is referred to as a single-peak microprojection in comparison with a multimodal microprojection. Further, in the following, when simply referred to as a microprojection, both a single-peak microprojection and a multimodal microprojection are included. Moreover, each convex part which forms each vertex which concerns on a multimodal microprotrusion and a monomodal microprotrusion is called a peak suitably.
具体的には、本発明では、以下のようなものを提供する
Specifically, the present invention provides the following:
(1) 微小突起が密接して配置され、隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下である反射防止物品において、前記微小突起は、頂点が複数の多峰性微小突起と、頂点が一つの単峰性微小突起とから構成され、前記微小突起の高さHの度数分布における高さHの平均値をmとし、標準偏差をσとし、H<m-σの領域を低高度領域とし、m-σ≦H≦m+σの領域を中高度領域とし、m+σ<Hの領域を高高度領域とした場合に、各領域内の前記多峰性微小突起の数Nmと、前記度数分布全体における前記微小突起の総数Ntとの比率が、中高度領域のNm/Nt>低高度領域のNm/Ntと、中高度領域のNm/Nt>高高度領域のNm/Ntとの関係を満たすことを特徴とする反射防止物品である。
(1) In an antireflection article in which microprotrusions are closely arranged and the interval between adjacent microprotrusions is equal to or less than the shortest wavelength of the wavelength band of electromagnetic waves for antireflection, the microprotrusions have a plurality of vertices. It is composed of a ridge-shaped microprojection and a single-peaked microprojection whose apex is one, the average value of the height H in the frequency distribution of the height H of the microprojection is m, the standard deviation is σ, and H <m When the region of −σ is a low altitude region, the region of m−σ ≦ H ≦ m + σ is a medium altitude region, and the region of m + σ <H is a high altitude region, the multi-peak microprojections in each region The ratio between the number Nm and the total number Nt of the microprotrusions in the entire frequency distribution is as follows: Nm / Nt in the middle altitude region> Nm / Nt in the low altitude region and Nm / Nt in the middle altitude region> Nm in the high altitude region / Nt is an antireflection article characterized by satisfying the relationship with Nt .
(1)によれば、反射防止物品は、中高度領域の多峰性微小突起の数(Nm)と、度数分布全体における微小突起の総数(Nt)との比(Nm/Nt)が、低高度領域や高高度領域の多峰性微小突起の数と、度数分布全体における微小突起の総数(Nt)との比(Nm/Nt)よりも大きいので、反射防止機能の広帯域化を図ることができる。このような形状による多峰性微小突起形状は、賦型処理後の樹脂の充填不良により生じる多峰性微小突起とは異なり、対応する形状を備えている賦型処理用の金型により作製されることにより、設計通りの高さの分布を設定して均一かつ高い量産性を確保することができる。またさらに、充填不良による場合に比して突起間の間隔を広く設定することにより、十分に耐擦傷性を向上することができ、さらには光学特性を向上することができる。
また、単峰性微小突起に比して機械的強度が優れた微小突起が設けられることにより、衝撃力が加わった場合、単峰性微小突起のみの場合に比して、突起が損傷しないようにすることができ、これにより反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。また仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができ、これによっても反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。 According to (1), the antireflection article has a low ratio (Nm / Nt) between the number of multi-peak microprojections in the middle altitude region (Nm) and the total number of microprojections (Nt) in the entire frequency distribution. Since it is larger than the ratio (Nm / Nt) between the number of altitude regions and the number of multi-peak microprojections in the high altitude region and the total number of microprojections (Nt) in the entire frequency distribution, it is possible to increase the bandwidth of the antireflection function. it can. Unlike the multimodal microprotrusions caused by poor filling of the resin after the molding process, the multimodal microprotrusions having such a shape are produced by a mold for molding process having a corresponding shape. Thus, the height distribution as designed can be set to ensure uniform and high mass productivity. Furthermore, by setting the distance between the protrusions wider than in the case of defective filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
In addition, by providing microprotrusions with superior mechanical strength compared to unimodal microprotrusions, when impact force is applied, the protuberances will not be damaged compared to unimodal microprotrusions alone. As a result, local deterioration of the antireflection function can be reduced, and the occurrence of poor appearance can be reduced. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect.
また、単峰性微小突起に比して機械的強度が優れた微小突起が設けられることにより、衝撃力が加わった場合、単峰性微小突起のみの場合に比して、突起が損傷しないようにすることができ、これにより反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。また仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができ、これによっても反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。 According to (1), the antireflection article has a low ratio (Nm / Nt) between the number of multi-peak microprojections in the middle altitude region (Nm) and the total number of microprojections (Nt) in the entire frequency distribution. Since it is larger than the ratio (Nm / Nt) between the number of altitude regions and the number of multi-peak microprojections in the high altitude region and the total number of microprojections (Nt) in the entire frequency distribution, it is possible to increase the bandwidth of the antireflection function. it can. Unlike the multimodal microprotrusions caused by poor filling of the resin after the molding process, the multimodal microprotrusions having such a shape are produced by a mold for molding process having a corresponding shape. Thus, the height distribution as designed can be set to ensure uniform and high mass productivity. Furthermore, by setting the distance between the protrusions wider than in the case of defective filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
In addition, by providing microprotrusions with superior mechanical strength compared to unimodal microprotrusions, when impact force is applied, the protuberances will not be damaged compared to unimodal microprotrusions alone. As a result, local deterioration of the antireflection function can be reduced, and the occurrence of poor appearance can be reduced. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect.
(2) 前記微小突起の高さHの度数分布が2つの分布による双峰性であり、2つの分布の境界となる高さをHsとし、Hs未満の分布における前記微小突起の高さHの平均値をm1とし、標準偏差をσ1とし、H<m1-σ1の領域を低高度領域とし、m1-σ1≦H≦m1+σ1の領域を中高度領域とし、m1+σ1<H<Hsの領域を高高度領域とした場合に、Hs未満の分布における各領域内の前記多峰性微小突起の数Nm1と、前記度数分布全体における前記微小突起の総数Ntとの比率が、中高度領域のNm1/Nt>低高度領域のNm1/Ntと、中高度領域のNm1/Nt>高高度領域のNm1/Ntとの関係を満たし、Hs以上の分布における前記微小突起の高さHの平均値をm2とし、標準偏差をσ2とし、Hs<H<m2-σ2の領域を低高度領域とし、m2-σ2≦H≦m2+σ2の領域を中高度領域とし、m2+σ2<Hの領域を高高度領域とした場合に、Hs以上の分布における各領域内の前記多峰性微小突起の数Nm2と、前記度数分布全体における前記微小突起の総数Ntとの比率が、中高度領域のNm2/Nt>低高度領域のNm2/Ntと、中高度領域のNm2/Nt>高高度領域のNm2/Ntとの関係を満たすこと、を特徴とする(1)の反射防止物品である。
(2) The frequency distribution of the height H of the microprojections is bimodal due to two distributions, and the height that becomes the boundary between the two distributions is Hs, and the height H of the microprojections in a distribution less than Hs The average value is m1, the standard deviation is σ1, the region of H <m1−σ1 is the low altitude region, the region of m1−σ1 ≦ H ≦ m1 + σ1 is the medium altitude region, and the region of m1 + σ1 <H <Hs is the high altitude In the case of the region, the ratio of the number Nm1 of the multi-peak microprojections in each region in the distribution below Hs to the total number Nt of microprojections in the entire frequency distribution is Nm1 / Nt> Nm1 / Nt in the low altitude region and Nm1 / Nt in the medium altitude region> Nm1 / Nt in the high altitude region satisfying the relationship, and the average value of the height H of the microprotrusions in a distribution of Hs or higher is m2. The deviation is σ2 and Hs <H <m When the region of −σ2 is the low altitude region, the region of m2−σ2 ≦ H ≦ m2 + σ2 is the medium altitude region, and the region of m2 + σ2 <H is the high altitude region, the above-mentioned multiple in each region in the distribution of Hs or higher The ratio between the number Nm2 of peak microprojections and the total number Nt of microprojections in the entire frequency distribution is determined as follows: Nm2 / Nt in the middle altitude region> Nm2 / Nt in the low altitude region and Nm2 / Nt in the middle altitude region> The antireflection article according to (1), characterized by satisfying a relationship with Nm2 / Nt in a high altitude region.
(2)によれば、各分布における多峰性微小突起の分布を、各分布の頂部近傍に集中させることができ、斜め方向からの光学特性を向上して広い視野角特性を向上することができ、また、広帯域化された反射防止機能を更に向上させることができる。
According to (2), the distribution of the multimodal microprojections in each distribution can be concentrated in the vicinity of the top of each distribution, and the optical characteristics from the oblique direction can be improved to improve the wide viewing angle characteristics. In addition, the antireflection function having a wider band can be further improved.
(3) 画像表示装置において、画像表示パネルの出光面上に(1)又は(2)に記載の反射防止物品を配置する。
(3) In the image display device, the antireflection article described in (1) or (2) is disposed on the light exit surface of the image display panel.
(3)によれば、耐擦傷性及び反射防止機能を向上した反射防止物品による画像表示装置を提供することができる。
According to (3), it is possible to provide an image display device using an antireflection article having improved scratch resistance and antireflection function.
(4) 反射防止物品の製造に供する反射防止物品の製造用金型であって、前記反射防止物品は、微小突起が密接して配置され、隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下であり、前記微小突起が、頂点が複数の多峰性微小突起と、頂点が一つの単峰性微小突起とから構成され、前記微小突起の高さHの度数分布における高さHの平均値をmとし、標準偏差をσとし、H<m-σの領域を低高度領域とし、m-σ≦H≦m+σの領域を中高度領域とし、m+σ<Hの領域を高高度領域とした場合に、各領域内の前記多峰性微小突起の数Nmと、前記度数分布全体における前記微小突起の総数Ntとの比率が、中高度領域のNm/Nt>低高度領域のNm/Ntと、中高度領域のNm/Nt>高高度領域のNm/Ntとの関係を満たし、前記反射防止物品の製造用金型は、前記微小突起に対応する微細穴が密接して作製されていることを特徴とする反射防止物品の製造用金型である。
(4) A mold for manufacturing an antireflective article used for manufacturing an antireflective article, wherein the antireflective article has minute protrusions arranged in close contact with each other, and an interval between adjacent minute protrusions prevents reflection. The frequency is equal to or less than the shortest wavelength in the wavelength band of electromagnetic waves, and the microprotrusions are composed of a plurality of multimodal microprotrusions with a single vertex and a single-peak microprotrusion with a single apex. The average value of height H in the distribution is m, the standard deviation is σ, the region of H <m−σ is the low altitude region, the region of m−σ ≦ H ≦ m + σ is the medium altitude region, and m + σ <H. When the region is a high altitude region, the ratio between the number Nm of the multi-peaked microprojections in each region and the total number Nt of the microprojections in the entire frequency distribution is Nm / Nt> low in the medium altitude region. Nm / Nt in the altitude region and Nm / Nt in the middle altitude region> high altitude region The mold for manufacturing the antireflection article satisfying the relationship with Nm / Nt is a mold for manufacturing the antireflection article characterized in that the minute holes corresponding to the minute protrusions are closely formed. is there.
(4)によれば、該金型で製造された反射防止物品は、中高度領域の多峰性微小突起の数(Nm)と、度数分布全体における微小突起の総数(Nt)との比(Nm/Nt)が、低高度領域や高高度領域の多峰性微小突起の数と、度数分布全体における微小突起の総数(Nt)との比(Nm/Nt)よりも大きいので、反射防止機能の広帯域化を図ることができる。このような形状による多峰性微小突起形状は、賦型処理後の樹脂の充填不良により生じる多峰性微小突起とは異なり、対応する形状を備えている賦型処理用の金型により作製されることにより、設計通りの高さの分布を設定して均一かつ高い量産性を確保することができる。またさらに、充填不良による場合に比して突起間の間隔を広く設定することにより、十分に耐擦傷性を向上することができ、さらには光学特性を向上することができる。
また、単峰性微小突起に比して機械的強度が優れた微小突起が反射防止物品に設けられることにより、この反射防止物品に衝撃力が加わった場合、単峰性微小突起のみの場合に比して、突起が損傷しないようにすることができ、これにより反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。また仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができ、これによっても反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。 According to (4), the anti-reflective article manufactured with the mold has a ratio (Nm) of the number of multi-peak microprotrusions in the medium-altitude region to the total number of microprotrusions (Nt) in the entire frequency distribution ( Nm / Nt) is larger than the ratio (Nm / Nt) of the number of multi-peak microprojections in the low altitude region or high altitude region and the total number of microprojections (Nt) in the entire frequency distribution, so that the antireflection function Can be widened. Unlike the multimodal microprotrusions caused by poor filling of the resin after the molding process, the multimodal microprotrusions having such a shape are produced by a mold for molding process having a corresponding shape. Thus, the height distribution as designed can be set to ensure uniform and high mass productivity. Furthermore, by setting the distance between the protrusions wider than in the case of defective filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
In addition, when a microprojection having excellent mechanical strength compared to a single-peak microprojection is provided in the antireflection article, when an impact force is applied to the antireflection article, only in the case of a single peak microprojection. In comparison, it is possible to prevent the protrusions from being damaged, thereby reducing local deterioration of the antireflection function and further reducing the occurrence of appearance defects. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect.
また、単峰性微小突起に比して機械的強度が優れた微小突起が反射防止物品に設けられることにより、この反射防止物品に衝撃力が加わった場合、単峰性微小突起のみの場合に比して、突起が損傷しないようにすることができ、これにより反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。また仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができ、これによっても反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。 According to (4), the anti-reflective article manufactured with the mold has a ratio (Nm) of the number of multi-peak microprotrusions in the medium-altitude region to the total number of microprotrusions (Nt) in the entire frequency distribution ( Nm / Nt) is larger than the ratio (Nm / Nt) of the number of multi-peak microprojections in the low altitude region or high altitude region and the total number of microprojections (Nt) in the entire frequency distribution, so that the antireflection function Can be widened. Unlike the multimodal microprotrusions caused by poor filling of the resin after the molding process, the multimodal microprotrusions having such a shape are produced by a mold for molding process having a corresponding shape. Thus, the height distribution as designed can be set to ensure uniform and high mass productivity. Furthermore, by setting the distance between the protrusions wider than in the case of defective filling, the scratch resistance can be sufficiently improved, and further the optical characteristics can be improved.
In addition, when a microprojection having excellent mechanical strength compared to a single-peak microprojection is provided in the antireflection article, when an impact force is applied to the antireflection article, only in the case of a single peak microprojection. In comparison, it is possible to prevent the protrusions from being damaged, thereby reducing local deterioration of the antireflection function and further reducing the occurrence of appearance defects. Further, even if the microprojection is damaged, the area of the damaged portion can be reduced, and this can also reduce the local deterioration of the antireflection function and further reduce the appearance defect.
(5) (4)の反射防止物品の製造用金型を製造する反射防止物品の製造用金型の製造方法であって、第1の電圧を印加して陽極酸化処理を実行した後にエッチング処理を実行し、版の表面に、底面が略平坦となる微細穴を形成する平坦微細穴形成工程と、前記第1の電圧よりも低い第2の電圧を印加して陽極酸化処理を実行した後にエッチング処理を実行し、底面が略平坦に形成された前記微細穴の底面に、微細穴を複数形成する多峰突起用微細穴形成工程とを備える反射防止物品の製造用金型の製造方法である。
(5) A method for manufacturing a mold for manufacturing an antireflective article for manufacturing a mold for manufacturing an antireflective article according to (4), wherein the first voltage is applied and an anodizing process is performed, followed by an etching process And performing a flat microhole forming step for forming a microhole having a substantially flat bottom surface on the surface of the plate, and applying a second voltage lower than the first voltage to perform the anodizing process A method of manufacturing a mold for manufacturing an antireflective article, comprising performing an etching process and forming a multi-hole projection micro-hole forming step for forming a plurality of micro-holes on a bottom surface of the micro-hole having a substantially flat bottom surface. is there.
(5)によれば、平坦微細穴形成工程により、版の表面に、底面が略平坦となる微細穴を形成し、多峰突起用微細穴形成工程により、底面が略平坦に形成された微細穴の底面に微細穴を複数形成するので、多峰性微小突起を所定の分布とした反射防止物品の製造用金型を製造することができる。
According to (5), a fine hole whose bottom surface is substantially flat is formed on the surface of the plate by the flat fine hole forming step, and the bottom surface is substantially flat formed by the multi-hole projection micro hole forming step. Since a plurality of fine holes are formed on the bottom surface of the hole, it is possible to manufacture a mold for manufacturing an antireflective article in which multimodal microprotrusions have a predetermined distribution.
モスアイ構造に係る反射防止物品に関して、従来に比して耐擦傷性を向上するとともに、反射防止機能を向上させることができる。
As for the antireflection article having the moth-eye structure, it is possible to improve the scratch resistance and improve the antireflection function as compared with the conventional one.
〔第1実施形態〕
図1は、本発明の第1実施形態に係る反射防止物品を示す図(概念斜視図)である。この反射防止物品1は、全体形状がフィルム形状により形成された反射防止フィルムである。この実施形態に係る画像表示装置では、この反射防止物品1が画像表示パネルの表側面に貼り付けられて保持され、この反射防止物品1により日光、電燈光等の外来光の画面における反射を低減して視認性を向上する。なお反射防止物品は、その形状を平坦なフィルム形状とする場合に限らず、平坦なシート形状、平板形状(相対的に厚みの薄い順に、フィルム、シート、板と呼称する)とすることもでき、また平坦な形状に代えて、湾曲形状、立体形状を呈したフィルム形状、シート形状、板形状とすることもでき、さらには各種レンズ、各種プリズム等の立体形状のものを用途に応じて適宜採用することができる。 [First Embodiment]
FIG. 1 is a diagram (conceptual perspective view) showing an antireflection article according to a first embodiment of the present invention. Thisantireflection article 1 is an antireflection film whose overall shape is formed by a film shape. In the image display apparatus according to this embodiment, the antireflection article 1 is held by being attached to the front side surface of the image display panel, and the reflection of external light such as sunlight and electric light on the screen is reduced by the antireflection article 1. And improve visibility. The antireflection article is not limited to a flat film shape, but may be a flat sheet shape or a flat plate shape (referred to as a film, a sheet, or a plate in order of relatively small thickness). In addition, instead of a flat shape, a curved shape, a three-dimensional film shape, a sheet shape, or a plate shape can be used, and various lenses, prisms, and other three-dimensional shapes are appropriately used depending on the application. Can be adopted.
図1は、本発明の第1実施形態に係る反射防止物品を示す図(概念斜視図)である。この反射防止物品1は、全体形状がフィルム形状により形成された反射防止フィルムである。この実施形態に係る画像表示装置では、この反射防止物品1が画像表示パネルの表側面に貼り付けられて保持され、この反射防止物品1により日光、電燈光等の外来光の画面における反射を低減して視認性を向上する。なお反射防止物品は、その形状を平坦なフィルム形状とする場合に限らず、平坦なシート形状、平板形状(相対的に厚みの薄い順に、フィルム、シート、板と呼称する)とすることもでき、また平坦な形状に代えて、湾曲形状、立体形状を呈したフィルム形状、シート形状、板形状とすることもでき、さらには各種レンズ、各種プリズム等の立体形状のものを用途に応じて適宜採用することができる。 [First Embodiment]
FIG. 1 is a diagram (conceptual perspective view) showing an antireflection article according to a first embodiment of the present invention. This
ここで反射防止物品1は、透明フィルムの形状(形態)の基材2の表面に多数の微小突起5、5A、5Bを密接配置して作製される。尚、密接配置された複数の微小突起を総称して微小突起群とも呼称する。ここで基材2は、例えばTAC(Triacetylcellulose)、等のセルロース(纖維素)系樹脂、PMMA(ポリメチルメタクリレート)等のアクリル系樹脂、PET(Polyethylene terephthalate)等のポリエステル系樹脂、PP(ポリプロピレン)等のポリオレフィン系樹脂、PVC(ポリ塩化ビニル)等のビニル系樹脂、PC(Polycarbonate)等の各種透明樹脂フィルムを適用することができる。なお上述したように反射防止物品の形状はフィルム形状に限らず、種々の形状を採用可能である。基材2は、このような反射防止物品の形状に応じて、これらの材料の他に、例えばソーダ硝子、カリ硝子、鉛ガラス等の硝子、PLZT等のセラミックス、石英、螢石等の各種透明無機材料等を適用することができる。
Here, the antireflection article 1 is produced by closely arranging a large number of microprotrusions 5, 5A, 5B on the surface of the substrate 2 in the shape (form) of a transparent film. A plurality of closely arranged microprotrusions is collectively referred to as a microprotrusion group. Here, the base material 2 is, for example, a cellulose resin such as TAC (Triacetylcellulose), an acrylic resin such as PMMA (polymethyl methacrylate), a polyester resin such as PET (Polyethylene terephthalate), or PP (polypropylene). Polyolefin resins such as PVC, vinyl resins such as PVC (polyvinyl chloride), and various transparent resin films such as PC (polycarbonate) can be applied. As described above, the shape of the antireflection article is not limited to the film shape, and various shapes can be employed. Depending on the shape of such an antireflection article, the base material 2 is made of various transparent materials such as soda glass, potassium glass, lead glass, ceramics such as PLZT, quartz, meteorite, etc. An inorganic material or the like can be applied.
反射防止物品1は、基材2上に、微小突起群からなる微細な凹凸形状の受容層となる未硬化状態の樹脂層(以下、適宜、受容層と呼ぶ)4を形成し、該受容層4を賦型処理して硬化せしめ、これにより基材2の表面に微小突起が密接して配置される。この実施形態では、この受容層4に、賦型処理に供する賦型用樹脂の1つであるアクリレート系紫外線硬化性樹脂が適用され、基材2上に紫外線硬化性樹脂層4が形成される。反射防止物品1は、この微小突起による凹凸形状により厚み方向に徐々に屈折率が変化するように作製され、モスアイ構造の原理により広い波長範囲で入射光の反射を低減する。
The anti-reflective article 1 forms an uncured resin layer 4 (hereinafter referred to as a receiving layer as appropriate) 4 which forms a fine uneven receiving layer composed of a group of minute protrusions on a base material 2. 4 is subjected to a molding treatment and hardened, whereby the fine protrusions are placed in close contact with the surface of the substrate 2. In this embodiment, an acrylate-based ultraviolet curable resin, which is one of the molding resins used for the molding process, is applied to the receiving layer 4 to form the ultraviolet curable resin layer 4 on the substrate 2. . The antireflection article 1 is manufactured so that the refractive index gradually changes in the thickness direction due to the uneven shape by the microprotrusions, and reduces the reflection of incident light in a wide wavelength range by the principle of the moth-eye structure.
なおこれにより反射防止物品1に作製される微小突起は、隣接する微小突起の間隔dが、反射防止を図る電磁波の波長帯域の最短波長Λmin以下(d≦Λmin)となるよう密接して配置される。この実施形態では、画像表示パネルに配置して視認性を向上させることを主目的とするため、この最短波長は、個人差、視聴条件を加味した可視光領域の最短波長(380nm)に設定され、間隔dは、ばらつきを考慮して100~300nmとされる。またこの間隔dに係る隣接する微小突起は、いわゆる隣り合う微小突起であり、基材2側の付け根部分である微小突起の裾の部分が接している突起である。反射防止物品1では微小突起が密接して配置されることにより、微小突起間の谷の部位を順次辿るようにして線分を作成すると、平面視において各微小突起を囲む多角形状領域を多数連結してなる網目状の模様が作製されることになる。間隔dに係る隣接する微小突起は、この網目状の模様を構成する一部の線分を共有する突起である。なお「隣り合う」或いは「隣接」の、より正確な定義は以下に基づく。
In this way, the microprotrusions produced in the antireflection article 1 are closely arranged so that the distance d between adjacent microprotrusions is equal to or less than the shortest wavelength Λmin (d ≦ Λmin) of the wavelength band of the electromagnetic wave to prevent reflection. The In this embodiment, since the main purpose is to improve visibility by arranging the image display panel, the shortest wavelength is set to the shortest wavelength (380 nm) in the visible light region in consideration of individual differences and viewing conditions. The distance d is set to 100 to 300 nm in consideration of variation. The adjacent minute protrusions related to the distance d are so-called adjacent minute protrusions, which are in contact with the hem portions of the minute protrusions, which are the base portions on the base 2 side. In the anti-reflective article 1, the minute projections are closely arranged so that when a line segment is created so as to sequentially follow the valleys between the minute projections, a large number of polygonal regions surrounding each minute projection are connected in plan view. Thus, a mesh-like pattern is produced. The adjacent minute protrusions related to the distance d are protrusions that share a part of the line segments constituting the mesh pattern. The more accurate definition of “adjacent” or “adjacent” is based on the following.
なお微小突起に関しては、より詳細には以下のように定義される。モスアイ構造による反射防止では、透明基材表面とこれに隣接する媒質との界面における有効屈折率を、厚み方向に連続的に変化させて反射防止を図るものであることから、微小突起に関しては一定の条件を満足することが必要である。この条件のうちの1つである突起の間隔に関して、例えば特開昭50-70040号公報、特許第4632589号公報等に開示のように、微小突起が一定周期で規則正しく配置されている場合、隣接する微小突起の間隔dは、突起配列の周期P(d=P)となる。これにより可視光線帯域の最長波長をλmax、最短波長をλminとした場合に、最低限、可視光線帯域の最長波長において反射防止効果を奏し得る必要最小限の条件は、Λmin=λmaxであるため、P≦λmaxとなり、可視光線帯域の全波長に対して反射防止効果を奏し得る必要十分の条件は、Λmin=λminであるため、P≦λminとなる。
Note that the minute protrusions are defined in more detail as follows. In the antireflection by the moth-eye structure, the effective refractive index at the interface between the transparent substrate surface and the adjacent medium is continuously changed in the thickness direction to prevent reflection. It is necessary to satisfy the following conditions. With respect to the protrusion spacing, which is one of these conditions, when the minute protrusions are regularly arranged with a constant period as disclosed in, for example, Japanese Patent Application Laid-Open No. 50-70040, Japanese Patent No. 4632589, etc. The interval d between the minute projections to be performed is the projection arrangement period P (d = P). Thus, when the longest wavelength in the visible light band is λmax and the shortest wavelength is λmin, the minimum necessary condition that can exhibit the antireflection effect at the longest wavelength in the visible light band is Λmin = λmax. P ≦ λmax, and the necessary and sufficient condition that can exhibit the antireflection effect for all wavelengths in the visible light band is Λmin = λmin, and therefore P ≦ λmin.
なお波長λmax、λminは、観察条件、光の強度(輝度)、個人差等にも依存して多少幅を持ち得るが、標準的には、λmax=780nm及びλmin=380nmとされる。これらにより可視光線帯域の全波長に対する反射防止効果をより確実に奏し得る好ましい条件は、d≦300nmであり、より好ましい条件は、d≦200nmとなる。なお反射防止効果の発現及び反射率の等方性(低角度依存性)の確保等の理由から、周期dの下限値は、通常、d≧50nm、好ましくは、d≧100nmとされる。これに対して突起の高さHは、十分な反射防止効果を発現させる観点より、H≧0.2×λmax=156nm(λmax=780nmとして)とされる。
Note that the wavelengths λmax and λmin may vary depending on observation conditions, light intensity (luminance), individual differences, and the like, but are typically λmax = 780 nm and λmin = 380 nm. A preferable condition that can more reliably exhibit an antireflection effect for all wavelengths in the visible light band is d ≦ 300 nm, and a more preferable condition is d ≦ 200 nm. Note that the lower limit value of the period d is usually d ≧ 50 nm, preferably d ≧ 100 nm, for reasons such as the expression of the antireflection effect and the securing of the isotropic (low angle dependency) of the reflectance. On the other hand, the height H of the protrusion is set to H ≧ 0.2 × λmax = 156 nm (assuming λmax = 780 nm) from the viewpoint of exhibiting a sufficient antireflection effect.
しかしながらこの実施形態のように、微小突起が不規則に配置されている場合には、隣接する微小突起間の間隔dはばらつきを有することになる。より具体的には、図2に示すように、基材の表面又は裏面の法線方向から見て平面視した場合に、微小突起が一定周期で規則正しく配列されていない場合、突起の繰り返し周期Pによっては隣接突起間の間隔dは規定し得ず、また隣接突起の概念すら疑念が生じることになる。そこでこのような場合、以下のように算定される。
However, when the minute protrusions are irregularly arranged as in this embodiment, the distance d between the adjacent minute protrusions varies. More specifically, as shown in FIG. 2, when viewed from the normal direction of the front or back surface of the substrate, when the microprojections are not regularly arranged at a constant period, the repetition period P of the protrusions In some cases, the distance d between adjacent protrusions cannot be defined, and even the concept of adjacent protrusions is suspicious. Therefore, in such a case, it is calculated as follows.
