WO2015145624A1 - 胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム - Google Patents

胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム Download PDF

Info

Publication number
WO2015145624A1
WO2015145624A1 PCT/JP2014/058586 JP2014058586W WO2015145624A1 WO 2015145624 A1 WO2015145624 A1 WO 2015145624A1 JP 2014058586 W JP2014058586 W JP 2014058586W WO 2015145624 A1 WO2015145624 A1 WO 2015145624A1
Authority
WO
WIPO (PCT)
Prior art keywords
fetal
rotation angle
estimated
state estimation
signal
Prior art date
Application number
PCT/JP2014/058586
Other languages
English (en)
French (fr)
Inventor
芳孝 木村
尚明 佐藤
伸生 八重樫
拓哉 伊藤
美雪 遠藤
清佳 大塩
秀和 西郡
裕司 鍋島
光之 中尾
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to PCT/JP2014/058586 priority Critical patent/WO2015145624A1/ja
Priority to JP2016509716A priority patent/JP6324490B2/ja
Publication of WO2015145624A1 publication Critical patent/WO2015145624A1/ja
Priority to US15/273,985 priority patent/US10278604B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/344Foetal cardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/327Generation of artificial ECG signals based on measured signals, e.g. to compensate for missing leads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals

Definitions

  • the present invention relates to a fetal state estimation device, a fetal state estimation method, and a fetal state estimation program.
  • An electrocardiogram estimation device that estimates an electrocardiogram signal representing a change in electromotive force by attaching an electrode to the surface of a human body and measuring a potential signal representing a change in potential on the surface via the electrode is known.
  • the electrocardiogram signal includes a wave having a peak called a P wave WP, a Q wave WQ, an R wave WR, an S wave WS, and a T wave WT for each beat.
  • the time interval between the peaks of each wave is used for disease diagnosis or examination.
  • the heart rate is measured by acquiring the time interval between the peaks of the continuous R wave WR.
  • FIG. 2 shows two potential signals C10 and C11 measured in two states where the positions of the electrodes relative to the heart are different from each other when the changes in electromotive force are the same.
  • the magnitude and timing of the peak of each wave change according to the position of the electrode with respect to the heart.
  • the electrocardiogram estimation apparatus described in Patent Document 1 attaches an electrode to the surface of the mother, measures a potential signal representing a change in potential on the surface via the electrode, and fetuses based on the measured potential signal. Estimate the ECG signal.
  • a fetal state estimation device that estimates the fetal movement, which is the movement of the fetus, by generating ultrasonic waves on the mother's surface and observing the Doppler effect in the reflected waves reflected by the fetus in the mother's body Is known (see, for example, Patent Document 2).
  • One of the objects of the present invention is to solve the above-described problem that fetal movement cannot be estimated with high accuracy.
  • the fetal state estimation device estimates the state of the fetus in the mother based on a potential signal representing a change in potential on the surface of the mother. Further, the fetal state estimation device is configured to estimate a rotation angle estimation unit that estimates a rotation angle of the fetus with respect to the mother for each heart beat of the fetus based on the potential signal, and the potential signal and the estimation. A fetal movement estimation unit that estimates the fetal movement that is the movement of the fetus based on the rotation angle.
  • the fetal state estimation method estimates the state of the fetus in the mother based on a potential signal representing a change in potential on the surface of the mother. Further, the fetal state estimation method estimates a rotation angle of the fetus with respect to the mother for each heart beat of the fetus based on the potential signal, and determines the potential signal and the estimated rotation angle. Based on this, the fetal movement, which is the movement of the fetus, is estimated.
  • the fetal state estimation program is a program for causing a computer to execute processing for estimating the state of the fetus in the mother based on a potential signal representing a change in potential on the surface of the mother. Further, the fetal state estimation program estimates the rotation angle of the fetus with respect to the mother for each heart beat of the fetus based on the potential signal, and estimates the potential signal and the computer. Based on the rotation angle, a process for estimating fetal movement, which is the movement of the fetus, is executed.
  • fetal movement can be estimated with high accuracy.
  • the fetal state estimation device 1 includes a measurement unit 10, a processing unit 20, and an output unit 30.
  • the measurement unit 10 includes electrodes 11 to 15.
  • the number of the electrodes with which the measurement part 10 is provided may be four or less, and may be six or more. Good.
  • Each electrode 11-15 is attached to the abdominal surface (eg skin) MBS of the maternal MB during pregnancy.
  • the measurement unit 10 measures a biopotential signal representing a change in potential on the surface MBS of the mother MB via the electrodes 11 to 15.
  • the bioelectric potential signal includes a maternal electrocardiogram basic signal caused by the heart beat of the mother MB, a maternal electromyogram basic signal caused by the activity of the muscle fiber of the mother MB, and the heart of the fetus CB housed in the uterus of the mother MB. This is a signal in which a basic fetal electrocardiogram signal, noise, and the like resulting from pulsation are superimposed.
  • the processing unit 20 processes the biopotential signal measured by the measuring unit 10.
  • the function of the processing unit 20 includes a rotation angle estimation unit 201 and a fetal movement estimation unit 202, as illustrated in FIG.
  • the processing unit 20 includes a processing device (for example, a CPU (Central Processing Unit) or DSP (Digital Signal Processor)) and a storage device, and a fetal state estimation program stored in advance in the storage device. Each function is realized by executing. Note that the processing unit 20 may realize at least a part of the functions by an integrated circuit (for example, LSI (Large Scale Integration)).
  • LSI Large Scale Integration
  • the rotation angle estimation unit 201 extracts a fetal electrocardiogram basic signal from the biopotential signal measured by the measurement unit 10 by using an independent component analysis (ICA) method.
  • ICA independent component analysis
  • the ICA method is a natural gradient method, a FastICA method, or a reference system ICA method.