(1)すなわち先ず、原子間力顕微鏡(Atomic Force Microscope(以下、AFMと呼ぶ))又は走査型電子顕微鏡(Scanning Electron Microscope(以下、SEMと呼ぶ))を用いて突起の面内配列(突起配列の平面視形状)を検出する。なお図2は、実際に原子間力顕微鏡により求められた拡大写真であり、輝度により高さを示す写真である。AFMのデータには微小突起群の高さの面内分布データを付随するため、この写真は輝度により高さの面内分布を示す写真であると言える。尚、図2から図6の図(写真及び度数分布グラフ)は本発明の第2実施形態に係る微小突起群に対して計測及び算出されたものではあるが、ここでは、微小突起の突起間距離及び高さを算出する原理及び手法を説明する為に援用するものである。
(1) That is, first, an in-plane arrangement of projections (projection arrangement) using an atomic force microscope (hereinafter referred to as AFM) or a scanning electron microscope (hereinafter referred to as SEM). ) Is detected. FIG. 2 is an enlarged photograph actually obtained by an atomic force microscope, and is a photograph showing height by luminance. Since the AFM data is accompanied by the in-plane distribution data of the height of the microprojections, this photo can be said to be a photo showing the in-plane distribution of height by luminance. 2 to 6 (photographs and frequency distribution graphs) are measured and calculated for the microprojection group according to the second embodiment of the present invention, but here, between the projections of the microprojections. This is used to explain the principle and method for calculating the distance and height.
(2)続いてこの求められた面内配列から各突起の高さの極大点(以下、単に極大点と呼ぶ)を検出する。極大点とは、高さが、其の近傍周辺の何れの点と比べても大(極大値)となる点を意味する。なお極大点を求める方法としては、平面視形状と対応する断面形状の拡大写真とを逐次対比して極大点を求める方法、平面視拡大写真の画像処理によって極大点を求める方法等、種々の手法を適用することができる。図3は、図2に示した拡大写真に係る画像データの処理による極大点の検出結果を示す図であり、この図において黒点により示す個所がそれぞれ各突起の極大点である。なおこの処理では4.5×4.5画素のガウシアン特性によるローパスフィルタにより事前に画像データを処理し、これによりノイズによる極大点の誤検出を防止した。また8画素×8画素による最大値検出用のフィルタを順次スキャンすることにより1nm(=1画素)単位で極大点を求めた。
(2) Subsequently, a maximum point of the height of each protrusion (hereinafter simply referred to as a maximum point) is detected from the obtained in-plane arrangement. The maximum point means a point where the height is larger (maximum value) than any point around the vicinity. There are various methods for obtaining the maximum point, such as a method of sequentially comparing the planar view shape and the enlarged photograph of the corresponding cross-sectional shape to obtain the maximum point, and a method of obtaining the maximum point by image processing of the plan view enlarged photo. Can be applied. FIG. 3 is a diagram showing the detection result of the maximum point by the processing of the image data relating to the enlarged photograph shown in FIG. 2, and the portions indicated by black dots in this figure are the maximum points of the respective protrusions. In this process, image data is processed in advance by a low-pass filter having a Gaussian characteristic of 4.5 × 4.5 pixels, thereby preventing erroneous detection of the maximum point due to noise. Further, a maximum point was obtained in units of 1 nm (= 1 pixel) by sequentially scanning a filter for detecting a maximum value of 8 pixels × 8 pixels.
(3)次に検出した極大点を母点とするドロネー図(Delaunary Diagram)を作成する。ここでドロネー図とは、各極大点を母点としてボロノイ分割を行った場合に、ボロノイ領域が隣接する母点同士を隣接母点と定義し、各隣接母点同士を線分で結んで得られる3角形の集合体からなる網状図形である。各3角形は、ドロネー3角形と呼ばれ、各3角形の辺(隣接母点同士を結ぶ線分)は、ドロネー線と呼ばれる。図4は、図3から求められるドロネー図(白色の線分により表される図である)を図3による原画像と重ね合わせた図である。ドロネー図は、ボロノイ図(Voronoi diagram)と双対の関係に有る。またボロノイ分割とは、各隣接母点間を結ぶ線分(ドロネー線)の垂直2等分線同士によって画成される閉多角形の集合体からなる網状図形で平面を分割することを言う。ボロノイ分割により得られる網状図形がボロノイ図であり、各閉領域がボロノイ領域である。
(3) Create a Delaunay diagram (Delaunary Diagram) with the detected local maximum as the base point. Here, Delaunay diagram is obtained by dividing the Voronoi region adjacent to the Voronoi region when the Voronoi division is performed with each local maximum as the generating point, and connecting the adjacent generating points with line segments. This is a net-like figure made up of triangular aggregates. Each triangle is called a Delaunay triangle, and a side of each triangle (a line segment connecting adjacent generating points) is called a Delaunay line. FIG. 4 is a diagram in which the Delaunay diagram (represented by white line segments) obtained from FIG. 3 is superimposed on the original image of FIG. The Delaunay diagram has a dual relationship with the Voronoi diagram. Voronoi division means that a plane is divided by a net-like figure made up of a closed polygon aggregate defined by perpendicular bisectors of line segments (Droney lines) connecting between adjacent generating points. A network figure obtained by Voronoi division is a Voronoi diagram, and each closed region is a Voronoi region.
(4)次に、各ドロネー線の線分長の度数分布、すなわち隣接する極大点間の距離(以下、隣接突起間距離と呼ぶ)の度数分布を求める。図5は、図4のドロネー図から作成した度数分布のヒストグラムである。なお図2、図15に示すように、突起の頂部に溝状等の凹部が存在したり、あるいは頂部が複数の峰に分裂している場合は、求めた度数分布から、このような突起の頂部に凹部が存在する微細構造、頂部が複数の峰に分裂している微細構造に起因するデータを除去し、突起本体自体のデータのみを選別して度数分布を作成する。
(4) Next, the frequency distribution of the line segment length of each Delaunay line, that is, the frequency distribution of the distance between adjacent maximum points (hereinafter referred to as the distance between adjacent protrusions) is obtained. FIG. 5 is a histogram of the frequency distribution created from the Delaunay diagram of FIG. As shown in FIG. 2 and FIG. 15, when there is a groove-like recess at the top of the projection, or the top is divided into a plurality of peaks, the distribution of such projection is determined from the obtained frequency distribution. A frequency distribution is created by removing data resulting from a fine structure having a concave portion at the top and a fine structure in which the top is split into a plurality of peaks, and selecting only the data of the projection body itself.
具体的には、突起の頂部に凹部が存在する微細構造、頂部が複数の峰に分裂している多峰性微小突起に係る微細構造においては、このような微細構造を備えていない単峰性微小突起の場合の数値範囲から、隣接極大点間距離が明らかに大きく異なることになる。これによりこの特徴を利用して対応するデータを除去することにより突起本体自体のデータのみを選別して度数分布を検出する。より具体的には、例えば図2に示すような微小突起(群)の平面視の拡大写真から、5~20個程度の互いに隣接する単峰性微小突起を選んで、その隣接極大点間距離の値を標本抽出し、この標本抽出して求められる数値範囲から明らかに外小さい方向に外れる値(通常、標本抽出して求められる隣接極大点間距離平均値に対して、値が1/2以下のデータ)を除外して度数分布を検出する。図5の例では、隣接極大点間距離が56nm以下のデータ(矢印Aにより示す左端の小山)を除外する。なお図5は、このような除外する処理を行う前の度数分布を示すものである。因みに上述の極大点検用のフィルタの設定により、このような除外する処理を実行してもよい。
Specifically, in the fine structure in which there is a concave portion on the top of the protrusion, or in the fine structure related to the multi-peak microprotrusion in which the top is divided into a plurality of peaks, the single-peak property that does not have such a fine structure From the numerical range in the case of a microprotrusion, the distance between adjacent maximum points is clearly greatly different. Thus, by removing the corresponding data using this feature, only the data of the projection body itself is selected and the frequency distribution is detected. More specifically, for example, about 5 to 20 adjacent single-peaked microprojections are selected from a magnified photograph of a microprojection (group) in plan view as shown in FIG. 2, and the distance between adjacent maximum points is selected. Is sampled, and a value that deviates from the numerical range obtained by sampling to a value that is clearly smaller outside (usually, the value is 1/2 of the average distance between adjacent maximum points obtained by sampling) The frequency distribution is detected by excluding the following data. In the example of FIG. 5, data having a distance between adjacent maximal points of 56 nm or less (the leftmost small mountain indicated by the arrow A) is excluded. FIG. 5 shows a frequency distribution before performing such exclusion processing. Incidentally, such exclusion processing may be executed by setting the above-described maximum inspection filter.
(5)このようにして求めた隣接突起間距離dの度数分布から平均値dAVG及び標準偏差σを求める。ここでこのようにして得られる度数分布を正規分布とみなして平均値dAVG及び標準偏差σを求めると、図5の例では、平均値dAVG=158nm、標準偏差σ=38nmとなった。これにより隣接突起間距離dの最大値を、dmax=dAVG+2σとし、この例ではdmax=234nmとなる。
(5) The average value d AVG and the standard deviation σ are obtained from the frequency distribution of the distance d between adjacent protrusions thus obtained. Here, when the frequency distribution obtained in this way is regarded as a normal distribution and the average value d AVG and the standard deviation σ are obtained, the average value d AVG = 158 nm and the standard deviation σ = 38 nm are obtained in the example of FIG. As a result, the maximum value of the distance d between adjacent protrusions is set to dmax = d AVG + 2σ, and in this example, dmax = 234 nm.
なお同様の手法を適用して突起の高さを定義する。この場合、上述の(2)により求められる極大点から、特定の基準位置からの各極大点位置の相対的な高さの差を取得してヒストグラム化する。図6は、このようにして求められる突起付け根位置を基準(高さ0)とした突起高さHの度数分布のヒストグラムを示す図である。このヒストグラムによる度数分布から突起高さの平均値HAVG、標準偏差σを求める。ここでこの図6の例では、平均値HAVG=178nm、標準偏差σ=30nmである。これによりこの例では、突起の高さは、平均値HAVG=178nmとなる。なお図6に示す突起高さHのヒストグラムにおいて、多峰性微小突起の場合は、頂点を複数有していることにより、1つの突起に対してこれら複数のデータが混在することになる。そこでこの場合は麓部が同一の微小突起に属するそれぞれ複数の頂点の中から高さの最も高い頂点を、当該微小突起の突起高さとして採用して度数分布を求める。
The same method is applied to define the height of the protrusion. In this case, a relative height difference of each local maximum point position from a specific reference position is acquired from the local maximum point obtained by the above (2), and is histogrammed. FIG. 6 is a diagram showing a histogram of the frequency distribution of the protrusion height H with the protrusion root position obtained in this way as a reference (height 0). The average value HAVG of the protrusion height and the standard deviation σ are obtained from the frequency distribution based on the histogram. Here in the example of FIG. 6, the mean value H AVG = 178 nm, the standard deviation sigma = 30 nm. Thus in this example, the height of the projections is an average value H AVG = 178 nm. In the histogram of the protrusion height H shown in FIG. 6, in the case of a multi-peak microprotrusion, the plurality of data are mixed for one protrusion because of having a plurality of vertices. Therefore, in this case, the frequency distribution is obtained by adopting the vertex having the highest height from among the plurality of vertices belonging to the same microprotrusion as the protuberance.
なお上述した突起の高さを測る際の基準位置は、隣接する微小突起の間の谷底(高さの極小点)を高さ0の基準とする。但し、係る谷底の高さ自体が場所によって異なる場合(例えば、図23について後述するように、谷底の高さが微小突起の隣接突起間距離に比べて大きな周期でウネリを有する場合等)は、(1)先ず、基材2の表面又は裏面から測った各谷底の高さの平均値を、該平均値が收束するに足る面積の中で算出する。(2)次いで、該平均値の高さを持ち、基材2の表面又は裏面と平行な面を基準面として考える。(3)その後、該基準面を改めて高さ0として、該基準面からの各微小突起の高さを算出する。
Note that the reference position for measuring the height of the protrusion described above is based on the bottom of the valley (minimum point of height) between the adjacent minute protrusions as a reference of height 0. However, when the height of the valley bottom itself varies depending on the location (for example, as described later with reference to FIG. 23, when the height of the valley bottom has undulation with a period larger than the distance between adjacent projections of the microprojections, etc.) (1) First, the average value of the height of each valley bottom measured from the front surface or the back surface of the base material 2 is calculated within an area sufficient for the average value to converge. (2) Next, a surface having the height of the average value and parallel to the front surface or the back surface of the substrate 2 is considered as a reference surface. (3) Then, the height of each microprotrusion from the reference surface is calculated by setting the reference surface to a height of 0 again.
突起が不規則に配置されている場合には、このようにして求められる隣接突起間距離の最大値dmax=dAVG+2σ、突起の高さの平均値HAVGが、規則正しく配置されている場合の上述の条件を満足することが必要であることが判った。具体的には、反射防止効果を発現する微小突起間距離の条件は、dmax≦Λminとなる。最低限、可視光線帯域の最長波長において反射防止効果を奏し得る必要最短限の条件は、Λmin=λmaxであるため、dmax≦λmaxとなり、可視光線帯域の全波長に対して反射防止効果を奏し得る必要十分の条件は、Λmin=λminであるため、dmax≦λminとなる。そして、可視光線帯域の全波長に対する反射防止効果をより確実に奏し得る好ましい条件は、dmax≦300nmであり、更に好ましい条件は、dmax≦200nmである。また反射防止効果の発現及び反射率の等方性(低角度依存性)の確保等の理由から、通常、dmax≧50nmであり、好ましくは、dmax≧100nmとされる。また突起高さについては、十分な反射防止効果を発現する為には、HAVG≧0.2×λmax=156nm(λmax=780nmとして)とされる。しかしながら実用上十分な程度に反射防止機能を確保する観点からは、平均突起間距離daveを、dave≦λminとしても良い。
If the protrusions are irregularly arranged, when this way the maximum value of the adjacent protrusions distance obtained by dmax = d AVG + 2σ, average H AVG height of projections are arranged regularly It has been found necessary to satisfy the above conditions. Specifically, the condition of the distance between the microprotrusions that exhibits the antireflection effect is dmax ≦ Λmin. The minimum necessary condition that can exhibit the antireflection effect at the longest wavelength in the visible light band is Λmin = λmax, and therefore dmax ≦ λmax, and the antireflection effect can be achieved for all wavelengths in the visible light band. The necessary and sufficient condition is Λmin = λmin, and therefore dmax ≦ λmin. A preferable condition that can more reliably exhibit the antireflection effect for all wavelengths in the visible light band is dmax ≦ 300 nm, and a more preferable condition is dmax ≦ 200 nm. Also, dmax ≧ 50 nm is usually satisfied and dmax ≧ 100 nm is preferable because of the antireflection effect and ensuring the isotropic (low angle dependency) of the reflectance. The height of the protrusion is set to HAVG ≧ 0.2 × λmax = 156 nm (assuming λmax = 780 nm) in order to exhibit a sufficient antireflection effect. However, from the viewpoint of ensuring the antireflection function to a practically sufficient level, the average inter-protrusion distance dave may be set so that dave ≦ λmin.
因みに、図2~図6の例により説明するとdmax=234nm≦λmax=780nmとなり、dmax≦λmaxの条件を満足して十分に反射防止効果を奏し得ることが判る。また可視光線帯域の最短波長λminが380nmであることから、可視光線の全波長帯域において反射防止効果を発現する十分条件dmax≦λminも満たすことが判る。またdave≦dmaxであることから、dave≦λminの条件も満足していることが判る。また平均突起高さHAVG=178nmであることにより、平均突起高さHAVG≧0.2×λmax=156nmとなり(可視光波長帯域の最長波長λmax=780nmとして)、十分な反射防止効果を実現するための突起の高さに関する条件も満足していることが判る。なお標準偏差σ=30nmであることから、HAVG-σ=148nm<0.2×λmax=156nmとの関係式が成立することから、統計学上、全突起の50%以上、84%以下が、突起の高さに係る条件(178nm以上)の条件を満足していることが判る。なおAFM及びSEMによる観察結果、並びに微小突起の高さ分布の解析結果から、多峰性微小突起は相対的に高さの低い微小突起よりも高さの高い微小突起でより多く生じる傾向にあることが判明した。
2 to 6, dmax = 234 nm ≦ λmax = 780 nm, and it can be seen that the antireflection effect can be sufficiently achieved by satisfying the condition of dmax ≦ λmax. In addition, since the shortest wavelength λmin in the visible light band is 380 nm, it can be seen that the sufficient condition dmax ≦ λmin for exhibiting the antireflection effect in all visible light wavelength bands is also satisfied. Since dave ≦ dmax, it can be seen that the condition of dave ≦ λmin is also satisfied. When the average protrusion the height H AVG = 178 nm Also, the average projection height H AVG ≧ 0.2 × λmax = 156nm becomes (as the longest wavelength .lambda.max = 780 nm in the visible light wavelength band), realizing a sufficient antireflection effect It can be seen that the conditions regarding the height of the protrusions to satisfy are also satisfied. Since the standard deviation σ = 30 nm, the relational expression H AVG -σ = 148 nm <0.2 × λmax = 156 nm is established, and therefore, statistically, 50% or more and 84% or less of all protrusions It can be seen that the condition of the height of the protrusion (178 nm or more) is satisfied. In addition, from the observation result by AFM and SEM and the analysis result of the height distribution of the microprojections, the multi-peak microprojections tend to be generated more frequently in the microprojections having a higher height than the microprojections having a relatively low height. It has been found.
この実施形態のように、単峰性微小突起と多峰性微小突起とを混在させる場合には、アスペクト比の異なる単峰性微小突起を混在させた場合と同様に、広い波長帯域で低い反射率を確保することができる。なおアスペクト比とは、微小突起の高さHを谷底における径W(幅又は太さと言う事もできる)で除した比、H/Wとして定義される。ここで、谷底における径とは、微小突起の谷底近傍の形状が円柱であれば、該円柱の(底面の)直径と一致する。微小突起の谷底近傍形状が円柱では無く、谷底を連ねた仮想的平面と微小突起とが交叉して得られる底面の径の大きさが面内方向によって異なる場合は、その最大値を該微小突起の径とする。例えば、微小突起の底面形状が楕円の場合は、径はその長径となる。又、微小突起の底面形状が多角形の場合は、径はその最大の対角線長となる。又、谷底部(高さの極小点からなる領域)の幅が径に比べて小さく2割以下の場合には、各微小突起のアスペクト比H/Wの平均値(H/W)aveは、設計上は実質、Have/daveと見做すことができる。
As in this embodiment, when monomodal microprojections and multimodal microprojections are mixed, as in the case where monomodal microprojections having different aspect ratios are mixed, low reflection in a wide wavelength band. The rate can be secured. The aspect ratio is defined as H / W, which is a ratio obtained by dividing the height H of the minute protrusions by the diameter W (also referred to as width or thickness) at the bottom of the valley. Here, the diameter at the bottom of the valley coincides with the diameter (at the bottom) of the column if the shape of the microprotrusion near the bottom of the valley is a column. If the shape of the vicinity of the valley bottom of the microprojection is not a cylinder and the diameter of the bottom surface obtained by crossing the virtual plane connecting the valley bottom and the microprojection differs depending on the in-plane direction, the maximum value is set to the microprojection. Of the diameter. For example, when the bottom shape of the microprojection is an ellipse, the diameter is the major axis. In addition, when the bottom surface shape of the minute protrusion is a polygon, the diameter is the maximum diagonal length. In addition, when the width of the bottom of the valley (region consisting of the minimum point of the height) is smaller than the diameter and 20% or less, the average value (H / W) ave of the aspect ratio H / W of each microprotrusion is In terms of design, it can be substantially regarded as Have / dave.
すなわち、陽極酸化処理により微細穴を作製する場合、特開2003-43203号公報等で既に知られている様に、隣接微細穴間距離(一定値で分布の無い場合はピッチに相当)と微細穴の深さとは比例する関係になる。これにより陽極酸化処理とエッチング処理との繰り返しにより賦型用金型を作製し、この賦型用金型を使用した賦型処理によりこの種の反射防止物品を作製する場合、作製される単峰性微小突起は、付け根部分の幅と高さとの比であるアスペクト比がほぼ一定に保持される。
That is, when a fine hole is produced by anodizing treatment, as already known in Japanese Patent Laid-Open No. 2003-43203, etc., the distance between adjacent fine holes (corresponding to a pitch when there is no constant distribution) and fine It is proportional to the depth of the hole. Thus, when a mold for molding is produced by repeating anodization treatment and etching treatment, and this type of antireflection article is produced by molding process using this mold for molding, a single peak produced The aspect ratio, which is the ratio between the width and height of the base portion, is maintained substantially constant in the sexual microprojections.
反射防止物品の反射防止機能は、微小突起の間隔だけでなく、アスペクト比にも依存し、アスペクト比が一定である場合、例えば可視光域では十分に小さな反射率を確保できる場合でも、紫外線域では可視光域に比して反射率が増大して反射防止機能が不足する。なお隣接突起間距離を一段と小さくして紫外線域で十分な反射防止機能を確保できるように設定すると、今度は、赤外線域で反射防止機能が低下することになる。
The anti-reflective function of the anti-reflective article depends not only on the interval between the microprojections but also on the aspect ratio, and when the aspect ratio is constant, for example, even when a sufficiently low reflectance can be secured in the visible light range, However, the reflectance increases as compared with the visible light region, and the antireflection function is insufficient. If the distance between adjacent protrusions is further reduced so that a sufficient antireflection function can be secured in the ultraviolet region, the antireflection function will be lowered in the infrared region.
しかしながら多峰性微小突起を含む微小突起群では、同一微小突起の頂部近傍に存在する峰間距離が隣接突起間距離(通常100~200nm程度)よりも小さい(通常10~50nm程度)。かかる峰間距離の寄与によって、同一隣接突起間距離の単峰性微小突起のみからなる微小突起群に比べて、実効的な隣接突起間間隔を低下させた反射防止機能を確保することができ、これにより多峰性微小突起と単峰性微小突起との混在により広い波長帯域で低い反射率を確保することができる。なお可視光域を中心にした広い波長帯域で十分に小さな反射率を確保する場合、可視光域に係る波長480~660nm帯域の光に対する反射防止性能に寄与する隣接突起間間隔、すなわち、d≦400nm、好ましくはd≦300nmとなる微小突起において、多峰性の微小突起と単峰性の微小突起とを混在させることが望ましい。
However, in a group of microprojections including multimodal microprojections, the distance between the peaks existing near the top of the same microprojection is smaller than the distance between adjacent projections (usually about 100 to 200 nm) (usually about 10 to 50 nm). Due to the contribution of the distance between the peaks, it is possible to ensure an antireflection function that reduces the effective spacing between adjacent projections compared to a group of minute projections consisting only of single-peaked microprojections having the same distance between adjacent projections. Thereby, a low reflectance can be ensured in a wide wavelength band by mixing the multimodal microprojections and the monomodal microprojections. When a sufficiently small reflectance is ensured in a wide wavelength band centered on the visible light region, the distance between adjacent protrusions that contributes to the antireflection performance for light in the wavelength range of 480 to 660 nm in the visible light region, that is, d ≦ It is desirable to mix multimodal microprojections and monomodal microprojections in microprojections with 400 nm, preferably d ≦ 300 nm.
ここで、反射防止物品上に形成される多峰性微小突起は、上述の可視光域に係る入射光に対する反射防止機能を向上させるために、以下の条件を満たすようにして形成される必要がある。
図7は、反射防止物品に形成される微小突起の高さHの度数分布の例を示す図である。図7に示すように、微小突起の高さHの度数分布における高さの平均値をmとし、標準偏差をσとし、H<m-σの領域を微小突起の低高度領域とし、m-σ≦H≦m+σの領域を中高度領域とし、m+σ<Hの領域を高高度領域とした場合に、各領域内の多峰性微小突起の数Nmと、度数分布全体における微小突起の総数Ntとの比率が、以下の(a)、(b)の関係を満たす必要がある。
(a)中高度領域のNm/Nt>低高度領域のNm/Nt
(b)中高度領域のNm/Nt>高高度領域のNm/Nt Here, the multimodal microprotrusions formed on the antireflection article need to be formed so as to satisfy the following conditions in order to improve the antireflection function for incident light in the visible light region described above. is there.
FIG. 7 is a diagram illustrating an example of the frequency distribution of the height H of the fine protrusions formed on the antireflection article. As shown in FIG. 7, the average value of the height in the frequency distribution of the height H of the microprojections is m, the standard deviation is σ, the region of H <m−σ is the low altitude region of the microprojections, and m− When the region of σ ≦ H ≦ m + σ is a medium altitude region and the region of m + σ <H is a high altitude region, the number Nm of multimodal microprojections in each region and the total number Nt of microprojections in the entire frequency distribution It is necessary for the ratio to satisfy the following relationships (a) and (b).
(A) Nm / Nt in the middle altitude region> Nm / Nt in the low altitude region
(B) Nm / Nt in middle altitude region> Nm / Nt in high altitude region
図7は、反射防止物品に形成される微小突起の高さHの度数分布の例を示す図である。図7に示すように、微小突起の高さHの度数分布における高さの平均値をmとし、標準偏差をσとし、H<m-σの領域を微小突起の低高度領域とし、m-σ≦H≦m+σの領域を中高度領域とし、m+σ<Hの領域を高高度領域とした場合に、各領域内の多峰性微小突起の数Nmと、度数分布全体における微小突起の総数Ntとの比率が、以下の(a)、(b)の関係を満たす必要がある。
(a)中高度領域のNm/Nt>低高度領域のNm/Nt
(b)中高度領域のNm/Nt>高高度領域のNm/Nt Here, the multimodal microprotrusions formed on the antireflection article need to be formed so as to satisfy the following conditions in order to improve the antireflection function for incident light in the visible light region described above. is there.
FIG. 7 is a diagram illustrating an example of the frequency distribution of the height H of the fine protrusions formed on the antireflection article. As shown in FIG. 7, the average value of the height in the frequency distribution of the height H of the microprojections is m, the standard deviation is σ, the region of H <m−σ is the low altitude region of the microprojections, and m− When the region of σ ≦ H ≦ m + σ is a medium altitude region and the region of m + σ <H is a high altitude region, the number Nm of multimodal microprojections in each region and the total number Nt of microprojections in the entire frequency distribution It is necessary for the ratio to satisfy the following relationships (a) and (b).
(A) Nm / Nt in the middle altitude region> Nm / Nt in the low altitude region
(B) Nm / Nt in middle altitude region> Nm / Nt in high altitude region
図8は、この反射防止物品1の製造工程を示す図である。この製造工程10は、樹脂供給工程において、ダイ12により帯状フィルム形態の基材2に微小突起形状の受容層を構成する未硬化で液状の紫外線硬化性樹脂を塗布する。なお紫外線硬化性樹脂の塗布については、ダイ12による場合に限らず、各種の手法を適用することができる。続いてこの製造工程10は、押圧ローラ14により、反射防止物品の賦型用金型であるロール版13の周側面に基材2を加圧押圧し、これにより基材2に未硬化状態で液状のアクリレート系紫外線硬化性樹脂を密着させると共に、ロール版13の周側面に作製された微細な凹凸形状の凹部に紫外線硬化性樹脂を充分に充填する。この製造工程は、この状態で、紫外線の照射により紫外線硬化性樹脂を硬化させ、これにより基材2の表面に微小突起群を作製する。この製造工程は、続いて剥離ローラ15を介してロール版13から、硬化した紫外線硬化性樹脂と一体に基材2を剥離する。製造工程10は、必要に応じてこの基材2に粘着層等を作製した後、所望の大きさに切断して反射防止物品1を作製する。これにより反射防止物品1は、ロール材による長尺の基材2に、賦型用金型であるロール版13の周側面に作製された微細形状を順次賦型して、効率良く大量生産される。
FIG. 8 is a diagram showing a manufacturing process of the antireflection article 1. In the manufacturing process 10, in the resin supply process, an uncured and liquid ultraviolet curable resin that forms a microprojection-shaped receiving layer is applied to the base material 2 in the form of a belt-shaped film by the die 12. In addition, about application | coating of an ultraviolet curable resin, not only the case by the die | dye 12 but various methods are applicable. Subsequently, in this manufacturing process 10, the substrate 2 is pressed and pressed onto the peripheral side surface of the roll plate 13 which is a mold for shaping the antireflection article by the pressing roller 14, and thereby the substrate 2 is uncured. The liquid acrylate-based ultraviolet curable resin is brought into close contact, and the fine concavo-convex recesses formed on the peripheral side surface of the roll plate 13 are sufficiently filled with the ultraviolet curable resin. In this state, in this manufacturing process, the ultraviolet curable resin is cured by irradiation with ultraviolet rays, and thereby a microprojection group is produced on the surface of the substrate 2. In this manufacturing process, the substrate 2 is peeled off from the roll plate 13 through the peeling roller 15 together with the cured ultraviolet curable resin. In the production process 10, an anti-reflection article 1 is produced by producing an adhesive layer or the like on the substrate 2 as necessary, and then cutting it into a desired size. Accordingly, the antireflection article 1 is mass-produced efficiently by sequentially molding the fine shape produced on the peripheral side surface of the roll plate 13 which is a mold for molding on the long base material 2 made of a roll material. The
図9は、ロール版13の構成を示す斜視図である。ロール版13は、円筒形状の金属材料である母材の周側面に、陽極酸化処理、エッチング処理の繰り返しにより、微細な凹凸形状が作製され、この微細な凹凸形状が上述したように基材2に賦型される。このため母材は、少なくとも周側面に純度の高いアルミニウム層が設けられた円柱形状又は円筒形状の部材が適用される。より具体的に、この実施形態では、母材に中空のステンレスパイプが適用され、直接に又は各種の中間層を介して、純度の高いアルミニウム層が設けられる。なおステンレスパイプに代えて、銅やアルミニウム等のパイプ材等を適用してもよい。ロール版13は、陽極酸化処理とエッチング処理との繰り返しにより、母材の周側面に微細穴が密に作製され、この微細穴を掘り進めると共に、開口部に近付くに従ってより大きな径となるようにこの微細穴の穴径を徐々に拡大して凹凸形状が作製される。これによりロール版13は、深さ方向に徐々に穴径が小さくなる微細穴が密に作製され、反射防止物品1には、この微細穴に対応して、頂部に近付くに従って徐々に径が小さくなる多数の微小突起からなる微小突起群により微細な凹凸形状が作製される。その際に、アルミニウム層の純度(不純物量)や浴濃度、結晶粒径、陽極酸化処理及び/又はエッチング処理等の諸条件を適宜調整することによって、本発明特有の微小突起形状とする。
FIG. 9 is a perspective view showing the configuration of the roll plate 13. The roll plate 13 has a fine concavo-convex shape formed on the peripheral side surface of the base material, which is a cylindrical metal material, by repeating anodizing treatment and etching treatment, and the fine concavo-convex shape is formed on the substrate 2 as described above. It is shaped. For this reason, a columnar or cylindrical member in which a high-purity aluminum layer is provided at least on the peripheral side surface is used as the base material. More specifically, in this embodiment, a hollow stainless steel pipe is applied to the base material, and a high-purity aluminum layer is provided directly or via various intermediate layers. In addition, it may replace with a stainless steel pipe and may apply pipe materials, such as copper and aluminum. In the roll plate 13, fine holes are densely formed on the peripheral side surface of the base material by repeating the anodizing treatment and the etching treatment, and the fine holes are dug, and the diameter of the roll plate 13 increases as it approaches the opening. The concavo-convex shape is produced by gradually increasing the diameter of the fine holes. As a result, the roll plate 13 is closely formed with fine holes whose diameter gradually decreases in the depth direction, and the diameter of the antireflection article 1 gradually decreases as it approaches the top corresponding to the fine holes. A fine concavo-convex shape is produced by a microprojection group consisting of a large number of microprojections. At that time, by appropriately adjusting various conditions such as the purity (impurity amount), bath concentration, crystal grain size, anodizing treatment and / or etching treatment of the aluminum layer, the shape of the fine protrusion unique to the present invention is obtained.
〔陽極酸化処理、エッチング処理〕
図10は、ロール版13の製造工程を示す図である。この製造工程は、電解溶出作用と、砥粒による擦過作用の複合による電解複合研磨法によって母材の周側面を超鏡面化する(電解研磨)。続いてこの工程は、アルミニウム層形成工程において、母材の周側面にアルミニウムをスパッタリングし、純度の高いアルミニウム層を作製する。続いてこの工程は、陽極酸化工程A1、…、AN、エッチング工程E1、…、ENを交互に繰り返して母材を処理し、ロール版13を作製する。 [Anodic oxidation treatment, etching treatment]
FIG. 10 is a diagram illustrating a manufacturing process of theroll plate 13. In this manufacturing process, the peripheral side surface of the base material is made into a super mirror surface by an electrolytic composite polishing method that combines electrolytic elution action and abrasion action by abrasive grains (electrolytic polishing). Subsequently, in this step, in the aluminum layer forming step, aluminum is sputtered on the peripheral side surface of the base material to produce a high-purity aluminum layer. Subsequently, in this process, the base material is processed by alternately repeating the anodic oxidation processes A1,..., AN, and the etching processes E1,.
図10は、ロール版13の製造工程を示す図である。この製造工程は、電解溶出作用と、砥粒による擦過作用の複合による電解複合研磨法によって母材の周側面を超鏡面化する(電解研磨)。続いてこの工程は、アルミニウム層形成工程において、母材の周側面にアルミニウムをスパッタリングし、純度の高いアルミニウム層を作製する。続いてこの工程は、陽極酸化工程A1、…、AN、エッチング工程E1、…、ENを交互に繰り返して母材を処理し、ロール版13を作製する。 [Anodic oxidation treatment, etching treatment]
FIG. 10 is a diagram illustrating a manufacturing process of the
この製造工程において、陽極酸化工程A1、…、ANでは、陽極酸化法により母材の周側面に微細な穴を作製し、さらにこの作製した微細な穴を掘り進める。ここで陽極酸化工程では、例えば負極に炭素棒、ステンレス板材等を使用する場合のように、アルミニウムの陽極酸化に適用される各種の手法を広く適用することができる。また溶解液についても、中性、酸性の各種溶解液を使用することができ、より具体的には、例えば硫酸水溶液、シュウ(蓚)酸水溶液、リン酸水溶液等を使用することができる。この製造工程A1、…、ANは、液温、印加する電圧、陽極酸化に供する時間等の管理により、微細な穴をそれぞれ目的とする深さ及び微小突起形状に対応する形状に作製する。
In this manufacturing process, in the anodizing step A1,..., AN, a fine hole is produced on the peripheral side surface of the base material by an anodizing method, and the produced fine hole is further dug. Here, in the anodic oxidation step, various methods applied to the anodic oxidation of aluminum can be widely applied, for example, when a carbon rod, a stainless steel plate, or the like is used for the negative electrode. Further, as the solution, various neutral and acidic solutions can be used, and more specifically, for example, sulfuric acid aqueous solution, oxalic acid aqueous solution, phosphoric acid aqueous solution and the like can be used. In the manufacturing steps A1,..., AN, the fine holes are formed in shapes corresponding to the target depth and the shape of the fine protrusions, respectively, by managing the liquid temperature, the applied voltage, the time for anodization, and the like.
続くエッチング工程E1、…、ENは、金型をエッチング液に浸漬し、陽極酸化工程A1、…、ANにより作製、掘り進めた微細な穴の穴径をエッチングにより拡大し、深さ方向に向かって滑らか、かつ徐々に穴径が小さくなるように、これら微細な穴を整形する。なおエッチング液については、この種の処理に適用される各種エッチング液を広く適用することができ、より具体的には、例えば硫酸水溶液、シュウ酸水溶液、リン酸水溶液等を使用することができる。なお陽極酸化処理に用いる溶解液と同じ液を、電圧印加無しで用いることにより、溶解液をエッチング液としても兼用してもよい。これらによりこの製造工程では、陽極酸化処理とエッチング処理とを交互にそれぞれ複数回実行することにより、賦型に供する微細穴を母材の周側面に作製する。
In the subsequent etching process E1,..., EN, the mold is immersed in an etching solution, the hole diameter of the fine hole produced and dug in the anodizing process A1,. These fine holes are shaped so that the hole diameter becomes smaller and smoother. As the etching solution, various etching solutions that are applied to this type of treatment can be widely applied. More specifically, for example, a sulfuric acid aqueous solution, an oxalic acid aqueous solution, a phosphoric acid aqueous solution, or the like can be used. Note that the same solution as the solution used for the anodic oxidation treatment may be used without applying a voltage so that the solution can be used also as an etching solution. As a result, in this manufacturing process, the anodizing process and the etching process are alternately performed a plurality of times, so that fine holes for forming are formed on the peripheral side surface of the base material.
〔微小突起を形成する微細穴の形成過程〕
次に、多峰性微小突起を形成し、また、微小突起の高さの分布が制御された微細な穴が形成される方法について説明する。上述したように、賦型用金型(ロール版)に形成される微細穴は、陽極酸化処理及びエッチング処理の交互の繰り返しによって形成されるが、この繰り返しの陽極酸化処理における印加電圧を可変することによって、微細穴の深さ(微小突起の高さ分布)を制御することができる。ここで、陽極酸化処理における印加電圧と、形成される微細穴の間隔(ピッチ)とは、比例する関係にあるため、陽極酸化処理、エッチング処理の繰り返しにおいて、陽極酸化処理の印加電圧を可変すれば、深さ方向に掘り進める時間が相違する微細穴を混在させてその比率を制御することができる。 [Formation process of minute holes to form minute protrusions]
Next, a method for forming multi-peaked microprojections and forming fine holes in which the height distribution of the microprojections is controlled will be described. As described above, the fine hole formed in the shaping mold (roll plate) is formed by alternately repeating the anodizing treatment and the etching treatment, and the applied voltage in the repeated anodizing treatment is varied. Thus, the depth of the fine holes (the height distribution of the fine protrusions) can be controlled. Here, since the applied voltage in the anodizing process and the interval (pitch) between the fine holes to be formed are in a proportional relationship, the applied voltage of the anodizing process can be varied in the repetition of the anodizing process and the etching process. For example, it is possible to mix fine holes having different times for digging in the depth direction and control the ratio.
次に、多峰性微小突起を形成し、また、微小突起の高さの分布が制御された微細な穴が形成される方法について説明する。上述したように、賦型用金型(ロール版)に形成される微細穴は、陽極酸化処理及びエッチング処理の交互の繰り返しによって形成されるが、この繰り返しの陽極酸化処理における印加電圧を可変することによって、微細穴の深さ(微小突起の高さ分布)を制御することができる。ここで、陽極酸化処理における印加電圧と、形成される微細穴の間隔(ピッチ)とは、比例する関係にあるため、陽極酸化処理、エッチング処理の繰り返しにおいて、陽極酸化処理の印加電圧を可変すれば、深さ方向に掘り進める時間が相違する微細穴を混在させてその比率を制御することができる。 [Formation process of minute holes to form minute protrusions]
Next, a method for forming multi-peaked microprojections and forming fine holes in which the height distribution of the microprojections is controlled will be described. As described above, the fine hole formed in the shaping mold (roll plate) is formed by alternately repeating the anodizing treatment and the etching treatment, and the applied voltage in the repeated anodizing treatment is varied. Thus, the depth of the fine holes (the height distribution of the fine protrusions) can be controlled. Here, since the applied voltage in the anodizing process and the interval (pitch) between the fine holes to be formed are in a proportional relationship, the applied voltage of the anodizing process can be varied in the repetition of the anodizing process and the etching process. For example, it is possible to mix fine holes having different times for digging in the depth direction and control the ratio.
また、このように陽極酸化処理における印加電圧を可変する場合にあっては、太さ(径)の太い微細穴の底面に、複数の微細穴を作成して多峰性微小突起に係る微細穴とすることができる。この太さの太い微細穴の高さの制御等により、多峰性微小突起についても、高さ分布を制御することができる。
In addition, in the case where the applied voltage in the anodizing process is varied in this way, a plurality of micro holes are created on the bottom surface of the micro hole having a large thickness (diameter), and the micro hole related to the multimodal micro protrusion is formed. It can be. By controlling the height of the fine hole having a large thickness, the height distribution can be controlled also for the multimodal microprojections.
図11は、多峰性微小突起に係る微細穴の説明に供する模式図であり、賦型用金型の製造工程における陽極酸化工程とエッチング工程とにより作製される微細穴を示す図である。
上述したように、陽極酸化処理における印加電圧と、微細穴のピッチとの関係は比例関係であるが、実際上、処理に供するアルミニウムの粒界等により微細穴のピッチにはばらつきが生じる。しかし、図11においては、このばらつきが存在しないものとして、微細穴が規則正しい配列により作製されるものとして説明する。なお、図11(a)~図11(e)において、左側の図は、ロール版13の表面の拡大図を示し、右側の図は、左側の図におけるa-a断面図を示す。 FIG. 11 is a schematic diagram for explaining the microholes related to the multimodal microprojections, and is a diagram showing the microholes produced by the anodic oxidation process and the etching process in the molding die manufacturing process.
As described above, the relationship between the applied voltage in the anodic oxidation process and the pitch of the fine holes is proportional, but in practice, the pitch of the fine holes varies due to the grain boundaries of the aluminum used for the treatment. However, in FIG. 11, it is assumed that the fine holes are formed in a regular arrangement, assuming that this variation does not exist. In FIGS. 11 (a) to 11 (e), the left figure shows an enlarged view of the surface of theroll plate 13, and the right figure shows an aa cross-sectional view in the left figure.
上述したように、陽極酸化処理における印加電圧と、微細穴のピッチとの関係は比例関係であるが、実際上、処理に供するアルミニウムの粒界等により微細穴のピッチにはばらつきが生じる。しかし、図11においては、このばらつきが存在しないものとして、微細穴が規則正しい配列により作製されるものとして説明する。なお、図11(a)~図11(e)において、左側の図は、ロール版13の表面の拡大図を示し、右側の図は、左側の図におけるa-a断面図を示す。 FIG. 11 is a schematic diagram for explaining the microholes related to the multimodal microprojections, and is a diagram showing the microholes produced by the anodic oxidation process and the etching process in the molding die manufacturing process.
As described above, the relationship between the applied voltage in the anodic oxidation process and the pitch of the fine holes is proportional, but in practice, the pitch of the fine holes varies due to the grain boundaries of the aluminum used for the treatment. However, in FIG. 11, it is assumed that the fine holes are formed in a regular arrangement, assuming that this variation does not exist. In FIGS. 11 (a) to 11 (e), the left figure shows an enlarged view of the surface of the
(第1の工程)
図11(a)に示すように、まず、賦型用金型の表面のアルミニウム層に、電圧V1を印加して陽極酸化工程A1を実行した後に、エッチング工程E1を実行し、微細穴f1を形成する。ここで、陽極酸化工程A1は、アルミニウムのフラット面に後続する陽極酸化処理のきっかけを作製するものである。なお、この場合、エッチング工程を適宜省略してもよい。 (First step)
As shown in FIG. 11A, first, the voltage V1 is applied to the aluminum layer on the surface of the shaping mold to perform the anodic oxidation step A1, and then the etching step E1 is performed to form the fine holes f1. Form. Here, the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum. In this case, the etching process may be omitted as appropriate.
図11(a)に示すように、まず、賦型用金型の表面のアルミニウム層に、電圧V1を印加して陽極酸化工程A1を実行した後に、エッチング工程E1を実行し、微細穴f1を形成する。ここで、陽極酸化工程A1は、アルミニウムのフラット面に後続する陽極酸化処理のきっかけを作製するものである。なお、この場合、エッチング工程を適宜省略してもよい。 (First step)
As shown in FIG. 11A, first, the voltage V1 is applied to the aluminum layer on the surface of the shaping mold to perform the anodic oxidation step A1, and then the etching step E1 is performed to form the fine holes f1. Form. Here, the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum. In this case, the etching process may be omitted as appropriate.
(第2の工程)
次に、電圧V1よりも高い電圧V2(V2>V1)を印加して陽極酸化工程A2を実行した後に、エッチング工程E2を実行する。これにより、陽極酸化工程A2では、図11(b)に示すように、先の陽極酸化工程A1により形成された微細穴f1のうち、陽極酸化工程A2に対応する間隔の微細穴f1を更に掘り下げる。
本実施形態では、陽極酸化工程A2によって、先の陽極酸化工程A1で形成された微細穴f1を二つ置きに掘り進める処理が行われる。従って、賦型用金型の表面には、二つ置きに広くかつ深く掘り下げられた微細穴f2が形成され、ロール版13の表面には、微細穴f1と微細穴f2とが混在する状態となる。 (Second step)
Next, after applying the voltage V2 (V2> V1) higher than the voltage V1 to execute the anodic oxidation step A2, the etching step E2 is executed. As a result, in the anodizing step A2, as shown in FIG. 11B, among the fine holes f1 formed in the previous anodizing step A1, the fine holes f1 having an interval corresponding to the anodizing step A2 are further dug down. .
In the present embodiment, a process of digging every two fine holes f1 formed in the previous anodizing process A1 is performed by the anodizing process A2. Therefore, the surface of the shaping mold is formed with fine holes f2 that are dug wide and deep every other two, and the surface of theroll plate 13 has a mixture of the fine holes f1 and f2. Become.
次に、電圧V1よりも高い電圧V2(V2>V1)を印加して陽極酸化工程A2を実行した後に、エッチング工程E2を実行する。これにより、陽極酸化工程A2では、図11(b)に示すように、先の陽極酸化工程A1により形成された微細穴f1のうち、陽極酸化工程A2に対応する間隔の微細穴f1を更に掘り下げる。
本実施形態では、陽極酸化工程A2によって、先の陽極酸化工程A1で形成された微細穴f1を二つ置きに掘り進める処理が行われる。従って、賦型用金型の表面には、二つ置きに広くかつ深く掘り下げられた微細穴f2が形成され、ロール版13の表面には、微細穴f1と微細穴f2とが混在する状態となる。 (Second step)
Next, after applying the voltage V2 (V2> V1) higher than the voltage V1 to execute the anodic oxidation step A2, the etching step E2 is executed. As a result, in the anodizing step A2, as shown in FIG. 11B, among the fine holes f1 formed in the previous anodizing step A1, the fine holes f1 having an interval corresponding to the anodizing step A2 are further dug down. .
In the present embodiment, a process of digging every two fine holes f1 formed in the previous anodizing process A1 is performed by the anodizing process A2. Therefore, the surface of the shaping mold is formed with fine holes f2 that are dug wide and deep every other two, and the surface of the
(第3の工程)
続いて、電圧V2よりも高い電圧V3(V3>V2)を印加して陽極酸化工程A3を実行した後に、エッチング工程E3を実行する。この工程では、ピッチの異なる微細穴を作製する。具体的には、印加する電圧を、電圧V2から電圧V3へ徐々に上昇させ、この印加電圧の上昇を離散的(段階的)に実行すると、微小突起の高さ分布(微細穴の深さ分布)を離散的に作製することができ、この印加電圧の上昇を連続的に実行すると、微小突起の高さ分布を正規分布に設定することができる。そのため、本実施形態では、陽極酸化工程A3における印加電圧の印加時間、エッチング工程の処理時間を上述の第1の工程、第2の工程よりも長く設定することにより、図11(c)に示すように、最初の陽極酸化工程A1において形成された微細穴f1が二つ、一つに纏まるように広くかつ深く掘り進められ、また、その一つに纏められた微細穴f3の底面が略平坦に形成される(平坦微細穴形成工程)。ここで、略平坦とは、微細穴の底面が平坦な状態だけでなく、その底面が大きい曲率半径で湾曲している状態をも含む状態をいう。 (Third step)
Subsequently, after applying the voltage V3 (V3> V2) higher than the voltage V2 to execute the anodic oxidation step A3, the etching step E3 is executed. In this step, fine holes with different pitches are produced. Specifically, when the voltage to be applied is gradually increased from the voltage V2 to the voltage V3, and the increase in the applied voltage is executed discretely (stepwise), the height distribution of the fine protrusions (depth distribution of the fine holes) ) Can be produced discretely, and when the applied voltage is continuously increased, the height distribution of the microprotrusions can be set to a normal distribution. Therefore, in this embodiment, the application time of the applied voltage in the anodizing step A3 and the processing time of the etching step are set longer than those in the first step and the second step described above, as shown in FIG. As described above, two fine holes f1 formed in the first anodic oxidation step A1 are dug wide and deep so as to be combined into one, and the bottom surface of the fine hole f3 integrated into one is substantially flat. (Flat fine hole forming step). Here, “substantially flat” means not only a state where the bottom surface of the fine hole is flat but also a state where the bottom surface is curved with a large curvature radius.
続いて、電圧V2よりも高い電圧V3(V3>V2)を印加して陽極酸化工程A3を実行した後に、エッチング工程E3を実行する。この工程では、ピッチの異なる微細穴を作製する。具体的には、印加する電圧を、電圧V2から電圧V3へ徐々に上昇させ、この印加電圧の上昇を離散的(段階的)に実行すると、微小突起の高さ分布(微細穴の深さ分布)を離散的に作製することができ、この印加電圧の上昇を連続的に実行すると、微小突起の高さ分布を正規分布に設定することができる。そのため、本実施形態では、陽極酸化工程A3における印加電圧の印加時間、エッチング工程の処理時間を上述の第1の工程、第2の工程よりも長く設定することにより、図11(c)に示すように、最初の陽極酸化工程A1において形成された微細穴f1が二つ、一つに纏まるように広くかつ深く掘り進められ、また、その一つに纏められた微細穴f3の底面が略平坦に形成される(平坦微細穴形成工程)。ここで、略平坦とは、微細穴の底面が平坦な状態だけでなく、その底面が大きい曲率半径で湾曲している状態をも含む状態をいう。 (Third step)
Subsequently, after applying the voltage V3 (V3> V2) higher than the voltage V2 to execute the anodic oxidation step A3, the etching step E3 is executed. In this step, fine holes with different pitches are produced. Specifically, when the voltage to be applied is gradually increased from the voltage V2 to the voltage V3, and the increase in the applied voltage is executed discretely (stepwise), the height distribution of the fine protrusions (depth distribution of the fine holes) ) Can be produced discretely, and when the applied voltage is continuously increased, the height distribution of the microprotrusions can be set to a normal distribution. Therefore, in this embodiment, the application time of the applied voltage in the anodizing step A3 and the processing time of the etching step are set longer than those in the first step and the second step described above, as shown in FIG. As described above, two fine holes f1 formed in the first anodic oxidation step A1 are dug wide and deep so as to be combined into one, and the bottom surface of the fine hole f3 integrated into one is substantially flat. (Flat fine hole forming step). Here, “substantially flat” means not only a state where the bottom surface of the fine hole is flat but also a state where the bottom surface is curved with a large curvature radius.
(第4の工程)
続いて、電圧V3よりも高い電圧V4(V4>V3)を印加して陽極酸化工程A4を実行した後に、エッチング工程E4を実行する。この工程では、目的とする突起間間隔によるピッチにより微細穴を作成する。この陽極酸化工程A4においても、印加電圧は、電圧V3から電圧V4へ徐々に上昇させる。これにより、上記第3の工程により掘り進められた微細穴f3の一部が更に掘り進められ、その結果、図11(d)に示すように、微細穴f4となり、この微細穴f4が高さの高い単峰性微小突起を形成する。 (Fourth process)
Subsequently, after applying the voltage V4 (V4> V3) higher than the voltage V3 to execute the anodic oxidation step A4, the etching step E4 is executed. In this step, fine holes are created with a pitch based on the desired interprotrusion spacing. Also in this anodizing step A4, the applied voltage is gradually increased from the voltage V3 to the voltage V4. As a result, a part of the fine hole f3 dug by the third step is further dug, and as a result, as shown in FIG. 11 (d), the fine hole f4 is formed. High unimodal microprotrusions are formed.
続いて、電圧V3よりも高い電圧V4(V4>V3)を印加して陽極酸化工程A4を実行した後に、エッチング工程E4を実行する。この工程では、目的とする突起間間隔によるピッチにより微細穴を作成する。この陽極酸化工程A4においても、印加電圧は、電圧V3から電圧V4へ徐々に上昇させる。これにより、上記第3の工程により掘り進められた微細穴f3の一部が更に掘り進められ、その結果、図11(d)に示すように、微細穴f4となり、この微細穴f4が高さの高い単峰性微小突起を形成する。 (Fourth process)
Subsequently, after applying the voltage V4 (V4> V3) higher than the voltage V3 to execute the anodic oxidation step A4, the etching step E4 is executed. In this step, fine holes are created with a pitch based on the desired interprotrusion spacing. Also in this anodizing step A4, the applied voltage is gradually increased from the voltage V3 to the voltage V4. As a result, a part of the fine hole f3 dug by the third step is further dug, and as a result, as shown in FIG. 11 (d), the fine hole f4 is formed. High unimodal microprotrusions are formed.
(第5の工程)
続いて、印加電圧を上記第1の工程における電圧V1に変更して陽極酸化工程A5を実行した後に、エッチング工程E5を実行する。この工程では、陽極酸化工程A3において形成された微細穴f3であって、第4の工程の陽極酸化工程A4の影響を受けていない微細穴の底面に、図11(e)に示すように、微細穴を複数個形成し、多峰性微小突起に対応する微細穴f5を形成する(多峰突起用微細穴形成工程)。ここで、印加する電圧V1の大きさを調整することによって、微細穴f5の底面に形成される微細穴の数を増減したり、微細穴の間隔を調整したりすることができる。 (Fifth step)
Subsequently, after changing the applied voltage to the voltage V1 in the first step and performing the anodic oxidation step A5, the etching step E5 is performed. In this step, as shown in FIG. 11 (e), on the bottom surface of the fine hole f3 formed in the anodizing step A3 and not affected by the anodizing step A4 of the fourth step, A plurality of fine holes are formed to form a fine hole f5 corresponding to the multi-peak microprotrusions (a multi-hole protrusion micro-hole forming step). Here, by adjusting the magnitude of the voltage V1 to be applied, the number of fine holes formed in the bottom surface of the fine hole f5 can be increased or decreased, and the interval between the fine holes can be adjusted.
続いて、印加電圧を上記第1の工程における電圧V1に変更して陽極酸化工程A5を実行した後に、エッチング工程E5を実行する。この工程では、陽極酸化工程A3において形成された微細穴f3であって、第4の工程の陽極酸化工程A4の影響を受けていない微細穴の底面に、図11(e)に示すように、微細穴を複数個形成し、多峰性微小突起に対応する微細穴f5を形成する(多峰突起用微細穴形成工程)。ここで、印加する電圧V1の大きさを調整することによって、微細穴f5の底面に形成される微細穴の数を増減したり、微細穴の間隔を調整したりすることができる。 (Fifth step)
Subsequently, after changing the applied voltage to the voltage V1 in the first step and performing the anodic oxidation step A5, the etching step E5 is performed. In this step, as shown in FIG. 11 (e), on the bottom surface of the fine hole f3 formed in the anodizing step A3 and not affected by the anodizing step A4 of the fourth step, A plurality of fine holes are formed to form a fine hole f5 corresponding to the multi-peak microprotrusions (a multi-hole protrusion micro-hole forming step). Here, by adjusting the magnitude of the voltage V1 to be applied, the number of fine holes formed in the bottom surface of the fine hole f5 can be increased or decreased, and the interval between the fine holes can be adjusted.
以上より、賦型用金型の表面には、高さの異なる微小突起を形成する微細穴f1、f2、f4や、多峰性微小突起を形成する微細穴f5が形成される。
ここで、この一連の工程では、第1の工程及び第2の工程により作製された深さの異なる微細穴f1、f2を、第3の工程で掘り進めて底面の略平坦な微細穴f3を作製し、第4の工程において、この微細穴f3を掘り進めて単峰性微小突起に係る微細穴f4を作製し、また、第5の工程において、この微細穴f3の底面を加工して多峰性微小突起に係る微細穴f5を作製している。ここで、第1の工程から第4の工程に係る陽極酸化工程の印加時間、処理時間、エッチング工程の処理時間等を制御して、各工程で作製される微細穴の深さを制御することにより、微小突起の高さの分布や、多峰性微小突起の高さの分布を制御することができる。なお、上述の第1の工程~第5の工程は、必要に応じて回数を省略したり、繰り返したり、工程を一体化したりすることができる。 As described above, the fine holes f1, f2, and f4 for forming the minute protrusions having different heights and the minute holes f5 for forming the multimodal minute protrusions are formed on the surface of the molding die.