  • the reference system ICA method generates a reference signal based on a heartbeat period signal that represents the period of the heartbeat of the fetus, and based on the generated reference signal, generates a reference signal from the biopotential signal.
  • This is a method for extracting an electrocardiogram basic signal.
  • the heartbeat cycle signal may be generated based on the biopotential signal.
  • the heartbeat cycle signal may be a signal measured by an ultrasonic sensor.
  • the rotation angle estimation unit 201 may extract the fetal electrocardiogram basic signal after performing a reduction process for reducing the maternal electrocardiogram basic signal on the measured bioelectric potential signal.
  • the rotation angle estimation unit 201 estimates a maternal electrocardiogram basic signal via an electrode (not shown) attached to the chest of the maternal MB, and performs the reduction process based on the estimated maternal electrocardiogram basic signal. May be executed.
  • the rotation angle estimation unit 201 may extract a fetal electrocardiogram basic signal after reducing noise by applying a bandpass filter.
  • the rotation angle estimation unit 201 may use a band pass filter having a band from 20 Hz to 30 Hz as a pass band.
  • the fetal state estimation device 1 estimates the rotation angle of the fetus CB with respect to the mother MB, and based on the estimated rotation angle and the fetal electrocardiogram basic signal, the translational motion of the fetal movement. Presence or absence of is estimated. Thereby, fetus movement can be estimated with high accuracy.
  • the rotation angle estimation unit 201 estimates the rotation angle of the fetus CB with respect to the mother MB based on the extracted fetal electrocardiogram basic signal. Hereinafter, estimation of the rotation angle will be described.
  • a right-handed orthogonal coordinate system is used as shown in FIG.
  • This orthogonal coordinate system has the front direction of the fetus CB as the y-axis, the lower direction of the fetus CB as the z-axis, and the left direction of the fetus CB as the x-axis.
  • the rotation angle ⁇ with respect to the fetus CB is an angle rotated counterclockwise from the x axis when the fetus CB is viewed in the positive direction of the z axis.
  • the rotational movement of the fetus CB is a movement that rotates about the direction along the z axis as the central axis of rotation.
  • the fetal state estimation device 1 may be applied when the vertical direction of the fetus CB is different from the vertical direction of the mother MB.
  • ECG ⁇ ( ⁇ ) when the fetus CB is viewed in the direction in which the negative direction of the x-axis is rotated by the rotation angle ⁇ is expressed as Equation 1.
  • the ⁇ represents time.
  • the fetal electrocardiogram signal is an electrocardiogram signal of the fetus CB.
  • the fetal electrocardiogram signal ECG x ( ⁇ ) may be regarded as a signal representing an electrocardiogram obtained by projecting the vector electrocardiogram onto the left side surface of the fetus CB.
  • the fetal electrocardiogram signal ECG y ( ⁇ ) may be regarded as a signal representing an electrocardiogram obtained by projecting a vector electrocardiogram onto the front of the fetus CB.
  • the fetal electrocardiogram basic signal u ⁇ ( ⁇ ) extracted by the rotation angle estimation unit 201 has an average value of 0 and a variance of Normalized to be 1.
  • the rotation angle estimation unit 201 estimates a pulsation period, which is a period corresponding to the pulsation, based on the extracted fetal electrocardiogram basic signal u ⁇ ( ⁇ ) for each pulsation of the heart of the fetus CB.
  • the rotation angle estimation unit 201 determines that the absolute value of the fetal electrocardiogram basic signal u ⁇ ( ⁇ ) (potential in this example) is smaller than a predetermined first threshold value. A certain point in time (for example, a point in the middle of the period) within the longer duration is estimated as the boundary point.
  • the rotation angle estimator 201 has a maximum peak time point that is a time point at which the value of the fetal electrocardiogram basic signal u ⁇ ( ⁇ ) becomes maximum in a period between two consecutive boundary time points among the estimated boundary time points. ⁇ max0 is acquired.
  • the rotational angle estimation unit 201 starting from just before the time half the time of pulsation cycle from the maximum peak point tau max0, and, from the maximum peak point tau max0 at a later time by half the time of pulsation cycles
  • the period that ends is estimated as the beating period.
  • the pulsation period may be obtained by obtaining an autocorrelation with respect to the fetal electrocardiogram basic signal u ⁇ ( ⁇ ). In this way, the rotation angle estimation unit 201 estimates the pulsation period for each of the pulsations of the heart of the fetus CB.
  • the rotation angle estimation unit 201 estimates the rotation angle ⁇ for each estimated pulsation period.
  • the rotation angle estimation unit 201 holds a relationship (first relationship) between the rotation angle and the signal feature amount in advance.
  • the signal feature amount is a parameter calculated based on the maximum value and the minimum value of the fetal electrocardiogram basic signal in the QRS wave period that is a period corresponding to the QRS wave in the pulsation period.
  • the QRS wave is composed of a Q wave, an R wave, and an S wave.
  • the signal feature amount R ( ⁇ ) is expressed by Equation 2.
  • ⁇ max ( ⁇ ) represents a time point (QRS wave period maximum peak time point) in which the fetal electrocardiogram basic signal has a maximum value in the QRS wave period.
  • ⁇ min ( ⁇ ) represents a time point (QRS wave period minimum peak time point) in which the fetal electrocardiogram basic signal has a minimum value in the QRS wave period.
  • the QRS wave period is an example of a target period.
  • the QRS wave period maximum peak time ⁇ max ( ⁇ ) is expressed by Expression 3
  • the QRS wave period minimum peak time ⁇ min ( ⁇ ) is expressed by Expression 4.
  • T QRS represents the length of the QRS wave period.
  • T QRS is set to a value obtained by multiplying the pulsation period by a predetermined coefficient (for example, 1/5).
  • the first relationship is determined based on the reference signal (reference fetal electrocardiogram signal) of the fetal electrocardiogram signal expressed by Expressions 5 to 7.
  • ECG x0 ( ⁇ ) represents a reference fetal electrocardiogram signal when the fetus CB is viewed in the negative direction of the x-axis.
  • ECG y0 ( ⁇ ) represents a reference fetal electrocardiogram signal when the fetus CB is viewed in the negative direction of the y-axis.
  • ECG z0 ( ⁇ ) represents a reference fetal electrocardiogram signal when the fetus CB is viewed in the negative direction of the z-axis.
  • the reference fetal electrocardiogram signal is represented by the sum of Gaussian functions.
  • ⁇ i x , ⁇ i x , b i x , ⁇ i y , ⁇ i y , b i y , ⁇ i z , ⁇ i z , and b i z are parameters that specify a Gaussian function. .
  • Non-Patent Document 1 R. Sameni, GD Clifford, M. B. Shamsollahi, C. Jutten, “Multichannel ECG and noise modeling: Application to material”.
  • electrocardiogram signals described in “fetal ECG signals”, EURASIP Journal on Advances in Signal Processing, 2007, Article ID 43407 are used as reference fetal electrocardiogram signals.
  • the first relationship with the reference fetal electrocardiogram signal described above is determined as shown in FIG.
  • FIG. 9A the relationship between the rotation angle ⁇ and the QRS wave period maximum peak time point ⁇ max ( ⁇ ) is represented by a broken line, and the rotation angle ⁇ and the QRS wave period minimum peak time point ⁇ min ( ⁇ ).
  • the relationship between is represented by a solid line.
  • FIG. 9B the relationship between the rotation angle ⁇ and the signal feature amount R ( ⁇ ) is represented by a solid line.
  • np and a range of rotation angle ⁇ (maximum peak preceding range) ⁇ pn in which QRS wave period maximum peak time point ⁇ max ( ⁇ ) is smaller than QRS wave period minimum peak time point ⁇ min ( ⁇ ) exist.
  • the rotation angle ⁇ and the signal feature amount R ( ⁇ ) correspond one-to-one.
  • the rotation angle ⁇ and the signal feature amount R ( ⁇ ) correspond one-to-one.
  • the first relationship may be determined based on an empirical rule.
  • the rotation angle estimator 201 determines the QRS wave period maximum peak time ⁇ max ( ⁇ ) and the QRS wave period minimum based on the fetal electrocardiogram basic signal u ⁇ ( ⁇ ) for each of the estimated pulsation periods.
  • the peak time ⁇ min ( ⁇ ) is acquired.
  • the rotation angle estimation unit 201 obtains the QRS wave period maximum peak time point ⁇ max ( ⁇ ) and the QRS wave period minimum peak time point ⁇ min ( ⁇ ) for each of the estimated pulsation periods. Then, a signal feature amount R ( ⁇ ) is calculated based on the fetal electrocardiogram basic signal u ⁇ ( ⁇ ).
  • the rotation angle estimation unit 201 rotates the rotation angle ⁇ based on the first relationship held for each estimated pulsation period and the calculated signal feature R ( ⁇ ). Is estimated.
  • the rotation angle estimation unit 201 is retained when the acquired QRS wave period maximum peak time point ⁇ max ( ⁇ ) is larger than the acquired QRS wave period minimum peak time point ⁇ min ( ⁇ ).
  • the rotation angle ⁇ is estimated based on the portion corresponding to the minimum peak preceding range ⁇ np and the calculated signal feature amount R ( ⁇ ) in the first relationship.
  • the rotation angle estimation unit 201 holds the first QRS wave period maximum peak time ⁇ max ( ⁇ ) that is held when the acquired QRS wave period minimum peak time ⁇ min ( ⁇ ) is smaller than the acquired QRS wave period minimum peak time ⁇ min ( ⁇ ).
  • the rotation angle ⁇ is estimated based on the portion corresponding to the maximum peak preceding range ⁇ pn and the calculated signal feature amount R ( ⁇ ). In this way, the rotation angle estimation unit 201 estimates the rotation angle ⁇ for each pulsation period.
  • the maximum peak time ⁇ max0 in the fetal electrocardiogram basic signal changes according to the rotation angle ⁇ .
  • a dashed curve C20 represents a reference fetal electrocardiogram signal when the rotation angle is 0 (when the fetus CB is viewed in the negative direction of the x axis), and a solid curve C21 represents the rotation angle.
  • the reference fetal electrocardiogram signal when the value is different from 0 is represented.
  • the fetal movement estimation unit 202 estimates again the time point that is the center of the pulsation period for each of the estimated pulsation periods based on the rotation angle ⁇ estimated by the rotation angle estimation unit 201, The pulsation period is estimated again based on the re-estimated time.
  • a dotted curve C22 is a curve obtained by translating the curve C21 on the time axis by the correction amount at the time point that is the center of the pulsation period.
  • the fetal movement estimation unit 202 holds a relationship (second relationship) between the rotation angle and the maximum peak time point change rate in advance.
  • the maximum peak time point change rate includes the QRS wave period maximum peak time point ⁇ max ( ⁇ ) when the rotation angle is ⁇ and the QRS wave period maximum peak time point ⁇ max (0 when the rotation angle is 0. ) And the parameters calculated based on the above.
  • the maximum peak time point change rate S ( ⁇ ) is expressed by Equation 8.
  • the second relationship is determined based on the reference fetal electrocardiogram signal expressed by the above formulas 5 to 7. Therefore, the second relationship is determined as shown in FIG. Note that the second relationship may be determined based on an empirical rule.
  • the fetal movement estimation unit 202 is based on the rotation angle ⁇ estimated by the rotation angle estimation unit 201 and the held second relationship for each of the pulsation periods estimated by the rotation angle estimation unit 201. To obtain the maximum peak time point change rate S ( ⁇ ).