Here, in this series of steps, the fine holes f1 and f2 having different depths produced in the first step and the second step are dug in the third step to form a substantially flat fine hole f3 on the bottom surface. In the fourth step, the minute hole f3 is dug to produce the minute hole f4 related to the single-peaked minute protrusion. In the fifth step, the bottom surface of the minute hole f3 is processed to obtain a large number of holes. The minute hole f5 related to the ridge-like minute protrusion is produced. Here, by controlling the application time, the processing time, the processing time of the etching process, etc. of the anodizing process according to the first to fourth processes, the depth of the fine hole produced in each process is controlled. Thus, it is possible to control the height distribution of the microprojections and the height distribution of the multimodal microprojections. Note that the above-described first to fifth steps can be omitted or repeated as necessary, or the steps can be integrated.
ここで、この一連の工程では、第1の工程及び第2の工程により作製された深さの異なる微細穴f1、f2を、第3の工程で掘り進めて底面の略平坦な微細穴f3を作製し、第4の工程において、この微細穴f3を掘り進めて単峰性微小突起に係る微細穴f4を作製し、また、第5の工程において、この微細穴f3の底面を加工して多峰性微小突起に係る微細穴f5を作製している。ここで、第1の工程から第4の工程に係る陽極酸化工程の印加時間、処理時間、エッチング工程の処理時間等を制御して、各工程で作製される微細穴の深さを制御することにより、微小突起の高さの分布や、多峰性微小突起の高さの分布を制御することができる。なお、上述の第1の工程~第5の工程は、必要に応じて回数を省略したり、繰り返したり、工程を一体化したりすることができる。 As described above, the fine holes f1, f2, and f4 for forming the minute protrusions having different heights and the minute holes f5 for forming the multimodal minute protrusions are formed on the surface of the molding die.
Here, in this series of steps, the fine holes f1 and f2 having different depths produced in the first step and the second step are dug in the third step to form a substantially flat fine hole f3 on the bottom surface. In the fourth step, the minute hole f3 is dug to produce the minute hole f4 related to the single-peaked minute protrusion. In the fifth step, the bottom surface of the minute hole f3 is processed to obtain a large number of holes. The minute hole f5 related to the ridge-like minute protrusion is produced. Here, by controlling the application time, the processing time, the processing time of the etching process, etc. of the anodizing process according to the first to fourth processes, the depth of the fine hole produced in each process is controlled. Thus, it is possible to control the height distribution of the microprojections and the height distribution of the multimodal microprojections. Note that the above-described first to fifth steps can be omitted or repeated as necessary, or the steps can be integrated.
図12は、図11との対比により、微小突起の高さ分布の制御に係る深さの異なる微細穴が形成される過程の説明に供する図である。
FIG. 12 is a diagram for explaining the process of forming micro holes with different depths related to the control of the height distribution of the microprotrusions in comparison with FIG.
(第1の工程)
ここで図12(a)に示すように、第1の工程において、先ず、賦型用金型の表面のアルミニウム層に、電圧V1を印加して陽極酸化工程A1を実行した後に、エッチング工程E1を実行し、微細な穴f1を形成する。ここで、陽極酸化工程A1は、アルミニウムのフラット面に後続する陽極酸化処理のきっかけを作製するものである。なお、この場合、エッチング工程を適宜省略してもよい。 (First step)
Here, as shown in FIG. 12A, in the first step, first, the voltage V1 is applied to the aluminum layer on the surface of the molding die to perform the anodizing step A1, and then the etching step E1. To form a fine hole f1. Here, the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum. In this case, the etching process may be omitted as appropriate.
ここで図12(a)に示すように、第1の工程において、先ず、賦型用金型の表面のアルミニウム層に、電圧V1を印加して陽極酸化工程A1を実行した後に、エッチング工程E1を実行し、微細な穴f1を形成する。ここで、陽極酸化工程A1は、アルミニウムのフラット面に後続する陽極酸化処理のきっかけを作製するものである。なお、この場合、エッチング工程を適宜省略してもよい。 (First step)
Here, as shown in FIG. 12A, in the first step, first, the voltage V1 is applied to the aluminum layer on the surface of the molding die to perform the anodizing step A1, and then the etching step E1. To form a fine hole f1. Here, the anodic oxidation step A1 is to create a trigger for the anodic oxidation treatment that follows the flat surface of aluminum. In this case, the etching process may be omitted as appropriate.
(第2の工程)
次に、電圧V1よりも高い電圧V2(V2>V1)を印加して陽極酸化工程A2を実行した後に、エッチング工程E2を実行する。これにより、陽極酸化工程A2では、図12(b)に示すように、先の陽極酸化工程A1により形成された微細な穴f1のうち、陽極酸化工程A2に対応する間隔の微細な穴f1を更に掘り下げる。 (Second step)
Next, after applying the voltage V2 (V2> V1) higher than the voltage V1 to execute the anodic oxidation step A2, the etching step E2 is executed. As a result, in the anodizing step A2, as shown in FIG. 12B, among the fine holes f1 formed in the previous anodizing step A1, fine holes f1 having a distance corresponding to the anodizing step A2 are formed. Dig further.
次に、電圧V1よりも高い電圧V2(V2>V1)を印加して陽極酸化工程A2を実行した後に、エッチング工程E2を実行する。これにより、陽極酸化工程A2では、図12(b)に示すように、先の陽極酸化工程A1により形成された微細な穴f1のうち、陽極酸化工程A2に対応する間隔の微細な穴f1を更に掘り下げる。 (Second step)
Next, after applying the voltage V2 (V2> V1) higher than the voltage V1 to execute the anodic oxidation step A2, the etching step E2 is executed. As a result, in the anodizing step A2, as shown in FIG. 12B, among the fine holes f1 formed in the previous anodizing step A1, fine holes f1 having a distance corresponding to the anodizing step A2 are formed. Dig further.
ここで印加電圧V2をV2=2×V1に設定すると、陽極酸化工程A2によって、先の陽極酸化工程A1で形成された微細な穴f1を一つ置きに掘り進める処理が行われる。従って、賦型用金型の表面には、一つ置きに広くかつ深く掘り下げられた微細な穴f2が形成され、成形型の表面には、微細な穴f1と微細な穴2とが混在する状態となる。
Here, when the applied voltage V2 is set to V2 = 2 × V1, a process of digging every other minute hole f1 formed in the previous anodizing process A1 is performed by the anodizing process A2. Accordingly, every other wide and deeply drilled fine hole f2 is formed on the surface of the molding die, and the minute hole f1 and the minute hole 2 are mixed on the surface of the mold. It becomes a state.
(第3の工程)
続いて、電圧V1と電圧V2の間の電圧V3(V2>V3>V1)を印加して陽極酸化工程A3を実行した後に、エッチング工程E3を実行する。この工程では、ピッチの異なる微細な穴を作製する。具体的には、印加する電圧を、電圧V3として、縦横に面内に配列した微細な穴f2の間に存在する図示の如くの特定の微細な穴f1を一つ置きに広く且つ深く掘り下げる。ここで印加電圧V3をV3=(V1)1/2に設定すると、陽極酸化工程A3における印加電圧の印加時間、エッチング工程の処理時間を上述の第1の工程よりも長く設定することにより、図11(c)に示すように、最初の陽極酸化工程A1において形成された微細な穴f1のうち、4個の微細な穴f2で囲まれる最小の四角形の中心に位置する微細な穴f1が選択的に深く掘り下げられる。且つ同時に、第2の陽極酸化工程A2形成された微細な穴f2のうちで図12(c)で図示される位置関係に有る一部のものが更に掘り下げられ、微細な穴f3となる。 (Third step)
Subsequently, after applying the voltage V3 (V2>V3> V1) between the voltage V1 and the voltage V2 to execute the anodic oxidation step A3, the etching step E3 is executed. In this step, fine holes with different pitches are produced. Specifically, the voltage to be applied is set to the voltage V3, and every other specific minute hole f1 as illustrated between the minute holes f2 arranged in the plane vertically and horizontally is dug wide and deep. Here, when the applied voltage V3 is set to V3 = (V1) 1/2 , the application time of the applied voltage in the anodizing step A3 and the processing time of the etching step are set longer than those in the first step described above. As shown in FIG. 11 (c), among the fine holes f1 formed in the first anodic oxidation step A1, the fine hole f1 located at the center of the smallest square surrounded by the four fine holes f2 is selected. Deeply digging deeply. At the same time, among the fine holes f2 formed in the second anodic oxidation step A2, a part of the fine holes f2 having the positional relationship shown in FIG. 12C is further dug down to become fine holes f3.
続いて、電圧V1と電圧V2の間の電圧V3(V2>V3>V1)を印加して陽極酸化工程A3を実行した後に、エッチング工程E3を実行する。この工程では、ピッチの異なる微細な穴を作製する。具体的には、印加する電圧を、電圧V3として、縦横に面内に配列した微細な穴f2の間に存在する図示の如くの特定の微細な穴f1を一つ置きに広く且つ深く掘り下げる。ここで印加電圧V3をV3=(V1)1/2に設定すると、陽極酸化工程A3における印加電圧の印加時間、エッチング工程の処理時間を上述の第1の工程よりも長く設定することにより、図11(c)に示すように、最初の陽極酸化工程A1において形成された微細な穴f1のうち、4個の微細な穴f2で囲まれる最小の四角形の中心に位置する微細な穴f1が選択的に深く掘り下げられる。且つ同時に、第2の陽極酸化工程A2形成された微細な穴f2のうちで図12(c)で図示される位置関係に有る一部のものが更に掘り下げられ、微細な穴f3となる。 (Third step)
Subsequently, after applying the voltage V3 (V2>V3> V1) between the voltage V1 and the voltage V2 to execute the anodic oxidation step A3, the etching step E3 is executed. In this step, fine holes with different pitches are produced. Specifically, the voltage to be applied is set to the voltage V3, and every other specific minute hole f1 as illustrated between the minute holes f2 arranged in the plane vertically and horizontally is dug wide and deep. Here, when the applied voltage V3 is set to V3 = (V1) 1/2 , the application time of the applied voltage in the anodizing step A3 and the processing time of the etching step are set longer than those in the first step described above. As shown in FIG. 11 (c), among the fine holes f1 formed in the first anodic oxidation step A1, the fine hole f1 located at the center of the smallest square surrounded by the four fine holes f2 is selected. Deeply digging deeply. At the same time, among the fine holes f2 formed in the second anodic oxidation step A2, a part of the fine holes f2 having the positional relationship shown in FIG. 12C is further dug down to become fine holes f3.
その結果、図12(c)に示すように、微細な穴f1(これが最も高さの低い微小突起に対応する穴となる)の周囲をf1よりも深い微細な穴f2及びf3(それぞれ中程度及び高程度の高さの微小突起に対応する穴となる)によって周囲を包囲された穴群が面内に配列した表面構造を有する成形型が得られる。
As a result, as shown in FIG. 12C, fine holes f2 and f3 (medium respectively) deeper than f1 around the fine hole f1 (which corresponds to the minute protrusion having the lowest height). And a mold having a surface structure in which a group of holes surrounded by a small projection having a high height is arranged in a plane.
このように複数回の陽極酸化処理における印加電圧の切り替えにより掘り進める微細穴が異なることにより、微細穴の深さを大きく異ならせることができ、これにより意図する分布により微小突起の高さを制御することができる。
In this way, the depth of the micro holes can be greatly varied by changing the micro holes to be drilled by switching the applied voltage in multiple times of anodizing treatment, thereby controlling the height of the micro protrusions by the intended distribution can do.
次に、上述の方法により作製された賦型用金型によって製造された反射防止物品の実施例について説明する。
〔実施例1〕
図13は、実施例1の反射防止物品の微小突起の高さHの度数分布を示す図である。
実施例1の反射防止物品を製造する賦型用金型は、上述の第2工程、第3工程、第4工程で陽極酸化処理の印加電圧を連続的に変化させたものであり、また第5工程では、第4工程の印加電圧から電圧を低下させたものである。 Next, an example of the antireflection article manufactured by the shaping mold manufactured by the above-described method will be described.
[Example 1]
FIG. 13 is a diagram showing a frequency distribution of the height H of the microprojections of the antireflection article of Example 1.
The shaping mold for producing the antireflection article of Example 1 is obtained by continuously changing the applied voltage of the anodizing treatment in the second step, the third step, and the fourth step. In the fifth step, the voltage is reduced from the applied voltage in the fourth step.
〔実施例1〕
図13は、実施例1の反射防止物品の微小突起の高さHの度数分布を示す図である。
実施例1の反射防止物品を製造する賦型用金型は、上述の第2工程、第3工程、第4工程で陽極酸化処理の印加電圧を連続的に変化させたものであり、また第5工程では、第4工程の印加電圧から電圧を低下させたものである。 Next, an example of the antireflection article manufactured by the shaping mold manufactured by the above-described method will be described.
[Example 1]
FIG. 13 is a diagram showing a frequency distribution of the height H of the microprojections of the antireflection article of Example 1.
The shaping mold for producing the antireflection article of Example 1 is obtained by continuously changing the applied voltage of the anodizing treatment in the second step, the third step, and the fourth step. In the fifth step, the voltage is reduced from the applied voltage in the fourth step.
より具体的に、図13の例は、陽極酸化工程とエッチング工程とを5回繰り返した場合であり、第1回目の陽極酸化工程の印加電圧をV1(15V~35Vの範囲の一定電圧である)とした場合に、第2回目、第3回目、第4回目、第5回目の陽極酸化工程の印加電圧をそれぞれ2V1、3.5V1、5V1、V1とした例である。なお陽極酸化処理は、濃度0.02Mのシュウ酸水溶液を使用して100秒実施した。エッチング工程は、濃度0.02Mのシュウ酸水溶液を使用して45秒間エッチング処理した後、濃度1.0Mのリン酸水溶液を使用して110秒間エッチング処理した。
More specifically, the example of FIG. 13 is a case where the anodizing step and the etching step are repeated five times, and the applied voltage of the first anodizing step is V1 (a constant voltage in the range of 15V to 35V). ), The applied voltages in the second, third, fourth, and fifth anodic oxidation steps are 2V1, 3.5V1, 5V1, and V1, respectively. The anodizing treatment was performed for 100 seconds using an oxalic acid aqueous solution having a concentration of 0.02M. In the etching step, an etching process was performed for 45 seconds using an aqueous oxalic acid solution having a concentration of 0.02M, and then an etching process was performed for 110 seconds using an aqueous solution of phosphoric acid having a concentration of 1.0M.
この賦型用金型によって製造された反射防止物品は、微小突起の高さ分布が正規分布を示しており、微小突起が作製されてなる面の鉛直線を中心とした比較的狭い範囲で、良好な反射防止機能を確保することができる。またこのときこのような高さ分布において、多峰性微小突起(頂点数が2つ及び3つのものをそれぞれ二峰、三峰により示す)についても、ほぼ高さの平均値が一致した正規分布とすることができ、これにより効率良く多峰性微小突起の耐擦傷性の機能、光学特性の向上機能を発揮させることができる。これにより携帯電話機や携帯ゲーム機等に使用される小型ディスプレイに使用することができる。
In the antireflection article manufactured by this mold, the height distribution of the microprojections shows a normal distribution, and in a relatively narrow range centered on the vertical line of the surface on which the microprojections are formed, A good antireflection function can be ensured. Also, at this time, in such a height distribution, the multimodal microprojections (two and three vertices are indicated by two peaks and three peaks, respectively) also have a normal distribution in which the average values of the heights are almost the same. Accordingly, the scratch resistance function and the optical property improvement function of the multi-modal microprotrusions can be efficiently exhibited. Thereby, it can be used for a small display used in a mobile phone, a portable game machine, and the like.
上述の方法により製造された実施例1の反射防止物品は、図13に示すように、微小突起の高さの平均値がm=145.7nmであり、その標準偏差がσ=22.1nmである。
ここで、微小突起の高さHの度数分布において、低高度領域は、H<m-σ=123.6nmとなり、中高度領域は、m-σ=123.6nm≦H≦m+σ=167.8nmとなり、高高度領域は、H>m+σ=167.8nmとなる。
度数分布全体の微小突起の総数Ntは、263個である。また、中高度領域の多峰性微小突起の数Nmは、23個であるので、中高度領域のNm/Ntは、0.087となる。低高度領域の多峰性微小突起の数Nmは、2個であるので、低高度領域のNm/Ntは、0.008となる。高高度領域の多峰性微小突起の数Nmは、5個であるので、高高度領域のNm/Ntは、0.019となる。 As shown in FIG. 13, the antireflection article of Example 1 manufactured by the above-described method has an average height of minute protrusions of m = 145.7 nm and a standard deviation of σ = 22.1 nm. is there.
Here, in the frequency distribution of the height H of the microprotrusions, the low altitude region is H <m−σ = 123.6 nm, and the middle altitude region is m−σ = 13.6 nm ≦ H ≦ m + σ = 167.8 nm. Thus, the high altitude region is H> m + σ = 167.8 nm.
The total number Nt of microprojections in the entire frequency distribution is 263. Further, since the number Nm of multi-modal microprotrusions in the middle altitude region is 23, Nm / Nt in the middle altitude region is 0.087. Since the number Nm of the multimodal microprotrusions in the low altitude region is two, Nm / Nt in the low altitude region is 0.008. Since the number Nm of multimodal microprojections in the high altitude region is 5, the Nm / Nt in the high altitude region is 0.019.
ここで、微小突起の高さHの度数分布において、低高度領域は、H<m-σ=123.6nmとなり、中高度領域は、m-σ=123.6nm≦H≦m+σ=167.8nmとなり、高高度領域は、H>m+σ=167.8nmとなる。
度数分布全体の微小突起の総数Ntは、263個である。また、中高度領域の多峰性微小突起の数Nmは、23個であるので、中高度領域のNm/Ntは、0.087となる。低高度領域の多峰性微小突起の数Nmは、2個であるので、低高度領域のNm/Ntは、0.008となる。高高度領域の多峰性微小突起の数Nmは、5個であるので、高高度領域のNm/Ntは、0.019となる。 As shown in FIG. 13, the antireflection article of Example 1 manufactured by the above-described method has an average height of minute protrusions of m = 145.7 nm and a standard deviation of σ = 22.1 nm. is there.
Here, in the frequency distribution of the height H of the microprotrusions, the low altitude region is H <m−σ = 123.6 nm, and the middle altitude region is m−σ = 13.6 nm ≦ H ≦ m + σ = 167.8 nm. Thus, the high altitude region is H> m + σ = 167.8 nm.
The total number Nt of microprojections in the entire frequency distribution is 263. Further, since the number Nm of multi-modal microprotrusions in the middle altitude region is 23, Nm / Nt in the middle altitude region is 0.087. Since the number Nm of the multimodal microprotrusions in the low altitude region is two, Nm / Nt in the low altitude region is 0.008. Since the number Nm of multimodal microprojections in the high altitude region is 5, the Nm / Nt in the high altitude region is 0.019.
従って、本実施例の反射防止物品は、上述の(a)、(b)の関係、すなわち、
(a)中高度領域のNm/Nt=0.087>低高度領域のNm/Nt=0.008
(b)中高度領域のNm/Nt=0.087>高高度領域のNm/Nt=0.019
を満足する。 Therefore, the antireflection article of the present example has the above-described relationships (a) and (b), that is,
(A) Nm / Nt in the middle altitude region = 0.087> Nm / Nt = 0.008 in the low altitude region
(B) Nm / Nt = 0.087 in the medium altitude region> Nm / Nt = 0.19 in the high altitude region
Satisfied.
(a)中高度領域のNm/Nt=0.087>低高度領域のNm/Nt=0.008
(b)中高度領域のNm/Nt=0.087>高高度領域のNm/Nt=0.019
を満足する。 Therefore, the antireflection article of the present example has the above-described relationships (a) and (b), that is,
(A) Nm / Nt in the middle altitude region = 0.087> Nm / Nt = 0.008 in the low altitude region
(B) Nm / Nt = 0.087 in the medium altitude region> Nm / Nt = 0.19 in the high altitude region
Satisfied.
以上より、実施例1の反射防止物品は、中高度領域における多峰性微小突起の数(Nm)と度数分布における微小突起の総数(Nt)との比率(Nm/Nt)が、低高度領域及び高高度領域の比率よりも大きくなるように多峰性微小突起が形成されているので、可視光域に係る入射光に対する反射率を低減することができ、反射防止物品の反射防止機能の広帯域化を図ることができる。
また、この反射防止物品は、このような高さ分布において、多峰性微小突起(頂点数が2つ及び3つのものをそれぞれ二峰、三峰により示す)についても、ほぼ高さの平均値が一致した正規分布とすることができるので、視野角特性を制限することができ、携帯電話機や携帯ゲーム機等に使用される小型ディスプレイに使用することができる。また、効率良く多峰性微小突起の耐擦傷性を向上させることができる。
更に、上述の構成にすることによって、反射防止物品は、高さが高い(180nm以上)微小突起に分布する多峰性微小突起の比率が小さく、単峰性微小突起の比率が多いので、他の物体が微小突起に摩擦接触したとしても、高さの高い単峰性微小突起が先に接触することとなり、反射防止機能を主に向上させる多峰性微小突起に接触してしまうのを抑制することができる。 As described above, in the antireflection article of Example 1, the ratio (Nm / Nt) of the number (Nm) of multimodal microprotrusions in the medium altitude region and the total number of microprotrusions (Nt) in the frequency distribution is low in the low altitude region. Since the multi-peak microprotrusions are formed so as to be larger than the ratio of the high altitude region, the reflectance for incident light in the visible light region can be reduced, and the antireflection product has a wide antireflection function. Can be achieved.
In addition, this antireflection article has such a height distribution that the average value of the heights of the multimodal microprotrusions (two and three vertices are indicated by two peaks and three peaks, respectively) is almost the same. Since the matched normal distribution can be obtained, the viewing angle characteristic can be limited, and it can be used for a small display used in a mobile phone, a portable game machine, or the like. In addition, the scratch resistance of the multimodal microprotrusions can be improved efficiently.
Further, by adopting the above-described configuration, the antireflection article has a small ratio of multi-peak microprojections distributed in microprojections having a high height (180 nm or more) and a large ratio of single-peak microprojections. Even if the object is in frictional contact with the microprotrusions, the high unimodal microprotrusions come into contact first, and the contact with the multimodal microprotrusions that mainly improve the antireflection function is suppressed. can do.
また、この反射防止物品は、このような高さ分布において、多峰性微小突起(頂点数が2つ及び3つのものをそれぞれ二峰、三峰により示す)についても、ほぼ高さの平均値が一致した正規分布とすることができるので、視野角特性を制限することができ、携帯電話機や携帯ゲーム機等に使用される小型ディスプレイに使用することができる。また、効率良く多峰性微小突起の耐擦傷性を向上させることができる。
更に、上述の構成にすることによって、反射防止物品は、高さが高い(180nm以上)微小突起に分布する多峰性微小突起の比率が小さく、単峰性微小突起の比率が多いので、他の物体が微小突起に摩擦接触したとしても、高さの高い単峰性微小突起が先に接触することとなり、反射防止機能を主に向上させる多峰性微小突起に接触してしまうのを抑制することができる。 As described above, in the antireflection article of Example 1, the ratio (Nm / Nt) of the number (Nm) of multimodal microprotrusions in the medium altitude region and the total number of microprotrusions (Nt) in the frequency distribution is low in the low altitude region. Since the multi-peak microprotrusions are formed so as to be larger than the ratio of the high altitude region, the reflectance for incident light in the visible light region can be reduced, and the antireflection product has a wide antireflection function. Can be achieved.
In addition, this antireflection article has such a height distribution that the average value of the heights of the multimodal microprotrusions (two and three vertices are indicated by two peaks and three peaks, respectively) is almost the same. Since the matched normal distribution can be obtained, the viewing angle characteristic can be limited, and it can be used for a small display used in a mobile phone, a portable game machine, or the like. In addition, the scratch resistance of the multimodal microprotrusions can be improved efficiently.
Further, by adopting the above-described configuration, the antireflection article has a small ratio of multi-peak microprojections distributed in microprojections having a high height (180 nm or more) and a large ratio of single-peak microprojections. Even if the object is in frictional contact with the microprotrusions, the high unimodal microprotrusions come into contact first, and the contact with the multimodal microprotrusions that mainly improve the antireflection function is suppressed. can do.
〔実施例2〕
図14は、実施例2の反射防止物品の微小突起の高さHの度数分布を示す図である。
実施例2の反射防止物品を製造する賦型用金型は、徐々に印加電圧を可変して陽極酸化処理を実行し、第4工程では、図13の例による最高電圧に比して一段とより高い電圧により陽極酸化処理を実行したものである。 [Example 2]
FIG. 14 is a diagram showing a frequency distribution of the height H of the microprojections of the antireflection article of Example 2.
The shaping mold for producing the antireflection article of Example 2 performs the anodizing process by gradually changing the applied voltage, and in the fourth step, it is more than the maximum voltage according to the example of FIG. The anodizing treatment is performed with a high voltage.
図14は、実施例2の反射防止物品の微小突起の高さHの度数分布を示す図である。
実施例2の反射防止物品を製造する賦型用金型は、徐々に印加電圧を可変して陽極酸化処理を実行し、第4工程では、図13の例による最高電圧に比して一段とより高い電圧により陽極酸化処理を実行したものである。 [Example 2]
FIG. 14 is a diagram showing a frequency distribution of the height H of the microprojections of the antireflection article of Example 2.
The shaping mold for producing the antireflection article of Example 2 performs the anodizing process by gradually changing the applied voltage, and in the fourth step, it is more than the maximum voltage according to the example of FIG. The anodizing treatment is performed with a high voltage.
より具体的に図14の例は、図13の例と同一の繰り返し回数、溶液及び処理時間により陽極酸化工程、エッチング工程を実行した。この図14の例では、第1回目の陽極酸化工程の印加電圧をV1(15V~35Vの範囲の一定電圧である)とした場合に、第2回目、第3回目、第4回目、第5回目の陽極酸化工程の印加電圧をそれぞれ2.5V1、4V1、6V1、V11/2~V1とした例である。2回目から4回目の陽極酸化工程では、2回目の陽極酸化処理の開始電圧及び4回目の陽極酸化処理の終了電圧がそれぞれ2.5V1及び6V1となるように設定して、徐々に印加電圧を増大させた。
More specifically, in the example of FIG. 14, the anodizing process and the etching process were performed with the same number of repetitions, solution, and processing time as in the example of FIG. 13. In the example of FIG. 14, when the applied voltage in the first anodic oxidation step is V1 (a constant voltage in the range of 15V to 35V), the second, third, fourth, In this example, the voltages applied in the second anodic oxidation step are 2.5 V1, 4 V1, 6 V1, and V1 1/2 to V1, respectively. In the second to fourth anodic oxidation steps, the start voltage of the second anodic oxidation treatment and the end voltage of the fourth anodic oxidation treatment are set to 2.5 V1 and 6 V1, respectively, and the applied voltage is gradually increased. Increased.
この図14の例では、高さの高い側と低い側とに分布のピークを有する、微小突起の高さ分布が離散的、すなわち、双峰性を持つ分布を示しており、各分布の峰に対応して多峰性微小突起の分布が形成される。
In the example of FIG. 14, the height distribution of the microprotrusions having distribution peaks on the high side and the low side is discrete, that is, a bimodal distribution. Corresponding to the distribution of multimodal microprojections.
実施例2の反射防止物品は、度数分布が双峰性の分布となり、この度数分布全体の微小突起の高さの平均値がm=195.7nmであり、標準偏差がσ=57.2nmである。
In the antireflection article of Example 2, the frequency distribution has a bimodal distribution, the average height of the microprojections of the entire frequency distribution is m = 195.7 nm, and the standard deviation is σ = 57.2 nm. is there.
ここで、微小突起の高さHの度数分布において、低高度領域は、H<m-σ=138.5nmとなり、中高度領域は、m-σ=138.5nm≦H≦m+σ=252.9nmとなり、高高度領域は、H>m+σ=254.7nmとなる。
度数分布全体の微小突起の総数Ntは、131個である。また、中高度領域の多峰性微小突起の数Nmは、21個であるので、中高度領域のNm/Ntは、0.160となる。低高度領域の多峰性微小突起の数Nmは、3個であるので、低高度領域のNm/Ntは、0.023となる。高高度領域の多峰性微小突起の数Nmは、0個であるので、高高度領域のNm/Ntは、0となる。
従って、本実施例の反射防止物品は、上述の(a)、(b)の関係、すなわち、
(a)中高度領域のNm/Nt=0.160>低高度領域のNm/Nt=0.023
(b)中高度領域のNm/Nt=0.160>高高度領域のNm/Nt=0
を満足する。 Here, in the frequency distribution of the height H of the microprojections, the low altitude region is H <m−σ = 138.5 nm, and the middle altitude region is m−σ = 138.5 nm ≦ H ≦ m + σ = 252.9 nm. Thus, the high altitude region is H> m + σ = 254.7 nm.