  • the fetal movement estimation unit 202 calculates the rotation angle based on the acquired maximum peak time point change rate S ( ⁇ ) and Equation 9 for each of the pulsation periods estimated by the rotation angle estimation unit 201.
  • QRS wave period maximum peak time ⁇ max (0) in the case where is 0.
  • the QRS wave period maximum peak time point ⁇ max (0) is an example of the maximum value time point.
  • the fetal movement estimation unit 202 uses the calculated QRS wave period maximum peak time point ⁇ max (0) for each of the pulsation periods estimated by the rotation angle estimation unit 201 as a time point that is the center of the pulsation period. presume. In this manner, the fetal movement estimation unit 202 performs re-estimation of the time point that is the center of the pulsation period.
  • the fetal movement estimation unit 202 starts from the time point that is half the pulsation period before the QRS wave period maximum peak time point ⁇ max (0) for each of the pulsation periods estimated by the rotation angle estimation unit 201.
  • a period that starts and ends at a time point that is half the pulsation period after the QRS wave period maximum peak time ⁇ max (0) is re-estimated as a pulsation period.
  • the fetal movement estimation unit 202 determines the fetal CB with respect to a predetermined reference rotation angle based on the re-estimated pulsation period, the rotation angle ⁇ estimated by the rotation angle estimation unit 201, and the fetal electrocardiogram basic signal.
  • An ECG signal (fetal ECG signal) is estimated.
  • the fetal movement estimation unit 202 includes the first fetal electrocardiogram signal ECG x ( ⁇ ) when the rotation angle is 0, and the second fetal electrocardiogram signal ECG y (when the rotation angle is 3 ⁇ / 2).
  • the first fetal electrocardiogram signal ECG x ( ⁇ ) is an example of an electrocardiogram signal of the fetus CB with respect to 0 as the first reference rotation angle.
  • the second fetal electrocardiogram signal ECG y ( ⁇ ) is an example of an electrocardiogram signal of the fetus CB with respect to 3 ⁇ / 2 as the second reference rotation angle.
  • p signal values included in each of the re-estimated pulsation periods can be interpreted as p-dimensional vectors.
  • p represents a natural number and is also called a sample number.
  • the p signal values included in each of the plurality of beat periods are represented by one point in the p-dimensional space. Therefore, the fetal electrocardiogram basic signal forms a set of points in the p-dimensional space that is the same as the number of pulsation periods included in the fetal electrocardiogram basic signal.
  • the fetal movement estimation unit 202 performs the principal component analysis on the set of points representing the fetal electrocardiogram basic signal in the p-dimensional space, so that the first principal component vector and the second component vector orthogonal to each other are obtained. Get principal component vector.
  • the fetal movement estimation unit 202 calculates the first principal component u ⁇ 1 and the second principal component u ⁇ 2 of the fetal electrocardiogram basic signal in the pulsation period. get.
  • the first principal component u ⁇ 1 is a component in the direction along the first principal component vector in the fetal electrocardiogram basic signal in the pulsation period.
  • the second principal component u ⁇ 2 is a component in the direction along the second principal component vector in the fetal electrocardiogram basic signal in the pulsation period.
  • the fetal movement estimation unit 202 estimates the first rotation angle ⁇ 1 corresponding to the first principal component vector and the second rotation angle ⁇ 2 corresponding to the second principal component vector.
  • the fetal movement estimation unit 202 acquires the QRS wave period maximum peak time point ⁇ max ( ⁇ ) and the QRS wave period minimum peak time point ⁇ min ( ⁇ ) for the signal represented by the first principal component vector.
  • the signal feature amount R ( ⁇ ) is calculated based on the QRS wave period maximum peak time point ⁇ max ( ⁇ ) and the QRS wave period minimum peak time point ⁇ min ( ⁇ ).
  • the fetal movement estimation unit 202 estimates the first rotation angle ⁇ 1 based on the held first relationship and the calculated signal feature amount R ( ⁇ ).
  • the fetal movement estimation unit 202 estimates the second rotation angle ⁇ 2 with respect to the signal represented by the second principal component vector.
  • the fetal movement estimation unit 202 performs scaling based on Expressions 10 and 11.
  • E [X] represents the average of X.
  • V [X] represents the variance of X.
  • ECG [theta] 10 represents the reference fetal electrocardiogram signal when viewed fetal CB negative direction of the x-axis the first rotation angle theta 1 only toward the rotated direction.
  • ECG? 20 represents a reference fetal electrocardiogram signal when viewed fetal CB negative direction of the x-axis the second rotation angle theta 2 only toward the rotated direction.
  • the fetal movement estimation unit 202 has the first principal component ECG ⁇ 1 and the second principal component ECG ⁇ 2 after scaling, the estimated first rotation angle ⁇ 1 and second rotation angle ⁇ 2 , Formula 12, Based on the first fetal ECG signal ECG x ( ⁇ ) and the second fetal ECG signal ECG y ( ⁇ ).
  • the fetal movement estimation unit 202 estimates the fetal movement, which is the movement of the fetus, based on the fetal electrocardiogram basic signal and the rotation angle ⁇ estimated by the rotation angle estimation unit 201.
  • FIG. 12 shows an example of the change of the rotation angle ⁇ with respect to time.
  • the fetal movement estimation unit 202 calculates the variance of the rotation angle ⁇ with respect to each pulsation period for each period having a predetermined first determination time. Further, if the calculated variance for each period is greater than a predetermined first variance threshold, the fetal movement estimation unit 202 estimates that the rotational motion has been performed in the period, and the calculated variance is If it is smaller than the first dispersion threshold, it is estimated that no rotational motion was performed during the period.
  • the dispersion of the rotation angle ⁇ is an example of a first variation parameter that represents the variation of the rotation angle ⁇ .