The total number Nt of fine protrusions in the entire frequency distribution is 131. In addition, since the number Nm of multimodal microprotrusions in the middle altitude region is 21, the Nm / Nt in the middle altitude region is 0.160. Since the number Nm of the multimodal microprotrusions in the low altitude region is 3, Nm / Nt in the low altitude region is 0.023. Since the number Nm of multimodal microprojections in the high altitude region is 0, Nm / Nt in the high altitude region is 0.
Therefore, the antireflection article of the present example has the above-described relationships (a) and (b), that is,
(A) Nm / Nt = 0.160 in the middle altitude region> Nm / Nt = 0.024 in the low altitude region
(B) Nm / Nt = 0.160 in the middle altitude region> Nm / Nt = 0 in the high altitude region
Satisfied.
度数分布全体の微小突起の総数Ntは、131個である。また、中高度領域の多峰性微小突起の数Nmは、21個であるので、中高度領域のNm/Ntは、0.160となる。低高度領域の多峰性微小突起の数Nmは、3個であるので、低高度領域のNm/Ntは、0.023となる。高高度領域の多峰性微小突起の数Nmは、0個であるので、高高度領域のNm/Ntは、0となる。
従って、本実施例の反射防止物品は、上述の(a)、(b)の関係、すなわち、
(a)中高度領域のNm/Nt=0.160>低高度領域のNm/Nt=0.023
(b)中高度領域のNm/Nt=0.160>高高度領域のNm/Nt=0
を満足する。 Here, in the frequency distribution of the height H of the microprojections, the low altitude region is H <m−σ = 138.5 nm, and the middle altitude region is m−σ = 138.5 nm ≦ H ≦ m + σ = 252.9 nm. Thus, the high altitude region is H> m + σ = 254.7 nm.
The total number Nt of fine protrusions in the entire frequency distribution is 131. In addition, since the number Nm of multimodal microprotrusions in the middle altitude region is 21, the Nm / Nt in the middle altitude region is 0.160. Since the number Nm of the multimodal microprotrusions in the low altitude region is 3, Nm / Nt in the low altitude region is 0.023. Since the number Nm of multimodal microprojections in the high altitude region is 0, Nm / Nt in the high altitude region is 0.
Therefore, the antireflection article of the present example has the above-described relationships (a) and (b), that is,
(A) Nm / Nt = 0.160 in the middle altitude region> Nm / Nt = 0.024 in the low altitude region
(B) Nm / Nt = 0.160 in the middle altitude region> Nm / Nt = 0 in the high altitude region
Satisfied.
また、上述したように、実施例2の反射防止物品の微小突起の高さHの度数分布は、双峰性、すなわち2つの分布の峰が存在する。この場合、各分布の峰についても、低高度領域、中高度領域、高高度領域を定め、それぞれの峰の各領域の多峰性微小突起の数と、度数分布全体の微小突起の総数Ntとの比の大小を評価する必要がある。
Also, as described above, the frequency distribution of the height H of the microprojections of the antireflection article of Example 2 is bimodal, that is, there are two distribution peaks. In this case, a low altitude region, a medium altitude region, and a high altitude region are also defined for the peaks of each distribution, and the number of multi-peak microprojections in each region of each peak and the total number Nt of microprojections in the entire frequency distribution, It is necessary to evaluate the size of the ratio.
具体的には、各峰間の境界となる高さをHsとしたとき、Hs未満の分布の峰(高さが低い側の分布の峰)については、高さHの平均値をm1とし、標準偏差をσ1とし、H<m1-σ1の領域を低高度領域とし、m1-σ1≦H≦m1+σ1の領域を中高度領域とし、m1+σ1<H<Hsの領域を高高度領域とした場合に、Hs未満の分布の峰における各領域の多峰性微小突起の数Nm1と、度数分布全体における微小突起の総数Ntとの比率が、以下の(c)、(d)の関係を満たす必要がある。
(c) 中高度領域のNm1/Nt>低高度領域のNm1/Nt
(d) 中高度領域のNm1/Nt>高高度領域のNm1/Nt Specifically, when the height of the boundary between the peaks is Hs, the average value of the height H is m1 for the peaks of the distribution below Hs (the peaks of the distribution on the lower side), When the standard deviation is σ1, the region of H <m1−σ1 is the low altitude region, the region of m1−σ1 ≦ H ≦ m1 + σ1 is the medium altitude region, and the region of m1 + σ1 <H <Hs is the high altitude region, The ratio between the number Nm1 of the multimodal microprojections in each region in the peak of the distribution below Hs and the total number Nt of microprojections in the entire frequency distribution needs to satisfy the following relationships (c) and (d). .
(C) Nm1 / Nt in the middle altitude region> Nm1 / Nt in the low altitude region
(D) Nm1 / Nt in the medium altitude region> Nm1 / Nt in the high altitude region
(c) 中高度領域のNm1/Nt>低高度領域のNm1/Nt
(d) 中高度領域のNm1/Nt>高高度領域のNm1/Nt Specifically, when the height of the boundary between the peaks is Hs, the average value of the height H is m1 for the peaks of the distribution below Hs (the peaks of the distribution on the lower side), When the standard deviation is σ1, the region of H <m1−σ1 is the low altitude region, the region of m1−σ1 ≦ H ≦ m1 + σ1 is the medium altitude region, and the region of m1 + σ1 <H <Hs is the high altitude region, The ratio between the number Nm1 of the multimodal microprojections in each region in the peak of the distribution below Hs and the total number Nt of microprojections in the entire frequency distribution needs to satisfy the following relationships (c) and (d). .
(C) Nm1 / Nt in the middle altitude region> Nm1 / Nt in the low altitude region
(D) Nm1 / Nt in the medium altitude region> Nm1 / Nt in the high altitude region
また、Hs以上の分布(高さが高い側の分布)については、高さHの平均値をm2とし、標準偏差をσ2とし、Hs<H<m2-σ2の領域を低高度領域とし、m2-σ2≦H≦m2+σ2の領域を中高度領域とし、m2+σ2<Hの領域を高高度領域とした場合に、Hs以上の分布における各領域の多峰性微小突起の数Nm2と、度数分布全体における微小突起の総数Ntとの比率が、以下の(e)、(f)の関係を満たす必要がある。
(e) 中高度領域のNm2/Nt>低高度領域のNm2/Nt
(f) 中高度領域のNm2/Nt>高高度領域のNm2/Nt For a distribution higher than Hs (distribution on the higher side), the average value of height H is m2, the standard deviation is σ2, the region where Hs <H <m2-σ2 is the low altitude region, and m2 When the region of −σ2 ≦ H ≦ m2 + σ2 is a medium altitude region and the region of m2 + σ2 <H is a high altitude region, the number Nm2 of multimodal microprotrusions in each region in the distribution of Hs or higher and the entire frequency distribution The ratio with the total number Nt of microprojections needs to satisfy the following relationships (e) and (f).
(E) Nm2 / Nt in the middle altitude region> Nm2 / Nt in the low altitude region
(F) Nm2 / Nt in the middle altitude region> Nm2 / Nt in the high altitude region
(e) 中高度領域のNm2/Nt>低高度領域のNm2/Nt
(f) 中高度領域のNm2/Nt>高高度領域のNm2/Nt For a distribution higher than Hs (distribution on the higher side), the average value of height H is m2, the standard deviation is σ2, the region where Hs <H <m2-σ2 is the low altitude region, and m2 When the region of −σ2 ≦ H ≦ m2 + σ2 is a medium altitude region and the region of m2 + σ2 <H is a high altitude region, the number Nm2 of multimodal microprotrusions in each region in the distribution of Hs or higher and the entire frequency distribution The ratio with the total number Nt of microprojections needs to satisfy the following relationships (e) and (f).
(E) Nm2 / Nt in the middle altitude region> Nm2 / Nt in the low altitude region
(F) Nm2 / Nt in the middle altitude region> Nm2 / Nt in the high altitude region
ここで、Hs未満(高さが低い側)の分布における微小突起の高さHの平均値がm1=52.9nmであり、標準偏差がσ1=24.8nmである。各分布の境界は、度数分布の高さのデータを統計的に処理することによってHs=100nmと求められる。
そのため、Hs未満の分布の低高度領域は、H<m1-σ1=28.1nmとなり、中高度領域は、m1-σ1=28.1nm≦H≦m1+σ1=77.7nmとなり、高高度領域は、m1+σ1=77.7nm<H<Hs=100nmとなる。
また、中高度領域の多峰性微小突起の数Nm1は、2個であるので、中高度領域のNm1/Ntは、0.015となる。低高度領域の多峰性微小突起の数Nm1は、0個であるので、低高度領域のNm1/Ntは、0となる。高高度領域の多峰性微小突起の数Nm1は、0個であるので、高高度領域のNm1/Ntは、0となる。
従って、本実施例の反射防止物品は、Hs未満の分布において、上記(c)、(d)の関係、すなわち、
(c) 中高度領域のNm1/Nt=0.015>低高度領域のNm1/Nt=0
(d) 中高度領域のNm1/Nt=0.015>高高度領域のNm1/Nt=0
の関係を満たす。 Here, the average value of the heights H of the fine protrusions in the distribution of less than Hs (the lower side) is m1 = 52.9 nm, and the standard deviation is σ1 = 24.8 nm. The boundary of each distribution is obtained as Hs = 100 nm by statistically processing the data of the height of the frequency distribution.
Therefore, the low altitude region of the distribution below Hs is H <m1-σ1 = 28.1 nm, the middle altitude region is m1-σ1 = 28.1 nm ≦ H ≦ m1 + σ1 = 77.7 nm, and the high altitude region is m1 + σ1 = 77.7 nm <H <Hs = 100 nm.
In addition, since the number Nm1 of the multi-modal microprotrusions in the middle altitude region is two, Nm1 / Nt in the middle altitude region is 0.015. Since the number Nm1 of the multi-modal microprojections in the low altitude region is 0, Nm1 / Nt in the low altitude region is 0. Since the number Nm1 of the multimodal microprotrusions in the high altitude region is 0, Nm1 / Nt in the high altitude region is 0.
Therefore, the antireflective article of this example has a relationship of (c) and (d) above in a distribution less than Hs, that is,
(C) Nm1 / Nt = 0.015 in the middle altitude region> Nm1 / Nt = 0 in the low altitude region
(D) Nm1 / Nt = 0.015 in the middle altitude region> Nm1 / Nt = 0 in the high altitude region
Satisfy the relationship.
そのため、Hs未満の分布の低高度領域は、H<m1-σ1=28.1nmとなり、中高度領域は、m1-σ1=28.1nm≦H≦m1+σ1=77.7nmとなり、高高度領域は、m1+σ1=77.7nm<H<Hs=100nmとなる。
また、中高度領域の多峰性微小突起の数Nm1は、2個であるので、中高度領域のNm1/Ntは、0.015となる。低高度領域の多峰性微小突起の数Nm1は、0個であるので、低高度領域のNm1/Ntは、0となる。高高度領域の多峰性微小突起の数Nm1は、0個であるので、高高度領域のNm1/Ntは、0となる。
従って、本実施例の反射防止物品は、Hs未満の分布において、上記(c)、(d)の関係、すなわち、
(c) 中高度領域のNm1/Nt=0.015>低高度領域のNm1/Nt=0
(d) 中高度領域のNm1/Nt=0.015>高高度領域のNm1/Nt=0
の関係を満たす。 Here, the average value of the heights H of the fine protrusions in the distribution of less than Hs (the lower side) is m1 = 52.9 nm, and the standard deviation is σ1 = 24.8 nm. The boundary of each distribution is obtained as Hs = 100 nm by statistically processing the data of the height of the frequency distribution.
Therefore, the low altitude region of the distribution below Hs is H <m1-σ1 = 28.1 nm, the middle altitude region is m1-σ1 = 28.1 nm ≦ H ≦ m1 + σ1 = 77.7 nm, and the high altitude region is m1 + σ1 = 77.7 nm <H <Hs = 100 nm.
In addition, since the number Nm1 of the multi-modal microprotrusions in the middle altitude region is two, Nm1 / Nt in the middle altitude region is 0.015. Since the number Nm1 of the multi-modal microprojections in the low altitude region is 0, Nm1 / Nt in the low altitude region is 0. Since the number Nm1 of the multimodal microprotrusions in the high altitude region is 0, Nm1 / Nt in the high altitude region is 0.
Therefore, the antireflective article of this example has a relationship of (c) and (d) above in a distribution less than Hs, that is,
(C) Nm1 / Nt = 0.015 in the middle altitude region> Nm1 / Nt = 0 in the low altitude region
(D) Nm1 / Nt = 0.015 in the middle altitude region> Nm1 / Nt = 0 in the high altitude region
Satisfy the relationship.
また、Hs以上(高さが高い側)の分布の微小突起については、高さHの平均値がm2=209.2nmであり、標準偏差がσ2=39.4nmである。
そのため、Hs以上の分布の低高度領域は、Hs=100nm≦H<m2-σ2=169.9nmとなり、中高度領域は、m2-σ2=169.9nm≦H≦m2+σ2=248.7nmとなり、高高度領域は、m+σ=248.7nm<Hとなる。
また、中高度領域の多峰性微小突起の数Nm2は、19個であるので、中高度領域のNm2/Ntは、0.145となる。低高度領域の多峰性微小突起の数Nm2は、3個であるので、低高度領域のNm2/Ntは、0.023となる。高高度領域の多峰性微小突起の数Nm2は、0個であるので、高高度領域のNm2/Ntは、0となる。
従って、本実施例の反射防止物品は、Hs以上の分布においても、上記(e)、(f)の関係、すなわち、
(e) 中高度領域のNm2/Nt=0.145>低高度領域のNm2/Nt=0.023
(f) 中高度領域のNm2/Nt=0.145>高高度領域のNm2/Nt=0
の関係を満たす。 In addition, for the fine protrusions having a distribution of Hs or higher (higher height side), the average value of the height H is m2 = 209.2 nm, and the standard deviation is σ2 = 39.4 nm.
Therefore, the low altitude region with a distribution of Hs or higher is Hs = 100 nm ≦ H <m2−σ2 = 169.9 nm, and the middle altitude region is m2−σ2 = 169.9 nm ≦ H ≦ m2 + σ2 = 248.7 nm. The altitude region is m + σ = 248.7 nm <H.
Further, since the number Nm2 of the multi-modal microprotrusions in the middle altitude region is 19, Nm2 / Nt in the middle altitude region is 0.145. Since the number Nm2 of the multimodal microprojections in the low altitude region is 3, Nm2 / Nt in the low altitude region is 0.023. Since the number Nm2 of multimodal microprojections in the high altitude region is 0, Nm2 / Nt in the high altitude region is 0.
Therefore, the antireflective article of this example has the relationship of (e) and (f) above even in the distribution of Hs or higher, that is,
(E) Nm2 / Nt = 0.145 in the middle altitude region> Nm2 / Nt = 0.024 in the low altitude region
(F) Nm2 / Nt = 0.145 in the middle altitude region> Nm2 / Nt = 0 in the high altitude region
Satisfy the relationship.
そのため、Hs以上の分布の低高度領域は、Hs=100nm≦H<m2-σ2=169.9nmとなり、中高度領域は、m2-σ2=169.9nm≦H≦m2+σ2=248.7nmとなり、高高度領域は、m+σ=248.7nm<Hとなる。
また、中高度領域の多峰性微小突起の数Nm2は、19個であるので、中高度領域のNm2/Ntは、0.145となる。低高度領域の多峰性微小突起の数Nm2は、3個であるので、低高度領域のNm2/Ntは、0.023となる。高高度領域の多峰性微小突起の数Nm2は、0個であるので、高高度領域のNm2/Ntは、0となる。
従って、本実施例の反射防止物品は、Hs以上の分布においても、上記(e)、(f)の関係、すなわち、
(e) 中高度領域のNm2/Nt=0.145>低高度領域のNm2/Nt=0.023
(f) 中高度領域のNm2/Nt=0.145>高高度領域のNm2/Nt=0
の関係を満たす。 In addition, for the fine protrusions having a distribution of Hs or higher (higher height side), the average value of the height H is m2 = 209.2 nm, and the standard deviation is σ2 = 39.4 nm.
Therefore, the low altitude region with a distribution of Hs or higher is Hs = 100 nm ≦ H <m2−σ2 = 169.9 nm, and the middle altitude region is m2−σ2 = 169.9 nm ≦ H ≦ m2 + σ2 = 248.7 nm. The altitude region is m + σ = 248.7 nm <H.
Further, since the number Nm2 of the multi-modal microprotrusions in the middle altitude region is 19, Nm2 / Nt in the middle altitude region is 0.145. Since the number Nm2 of the multimodal microprojections in the low altitude region is 3, Nm2 / Nt in the low altitude region is 0.023. Since the number Nm2 of multimodal microprojections in the high altitude region is 0, Nm2 / Nt in the high altitude region is 0.
Therefore, the antireflective article of this example has the relationship of (e) and (f) above even in the distribution of Hs or higher, that is,
(E) Nm2 / Nt = 0.145 in the middle altitude region> Nm2 / Nt = 0.024 in the low altitude region
(F) Nm2 / Nt = 0.145 in the middle altitude region> Nm2 / Nt = 0 in the high altitude region
Satisfy the relationship.
以上より、実施例2の反射防止物品は、中高度領域の多峰性微小突起の数(Nm)と度数分布における微小突起の総数(Nt)との比率(Nm/Nt)が、低高度領域及び高高度領域の比率よりも大きくなるように多峰性微小突起が形成されているので、可視光域に係る入射光に対する反射率を低減することができ、反射防止物品の反射防止機能の広帯域化を図ることができる。
また、実施例2の反射防止物品は、度数分布が双峰性であり、上述の(c)~(f)の関係を満たすので、各分布における多峰性微小突起の分布を、各分布の頂部近傍に集中させることができる。これにより、斜め方向からの光学特性を向上して広い視野角特性を向上することができる。また、低い側の分布の多峰性微小突起によって、紫外線域の反射防止機能を向上させ、高い側の分布に存在する多峰性微小突起によって、可視光域の反射防止機能を向上させているため、広帯域化された反射防止機能を更に向上することができる。 From the above, in the antireflection article of Example 2, the ratio (Nm / Nt) of the number (Nm) of multimodal microprojections in the medium altitude region and the total number of microprojections (Nt) in the frequency distribution is low in the low altitude region. Since the multi-peak microprotrusions are formed so as to be larger than the ratio of the high altitude region, the reflectance for incident light in the visible light region can be reduced, and the antireflection product has a wide antireflection function. Can be achieved.
In addition, the antireflection article of Example 2 has a bimodal distribution of frequencies and satisfies the above relationships (c) to (f). It can be concentrated near the top. Thereby, the optical characteristic from an oblique direction can be improved and the wide viewing angle characteristic can be improved. In addition, the antireflection function in the ultraviolet region is improved by the multimodal microprotrusions on the lower side distribution, and the antireflection function in the visible light region is improved by the multimodal microprojections present on the higher side distribution. Therefore, the antireflection function having a wider band can be further improved.
また、実施例2の反射防止物品は、度数分布が双峰性であり、上述の(c)~(f)の関係を満たすので、各分布における多峰性微小突起の分布を、各分布の頂部近傍に集中させることができる。これにより、斜め方向からの光学特性を向上して広い視野角特性を向上することができる。また、低い側の分布の多峰性微小突起によって、紫外線域の反射防止機能を向上させ、高い側の分布に存在する多峰性微小突起によって、可視光域の反射防止機能を向上させているため、広帯域化された反射防止機能を更に向上することができる。 From the above, in the antireflection article of Example 2, the ratio (Nm / Nt) of the number (Nm) of multimodal microprojections in the medium altitude region and the total number of microprojections (Nt) in the frequency distribution is low in the low altitude region. Since the multi-peak microprotrusions are formed so as to be larger than the ratio of the high altitude region, the reflectance for incident light in the visible light region can be reduced, and the antireflection product has a wide antireflection function. Can be achieved.
In addition, the antireflection article of Example 2 has a bimodal distribution of frequencies and satisfies the above relationships (c) to (f). It can be concentrated near the top. Thereby, the optical characteristic from an oblique direction can be improved and the wide viewing angle characteristic can be improved. In addition, the antireflection function in the ultraviolet region is improved by the multimodal microprotrusions on the lower side distribution, and the antireflection function in the visible light region is improved by the multimodal microprojections present on the higher side distribution. Therefore, the antireflection function having a wider band can be further improved.
また、赤外線域に対しては、反射防止機能の確保のために配置間隔(ピッチ)が広く、高さが高い単峰性微小突起が形成される必要があるが、実施例2の反射防止物品は、高さが高い微小突起に分布する多峰性微小突起の比率が小さいので、多峰性微小突起が存在することによる赤外線域の反射防止機能の低下を防ぐことができる。
また、このような構成により、他の物体が微小突起に摩擦接触したとしても高さの高い単峰性微小突起が先に接触することとなり、多峰性微小突起に接触してしまうのを抑制することができる。 Further, for the infrared region, it is necessary to form single-peaked microprojections having a wide arrangement interval (pitch) and a high height in order to ensure the antireflection function. Since the ratio of the multimodal microprotrusions distributed to the microprojections having a high height is small, it is possible to prevent the deterioration of the antireflection function in the infrared region due to the presence of the multimodal microprotrusions.
In addition, with such a configuration, even if another object comes into frictional contact with the microprotrusions, the high single-peak microprotrusions come into contact first, and the contact with the multimodal microprotrusions is suppressed. can do.
また、このような構成により、他の物体が微小突起に摩擦接触したとしても高さの高い単峰性微小突起が先に接触することとなり、多峰性微小突起に接触してしまうのを抑制することができる。 Further, for the infrared region, it is necessary to form single-peaked microprojections having a wide arrangement interval (pitch) and a high height in order to ensure the antireflection function. Since the ratio of the multimodal microprotrusions distributed to the microprojections having a high height is small, it is possible to prevent the deterioration of the antireflection function in the infrared region due to the presence of the multimodal microprotrusions.
In addition, with such a configuration, even if another object comes into frictional contact with the microprotrusions, the high single-peak microprotrusions come into contact first, and the contact with the multimodal microprotrusions is suppressed. can do.
なお、これら多峰性微小突起の特徴は、賦型用金型の対応する形状を備えた微細穴により作製される多峰性微小突起の固有の特徴であり、特開2012-037670号公報に開示の樹脂の充填不良により生じる多峰性微小突起によっては得ることができない特徴である。すなわち樹脂の充填不良による多峰性微小突起は、本来、単峰性微小突起として作製される微細穴に十分に樹脂が充填されないことにより作製されるものであるので、頂点間の間隔が極めて微小であり、これにより耐擦傷性を十分に向上することが困難であり、また上述したような光学特性の向上も困難である。
The characteristics of these multimodal microprotrusions are unique characteristics of the multimodal microprotrusions produced by the microholes having the corresponding shape of the shaping mold, and Japanese Patent Application Laid-Open No. 2012-037670 discloses. This is a feature that cannot be obtained by the multimodal microprotrusions caused by poor filling of the disclosed resin. That is, the multi-peak microprotrusions due to poor filling of the resin are produced by not sufficiently filling the fine holes that are originally produced as single-peak microprotrusions, so the distance between the vertices is extremely small. Thus, it is difficult to sufficiently improve the scratch resistance, and it is also difficult to improve the optical characteristics as described above.
また、充填不良による多峰性微小突起にあっては、再現性が乏しく、これにより均一な製品を量産できない欠点もあり、これに対して、この実施形態に係る多峰性微小突起は、いわゆる金型により高い再現性を確保することができる。また、上述の実施例について詳述するように、多峰性微小突起の高さ分布について制御できるのに対し、充填不良の多峰性微小突起については、このような制御が困難である。
In addition, the multi-peak microprotrusions due to poor filling also have the disadvantage that the reproducibility is poor, thereby making it impossible to mass-produce a uniform product, whereas the multi-peak microprotrusions according to this embodiment are so-called High reproducibility can be ensured by the mold. Further, as described in detail for the above-described embodiments, the height distribution of the multimodal microprotrusions can be controlled, while such control is difficult for the poorly filled multimodal microprotrusions.
〔耐擦傷性の向上〕
ところでこの陽極酸化処理及びエッチング処理の交互の繰り返しにより微細穴を作製して反射防止物品を作製したところ、上述したように耐擦傷性に改善の余地が見られた。そこで反射防止物品を詳細に観察したところ、従来のこの種の反射防止物品のように、多角錘形状や回転放物面形状のような1つの頂点のみを持つ単峰性微小突起のみからなり、各頂点の高さも一様に作製されている場合には、例えば他の物体が接触した場合に、広い範囲で微小突起の形状が一様に損なわれ、これにより反射防止機能が局所的に劣化し、また接触個所に白濁、傷等が発生して外観不良が発生することが判った。しかしながらロール版の製造条件を変更すると、このような耐擦傷性が改善されることが判った。 [Improved scratch resistance]
By the way, when the anti-reflective article was produced by producing fine holes by alternately repeating the anodizing treatment and the etching treatment, there was room for improvement in the scratch resistance as described above. Therefore, when the antireflection article was observed in detail, it consists only of single-peaked microprojections having only one apex, such as a polygonal pyramid shape and a rotating paraboloid shape, as in this type of conventional antireflection article, If the height of each vertex is also made uniform, for example, when another object comes into contact, the shape of the microprojections is uniformly damaged over a wide range, thereby locally deteriorating the antireflection function. In addition, it was found that white spots, scratches, etc. occurred at the contact points, resulting in poor appearance. However, it has been found that such scratch resistance is improved by changing the production conditions of the roll plate.
ところでこの陽極酸化処理及びエッチング処理の交互の繰り返しにより微細穴を作製して反射防止物品を作製したところ、上述したように耐擦傷性に改善の余地が見られた。そこで反射防止物品を詳細に観察したところ、従来のこの種の反射防止物品のように、多角錘形状や回転放物面形状のような1つの頂点のみを持つ単峰性微小突起のみからなり、各頂点の高さも一様に作製されている場合には、例えば他の物体が接触した場合に、広い範囲で微小突起の形状が一様に損なわれ、これにより反射防止機能が局所的に劣化し、また接触個所に白濁、傷等が発生して外観不良が発生することが判った。しかしながらロール版の製造条件を変更すると、このような耐擦傷性が改善されることが判った。 [Improved scratch resistance]
By the way, when the anti-reflective article was produced by producing fine holes by alternately repeating the anodizing treatment and the etching treatment, there was room for improvement in the scratch resistance as described above. Therefore, when the antireflection article was observed in detail, it consists only of single-peaked microprojections having only one apex, such as a polygonal pyramid shape and a rotating paraboloid shape, as in this type of conventional antireflection article, If the height of each vertex is also made uniform, for example, when another object comes into contact, the shape of the microprojections is uniformly damaged over a wide range, thereby locally deteriorating the antireflection function. In addition, it was found that white spots, scratches, etc. occurred at the contact points, resulting in poor appearance. However, it has been found that such scratch resistance is improved by changing the production conditions of the roll plate.
このような耐擦傷性が改善された反射防止物品の表面形状をAFM(Atomic Force Microscope:原子間力顕微鏡)及びSEM(Scanning Electron Microscope:走査型電子顕微鏡)により観察したところ、多数の微小突起の中に、頂点を複数有する多峰性微小突起が存在することが判った。なおここで微細形状の観察のために、種々の方式の顕微鏡が提供されているものの、微細構造を損なわないようにして反射防止物品の表面形状を観察する場合には、AFM及びSEMが適している。
When the surface shape of such an antireflection article with improved scratch resistance was observed with an AFM (Atomic Force Microscope) and an SEM (Scanning Electron Microscope), a large number of microprojections were observed. It was found that there are multimodal microprojections having a plurality of vertices. Although various types of microscopes are provided here for observing the fine shape, AFM and SEM are suitable for observing the surface shape of the antireflection article without damaging the fine structure. Yes.
ここで多峰性微小突起は、単に頂点を複数有するだけでなく、微小突起を先端側より平面視覚した場合に、ほぼ中央より外方に向かって形成された溝により複数の領域に分割され、この複数の領域の各領域が、それぞれ各頂点に係る峰であるように形成される。またこの多峰性微小突起は、対応する形状を備えた微細穴の賦型処理により作製され、このような多峰性微小突起に係る微細穴は、陽極酸化処理とエッチング処理との繰り返しにおいて、極めて近接して作製された微細穴が、エッチング処理により、一体化して作製される。これにより多峰性微小突起は、微小突起を先端側より平面視覚した場合の周囲長が、単峰性微小突起に比して長く形成されている。この点については、後述する図16により見て取ることができる。なおこれら多峰性微小突起の形状は、特開2012-037670号公報に開示の賦型処理時の樹脂の充填不良により生じる多峰性微小突起とは異なる特徴である。
Here, the multimodal microprotrusions not only have a plurality of vertices, but when the microprotrusions are viewed in plan from the tip side, they are divided into a plurality of regions by grooves formed outward from the center, Each of the plurality of regions is formed to be a peak related to each vertex. In addition, this multimodal microprotrusion is produced by a molding process of microholes having a corresponding shape, and the microholes related to such multimodal microprotrusions are repeated in the anodizing process and the etching process. Fine holes made in close proximity are produced integrally by an etching process. As a result, the multimodal microprotrusions are formed such that the perimeter when the microprotrusions are viewed in plan from the tip side is longer than that of the single-peak microprotrusions. This point can be seen from FIG. 16 described later. The shape of these multimodal microprojections is different from the multimodal microprotrusions caused by poor filling of the resin during the molding process disclosed in Japanese Patent Application Laid-Open No. 2012-037670.
図15は、この頂点を複数有する多峰性微小突起の説明に供する断面図(図15(a))、斜視図(図15(b))、平面図(図15(c))である。なおこの図15は、理解を容易にするために模式的に示す図であり、図15(a)は、連続する微小突起の頂点を結ぶ折れ線により断面を取って示す図である。この図15(b)及び(c)において、xy方向は、基材2の面内方向であり、z方向は微小突起の高さ方向である。反射防止物品1において、多くの微小突起5は、基材2より離れて頂点に向かうに従って徐々に断面積(高さ方向に直交する面(図15においてXY平面と平行な面)で切断した場合の断面積)が小さくなって、頂点が1つにより作製される。しかしながら中には、複数の微小突起が結合したかのように、先端部分に溝gが形成され、頂点が2つになったもの(5A)、頂点が3つになったもの(5B)、さらには頂点が4つ以上のもの(図示略)が存在した。なお単峰性微小突起5の形状は、概略、回転放物面の様な頂部の丸い形状、或いは円錐の様な頂点の尖った形状で近似することができる。一方、多峰性微小突起5A、5Bの形状は、概略、単峰性微小突起5の頂部近傍に溝状の凹部を切り込んで、頂部を複数の峰に分割したような形状で近似される。多峰性微小突起5A、5Bの形状は、或いは、複数の峰を含み高さ方向(図15ではZ軸方向)を含む仮想的切断面で切断した場合の縦断面形状が、極大点を複数個含み各極大点近傍が上に凸の曲線になる代数曲線Z=a2X2+a4X4+・・+a2nX2n+・・で近似されるような形状である。
FIG. 15 is a cross-sectional view (FIG. 15 (a)), a perspective view (FIG. 15 (b)), and a plan view (FIG. 15 (c)) for explaining the multimodal microprotrusions having a plurality of vertices. Note that FIG. 15 is a diagram schematically showing for easy understanding, and FIG. 15A is a diagram showing a cross section by a broken line connecting the vertices of continuous minute protrusions. In FIGS. 15B and 15C, the xy direction is the in-plane direction of the substrate 2, and the z direction is the height direction of the microprojections. In the antireflection article 1, many microprotrusions 5 are gradually cut along a cross-sectional area (a plane perpendicular to the height direction (a plane parallel to the XY plane in FIG. 15) as they move away from the base material 2 toward the top. The cross-sectional area) is reduced, and one vertex is produced. However, in some cases, as if a plurality of microprotrusions were combined, a groove g was formed at the tip, and the apex was two (5A), the apex was three (5B), Furthermore, there were those having four or more vertices (not shown). The shape of the unimodal microprotrusions 5 can be approximated by a round shape at the top like a paraboloid of revolution or a sharp shape at the apex like a cone. On the other hand, the shape of the multimodal microprotrusions 5A and 5B is approximately approximated by a shape in which a groove-shaped recess is cut in the vicinity of the top of the single-peak microprotrusion 5 and the top is divided into a plurality of peaks. The shape of the multi-peak microprotrusions 5A and 5B, or the vertical cross-sectional shape when cutting along a virtual cut surface including a plurality of peaks and including the height direction (Z-axis direction in FIG. 15), has a plurality of maximum points. The shape is approximated by an algebraic curve Z = a 2 X 2 + a 4 X 4 +... + A 2n X 2n +.
このような頂点を複数有する多峰性微小突起は、単峰性微小突起に比して、頂点近傍の寸法に対する裾の部分の太さが相対的に太くなる。これにより、多峰性微小突起は、単峰性微小突起に比して機械的強度が優れていると言える。これにより頂点を複数有する多峰性微小突起が存在する場合、反射防止物品では、単峰性微小突起のみによる場合に比して耐擦傷性が向上するものと考えられる。さらに、具体的に反射防止物品に外力が加わった場合、単峰性微小突起のみの場合に比して、外力をより多くの頂点で分散して受ける為、各頂点に加わる外力を低減し、微小突起が損傷し難いようにすることができ、これにより反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。また仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができる。更に、多峰性微小突起の半分程度は、最高峰高さ(麓が同じ微小突起に属する最も高い峰の高さ)が突起高さの平均値HAVG以上の微小突起に生じる為、外力を先ず各峰部分が受止めて犠牲的に損傷することによって、該微小突起の峰より低い本体部分、及び該多峰性微小突起よりも高さの低い微小突起の損耗を防ぐ。これによっても反射防止機能の局所的な劣化を低減し、さらに外観不良の発生を低減することができる。
In such multi-peak microprojections having a plurality of vertices, the thickness of the skirt portion relative to the size in the vicinity of the vertices is relatively thicker than that of the single-peak microprojections. Thereby, it can be said that the multimodal microprotrusions are superior in mechanical strength to the single-peak microprotrusions. As a result, when there are multi-modal microprotrusions having a plurality of vertices, it is considered that the anti-reflective article has improved scratch resistance as compared to the case of using only monomodal micro-protrusions. Furthermore, when external force is applied to the anti-reflective article specifically, compared to the case of only a single-peaked microprojection, the external force is distributed and received at more vertices, so the external force applied to each vertex is reduced. The microprotrusions can be made difficult to be damaged, thereby reducing the local deterioration of the antireflection function and further reducing the appearance defects. Moreover, even if a microprotrusion is damaged, the area of the damaged portion can be reduced. Furthermore, about half of the multi-peak microprojections have the highest peak height (the height of the highest peak belonging to the same microprojection in the ridge) in the microprojections whose average height HAVG is higher than the projection height, First, each peak portion is received and sacrificially damaged, thereby preventing wear of the main body portion lower than the peak of the microprojection and the microprojection having a height lower than that of the multi-peak microprojection. This also reduces local deterioration of the antireflection function and further reduces the occurrence of appearance defects.
なお上述した図2~図6に係る測定結果は、本実施形態に係る反射防止物品の測定結果であり、図5に示す度数分布においては、隣接突起間距離d(横軸の値)について、20nm及び40nmの短距離の極大値と120nm及び164nmの長距離の極大値との2種類の極大値が存在する。これらの極大値のうちの長距離の極大値は、微小突起本体(頂部よりも下の中腹から麓にかけての部分)の配列に対応し、一方、短距離の極大値は頂部近傍に存在する複数の頂点(峰)に対応する。これにより極大点間距離の度数分布によっても、多峰性微小突起の存在を見て取ることができる。
2 to 6 described above are the measurement results of the antireflection article according to the present embodiment. In the frequency distribution shown in FIG. 5, the distance d between adjacent protrusions (value on the horizontal axis) is There are two types of local maxima, short maxima of 20 nm and 40 nm and long maxima of 120 nm and 164 nm. Among these maximum values, the maximum value of the long distance corresponds to the arrangement of the microprojection bodies (the part from the middle to the heel below the top part), while the maximum value of the short distance exists in the vicinity of the top part. Corresponds to the apex (peak) of. As a result, the presence of multimodal microprotrusions can also be seen from the frequency distribution of the distance between the maximal points.
なお多峰性微小突起は、その存在により耐擦傷性を向上できるものの、充分に存在しない場合には、この耐擦傷性を向上する効果を十分に発揮できないことは言うまでもない。係る観点より、本発明においては、表面に存在する全微小突起中における多峰性微小突起の個数の比率は10%以上とする。特に多峰性微小突起による耐擦傷性を向上する効果を十分に奏する為には、該多峰性微小突起の比率は30%以上、好ましくは50%以上とする。又、多峰性微小突起の比率を増やすに伴い製造工程の管理の難度が増す為、当該比率は好ましくは90%以下、より好ましくは80%以下とする。
Needless to say, although the multimodal microprotrusions can improve the scratch resistance due to their presence, if they do not exist sufficiently, the effect of improving the scratch resistance cannot be fully exhibited. From such a viewpoint, in the present invention, the ratio of the number of multimodal microprotrusions in all the microprotrusions existing on the surface is 10% or more. In particular, in order to sufficiently exhibit the effect of improving the scratch resistance by the multimodal microprojections, the ratio of the multimodal microprojections is set to 30% or more, preferably 50% or more. Further, since the difficulty of managing the manufacturing process increases as the ratio of the multimodal microprotrusions increases, the ratio is preferably 90% or less, more preferably 80% or less.
さらにこのような多峰性微小突起5A、5Bを含む微小突起群(5、5A、5B、・・)を有する反射防止物品には、上述したように高さが制御された微小突起が形成され、また、高さの異なる微小突起が分布している。なおここで各微小突起の高さとは、上述したように、麓(付け根)部を共有するある特定の微小突起について、その頂部に存在する最高高さを有する峰(最高峰)の高さを言う。図15(a)の微小突起5の如くの単峰性微小突起の場合は、頂部における唯一の峰(極大点)の高さが該微小突起の突起高さとなる。また図15(a)の微小突起5A、5Bのような多峰性微小突起の場合は、頂部に在る麓部を共有する複数の峰のうちの最高峰の高さをもって該微小突起の高さとする。また麓部を共有する全峰が同一高さの場合は、其の同一の高さを以って該微小突起の高さとする。このように微小突起の高さが種々に異なる場合には、例えば物体の接触により高さの高い微小突起の形状が損なわれた場合でも、高さの低い微小突起においては、形状が維持されることになる。これによっても反射防止物品では、反射防止機能の局所的な劣化を低減し、さらには外観不良の発生を低減することができ、その結果、耐擦傷性を向上することができる。
Further, in the antireflection article having the microprotrusion group (5, 5A, 5B,...) Including the multimodal microprotrusions 5A and 5B, the microprotrusions whose height is controlled are formed as described above. In addition, fine protrusions having different heights are distributed. Here, as described above, the height of each microprotrusion is the height of the peak (highest peak) having the highest height at the top of a specific microprotrusion that shares the ridge (root). To tell. In the case of a single-peak microprojection such as the microprojection 5 in FIG. 15A, the height of the only peak (maximum point) at the top is the projection height of the microprojection. Further, in the case of multi-peak microprotrusions such as the microprotrusions 5A and 5B in FIG. 15A, the height of the microprotrusions has the height of the highest peak among a plurality of peaks sharing the ridge at the top. Say it. Moreover, when all the peaks which share a collar part are the same height, let it be the height of this microprotrusion with the same height. In this way, when the heights of the microprojections are variously different, for example, even when the shape of the microprojections having a high height is damaged by contact with an object, the shape is maintained in the microprojections having a low height. It will be. Also in this case, in the antireflection article, local deterioration of the antireflection function can be reduced, and furthermore, occurrence of defective appearance can be reduced, and as a result, scratch resistance can be improved.
また反射防止物品表面の微小突起群と物体との間に塵埃が付着すると、当該物品が反射防止物品に対して相対的に摺動した際に、該塵埃が研磨剤として機能して微小突起(群)の磨耗、損傷が促進されることになる。この場合に、微小突起群を構成する各微小突起間に高低差が有ると、塵埃は高さの高い微小突起に強く接触し、これを損傷させる。一方で低高さの微小突起との接触は弱まり、高さの低い微小突起については損傷が軽減され、無傷ないしは軽微な傷で残存した高さの低い微小突起によって反射防止性能が維持される。
Further, when dust adheres between the microprojection group on the surface of the antireflection article and the object, when the article slides relative to the antireflection article, the dust functions as an abrasive to form microprojections ( Group) wear and damage are promoted. In this case, if there is a difference in height between the microprojections constituting the microprojection group, the dust strongly contacts the microprojections having a high height and is damaged. On the other hand, the contact with the low-height microprotrusions is weakened, and damage to the low-height microprotrusions is reduced, and the antireflection performance is maintained by the low-height microprotrusions that remain intact or light.
またこれに加えて、各微小突起の高さに分布(高低差)の有る微小突起群は、反射防止性能が広帯域化され、白色光のような多波長の混在する光、あるいは広帯域スペクトルを持つ光に対して、全スペクトル帯域で低反射率を実現するのに有利である。これは、かかる微小突起群によって良好な反射防止性能を発現し得る波長帯域が、隣接突起間距離dの他に、突起高さにも依存する為である。
In addition to this, the microprotrusion group with distribution (height difference) in the height of each microprotrusion has a broad antireflection performance and has light with multiple wavelengths such as white light or a broadband spectrum. For light, it is advantageous to realize a low reflectance in the entire spectral band. This is because the wavelength band in which good antireflection performance can be exhibited by such a microprojection group depends not only on the distance d between adjacent projections but also on the projection height.
またこの場合には、多数の微小突起のうちの高さの高い微小突起のみが、例えば反射防止物品1と対向するように配置された各種の部材表面と接触することになる。これにより高さが同一の微小突起のみによる場合に比して格段的に滑りを良くすることができ、製造工程等における反射防止物品の取り扱いを容易とすることができる。なおこのように滑りを良くする観点から、ばらつきは、標準偏差により規定した場合に、10nm以上必要であるものの、50nmより大きくなると、このばらつきによる表面のざらつき感が感じられるようになる。従ってこの高さのばらつきは、10nm以上、50nm以下であることが好ましい。
Further, in this case, only the high microprojections out of the many microprojections come into contact with the surface of various members arranged to face the antireflection article 1, for example. Thereby, it is possible to remarkably improve the slip as compared with the case where only the minute protrusions having the same height are used, and it is possible to easily handle the antireflection article in the manufacturing process or the like. From the viewpoint of improving the slip as described above, the variation needs to be 10 nm or more when defined by the standard deviation. However, when the variation is larger than 50 nm, the surface becomes rough. Therefore, the height variation is preferably 10 nm or more and 50 nm or less.
またこのように多峰性微小突起が混在する場合には、単峰性微小突起のみによる場合に比して反射防止の性能を向上することができる。すなわち図2、図15、及び図16等に示すような多峰性微小突起5A、5B等は、隣接突起間距離が同じ場合であっても、また突起高さが同じ場合であっても、単峰性微小突起と比べて、より光の反射率が低減することになる。その理由は、多峰性微小突起5A、5B等は、頂部より下(中腹及び麓)の形状が同じ単峰性微小突起よりも、頂部近傍における有効屈折率の高さ方向の変化率が小さくなる為である。
In addition, when multi-peak microprojections coexist in this way, the antireflection performance can be improved as compared with the case of using only single-peak microprojections. That is, the multimodal microprotrusions 5A, 5B, etc. as shown in FIG. 2, FIG. 15, FIG. 16, etc., even when the distance between adjacent protrusions is the same or when the protrusion height is the same, Compared with a single-peak microprojection, the reflectance of light is further reduced. The reason for this is that the multimodal microprotrusions 5A, 5B, etc. have a smaller change rate in the height direction of the effective refractive index in the vicinity of the apex than the single-peak microprotrusions below the apex (in the middle and the heel). It is to become.
すなわち図15において、z=0を高さH=0とおき、高さ方向(Z軸方向)に直交する仮想的切断面Z=zで微小突起5、5A等を切断したと仮定した場合の面Z=zにおける微小突起と周辺の媒質(通常は空気)との屈折率の平均値として得られる有効屈折率nefは、切断面Z=zにおける周辺媒質(ここでは空気とする)の屈折率をnA=1、微小突起5、5A、・・の構成材料の屈折率をnM>1とし、又周辺媒質(空気)の断面積の合計値をSA(z)、微小突起5、5A、・・の断面積の合計値をSM(z)としたとき、
nef(z)=1×SA(z)/(SA(z)+SM(z))+nA×SM(z)/(SA(z)+SM(z))(式1)
で表される。これは、周辺媒質の屈折率nA及び微小突起構成材料の屈折率nMを、各々周辺媒質の合計断面積SA(z)及び微小突起の合計断面積の合計値SM(z)での比で比例配分した値となる。 That is, in FIG. 15, assuming that z = 0 is set to height H = 0, and it is assumed that the minute protrusions 5, 5 </ b> A, etc. are cut at a virtual cutting plane Z = z orthogonal to the height direction (Z-axis direction). The effective refractive index n ef obtained as an average value of the refractive indexes of the microprojections on the surface Z = z and the surrounding medium (usually air) is the refraction of the surrounding medium (here, air) on the cut surface Z = z. The refractive index of the constituent material of n A = 1, the minute protrusions 5, 5A,... Is n M > 1, and the total value of the sectional area of the peripheral medium (air) is S A (z). When the total value of the cross-sectional areas of 5A,... Is S M (z),
n ef (z) = 1 × S A (z) / (S A (z) + S M (z)) + n A × S M (z) / (S A (z) + S M (z)) (Formula 1 )
It is represented by This is because the refractive index n A of the peripheral medium and the refractive index n M of the constituent material of the microprojections are respectively expressed as a total sectional area S A (z) of the peripheral medium and a total value S M (z) of the total sectional area of the microprojections. The value is proportionally distributed by the ratio of.
nef(z)=1×SA(z)/(SA(z)+SM(z))+nA×SM(z)/(SA(z)+SM(z))(式1)
で表される。これは、周辺媒質の屈折率nA及び微小突起構成材料の屈折率nMを、各々周辺媒質の合計断面積SA(z)及び微小突起の合計断面積の合計値SM(z)での比で比例配分した値となる。 That is, in FIG. 15, assuming that z = 0 is set to height H = 0, and it is assumed that the
n ef (z) = 1 × S A (z) / (S A (z) + S M (z)) + n A × S M (z) / (S A (z) + S M (z)) (Formula 1 )
It is represented by This is because the refractive index n A of the peripheral medium and the refractive index n M of the constituent material of the microprojections are respectively expressed as a total sectional area S A (z) of the peripheral medium and a total value S M (z) of the total sectional area of the microprojections. The value is proportionally distributed by the ratio of.
ここで、単峰性微小突起5を基準にして考えたときに、多峰性微小突起5A、5B、・・は、頂部近傍が複数の峰に分裂している。そのため、頂部近傍を切断する仮想的切断面Z=zにおいて、多峰性微小突起5A、5B、・・は、単峰性微小突起5、・・に比べて相対的に低屈折率である周辺媒質の合計断面積SA(z)の比率が、相対的に高屈折率である微小突起の合計断面積SM(z)の比率に比べて、より増大することになる。
Here, when considered on the basis of the single-peak microprotrusions 5, the multi-peak microprotrusions 5A, 5B,... Are split into a plurality of peaks near the top. Therefore, in the virtual cutting plane Z = z that cuts the vicinity of the apex, the multimodal microprotrusions 5A, 5B,... Have a lower refractive index than the single-peak microprotrusions 5,. The ratio of the total cross-sectional area S A (z) of the medium is further increased as compared with the ratio of the total cross-sectional area S M (z) of the microprojections having a relatively high refractive index.
その結果、仮想的切断面Z=zにおける有効屈折率nef(z)は、多峰性微小突起5A、5B、・・の方が単峰性微小突起5、・・に比べて、より周辺媒質の屈折率nAに近くなる。面Z=zにおける多峰性微小突起の有効屈折率と周辺媒質の屈折率との差を|nef(z)-nA(z)|multi、単峰性微小突起の有効屈折率と周辺媒質の屈折率との差を|nef(z)-nA(z)|monoとすると、
|nef(z)-nA(z)|multi<|nef(z)-nA(z)|mono(式2)
となる。ここでnA(z)=1とすると、
|nef(z)-1|multi<|nef(z)-1|mono(式2A)
となる。 As a result, the effective refractive index n ef (z) at the virtual cut surface Z = z is more peripheral in the multimodal microprotrusions 5A, 5B,. It becomes close to the refractive index n A of the medium. The difference between the refractive index of the effective refractive index and the surrounding medium multimodal microprotrusions in the plane Z = z | n ef (z ) -n A (z) | multi, effective refractive index and surrounding unimodal microprojection When mono, | a difference between the refractive index of the medium | n ef (z) -n a (z)
| N ef (z) −n A (z) | multi <| n ef (z) −n A (z) | mono (Expression 2)
It becomes. Here, if n A (z) = 1,
| N ef (z) -1 | multi <| n ef (z) -1 | mono (Formula 2A)
It becomes.
|nef(z)-nA(z)|multi<|nef(z)-nA(z)|mono(式2)
となる。ここでnA(z)=1とすると、
|nef(z)-1|multi<|nef(z)-1|mono(式2A)
となる。 As a result, the effective refractive index n ef (z) at the virtual cut surface Z = z is more peripheral in the
| N ef (z) −n A (z) | multi <| n ef (z) −n A (z) | mono (Expression 2)
It becomes. Here, if n A (z) = 1,
| N ef (z) -1 | multi <| n ef (z) -1 | mono (Formula 2A)
It becomes.
これにより頂部近傍において、多峰性微小突起を含む微小突起群(各微小突起間に周辺媒質を含む)については、単峰性微小突起のみからなる突起群に比べて、その有効屈折率と周辺媒質(空気)の屈折率との差、より詳細に言えば、微小突起の高さ方向の単位距離当たりの屈折率の変化率をより低減化すること、換言すれば、屈折率の高さ方向変化の連続性をより高めること)が可能になることが判る。
As a result, in the vicinity of the top portion, the effective refractive index and the peripheral area of the microprojection group including the multimodal microprojections (including the peripheral medium between the microprojections) is smaller than that of the projection group including only the single-peak microprojections. The difference from the refractive index of the medium (air), more specifically, the rate of change of the refractive index per unit distance in the height direction of the microprojections is further reduced, in other words, the direction of the refractive index in the height direction. It can be seen that the continuity of change can be further increased.
一般に、隣接する屈折率n0の媒質と屈折率n1の媒質との界面に光が入射する場合に、該界面における光の反射率Rは、入射角=0として、
R=(n1-n0)2/(n1+n0)2(式3)
となる。この式より界面両側の媒質の屈折率差n1-n0が小さいほど界面での光の反射率Rは減少し、(n1-n0)が値0に近づけばRも値0に近づくことになる。 In general, when light is incident on an interface between an adjacent medium having a refractive index n 0 and a medium having a refractive index n 1 , the reflectance R of the light at the interface is set as an incident angle = 0.
R = (n 1 −n 0 ) 2 / (n 1 + n 0 ) 2 (Formula 3)
It becomes. From this formula, the smaller the refractive index difference n 1 -n 0 between the media on both sides of the interface, the smaller the reflectivity R of the light at the interface, and when (n 1 -n 0 ) approaches 0, R also approaches 0. It will be.
R=(n1-n0)2/(n1+n0)2(式3)
となる。この式より界面両側の媒質の屈折率差n1-n0が小さいほど界面での光の反射率Rは減少し、(n1-n0)が値0に近づけばRも値0に近づくことになる。 In general, when light is incident on an interface between an adjacent medium having a refractive index n 0 and a medium having a refractive index n 1 , the reflectance R of the light at the interface is set as an incident angle = 0.
R = (n 1 −n 0 ) 2 / (n 1 + n 0 ) 2 (Formula 3)
It becomes. From this formula, the smaller the refractive index difference n 1 -n 0 between the media on both sides of the interface, the smaller the reflectivity R of the light at the interface, and when (n 1 -n 0 ) approaches 0, R also approaches 0. It will be.
(式2)、(式2A)及び(式3)より、多峰性微小突起5A、5B、・・を含む微小突起群(各微小突起間に周辺媒質を含む)については、単峰性微小突起5、・・のみからなる突起群に比べて光の反射率が低減する。
From (Formula 2), (Formula 2A), and (Formula 3), for the microprojection group including the multimodal microprotrusions 5A, 5B,. The light reflectance is reduced as compared with the projection group consisting only of the projections 5.
なお単峰性微小突起5のみからなる微小突起群を用いても、隣接突起間距離の最大値dmaxを反射防止を図る電磁波の波長帯域の最短波長λmin以下の十分小さな値にすることによって、十分な反射防止効果を発現することは可能である。但し、その場合、隣接峰間の距離と隣接微小突起間距離とが同一となる為、隣接微小突起間が接触、一体複合化する現象(いわゆるスティッキング)が発生し易くなる。スティッキングを生じると、実質上の隣接突起間距離dは一体複合化した微小突起数の分だけ増加する。
Even if a microprojection group consisting of only the single-peak microprojections 5 is used, it is sufficient to make the maximum value dmax of the distance between adjacent projections sufficiently small below the shortest wavelength λmin of the wavelength band of the electromagnetic wave for preventing reflection. It is possible to exhibit an excellent antireflection effect. However, in this case, since the distance between adjacent peaks and the distance between adjacent minute protrusions are the same, a phenomenon (so-called sticking) in which adjacent minute protrusions are brought into contact with each other and integrated together is likely to occur. When sticking occurs, the substantial distance d between adjacent protrusions increases by the number of minute protrusions integrated together.
例えば、d=200nmの微小突起が4個スティッキングすると、実質上、スティッキングして一体化した突起の大きさは、d=4×200nm=800nm>可視光線帯域の最長波長(780nm)となり、これにより局所的に反射防止効果を損なうことになる。
For example, when four microprojections with d = 200 nm are stuck, the size of the stuck and integrated projection is substantially d = 4 × 200 nm = 800 nm> the longest wavelength in the visible light band (780 nm). The antireflection effect is locally impaired.
一方、多峰性微小突起5A、5B、・・からなる微小突起群の場合、頂部近傍の各峰間の隣接突起間距離dPEAKは、麓から中腹にかけての微小突起本体部の隣接突起間距離dBASEよりも小さくなり(dPEAK<dBASE)、通常、dPEAK=dBASE/4~dBASE/2程度である。その為、各峰間の隣接突起間距離dPEAK≪λminとすることで十分な反射防止性能を得ることができる。但し、多峰性微小突起の各峰部は、麓部の幅に対する峰部の高さの比が小さく、単峰性微小突起の麓部の幅に対する頂点の高さの比の1/2~1/10程度である。従って、同じ外力に対して、多峰性微小突起の峰部は単峰性微小突起に比べての変形し難い。且つ、多峰性微小突起の本体部自体は峰部よりも隣接突起間距離は大であり、且つ強度も大である。その為、結局、多峰性微小突起からなる微小突起群は、単峰性微小突起からなる突起群に比べて、スティッキングの生じ難さと低反射率とを容易に両立させることができる。
On the other hand, in the case of a microprotrusion group consisting of multimodal microprotrusions 5A, 5B,..., The distance between adjacent protrusions d PEAK between each peak near the top is the distance between adjacent protrusions of the microprotrusion main body from the heel to the middle. It becomes smaller than d BASE (d PEAK <d BASE ), and is usually about d PEAK = d BASE / 4 to d BASE / 2. Therefore, sufficient antireflection performance can be obtained by setting the distance d PEAK << λmin between adjacent protrusions between the peaks. However, each peak of the multi-peak microprojection has a small ratio of the height of the peak to the width of the buttocks, which is 1/2 to the ratio of the height of the apex to the width of the buttocks of the single-peak microprojection. It is about 1/10. Therefore, for the same external force, the peak of the multimodal microprotrusions is less likely to deform than the single-peak microprotrusions. In addition, the main body itself of the multimodal microprotrusions has a greater distance between adjacent protrusions and a greater strength than the ridges. Therefore, after all, the microprojection group composed of multimodal microprotrusions can easily achieve both stickiness and low reflectivity compared to the projection group composed of monomodal microprojections.