  • the first dispersion threshold is an example of a first variation threshold.
  • the fetal movement estimation unit 202 estimates the presence or absence of translational movement of the fetal electrocardiogram basic signal with respect to the abdominal wall of the mother MB based on the change in the magnitude of the R wave peak.
  • the R wave is an example of a reference wave.
  • the magnitude of the peak of the R wave is often the maximum value in each pulsation period in the fetal electrocardiogram basic signal.
  • FIG. 13 shows an example of the change of the absolute value of the fetal electrocardiogram basic signal with respect to time.
  • translational motion is often performed in the period T 1 and the period T 3 in which the fluctuation of the maximum value in each pulsation period of the fetal electrocardiogram basic signal is relatively large.
  • translational movement is often not performed in the period T 2 in which the fluctuation of the maximum value in each pulsation period of the fetal electrocardiogram basic signal is relatively small.
  • the fetal movement estimation unit 202 calculates the variance of the maximum value of the fetal electrocardiogram basic signal in each pulsation period for each period having a predetermined second determination time. Further, the fetal movement estimation unit 202 estimates that, for each of the above-described periods, the rotational motion has not been performed in the period, and the calculated variance is greater than a predetermined second variance threshold, the period On the other hand, if it is estimated that a rotational motion has been performed in the period, and if the calculated variance is smaller than the second variance threshold, Estimate that no translational movement occurred during the period.
  • the variance of the maximum value of the fetal electrocardiogram basic signal in each pulsation period is an example of a second variation parameter that represents a variation in the magnitude of the reference wave peak.
  • the second dispersion threshold is an example of a second variation threshold.
  • the fetal movement estimation unit 202 may estimate the presence / absence of the translational motion based on a change in the peak magnitude of a specific wave different from the R wave, instead of the R wave. Further, the fetal movement estimation unit 202 may estimate the intensity of the translational movement based on the amount of change in the maximum value of the fetal electrocardiogram basic signal during each pulsation period. The fetal movement estimation unit 202 generates a vector electrocardiogram based on the estimated first fetal electrocardiogram signal ECG x ( ⁇ ) and the estimated second fetal electrocardiogram signal ECG y ( ⁇ ). Also good.
  • the fetal motion estimation unit 202 estimates the presence or absence of translational motion based on the fetal electrocardiogram basic signal, but the first fetal electrocardiogram signal ECG x ( ⁇ ), the second fetal electrocardiogram signal ECG y ( ⁇ ), or the like.
  • the presence or absence of translational motion may be estimated based on a fetal electrocardiogram signal with respect to a predetermined reference rotation angle.
  • the output unit 30 corresponds to the time of the rotation angle ⁇ estimated by the rotation angle estimation unit 201, the presence / absence of the rotational motion estimated by the fetal movement estimation unit 202, and the presence / absence of the translational motion estimated by the fetal movement estimation unit 202.
  • Information for example, a graph
  • the output unit 30 may store the information in a storage device in addition to the information output or instead of the information output.
  • the fetal movement estimation unit 202 may not estimate the first fetal electrocardiogram signal ECG x ( ⁇ ) and the second fetal electrocardiogram signal ECG y ( ⁇ ).
  • each electrode 11-15 is attached to the surface (eg skin) MBS of the abdomen of the maternal MB during pregnancy.
  • the fetal state estimation device 1 extracts a fetal electrocardiogram basic signal from the bioelectric potential signal measured by the measurement unit 10 by using an independent component analysis method (step S101 in FIG. 14). Next, the fetal state estimation device 1 estimates the boundary time point, and the value of the fetal electrocardiogram basic signal u ⁇ ( ⁇ ) is maximized in the period between two consecutive boundary time points among the estimated boundary time points. The maximum peak time point ⁇ max0 that is the time point is acquired (step S102 in FIG. 14).
  • fetal state estimating device 1 starts only from a previous point in time half the time of pulsation cycle from the maximum peak point tau max0, and, from the maximum peak point tau max0 at a later time by half the time of pulsation cycles The period that ends is estimated as the pulsation period (step S103 in FIG. 14).
  • the fetal state estimation device 1 acquires the QRS wave period maximum peak time point ⁇ max ( ⁇ ) and the QRS wave period minimum peak time point ⁇ min ( ⁇ ) for each of the estimated pulsation periods. The fetal state estimation device 1 then obtains the QRS wave period maximum peak time point ⁇ max ( ⁇ ) and the QRS wave period minimum peak time point ⁇ min ( ⁇ ) for each of the estimated pulsation periods. Then, a signal feature amount R ( ⁇ ) is calculated based on the fetal electrocardiogram basic signal u ⁇ ( ⁇ ) (step S104 in FIG. 14).
  • the fetal state estimation device 1 calculates the rotation angle ⁇ based on the first relationship held for each estimated pulsation period and the calculated signal feature R ( ⁇ ). Estimate (step S105 in FIG. 14).
  • the fetal state estimation device 1 determines the maximum peak time point change rate S ( ⁇ ) based on the estimated rotation angle ⁇ and the held second relationship for each of the estimated pulsation periods. ) To get. Furthermore, the fetal state estimation device 1 uses the QRS wave period maximum peak when the rotation angle is 0 based on the acquired maximum peak time point change rate S ( ⁇ ) for each of the estimated pulsation periods. The time ⁇ max (0) is calculated. Next, the fetal state estimation device 1 estimates the calculated QRS wave period maximum peak time point ⁇ max (0) as the time point that is the center of the pulsation period (step S106 in FIG. 14).
  • the fetal state estimation device 1 starts from a time point that is half the pulsation period before the QRS wave period maximum peak time point ⁇ max (0) for each estimated pulsation period, and A period that ends at a time point that is half the pulsation period after the QRS wave period maximum peak time ⁇ max (0) is re-estimated as a pulsation period (step S107 in FIG. 14).
  • the fetal state estimation device 1 estimates a fetal electrocardiogram signal with respect to the reference rotation angle based on the re-estimated pulsation period, the estimated rotation angle ⁇ , and the extracted fetal electrocardiogram basic signal ( Step S108 in FIG. 14).
  • the fetal state estimation device 1 estimates the first fetal electrocardiogram signal with respect to the first reference rotation angle and the second fetal electrocardiogram signal with respect to the second reference rotation angle.
  • the fetal state estimation device 1 estimates the presence / absence of rotational motion based on the estimated rotational angle ⁇ . Further, the fetal state estimation device 1 estimates the presence or absence of translational motion based on the estimated rotation angle ⁇ and the fetal electrocardiogram basic signal (step S109 in FIG. 14).
  • the fetal state estimation device 1 is based on the potential signal representing the change in the potential on the surface MBS of the mother MB, and the fetal CB's heart beat for each heart beat of the fetal CB.
  • the rotation angle with respect to the base MB is estimated.
  • the fetal state estimation device 1 estimates fetal movement, which is the movement of the fetus CB, based on the potential signal and the estimated rotation angle.
  • fetal movement can be estimated with high accuracy.
  • the presence or absence of translational movements in the fetal movement can be estimated with high accuracy.
  • the fetal state estimation device 1 estimates an electrocardiogram basic signal caused by the heart beat of the fetus CB.
  • the fetal state estimation device 1 performs the translational motion of the fetal movement on the abdominal wall of the mother MB based on the magnitude of the peak of a predetermined reference wave in the estimated ECG basic signal and the estimated rotation angle. Presence or absence is estimated.
  • the change in the peak size of a specific wave well represents the change in the distance between the abdominal wall of the mother MB and the fetus CB. Therefore, according to the fetal state estimation device 1 according to the first embodiment, it is possible to estimate the presence or absence of the translational movement of the fetal movement with high accuracy.
  • the fetal state estimation device 1 has predetermined parameters based on the maximum value and the minimum value in a predetermined target period of the estimated electrocardiogram basic signal for each heart beat of the fetus CB. Is calculated. In addition, the fetal state estimation device 1 estimates the rotation angle based on the calculated parameter for each heart beat of the fetus CB.
  • the relationship between the maximum value and the minimum value of the electrocardiogram basic signal in a predetermined target period for each heart beat of the fetus CB well represents the rotation angle of the fetus CB with respect to the mother MB. Therefore, according to the fetal state estimation device 1 according to the first embodiment, the rotation angle of the fetus CB with respect to the mother MB can be estimated with high accuracy.
  • the fetal state estimation device 1 includes a time point at which the estimated electrocardiogram basic signal has a maximum value in the target period for each heart beat of the fetus CB, an estimated rotation angle, Based on the above, the maximum time point, which is the time point when the electrocardiogram signal of the fetus CB with respect to the predetermined reference rotation angle has the maximum value, is estimated. In addition, the fetal state estimation device 1 estimates fetal movement based on the estimated maximum value time point, the estimated rotation angle, and the estimated electrocardiogram basic signal.
  • the manner in which the change in the electromotive force of the fetus CB appears varies depending on the rotation angle of the fetus CB with respect to the mother MB. Therefore, according to the fetal state estimation device 1 according to the first embodiment, it is possible to estimate the maximum time point at which the electrocardiogram signal has the maximum value for each heart beat of the fetus CB with high accuracy. As a result, based on the estimated maximum value time point, the period during which the rotational motion is performed can be estimated with high accuracy. Therefore, fetal movement can be estimated with high accuracy.
  • the fetal state estimation device 1 estimates an electrocardiogram basic signal by an independent component analysis method. According to this, the electrocardiogram basic signal can be estimated with high accuracy.
  • a fetal state estimation apparatus according to the second embodiment of the present invention will be described.
  • the fetal state estimation device according to the second embodiment is different from the fetal state estimation device according to the first embodiment in that fetal movement is estimated without estimating the fetal electrocardiogram signal with respect to the reference rotation angle.
  • this difference will be mainly described.
  • symbol used in the said 1st Embodiment is the same or substantially the same.
  • the fetal movement estimation unit 202 of the fetal state estimation device 1 does not estimate the fetal electrocardiogram signal with respect to the reference rotation angle, and the maximum fetal electrocardiogram basic signal within the QRS wave period when the rotation angle is 0. Estimate the value.
  • the fetal movement estimation unit 202 holds a relationship (third relationship) between the rotation angle and the maximum value change rate in advance.
  • the maximum rate of change is the maximum value u ⁇ ( ⁇ max ( ⁇ )) of the fetal electrocardiogram basic signal within the QRS wave period when the rotation angle is ⁇ , and the QRS when the rotation angle is 0. It is a parameter calculated based on the maximum value u 0 ( ⁇ max (0)) of the fetal electrocardiogram basic signal within the wave period.
  • the maximum value change rate T ( ⁇ ) is expressed by Equation 13.
  • the third relationship is determined based on the reference fetal electrocardiogram signal expressed by the above formulas 5 to 7. Note that the third relationship may be determined based on an empirical rule.
  • the fetal movement estimation unit 202 is based on the rotation angle ⁇ estimated by the rotation angle estimation unit 201 and the retained third relationship for each of the pulsation periods estimated by the rotation angle estimation unit 201. To obtain the maximum value change rate T ( ⁇ ).
  • the fetal movement estimation unit 202 determines the acquired maximum value change rate T ( ⁇ ) and the QRS wave period when the rotation angle is ⁇ for each of the pulsation periods estimated by the rotation angle estimation unit 201.