なお可視光の反射防止用途の他の用途であっても、又は可視光環境下であっても、当該反射防止材料が設置、使用される環境条件に応じて、想定する反射防止波長に応じたモスアイ構造を形成し、高さ分布を持たせる事により、前記の通り、従来のものより耐擦性があり、かつ、プロセス要件などで低硬度の材料を使用した場合においても互いのスティッキングを防止し、光学的必要性能を合わせ持つ反射防止材料を作製する事が可能となる。例えば、380nm前後の紫外領域について反射防止性能を得たい場合はモスアイの高さが約50nでも可能であり、同様に700nm前後の赤外領域については約150nm~実用上を考慮し400nmであれば可能である。なお、前記の通りモスアイの配置ピッチについては高さについて飽和するような製作条件を見出し、モスアイの反射率を効果的に操作する事が可能である。さらに、モスアイの頂部構造についても、従来の単峰から改良を加える事で高さと反射率を両立し、かつ物理的にスティッキングを起こしにくく、効果的に反射率を低減する事が可能となっている。
In addition, even if it is other uses for antireflection of visible light, or under a visible light environment, the antireflection material depends on the assumed antireflection wavelength depending on the environmental conditions where the antireflection material is installed and used. By forming a moth-eye structure and having a height distribution, as described above, even when using materials that are more resistant to abrasion than conventional products and have low hardness due to process requirements, etc., prevent sticking to each other In addition, it is possible to produce an antireflection material having both optically required performance. For example, when it is desired to obtain antireflection performance in the ultraviolet region around 380 nm, the height of the moth eye can be about 50 n. Similarly, the infrared region around 700 nm is about 150 nm to 400 nm in consideration of practical use. Is possible. As described above, it is possible to find manufacturing conditions that saturate the height of the arrangement pitch of the moth-eye, and to effectively control the reflectance of the moth-eye. In addition, the top structure of the moth-eye can be improved from the conventional single peak to achieve both height and reflectivity, and it is difficult to cause physical sticking and can effectively reduce reflectivity. Yes.
図16は、頂点が複数の微小突起を示す写真であり、図16は、実施形態のものとは異なる微小突起の例ではあるが、図16(a)は、AFMによるものであり、図16(b)及び(c)は、SEMによるものである。図16(a)では、溝g及び3つの頂点を有する微小突起、及び溝g及び2つの頂点を有する微小突起を見て取ることができ、図16(b)では、溝g及び4つの頂点を有する微小突起、及び溝g及び2つの頂点を有する微小突起を見て取ることができ、図16(c)では、溝g及び3つの頂点を有する微小突起、溝g及び2つの頂点を有する微小突起を見て取ることができる。なおこの図16は、水温20℃、濃度0.02Mのシュウ酸水溶液を適用し、印加電圧40Vにより120秒、陽極酸化処理を実行したものである。またエッチング処理には、第1工程に同上陽極酸化液、第2工程に水温20℃、濃度1.0Mのリン酸水溶液を適用した。陽極酸化処理とエッチング処理との回数は、それぞれ3(~5)回である。
FIG. 16 is a photograph showing a plurality of minute protrusions at the apex, and FIG. 16 is an example of a minute protrusion different from that of the embodiment, but FIG. 16A is based on AFM, and FIG. (B) and (c) are by SEM. In FIG. 16 (a), a groove g and a microprotrusion having three vertices and a microprotrusion having a groove g and two vertices can be seen, and in FIG. 16 (b), the groove g and four vertices are present. A microprotrusion and a microprotrusion having a groove g and two vertices can be seen, and in FIG. 16C, a microprotrusion having a groove g and three vertices, a microprotrusion having a groove g and two vertices can be seen. be able to. In FIG. 16, an aqueous oxalic acid solution having a water temperature of 20 ° C. and a concentration of 0.02 M is applied, and an anodizing process is executed for 120 seconds with an applied voltage of 40V. In the etching process, an anodic oxidation solution was applied to the first step, and an aqueous phosphoric acid solution having a water temperature of 20 ° C. and a concentration of 1.0 M was applied to the second step. The number of times of anodizing treatment and etching treatment is 3 (~ 5) times.
図16及び図17は、本実施形態における実際の微小突起の形状を示す斜視図(図16)、平面図(図17(a))、正面図(図17(b))及び側面図(図17(c))である。これら図16及び図17は、等高線図である。上述したように、複数回の陽極酸化処理における印加電圧を切り替えることにより、この図16及び図17による微小突起においては、高さの大きく異なる3つの峰が合体して1つの微小突起が形成されており、ほぼ中央より外方に向かって形成された3本の放射状の溝(沢状の極小部)によりこの3つの峰に係る領域に分割されて微小突起が作製されていることが判る。なおこの図16及び図17は、AFMによる計測結果によるデータを部分的に選択して詳細に示したものである。またこの図16及び図17における数字の単位はnmである。X座標及びY座標は、所定の基準位置からの座標値である。
16 and 17 are a perspective view (FIG. 16), a plan view (FIG. 17 (a)), a front view (FIG. 17 (b)), and a side view (FIG. 17 (c)). These FIG.16 and FIG.17 is a contour map. As described above, by switching the applied voltage in a plurality of anodic oxidation treatments, in the microprotrusions according to FIGS. 16 and 17, three peaks having greatly different heights are combined to form one microprotrusion. It can be seen that microprojections are produced by dividing the region into three peak areas by three radial grooves (swelled local minimum portions) formed outward from the center. FIG. 16 and FIG. 17 show data in detail by partially selecting data based on measurement results by AFM. The unit of the numbers in FIGS. 16 and 17 is nm. The X coordinate and the Y coordinate are coordinate values from a predetermined reference position.
図18及び図19は、図16及び図17との対比により、本実施形態における微小突起の他の計測結果を示す図である。この図18及び図19の微小突起においては、ほぼ高さの等しい3つの峰が合体して1つの微小突起が作製され、該3つの峰は、頂部のほぼ中央部より外方に向かって延びた3本の放射状の溝によって区分されていることが判る。
FIGS. 18 and 19 are diagrams showing other measurement results of the microprotrusions in the present embodiment in comparison with FIGS. 16 and 17. In the microprotrusions of FIGS. 18 and 19, three ridges having substantially the same height are combined to form one microprotrusion, and the three ridges extend outward from the substantially central portion of the top. It can be seen that it is divided by three radial grooves.
図20及び図21は、図16~図19との対比により、同様の本実施形態における他の微小突起の計測結果を示す図である。この図20及び図21の微小突起においては、横に一列に並んだ複数の微小突起が結合したかのような形状により形成され、この並び方向と、並び方向と直交する方向とでアスペクト比が異なるように作成されている。このような方向によってアスペクト比が異なる微小突起により反射防止物品にあっては、その反射防止特性に方向性を持たせることができる。なおこの微小突起においては、各峰間の溝は該並び方向と直行する方向に伸びている。
20 and 21 are diagrams showing the measurement results of other microprotrusions in the same embodiment in the same manner as in comparison with FIGS. 16 to 19. 20 and FIG. 21 is formed in a shape as if a plurality of microprojections arranged in a row horizontally are combined, and the aspect ratio between the arrangement direction and the direction orthogonal to the arrangement direction is the same. Created differently. In the antireflection article by the fine protrusions having different aspect ratios depending on the direction, the antireflection characteristic can be given directionality. In this microprotrusion, the grooves between the peaks extend in a direction perpendicular to the alignment direction.
なおこのようにして観察される結果によれば、各峰の内側にあっては、各峰の外側に比して表面の粗さが荒いように観察され、このように峰の内側と外側との粗さの相違により、賦型処理時の樹脂の充填不良により生じる多峰性微小突起との相違を見て取ることができる。なおこれらの斜視図等において、等高線が表されていない箇所は、計測の都合上、データが得られていない箇所である。
In addition, according to the results observed in this manner, the roughness of the surface is observed to be rougher than the outer side of each peak, and the inner side and the outer side of the peak are thus observed. Due to the difference in roughness, it is possible to see the difference from the multimodal microprotrusions caused by poor filling of the resin during the shaping process. In these perspective views and the like, portions where no contour lines are represented are portions where data is not obtained for convenience of measurement.
〔耐擦傷性の評価〕
表1は、耐擦傷性の評価結果を示す図である。図13及び図14の例による反射防止物品を単峰性微小突起のみによる同様の突起高さ分布による反射防止物品と比較したのである。なお単峰性微小突起のみの反射防止物品は、繰り返しの陽極酸化処理の印加電圧を第2の工程以降においても第1の工程と同一の一定電圧として作製した。また単峰性微小突起のみによる双峰特性の分布による反射防止物品は、繰り返しの陽極酸化処理の印加電圧を2段階の切り替えにより実行して作製した。 [Evaluation of scratch resistance]
Table 1 shows the evaluation results of the scratch resistance. The antireflective article according to the example of FIGS. 13 and 14 was compared with an antireflective article having a similar protrusion height distribution using only single-peaked microprotrusions. In addition, the anti-reflective article only of the single peak microprotrusion produced the applied voltage of the repetition anodizing process as the same constant voltage as the 1st process also after the 2nd process. In addition, an antireflection article having a bimodal characteristic distribution using only unimodal microprotrusions was produced by executing an applied voltage of repeated anodizing treatment by switching between two stages.
表1は、耐擦傷性の評価結果を示す図である。図13及び図14の例による反射防止物品を単峰性微小突起のみによる同様の突起高さ分布による反射防止物品と比較したのである。なお単峰性微小突起のみの反射防止物品は、繰り返しの陽極酸化処理の印加電圧を第2の工程以降においても第1の工程と同一の一定電圧として作製した。また単峰性微小突起のみによる双峰特性の分布による反射防止物品は、繰り返しの陽極酸化処理の印加電圧を2段階の切り替えにより実行して作製した。 [Evaluation of scratch resistance]
Table 1 shows the evaluation results of the scratch resistance. The antireflective article according to the example of FIGS. 13 and 14 was compared with an antireflective article having a similar protrusion height distribution using only single-peaked microprotrusions. In addition, the anti-reflective article only of the single peak microprotrusion produced the applied voltage of the repetition anodizing process as the same constant voltage as the 1st process also after the 2nd process. In addition, an antireflection article having a bimodal characteristic distribution using only unimodal microprotrusions was produced by executing an applied voltage of repeated anodizing treatment by switching between two stages.
この表1において、スチールウールの欄は、押し付け力100g及び200gによりスチールウールを押し付けて往復させた後の表面の変化を目視により確認した結果である。二重丸の印は、目視上傷、濁りは見られないとの評価が得られたものであり、三角の印は、目視上、1~5本の傷を見る事ができるものであり、×の印は、目視上、6本以上の傷が観察されるものである。なお評価の範囲は、1辺5cmの矩形の領域である。これにより多峰性微小突起により充分に耐擦傷性が向上していることが判る。
In Table 1, the column of steel wool is the result of visually confirming the change in the surface after the steel wool was pressed and reciprocated with a pressing force of 100 g and 200 g. The double circle mark was evaluated to be visually invisible and no turbidity was observed, and the triangle mark was visually visible to 1 to 5 scratches. In the case of x, six or more scratches are observed visually. The evaluation range is a rectangular area with a side of 5 cm. It can be seen that the scratch resistance is sufficiently improved by the multimodal microprotrusions.
また乾拭きの欄は、指紋を付着させた後、不織布を用いて溶剤を含まない乾いた状態での拭きを50往復させた時の、5°正反射率(ΔY(%))である。指紋を付着させた状態で、5°正反射率が4%となるように設定した。なお不織布は、KBセーレン社製、ザヴィーナミニマックス(登録商標)150mm□を使用した。また何ら指紋による汚れを付着させない状態における5°正反射率の初期値は、0.5%であった。この検討結果によれば、多峰性微小突起により付着した汚れがふき取り易くなって反射防止性能を指紋付着前に近い状態にまで回復していることが判り、このことは多峰性微小突起を設けた場合には、微小突起の付け根側に汚れが深くもぐり込まないことによるものと考えられる。
Also, the column of dry wiping shows 5 ° regular reflectance (ΔY (%)) when fingerprints are attached and then wiped 50 times in a dry state containing no solvent using a nonwoven fabric. With the fingerprint attached, the 5 ° regular reflectance was set to 4%. As the nonwoven fabric, Savina Minimax (registered trademark) 150 mm □ manufactured by KB Seiren Co., Ltd. was used. In addition, the initial value of the 5 ° regular reflectance in a state where no dirt due to fingerprints was attached was 0.5%. According to the results of this study, it was found that the dirt attached by the multimodal microprotrusions was easily wiped off, and the antireflection performance was restored to a state close to that before the fingerprint attachment. In the case where it is provided, it is considered that the dirt does not penetrate deeply into the base side of the minute protrusion.
以上の構成によれば、頂点が複数からなる多峰性微小突起と頂点が1つの単峰性微小突起とを混在させることにより、従来に比して耐擦傷性を向上することができる。また指紋に対する耐汚染性(易拭取り性)にも向上が見られる。
According to the above configuration, the scratch resistance can be improved as compared with the prior art by mixing a multi-peak microprojection having a plurality of vertices and a single-peak microprojection having one vertex. In addition, the stain resistance (easy wiping property) against fingerprints is also improved.
またさらに微小突起の高さに分布を持たせることにより、滑り性を向上することができる。
Furthermore, the slipperiness can be improved by giving a distribution to the heights of the microprojections.
〔他の実施形態〕
以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態の構成を種々に変更し、さらには従来構成と組み合わせることができる。 [Other Embodiments]
The specific configuration suitable for the implementation of the present invention has been described in detail above. However, the present invention can be variously modified from the configuration of the above-described embodiment without departing from the spirit of the present invention, and further the conventional configuration. Can be combined.
以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態の構成を種々に変更し、さらには従来構成と組み合わせることができる。 [Other Embodiments]
The specific configuration suitable for the implementation of the present invention has been described in detail above. However, the present invention can be variously modified from the configuration of the above-described embodiment without departing from the spirit of the present invention, and further the conventional configuration. Can be combined.
すなわち上述の実施形態では、陽極酸化処理とエッチング処理との繰り返し回数をそれぞれ3(~5)回に設定する場合について述べたが、本発明はこれに限らず、繰り返し回数をこれ以外の回数に設定してもよく、またこのように複数回処理を繰り返して、最後の処理を陽極酸化処理とする場合にも広く適用することができる。
That is, in the above-described embodiment, the case where the number of repetitions of the anodizing process and the etching process is set to 3 (to 5) each is described. However, the present invention is not limited to this, and the number of repetitions is set to other numbers. In addition, the present invention can be widely applied to the case where the process is repeated a plurality of times and the final process is anodizing.
また上述の実施形態では、反射防止物品を液晶表示パネル、電場発光表示パネル、プラズマ表示パネル等の各種画像表示パネルの表側面に配置して視認性を向上する場合について述べたが、本発明はこれに限らず、例えば液晶表示パネルの裏面側に配置してバックライトから液晶表示パネルへの入射光の反射損失を低減させる場合(入射光利用効率を増大させる場合)にも広く適用することができる。尚、ここで画像表示パネルの表面側とは、該画像表示パネルの画像光の出光面であり、画像観察者側の面でもある。又、画像表示パネルの裏面側とは、該画像表示パネルの表面の反対側面であり、バックライト(背面光源)を用いる透過型画像表示裝置の場合は、該バックライトからの照明光の入光面でもある。
Further, in the above-described embodiment, the case where the antireflection article is arranged on the front side surface of various image display panels such as a liquid crystal display panel, an electroluminescent display panel, a plasma display panel, and the like is described, but the present invention is described. However, the present invention is not limited to this. For example, it can be widely applied to a case where the reflection loss of incident light from the backlight to the liquid crystal display panel is reduced by reducing the reflection loss of incident light from the backlight (increasing incident light utilization efficiency). it can. Here, the surface side of the image display panel is a light output surface of the image display panel and also a surface on the image observer side. The back side of the image display panel is the opposite side of the surface of the image display panel. In the case of a transmissive image display apparatus using a backlight (back light source), the incident light from the backlight is incident. It is also a surface.
また上述の実施形態では、賦型用樹脂にアクリレート系の紫外線硬化性樹脂を適用する場合について述べたが、本発明はこれに限らず、エポキシ系、ポリエステル系等の各種紫外線硬化性樹脂、或いはアクリレート系、エポキシ系、ポリエステル系等の電子線硬化性樹脂、ウレタン系、エポキシ系、ポリシロキサン系等の熱硬化性樹脂等の各種材料及び各種硬化形態の賦型用樹脂を使用する場合にも広く適用することができ、さらには例えば加熱したアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂等の熱可塑性の樹脂を押圧して賦型する場合等にも広く適用することができる。
In the above-described embodiment, the case where an acrylate-based ultraviolet curable resin is applied to the shaping resin has been described. However, the present invention is not limited thereto, and various ultraviolet curable resins such as epoxy-based and polyester-based resins, or Also when using various materials such as acrylate-based, epoxy-based, polyester-based electron beam curable resins, urethane-based, epoxy-based, polysiloxane-based thermosetting resins, and various types of curing resins The present invention can be widely applied. Further, for example, the present invention can also be widely applied in the case of molding by pressing a thermoplastic resin such as a heated acrylic resin, polycarbonate resin, or polystyrene resin.
また、上述の実施形態では、図1に図示の如く、基材2の一方の面上に受容層(紫外線硬化性樹脂層)4を積層してなる積層体の該受容層4上に微小突起群5、5A、5B、・・を賦形し、該受容層4を硬化せしめて反射防止物品1を形成している。層構成としては2層の積層体となる。但し、本発明は、かかる形態のみに限定される訳では無い。本発明の反射防止物品1は、図示は略すが、基材2の一方の面上に、他の層を介さずに直接、微小突起群5、5A、5B、・・を賦形した単層構成であっても良い。或いは、基材2の一方の面に1層以上の中間層(層間の密着性、塗工適性、表面平滑性等の基材表面性能を向上させる層。プライマー層、アンカー層等とも呼称される。)を介して受容層4を形成し、該受容層表面に微小突起群5、5A、5B、・・を賦形した3層以上の積層体であっても良い。
Further, in the above-described embodiment, as shown in FIG. 1, microprojections are formed on the receiving layer 4 of the laminate formed by laminating the receiving layer (ultraviolet curable resin layer) 4 on one surface of the substrate 2. The groups 5, 5A, 5B,... Are shaped and the receiving layer 4 is cured to form the antireflection article 1. The layer structure is a two-layer laminate. However, the present invention is not limited to such a form. Although not shown, the antireflection article 1 of the present invention is a single layer in which the microprojections 5, 5A, 5B,... Are directly formed on one surface of the substrate 2 without interposing another layer. It may be a configuration. Alternatively, one or more intermediate layers on one surface of the substrate 2 (layers that improve substrate surface performance such as interlayer adhesion, coating suitability, surface smoothness, etc. Also referred to as primer layer, anchor layer, etc. .) May be formed, and a laminate of three or more layers in which the microprotrusions 5, 5A, 5B,... Are formed on the surface of the receptor layer may be used.
更に、上述の実施形態では、図1にも図示の如く、基材2の一方の面上にのみ(直接或いは他の層を介して)微小突起群5、5A、5B、・・を形成しているが、本発明はかかる形態には限定され無い。基材2の両面上に(直接或いは他の層を介して)各々微小突起群5、5A、5B、・・を形成した構成であっても良い。基材2の両面上に微小突起群5、5A、5B、・・を有する形態の場合、該微小突起群を一方の面上にのみ該微小突起群を有する形態に比べ、反射防止性能が大きく向上する。例えば、空気と基材2自体との界面に於ける光の反射率が4%であり、微小突起群と空気との界面に於ける光の反射率が0.2%である場合、基材2の表(又は裏)面から裏(又は表)面に透過する光に対する表裏両面を合計した反射率は、微小突起群を有する層(受容層4)と基材2との界面の反射率の寄与を0%と見做すと、
(1)基材の表裏両面上に微小突起群が無い場合は、8%。
(2)基材の一方の面上にのみ微小突起群を有する場合は、4.2%。
(3)基材の表裏両面上に微小突起群を有する場合は、0.4%。
となる。
また、図示は略すが、図1等に図示の如き本発明の反射防止物品1において、基材2の微小突起群形成面とは反対側の面(図1においては基材2の下側面)に各種接着剤層を形成し、更に該接着剤層表面に離型フィルム(離型紙)を剥離可能に積層してなる接着加工品の形態とすることも出来る。かかる形態においては、離型フィルムを剥離除去して接着剤層を露出せしめ、該接着剤層により所望の物品の所望の表面上に本発明の反射防止物品1を貼り合わせ、積層することが出来、簡便に所望の物品に反射防止性能を付与することが出来る。接着剤としては、粘着剤(感圧接着剤)、2液硬化型接着剤、紫外線硬化型接着剤、熱硬化型接着剤、熱熔融型接着剤等の公知の接着形態のものが各種使用出来る。 Further, in the above-described embodiment, as shown in FIG. 1, the microprojections 5, 5A, 5B,... Are formed only on one surface of the base material 2 (directly or via another layer). However, the present invention is not limited to such a form. The microprojection groups 5, 5A, 5B,... May be formed on both surfaces of the substrate 2 (directly or via other layers). In the case of the form having the microprojection groups 5, 5A, 5B,... On both surfaces of the substrate 2, the antireflection performance is larger than the form in which the microprojection group is provided only on one surface. improves. For example, when the reflectance of light at the interface between air and the substrate 2 itself is 4% and the reflectance of light at the interface between the minute protrusions and the air is 0.2%, The total reflectance of the front and back surfaces with respect to light transmitted from the front (or back) surface to the back (or front) surface of 2 is the reflectance at the interface between the layer having the fine protrusion group (receiving layer 4) and the substrate 2 Assuming that the contribution of is 0%,
(1) 8% when there are no microprojections on both sides of the substrate.
(2) 4.2% when the microprojection group is provided only on one surface of the substrate.
(3) 0.4% in the case of having microprojections on both the front and back surfaces of the substrate.
It becomes.
Although not shown, in theantireflection article 1 of the present invention as shown in FIG. 1 and the like, the surface opposite to the surface on which the microprojections are formed of the substrate 2 (the lower surface of the substrate 2 in FIG. 1). Various adhesive layers are formed on the adhesive layer, and a release film (release paper) is laminated on the surface of the adhesive layer so as to be peelable. In such a form, the release film is peeled and removed to expose the adhesive layer, and the antireflection article 1 of the present invention can be laminated and laminated on the desired surface of the desired article by the adhesive layer. The antireflection performance can be easily imparted to a desired article. As the adhesive, various types of known adhesive forms such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, a thermosetting adhesive, and a hot melt adhesive can be used. .
(1)基材の表裏両面上に微小突起群が無い場合は、8%。
(2)基材の一方の面上にのみ微小突起群を有する場合は、4.2%。
(3)基材の表裏両面上に微小突起群を有する場合は、0.4%。
となる。
また、図示は略すが、図1等に図示の如き本発明の反射防止物品1において、基材2の微小突起群形成面とは反対側の面(図1においては基材2の下側面)に各種接着剤層を形成し、更に該接着剤層表面に離型フィルム(離型紙)を剥離可能に積層してなる接着加工品の形態とすることも出来る。かかる形態においては、離型フィルムを剥離除去して接着剤層を露出せしめ、該接着剤層により所望の物品の所望の表面上に本発明の反射防止物品1を貼り合わせ、積層することが出来、簡便に所望の物品に反射防止性能を付与することが出来る。接着剤としては、粘着剤(感圧接着剤)、2液硬化型接着剤、紫外線硬化型接着剤、熱硬化型接着剤、熱熔融型接着剤等の公知の接着形態のものが各種使用出来る。 Further, in the above-described embodiment, as shown in FIG. 1, the
(1) 8% when there are no microprojections on both sides of the substrate.
(2) 4.2% when the microprojection group is provided only on one surface of the substrate.
(3) 0.4% in the case of having microprojections on both the front and back surfaces of the substrate.
It becomes.
Although not shown, in the
また、図示は略すが、図1等に図示の如き本発明の反射防止物品1において、微小突起群5、5A、5B、・・形成面上に剥離可能な保護フィルムを仮接着した状態で保管、搬送、売買、後加工乃至施工を行い、しかる後に適時、該保護フィルムを剥離除去する形態とすることも出来る。かかる形態においては、保管、搬送等の間に微小突起群が損傷乃至は汚染して反射防止性能が低下することを防止することが出来る。
Although not shown, in the antireflection article 1 of the present invention as shown in FIG. 1 etc., the microprojections 5, 5 A, 5 B,... The protective film may be peeled and removed at an appropriate time after carrying, carrying, buying and selling, post-processing or construction. In such a form, it is possible to prevent the antireflection performance from being deteriorated due to damage or contamination of the microprojection group during storage, transportation and the like.
また、上述の実施形態では、図1、図15(a)に示すように、各隣接微小突起間の谷底(高さの極小点)を連ねた面は高さが一定な平面であったが、本発明はこれに限らず、図23に示すように、各微小突起間の谷底を連ねた包絡面が、可視光線帯域の最長波長λmax以上の周期D(すなわちD>λmaxである)でうねった構成としてもよい。又該周期的なうねりは、基材2の表裏面に平行なXY平面(図15、図23参照)における1方向(例えばX方向)のみでこれと直交する方向(例えばY方向)には一定高さであっても良いし、或いはXY平面における2方向(X方向及びY方向)共にうねりを有していても良い。D>λmaxを満たす周期Dでうねった凹凸面6が多数の微小突起からなる微小突起群に重畳することによって、微小突起群で完全に反射防止し切れずに残った反射光を散乱し、殘留反射光、とくに鏡面反射光を更に視認し難くし、以って、反射防止効果を一段と向上させることができる。
Further, in the above-described embodiment, as shown in FIGS. 1 and 15A, the surface connecting the valley bottoms (minimum points of height) between the adjacent minute protrusions is a flat surface having a constant height. However, the present invention is not limited to this, and as shown in FIG. 23, the envelope surface connecting the valley bottoms between the microprojections has a period D (that is, D> λmax) that is equal to or longer than the longest wavelength λmax of the visible light band. It is good also as a structure. The periodic undulation is constant in only one direction (for example, the X direction) on the XY plane (see FIGS. 15 and 23) parallel to the front and back surfaces of the substrate 2 and in a direction orthogonal to the direction (for example, the Y direction). The height may be sufficient, or the two directions (X direction and Y direction) in the XY plane may have undulations. The uneven surface 6 that undulates with a period D satisfying D> λmax is superimposed on a microprojection group composed of a large number of microprojections, so that the reflected light remaining without being completely prevented from being reflected by the microprojection group is scattered, so that Reflected light, particularly specularly reflected light, can be made more difficult to visually recognize, and the antireflection effect can be further improved.
尚、係る凹凸面6の周期Dが全面に亙って一定では無く分布を有する場合は、該凹凸面について凸部間距離の度数分布を求め、その平均値をDAVG、標準偏差をΣとしたときの、
DMIN=DAVG―2Σ
として定義する最小隣接突起間距離を以って周期Dの代わりとして設計する。即ち、微小突起群の殘留反射光の散乱効果を十分奏し得る条件は、
DMIN>λmax
又、該凹凸の高低差に相当するJIS B0601(1994年)規定のRz値(10点平均粗さ)は、
Rz≧λmin
である。通常、D又はDMINは1~600μm、好ましくは10~300μmとされる。又、通常、Rzは0.4~5μmとされる。
各微小突起の谷底を連ねた包絡面形が、D(又はDMIN)>λmax、なる凹凸面6を呈する樣な微小突起群を形成する具体的な製造方法の一例を挙げると以下の通りである。即ち、ロール版13の製造工程において、円筒(又は円柱)形状の母材の表面にサンドブラスト又はマット(つや消し)メッキによって凹凸面6の凹凸形状に対応する凹凸形状を賦形する。次いで、該凹凸形状の面上に、直接或いは必要に応じて適宜の中間層を形成した後、アルミニウム層を積層する。その後、該凹凸形状表面に対応した表面形状を賦形されたアルミニウム層に上述の実施形態と同様にして陽極酸化処理及びエッチング処理を施して微小突起5、5A、5Bを含む微小突起群を形成する。 In addition, when the period D of theuneven surface 6 is not constant over the entire surface and has a distribution, the frequency distribution of the distance between the protrusions is obtained for the uneven surface, and the average value is D AVG and the standard deviation is Σ. When
D MIN = D AVG -2Σ
Designed as an alternative to period D with a minimum inter-protrusion distance defined as That is, conditions that can sufficiently exhibit the scattering effect of the reflected light of the microprojections are as follows:
D MIN > λmax
Also, the Rz value (10-point average roughness) defined in JIS B0601 (1994) corresponding to the height difference of the unevenness is
Rz ≧ λmin
It is. Usually, D or D MIN is 1 to 600 μm, preferably 10 to 300 μm. Usually, Rz is 0.4 to 5 μm.
An example of a specific manufacturing method for forming a concavo-convex microprojection group having anuneven surface 6 in which the envelope surface connecting the valley bottoms of each microprojection is D (or D MIN )> λmax is as follows. is there. That is, in the manufacturing process of the roll plate 13, a concavo-convex shape corresponding to the concavo-convex shape of the concavo-convex surface 6 is formed on the surface of a cylindrical (or columnar) base material by sandblasting or mat (matte) plating. Next, an appropriate intermediate layer is formed directly or if necessary on the uneven surface, and then an aluminum layer is laminated. Thereafter, an aluminum layer formed with a surface shape corresponding to the uneven surface is subjected to anodizing treatment and etching treatment in the same manner as in the above embodiment to form a microprojection group including microprojections 5, 5A, 5B. To do.