  • the maximum value u ⁇ ( ⁇ max ( ⁇ )) of the fetal electrocardiogram basic signal and the minimum value u ⁇ ( ⁇ min ( ⁇ )) of the fetal electrocardiogram basic signal within the QRS wave period when the rotation angle is ⁇ Based on Equation 14, the maximum value u 0 ( ⁇ max (0)) of the fetal electrocardiogram basic signal within the QRS wave period when the rotation angle is 0 is calculated.
  • the maximum value u 0 ( ⁇ max (0)) of the fetal electrocardiogram basic signal within the QRS wave period is an example of the magnitude of the peak of the R wave.
  • the R wave is an example of a reference wave.
  • the fetal movement estimation unit 202 is based on the change in the calculated maximum value u 0 ( ⁇ max (0)) of the fetal electrocardiogram basic signal instead of the change in the magnitude of the peak of the R wave in the fetal electrocardiogram basic signal.
  • the presence / absence of translational motion of the mother MB with respect to the abdominal wall of the fetus is estimated.
  • the fetal state estimation device 1 according to the second embodiment operates in the same manner as the fetal state estimation device 1 according to the first embodiment. Therefore, the fetal state estimation device 1 according to the second embodiment can exhibit the same operations and effects as the fetal state estimation device 1 according to the first embodiment.

Abstract

胎児状態推定装置(1)は、母体の表面における電位の変化を表す電位信号に基づいて、上記母体内の胎児の状態を推定する。胎児状態推定装置(1)は、上記電位信号に基づいて、上記胎児の心臓の拍動毎の、上記胎児の上記母体に対する回転角度を推定する回転角度推定部と、上記電位信号と上記推定された回転角度とに基づいて、上記胎児の運動である胎動を推定する胎動推定部と、を備える。

Description

胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム
 本発明は、胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラムに関する。
 人体の表面に電極を取り付け、電極を介して当該表面における電位の変化を表す電位信号を測定することにより、心起電力の変化を表す心電図信号を推定する心電図推定装置が知られている。
 心電図信号は、図1に示すように、拍動毎に、P波WP、Q波WQ、R波WR、S波WS、及び、T波WTと呼ばれる、ピークを有する波を含む。心電図信号において、各波のピーク間の時間間隔は、疾患の診断又は検査等に用いられる。また、例えば、連続するR波WRのピーク間の時間間隔を取得することにより、心拍数が測定される。
 ところで、心臓に対する電極の位置が互いに異なる2つの状態においては、心起電力の変化が同一であっても、測定される電位信号において、心起電力の変化が表れる態様が、互いに異なることが知られている。図2は、心起電力の変化が同一である場合において、心臓に対する電極の位置が互いに異なる2つの状態において測定される2つの電位信号C10及びC11を示す。例えば、図2に示すように、心臓に対する電極の位置に応じて、各波のピークの、大きさ及びタイミングが変化する。
 また、胎児は、母体内に収容されているため、胎児の体表面に電極を取り付けることが困難である。このため、例えば、特許文献1に記載の心電図推定装置は、母体の表面に電極を取り付け、電極を介して当該表面における電位の変化を表す電位信号を測定し、測定した電位信号に基づいて胎児の心電図信号を推定する。
 また、母体の表面にて超音波を生成し、生成した超音波が母体内の胎児によって反射された反射波におけるドップラー効果を観測することにより、胎児の運動である胎動を推定する胎児状態推定装置が知られている(例えば、特許文献2を参照)。
特開2006-204759号公報 特表2013-505032号公報
 ところで、上述した胎児状態推定装置においては、胎児が回転運動を行なった場合と、胎児が母体の腹壁に対して並進運動を行なった場合と、の両方の場合において、同様のドップラー効果が観測されることがある。このため、胎動を高い精度にて推定できないという課題があった。
 また、例えば、心電図信号における特定の波のピークの大きさに基づいて、胎動のうちの並進運動の有無を推定することが考えられる。しかしながら、胎児は、比較的短い時間のうちに、母体に対して回転する。従って、胎児の回転に伴って、母体の表面に取り付けられた電極を介して測定される電位信号において、胎児の心起電力の変化が表れる態様は変化しやすい。このため、上述した心電図推定装置を用いた場合、母体の表面に取り付けられた電極を介して測定される電位信号に基づいて、胎動を高い精度にて推定できない虞があった。
 本発明の目的の一つは、上述した課題である、胎動を高い精度にて推定できない場合が生じること、を解決することにある。
 一つの側面では、胎児状態推定装置は、母体の表面における電位の変化を表す電位信号に基づいて、上記母体内の胎児の状態を推定する。
 更に、この胎児状態推定装置は、上記電位信号に基づいて、上記胎児の心臓の拍動毎の、上記胎児の上記母体に対する回転角度を推定する回転角度推定部と、上記電位信号と上記推定された回転角度とに基づいて、上記胎児の運動である胎動を推定する胎動推定部と、を備える。