DMIN=DAVG―2Σ
として定義する最小隣接突起間距離を以って周期Dの代わりとして設計する。即ち、微小突起群の殘留反射光の散乱効果を十分奏し得る条件は、
DMIN>λmax
又、該凹凸の高低差に相当するJIS B0601(1994年)規定のRz値(10点平均粗さ)は、
Rz≧λmin
である。通常、D又はDMINは1~600μm、好ましくは10~300μmとされる。又、通常、Rzは0.4~5μmとされる。
各微小突起の谷底を連ねた包絡面形が、D(又はDMIN)>λmax、なる凹凸面6を呈する樣な微小突起群を形成する具体的な製造方法の一例を挙げると以下の通りである。即ち、ロール版13の製造工程において、円筒(又は円柱)形状の母材の表面にサンドブラスト又はマット(つや消し)メッキによって凹凸面6の凹凸形状に対応する凹凸形状を賦形する。次いで、該凹凸形状の面上に、直接或いは必要に応じて適宜の中間層を形成した後、アルミニウム層を積層する。その後、該凹凸形状表面に対応した表面形状を賦形されたアルミニウム層に上述の実施形態と同様にして陽極酸化処理及びエッチング処理を施して微小突起5、5A、5Bを含む微小突起群を形成する。 In addition, when the period D of the
D MIN = D AVG -2Σ
Designed as an alternative to period D with a minimum inter-protrusion distance defined as That is, conditions that can sufficiently exhibit the scattering effect of the reflected light of the microprojections are as follows:
D MIN > λmax
Also, the Rz value (10-point average roughness) defined in JIS B0601 (1994) corresponding to the height difference of the unevenness is
Rz ≧ λmin
It is. Usually, D or D MIN is 1 to 600 μm, preferably 10 to 300 μm. Usually, Rz is 0.4 to 5 μm.
An example of a specific manufacturing method for forming a concavo-convex microprojection group having an
また上述の実施形態では、陽極酸化処理とエッチング処理との繰り返しにより賦型処理用の金型を作製する場合について述べたが、本発明はこれに限らず、フォトリソグラフィーの手法を適用して賦型処理用の金型を作製する場合にも広く適用することができる。
In the above-described embodiment, the case where the mold for the shaping process is manufactured by repeating the anodizing process and the etching process has been described. However, the present invention is not limited to this, and the photolithography technique is applied. The present invention can also be widely applied to molds for mold processing.
また上述の実施形態では、ロール版を使用した賦型処理によりフィルム形状による反射防止物品を生産する場合について述べたが、本発明はこれに限らず、反射防止物品の形状に係る透明基材の形状に応じて、例えば平板、特定の曲面形状による賦型用金型を使用した枚葉の処理により反射防止物品を作成する場合等、賦型処理に係る工程、金型は、反射防止物品の形状に係る透明基材の形状に応じて適宜変更することができる。
Moreover, although the above-mentioned embodiment described the case where the anti-reflective article by a film shape was produced by the shaping process using a roll plate, this invention is not limited to this, The transparent base material which concerns on the shape of an anti-reflective article Depending on the shape, for example, when creating an antireflection article by processing a sheet using a shaping mold with a specific curved shape, such as a flat plate, the process related to the shaping process, the mold is the antireflection article It can change suitably according to the shape of the transparent base material which concerns on a shape.
また上述の実施形態では、画像表示パネルの表側面、或いは照明光の入射面にフィルム形状による反射防止物品を配置する場合について述べたが、本発明はこれに限らず、種々の用途に適用することができる。具体的には、画像表示パネルの画面上に間隙を介して設置されるタッチパネル、各種の窓材、各種光学フィルタ等による表面側部材の裏面(画像表示パネル側)に配置する用途に適用することができる。なおこの場合には、画像表示パネルと表面側部材との間の光の干渉によるニュートンリング等の干渉縞の発生の防止、画像表示パネルの出光面と表面側部材の入光面側との間の多重反射によるゴースト像の防止、さらには画面から出光されてこれら表面側部材に入光する画像光について、反射損失の低減等の効果を奏することができる。
In the above-described embodiment, the case where the antireflection article with the film shape is arranged on the front side surface of the image display panel or the incident surface of the illumination light has been described. However, the present invention is not limited to this and is applied to various applications. be able to. Specifically, it should be applied to applications that are placed on the back surface (image display panel side) of the surface side member such as a touch panel, various window materials, various optical filters, etc. installed on the screen of the image display panel through a gap. Can do. In this case, it is possible to prevent interference fringes such as Newton rings due to light interference between the image display panel and the surface side member, and between the light emission surface of the image display panel and the light incident surface side of the surface side member. Thus, it is possible to prevent ghost images due to multiple reflections, and to achieve effects such as reduction of reflection loss with respect to image light emitted from the screen and entering these surface side members.
或いは、タッチパネルを構成する透明電極を、フィルム或いは板状の透明基材上に本発明特定の微小突起群を形成し、更に該微小突起群上にITO(酸化インジウム錫)等の透明導電膜を形成したものを用いることが出来る。この場合には、該タッチパネル電極とこれと隣接する対向電極又は各種部材との間での光反射を防止して、干渉縞、ゴースト像等の発生を低減させる効果を奏することが出来る。
Alternatively, a transparent electrode constituting the touch panel is formed on a film or plate-like transparent substrate with a group of microprojections specific to the present invention, and a transparent conductive film such as ITO (indium tin oxide) is further formed on the group of microprojections. The formed one can be used. In this case, it is possible to prevent light reflection between the touch panel electrode and the counter electrode or various members adjacent to the touch panel electrode, thereby reducing the occurrence of interference fringes, ghost images, and the like.
また店舗のショウウインドウや商品展示箱、美術館の展示物の展示窓や展示箱等に使用する硝子板表面(外界側)、或いは表面及び裏面(商品又は展示物側面)の両面に配置するようにしても良い。なおこの場合、該硝子板表面の光反射防止による商品、美術品等の顧客や観客に対する視認性を向上することができる。
In addition, it is arranged on the glass plate surface (external side) used for the store show window and product display box of the store, the display window and display box of the exhibition of the museum, or both of the front and back surfaces (product or display side). May be. In this case, it is possible to improve the visibility for customers and spectators of products, artworks, etc. by preventing light reflection on the surface of the glass plate.
また眼鏡、望遠鏡、写真機、ビデオカメラ、銃砲の照準鏡(狙撃用スコープ)、双眼鏡、潜望鏡等の各種光学機器に用いるレンズ又はプリズムの表面に配置する場合にも広く適用することができる。この場合、レンズ又はプリズム表面の光反射防止による視認性を向上することができる。またさらに書籍の印刷部(文字、写真、図等)表面に配置する場合にも適用して、文字等の表面の光反射を防止し、文字等の視認性向上することができる。また看板、ポスター、其の他各種店頭、街頭、外壁等における各種表示(道案内、地図、或いは禁煙、入口、非常口、立入禁止等)の表面に配置して、これらの視認性を向上することができる。またさらに白熱電球、発光ダイオード、螢光燈、水銀燈、EL(電場発光)等を用いた照明器具の窓材(場合によっては、拡散板、集光レンズ、光学フィルタ等も兼ねる)の入光面側に配置するようにして、窓材入光面の光反射を防止し、光源光の反射損失を低減し、光利用効率を向上することができる。またさらに時計、其の他各種計測機器の表示窓表面(表示観察者側)に配置して、これら表示窓表面の光反射を防止し、視認性を向上することができる。
Also, it can be widely applied to the case where it is arranged on the surface of a lens or prism used in various optical devices such as glasses, a telescope, a camera, a video camera, a gun sighting mirror (sniper scope), binoculars, a periscope. In this case, the visibility by preventing light reflection on the lens or prism surface can be improved. Furthermore, it can also be applied to the case where it is arranged on the surface of a printed part (characters, photos, drawings, etc.) of a book to prevent light reflection on the surface of characters and the like and improve the visibility of characters and the like. In addition, it should be placed on the surface of signs (posters, posters, various other stores, streets, exterior walls, etc.) (road guidance, maps, smoking cessation, entrances, emergency exits, no entry, etc.) to improve visibility. Can do. In addition, a light entrance surface of a window material for a lighting fixture using incandescent bulbs, light emitting diodes, fluorescent lamps, mercury lamps, EL (electroluminescence), etc. (in some cases, it also serves as a diffuser plate, condenser lens, optical filter, etc.) By arranging it on the side, it is possible to prevent the light reflection of the light incident surface of the window material, reduce the reflection loss of the light source light, and improve the light utilization efficiency. Furthermore, it can arrange | position on the display window surface (display observer side) of a timepiece and other various measuring devices, the light reflection of these display window surfaces can be prevented, and visibility can be improved.
またさらに、自動車、鉄道車両、船舶、航空機等の乗物の操縦室(運転室、操舵室)の窓の室内側、室外側、あるいはその両側の表面に配置して窓における室内外光を反射防止して、操縦者(運転者、操舵者)の外界視認性を向上することができる。またさらに、防犯等の監視、銃砲の照準、天体観測等に用いる暗視装置のレンズないしは窓材表面に配置して、夜間、暗闇での視認性を向上することができる。
Furthermore, it is placed on the inside, outside, or both sides of the windows of the cockpits (driver's cabs, wheelhouses) of vehicles such as automobiles, railway vehicles, ships, and aircraft to prevent reflection of indoor and outdoor light from the windows. Thus, it is possible to improve the visibility of the outside world of the driver (driver, driver). Furthermore, it can be arranged on the surface of a night vision device lens or window material used for crime prevention monitoring, gun sighting, astronomical observation, etc. to improve visibility at night and in the dark.
またさらに、住宅、店舗、事務所、学校、病院等の建築物の窓、扉、間仕切、壁面等を構成する透明基板(窓硝子等)の表面(室内側、室外側、あいはその両側)の表面に配置して、外界の視認性、あるいは採光効率を向上することができる。またさらに、各種店舗、美術館、博物館等で用いる商品乃至展示品を収納し、展示する各種の展示箱乃至ショウケースの透明窓(又は扉)部の表面、裏面、又は表裏両面に配置して、展示する商品乃至展示品の視認性向上することができる。またさらに、温室、農業用ビニールハウスの透明シート、ないしは透明板(窓材)の表面に配置して、太陽光の採光効率を向上することができる。さらにまた、太陽電池表面に配置して、太陽光の利用効率(発電効率)を向上することができる。
Furthermore, the surface of the transparent substrate (window glass, etc.) that constitutes windows, doors, partitions, wall surfaces, etc. of buildings such as houses, stores, offices, schools, hospitals, etc. (inside, outside, or both sides) It is possible to improve the visibility of the outside world or the daylighting efficiency. Furthermore, it stores products or exhibits used in various stores, museums, museums, etc., and arranges them on the front, back, or both sides of the transparent window (or door) of various display boxes or showcases to be displayed, It is possible to improve the visibility of products to be displayed or exhibits. Furthermore, it can arrange | position on the surface of a greenhouse, the transparent sheet | seat of an agricultural greenhouse, or a transparent board (window material), and can improve the sunlight lighting efficiency. Furthermore, it can arrange | position on the solar cell surface and can improve the utilization efficiency (power generation efficiency) of sunlight.
またさらに、上述の実施形態においては、反射防止を図る電磁波の波長帯域を、専ら、可視光線帯域(の全域又は一部帯域)としたが、本発明はこれに限らず、反射防止を図る電磁波の波長帯域を赤外線、紫外線等の可視光線以外の波長帯域に設定しても良い。その場合は前記の各条件式中において、電磁波の波長帯域の最短波長Λminを、それぞれ、赤外線、紫外線等の波長帯域における反射防止効果を希望する最短波長に設定すれば良い。例えば、最短波長Λminが850nmの赤外線帯域の反射防止を希望する場合は、隣接突起間距離d(乃至は其の最大値dmax)を850nm以下、例えば、d(dmax)=800nmと設計すれば良い。尚、この場合は、可視光線帯域(380~780nm)に於いては反射防止効果は期待し得ず、專ら波長850nm以上の赤外線に対しての反射防止効果を奏する反射防止物品が得られる。
Furthermore, in the above-described embodiment, the wavelength band of the electromagnetic wave for preventing reflection is exclusively the visible light band (all or part of the visible light band), but the present invention is not limited to this, and the electromagnetic wave for preventing reflection. May be set to a wavelength band other than visible light rays such as infrared rays and ultraviolet rays. In that case, the shortest wavelength Λmin in the wavelength band of the electromagnetic wave may be set to the shortest wavelength in which the antireflection effect in the wavelength band of infrared rays, ultraviolet rays, etc. is desired in each conditional expression. For example, when it is desired to prevent reflection in the infrared band where the shortest wavelength Λmin is 850 nm, the distance d between adjacent protrusions (or its maximum value dmax) may be designed to be 850 nm or less, for example, d (dmax) = 800 nm. . In this case, an antireflection effect cannot be expected in the visible light band (380 to 780 nm), and an antireflection article exhibiting an antireflection effect for infrared rays having a wavelength of 850 nm or more can be obtained.
以上例示の各種実施形態において、硝子板等の透明基板の表面、裏面、或いは表裏両面に本発明のフィルム状の反射防止物品を配置する場合、該透明基板の全面に亙って配置、被覆する以外に、一部分の領域にのみ配置することも出来る。かかる例としては、例えば、1枚の窓硝子について、其の中央部分の正方形領域において、室内側表面にのみフィルム状の反射防止物品を粘着剤で貼着し、その他領域には反射防止物品を貼着し無い場合を挙げることが出来る。透明基板の一部分の領域にのみ反射防止物品を配置する形態の場合は、特別な表示や衝突防止柵等の設置無しでも、該透明基板の存在を視認し易くして、人が該透明基板に衝突、負傷する危険性を低減する効果、及び室内(屋内)の覗き見防止と該透明基板の(該反射防止物品の配置領域における)透視性とが両立出来ると言う効果を奏し得る。
In the various exemplary embodiments described above, when the film-shaped antireflection article of the present invention is disposed on the front surface, back surface, or both front and back surfaces of a transparent substrate such as a glass plate, it is disposed and covered over the entire surface of the transparent substrate. In addition, it can be arranged only in a partial area. As an example of this, for example, for a single window glass, a film-shaped antireflection article is attached to the indoor side surface only with an adhesive in a square area at the center, and an antireflection article is provided in the other areas. The case where it does not stick can be mentioned. In the case where the antireflection article is arranged only in a partial area of the transparent substrate, it is easy to visually recognize the presence of the transparent substrate without special display or a collision prevention fence, etc. The effect of reducing the risk of collision and injury, and the effect that both the prevention of peeping indoors (indoors) and the transparency of the transparent substrate (in the region where the antireflection article is disposed) can be achieved.
1 反射防止物品
2 基材
4 紫外線硬化性樹脂層、受容層
5、5A、5B 微小突起
6 凹凸面
10 製造工程
12 ダイ
13 ロール版
14、15 ローラ
g 溝 DESCRIPTION OFSYMBOLS 1 Anti-reflective article 2 Base material 4 Ultraviolet curable resin layer, receiving layer 5, 5A, 5B Minute protrusion 6 Uneven surface 10 Manufacturing process 12 Die 13 Roll plate 14, 15 Roller g Groove
2 基材
4 紫外線硬化性樹脂層、受容層
5、5A、5B 微小突起
6 凹凸面
10 製造工程
12 ダイ
13 ロール版
14、15 ローラ
g 溝 DESCRIPTION OF
Claims (5)
- 微小突起が密接して配置され、隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下である反射防止物品において、
前記微小突起は、頂点が複数の多峰性微小突起と、頂点が一つの単峰性微小突起とから構成され、
前記微小突起の高さHの度数分布における高さHの平均値をmとし、標準偏差をσとし、
H<m-σの領域を低高度領域とし、
m-σ≦H≦m+σの領域を中高度領域とし、
m+σ<Hの領域を高高度領域とした場合に、
各領域内の前記多峰性微小突起の数Nmと、前記度数分布全体における前記微小突起の総数Ntとの比率が、
中高度領域のNm/Nt>低高度領域のNm/Ntと、
中高度領域のNm/Nt>高高度領域のNm/Ntとの関係を満たすこと、
を特徴とする反射防止物品。 In the antireflection article in which the microprotrusions are closely arranged and the interval between the adjacent microprotrusions is equal to or less than the shortest wavelength of the wavelength band of the electromagnetic wave to prevent reflection,
The microprotrusions are composed of a plurality of multimodal microprojections having a plurality of vertices and a unimodal microprojection having one apex,
The average value of the height H in the frequency distribution of the height H of the microprotrusions is m, the standard deviation is σ,
The region where H <m−σ is the low altitude region,
The region of m−σ ≦ H ≦ m + σ is defined as the middle altitude region,
When the region of m + σ <H is a high altitude region,
The ratio between the number Nm of the multi-peaked microprojections in each region and the total number Nt of the microprojections in the entire frequency distribution is as follows:
Nm / Nt in middle altitude region> Nm / Nt in low altitude region,
Satisfying the relationship of Nm / Nt in the middle altitude region> Nm / Nt in the high altitude region,
An antireflection article characterized by - 前記微小突起の高さHの度数分布が2つの分布による双峰性であり、2つの分布の境界となる高さをHsとし、Hs未満の分布における前記微小突起の高さHの平均値をm1とし、
H<m1-σ1の領域を低高度領域とし、
m1-σ1≦H≦m1+σ1の領域を中高度領域とし、
m1+σ1<H<Hsの領域を高高度領域とした場合に、
Hs未満の分布における各領域内の前記多峰性微小突起の数Nm1と、前記度数分布全体における前記微小突起の総数Ntとの比率が、
中高度領域のNm1/Nt>低高度領域のNm1/Ntと、
中高度領域のNm1/Nt>高高度領域のNm1/Ntとの関係を満たし、
Hs以上の分布における前記微小突起の高さHの平均値をm2とし、標準偏差をσ2とし、
Hs<H<m2-σ2の領域を低高度領域とし、
m2-σ2≦H≦m2+σ2の領域を中高度領域とし、
m2+σ2<Hの領域を高高度領域とした場合に、
Hs以上の分布における各領域内の前記多峰性微小突起の数Nm2と、前記度数分布全体における前記微小突起の総数Ntとの比率が、
中高度領域のNm2/Nt>低高度領域のNm2/Ntと、
中高度領域のNm2/Nt>高高度領域のNm2/Ntとの関係を満たすこと、
を特徴とする請求項1に記載の反射防止物品。 The frequency distribution of the height H of the microprotrusions is bimodal due to two distributions, where Hs is the height that becomes the boundary between the two distributions, and the average value of the heights H of the microprotrusions in a distribution less than Hs. m1,
The region of H <m1-σ1 is defined as a low altitude region,
The region of m1−σ1 ≦ H ≦ m1 + σ1 is defined as a medium altitude region,
When the region of m1 + σ1 <H <Hs is a high altitude region,
The ratio between the number Nm1 of the multi-modal microprojections in each region in the distribution of less than Hs and the total number Nt of microprojections in the entire frequency distribution is:
Nm1 / Nt in the middle altitude region> Nm1 / Nt in the low altitude region,
Satisfying the relationship of Nm1 / Nt in the middle altitude region> Nm1 / Nt in the high altitude region,
In the distribution of Hs or more, the average value of the height H of the microprojections is m2, the standard deviation is σ2,
The region where Hs <H <m2-σ2 is set as the low altitude region,
The region of m2−σ2 ≦ H ≦ m2 + σ2 is defined as a medium altitude region,
When the area of m2 + σ2 <H is a high altitude area,
The ratio between the number Nm2 of the multi-modal microprojections in each region in the distribution of Hs or higher and the total number Nt of the microprojections in the entire frequency distribution is as follows:
Nm2 / Nt in the middle altitude region> Nm2 / Nt in the low altitude region,
Satisfying the relationship of Nm2 / Nt in the middle altitude region> Nm2 / Nt in the high altitude region,
The antireflection article according to claim 1. - 画像表示パネルの出光面上に、請求項1又は請求項2に記載の反射防止物品を配置した
画像表示装置。 An image display device in which the antireflection article according to claim 1 or 2 is disposed on a light exit surface of an image display panel. - 反射防止物品の製造に供する反射防止物品の製造用金型であって、
前記反射防止物品は、
微小突起が密接して配置され、
隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下であり、
前記微小突起が、頂点が複数の多峰性微小突起と、頂点が一つの単峰性微小突起とから構成され、
前記微小突起の高さHの度数分布における高さHの平均値をmとし、標準偏差をσとし、
H<m-σの領域を低高度領域とし、
m-σ≦H≦m+σの領域を中高度領域とし、
m+σ<Hの領域を高高度領域とした場合に、
各領域内の前記多峰性微小突起の数Nmと、前記度数分布全体における前記微小突起の総数Ntとの比率が、
中高度領域のNm/Nt>低高度領域のNm/Ntと、
中高度領域のNm/Nt>高高度領域のNm/Ntとの関係を満たし、
前記反射防止物品の製造用金型は、
前記微小突起に対応する微細穴が密接して作製されていること、
を特徴とする反射防止物品の製造用金型。 A mold for manufacturing an antireflective article for use in manufacturing an antireflective article,
The antireflective article is
The microprotrusions are closely placed,
The interval between the adjacent minute protrusions is equal to or less than the shortest wavelength of the wavelength band of the electromagnetic wave for preventing reflection,
The microprotrusions are composed of multi-peak microprojections having a plurality of vertices and a single unimodal microprojection having a single vertex,
The average value of the height H in the frequency distribution of the height H of the microprotrusions is m, the standard deviation is σ,
The region where H <m−σ is the low altitude region,
The region of m−σ ≦ H ≦ m + σ is defined as the middle altitude region,
When the region of m + σ <H is a high altitude region,
The ratio between the number Nm of the multi-peaked microprojections in each region and the total number Nt of the microprojections in the entire frequency distribution is as follows:
Nm / Nt in middle altitude region> Nm / Nt in low altitude region,
Satisfying the relationship of Nm / Nt in the middle altitude region> Nm / Nt in the high altitude region,
The mold for manufacturing the antireflection article is:
The minute holes corresponding to the minute protrusions are made closely,
A mold for manufacturing an antireflective article. - 請求項4に記載の反射防止物品の製造用金型を製造する反射防止物品の製造用金型の製造方法であって、
第1の電圧を印加して陽極酸化処理を実行した後にエッチング処理を実行し、版の表面に、底面が略平坦となる微細穴を形成する平坦微細穴形成工程と、
前記第1の電圧よりも低い第2の電圧を印加して陽極酸化処理を実行した後にエッチング処理を実行し、底面が略平坦に形成された前記微細穴の底面に、微細穴を複数形成する多峰突起用微細穴形成工程と、
を備える反射防止物品の製造用金型の製造方法。 A method of manufacturing a mold for manufacturing an antireflective article for manufacturing a mold for manufacturing an antireflective article according to claim 4,
A flat micro-hole forming step of performing an etching process after applying the first voltage and performing an anodizing process to form a micro-hole having a substantially flat bottom surface on the surface of the plate;
An anodizing process is performed after applying a second voltage lower than the first voltage, and then an etching process is performed to form a plurality of micro holes on the bottom surface of the micro hole having a substantially flat bottom surface. Micro-hole forming process for multimodal protrusions,
A method of manufacturing a mold for manufacturing an antireflection article comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014069609A JP5644974B2 (en) | 2013-03-28 | 2014-03-28 | Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method |
JP2014-069609 | 2014-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015145829A1 true WO2015145829A1 (en) | 2015-10-01 |
Family
ID=54198791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076463 WO2015145829A1 (en) | 2014-03-28 | 2014-10-02 | Antireflective article, image display device, mold for manufacturing antireflective article, and method for manufacturing mold for manufacturing antireflective article |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5644974B2 (en) |
WO (1) | WO2015145829A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014139667A (en) * | 2012-12-20 | 2014-07-31 | Dainippon Printing Co Ltd | Transparent body and fitting |
JP6458481B2 (en) * | 2014-12-16 | 2019-01-30 | 大日本印刷株式会社 | Anti-reflective articles and art exhibits |
JP7259114B2 (en) * | 2017-12-26 | 2023-04-17 | デクセリアルズ株式会社 | Master and method of manufacturing the master |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014021377A1 (en) * | 2012-07-31 | 2014-02-06 | 大日本印刷株式会社 | Antireflective article, image display device, and production mold for antireflective article |
WO2014021376A1 (en) * | 2012-07-31 | 2014-02-06 | 大日本印刷株式会社 | Antireflective article, image display device, production mold for antireflective article, and production method for antireflective article production mold |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4612842B2 (en) * | 2005-01-19 | 2011-01-12 | キヤノン株式会社 | Optical scanning device |
JP2007264594A (en) * | 2006-03-01 | 2007-10-11 | Nissan Motor Co Ltd | Anti-reflection fine structure, anti-reflection molded body, method of producing the same |
CN102575372B (en) * | 2009-10-09 | 2014-05-28 | 夏普株式会社 | Mold and production method for same, and anti-reflection film |
JP2012014083A (en) * | 2010-07-02 | 2012-01-19 | Hoya Corp | Optical element, imaging apparatus using the same, and lens interchangeable camera |
JP2012014084A (en) * | 2010-07-02 | 2012-01-19 | Hoya Corp | Optical element, manufacturing method thereof, and optical system, optical device, imaging apparatus, and camera with interchangeable lenses using the same |
JP4849183B1 (en) * | 2010-08-05 | 2012-01-11 | 大日本印刷株式会社 | Method for producing mold for producing antireflection film |
-
2014
- 2014-03-28 JP JP2014069609A patent/JP5644974B2/en active Active
- 2014-10-02 WO PCT/JP2014/076463 patent/WO2015145829A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014021377A1 (en) * | 2012-07-31 | 2014-02-06 | 大日本印刷株式会社 | Antireflective article, image display device, and production mold for antireflective article |
WO2014021376A1 (en) * | 2012-07-31 | 2014-02-06 | 大日本印刷株式会社 | Antireflective article, image display device, production mold for antireflective article, and production method for antireflective article production mold |
Also Published As
Publication number | Publication date |
---|---|
JP5644974B2 (en) | 2014-12-24 |
JP2014209232A (en) | 2014-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014021376A1 (en) | Antireflective article, image display device, production mold for antireflective article, and production method for antireflective article production mold | |
WO2014021377A1 (en) | Antireflective article, image display device, and production mold for antireflective article | |
JP2014029391A (en) | Antireflection article, image display device, and mold for manufacturing antireflection article | |
JP5261596B1 (en) | Antireflection article, image display device, and mold for manufacturing antireflection article | |
JP2014153524A (en) | Antireflection article and image display unit | |
JP5655967B2 (en) | Antireflection article and image display device | |
JP5747928B2 (en) | Method for manufacturing antireflection article | |
JP5261597B1 (en) | Antireflection article, image display device, and mold for manufacturing antireflection article | |
JP5644974B2 (en) | Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method | |
JP6349830B2 (en) | Method for manufacturing antireflection article and method for manufacturing mold for manufacturing antireflection article | |
JP5261598B1 (en) | Antireflection article, image display device, and mold for manufacturing antireflection article | |
JP2015187637A (en) | Antireflective article, image display device, method for manufacturing antireflective article, molding die for antireflective article, and method for manufacturing molding die | |
JP5641162B2 (en) | Anti-reflective article, image display device, mold for manufacturing anti-reflective article | |
JP5641161B2 (en) | Antireflection article, image display device, and mold for manufacturing antireflection article | |
JP5655966B2 (en) | Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method | |
JP5652564B2 (en) | Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method | |
JP5633617B1 (en) | Antireflection article, image display device, antireflection article manufacturing mold, antireflection article manufacturing method, and antireflection article manufacturing mold manufacturing method | |
JP2014139667A (en) | Transparent body and fitting | |
JP2015184427A (en) | Antireflection article, image display device, manufacturing method of antireflection article, mold for shaping antireflection article, and manufacturing method of mold for shaping | |
JP5700309B2 (en) | Antireflection article, image display device, and mold for manufacturing antireflection article | |
JP6764635B2 (en) | Anti-reflective articles and image display devices | |
JP2015084096A (en) | Antireflective article, image display device, and mold for manufacturing antireflective article | |
JP2015064493A (en) | Anti-reflection article, image display device, and mold for manufacturing anti-reflection article | |
JP2016024287A (en) | Antireflection article and image display device | |
JP2016085301A (en) | Anti-reflection articles, image display device, manufacturing method for anti-reflection articles, anti-reflection article-forming mold, and manufacturing method for anti-reflection article-forming mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14886976 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 14886976 Country of ref document: EP Kind code of ref document: A1 |