 また、他の側面では、胎児状態推定方法は、母体の表面における電位の変化を表す電位信号に基づいて、上記母体内の胎児の状態を推定する。
 更に、この胎児状態推定方法は、上記電位信号に基づいて、上記胎児の心臓の拍動毎の、上記胎児の上記母体に対する回転角度を推定し、上記電位信号と上記推定された回転角度とに基づいて、上記胎児の運動である胎動を推定する。
 また、他の側面では、胎児状態推定プログラムは、母体の表面における電位の変化を表す電位信号に基づいて、上記母体内の胎児の状態を推定する処理をコンピュータに実行させるためのプログラムである。
 更に、この胎児状態推定プログラムは、上記コンピュータに、上記電位信号に基づいて、上記胎児の心臓の拍動毎の、上記胎児の上記母体に対する回転角度を推定し、上記電位信号と上記推定された回転角度とに基づいて、上記胎児の運動である胎動を推定する、処理を実行させる。
 開示の胎児状態推定装置によれば、胎動を高い精度にて推定することができる。
心電図信号の一例を示す説明図である。 心臓に対する電極の位置が互いに異なる2つの状態において測定される2つの電位信号の一例を示すグラフである。 第1実施形態に係る胎児状態推定装置の構成の一例を示す図である。 図3の処理部の機能の一例を示すブロック図である。 図3の胎児状態推定装置が用いる座標系の一例を示す説明図である。 図3の胎児状態推定装置が用いる基準胎児心電図信号の一例を示すグラフである。 図3の胎児状態推定装置が用いる基準胎児心電図信号の一例を示すグラフである。 図3の胎児状態推定装置が用いる基準胎児心電図信号の一例を示すグラフである。 図3の胎児状態推定装置が保持する第1の関係の一例を示すグラフである。 基準胎児心電図信号における最大ピーク時点の、回転角度に応じた変化の一例を示すグラフである。 図3の胎児状態推定装置が保持する第2の関係の一例を示すグラフである。 胎児の母体に対する回転角度の、時間に対する変化の一例を示すグラフである。 第1の胎児心電図信号の絶対値の時間に対する変化の一例を示すグラフである。 図3の胎児状態推定装置が実行する処理の一例を示すフローチャートである。
 以下、本発明に係る、胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム、の各実施形態について図3乃至図14を参照しながら説明する。
<第1実施形態>
(構成)
 図3に例示するように、第1実施形態に係る胎児状態推定装置1は、測定部10と、処理部20と、出力部30と、を備える。
 測定部10は、電極11~15を備える。なお、図3においては、測定部10が5つの電極を備える例が示されているが、測定部10が備える電極の数は、4つ以下であってもよく、6つ以上であってもよい。各電極11~15は、妊娠中の母体MBの腹部の表面(例えば、皮膚)MBSに取り付けられる。
 測定部10は、電極11~15を介して、母体MBの表面MBSにおける電位の変化を表す生体電位信号を測定する。
 生体電位信号は、母体MBの心臓の拍動に起因する母体心電図基礎信号、母体MBの筋線維の活動に起因する母体筋電図基礎信号、母体MBの子宮内に収容された胎児CBの心臓の拍動に起因する胎児心電図基礎信号、及び、雑音等、が重畳された信号である。
 処理部20は、測定部10により測定された生体電位信号を処理する。処理部20の機能は、図4に例示するように、回転角度推定部201と、胎動推定部202と、を含む。
 本例では、処理部20は、処理装置(例えば、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)等)と記憶装置とを備え、記憶装置に予め記憶された胎児状態推定プログラムを処理装置が実行することにより、各機能を実現する。なお、処理部20は、上記機能の少なくとも一部を集積回路(例えば、LSI(Large Scale Integration)等)により実現してもよい。
 回転角度推定部201は、独立成分分析(ICA;Independent Component Analysis)法を用いることにより、測定部10により測定された生体電位信号から、胎児心電図基礎信号を抽出する。
 例えば、ICA法は、自然勾配法、FastICA法、又は、参照系ICA法である。参照系ICA法は、上記特許文献1に記載されるように、胎児の心拍の周期を表す心拍周期信号に基づいて参照信号を生成し、生成された参照信号に基づいて、生体電位信号から胎児心電図基礎信号を抽出する方法である。ここで、心拍周期信号は、生体電位信号に基づいて生成されてもよい。また、心拍周期信号は、超音波センサにより測定された信号であってもよい。
 なお、回転角度推定部201は、測定された生体電位信号に対して、母体心電図基礎信号を低減する低減処理を行なった後に、胎児心電図基礎信号の抽出を行なってもよい。この場合、例えば、回転角度推定部201は、母体MBの胸部に取り付けられた、図示しない電極を介して、母体心電図基礎信号を推定し、推定された母体心電図基礎信号に基づいて上記低減処理を実行してよい。
 また、回転角度推定部201は、バンドパスフィルタを適用することにより雑音を低減した後に、胎児心電図基礎信号の抽出を行なってもよい。例えば、回転角度推定部201は、20Hzから30Hzまでの帯域を通過帯域として有するバンドパスフィルタを用いてもよい。
 ところで、時間の経過に伴って胎児CBの母体MBに対する回転角度が変化するため、胎児心電図基礎信号において、胎児CBの心起電力の変化が表れる態様は、時間の経過に伴って変化する。このため、胎動のうちの回転運動が行なわれている期間においても、R波のピークの大きさが変化しやすい。このため、R波のピークの大きさの変化に基づいて、胎動のうちの並進運動の有無を十分に高い精度にて推定することが困難である。
 そこで、第1実施形態に係る胎児状態推定装置1は、胎児CBの母体MBに対する回転角度を推定し、推定された回転角度と、胎児心電図基礎信号と、に基づいて、胎動のうちの並進運動の有無を推定する。これにより、胎動を高い精度にて推定することができる。
 本例では、回転角度推定部201は、抽出された胎児心電図基礎信号に基づいて、胎児CBの母体MBに対する回転角度を推定する。以下、回転角度の推定について説明する。
 先ず、座標系について説明する。本例では、図5に示すように、右手系の直交座標系を用いる。この直交座標系は、胎児CBの前方向をy軸として有し、胎児CBの下方向をz軸として有し、胎児CBの左方向をx軸として有する。胎児CBに対する回転角度θは、z軸の正方向に向かって胎児CBを見た場合において、x軸から反時計回りに回転した角度である。
 本例では、胎児CBの上下方向と母体MBの上下方向とが一致している場合を想定する。従って、本例では、胎児CBの回転運動は、z軸に沿った方向を回転の中心軸として回転する運動である。なお、胎児状態推定装置1は、胎児CBの上下方向と母体MBの上下方向とが相違する場合に適用されてもよい。
 x軸の負方向に向かって胎児CBを見た場合における胎児心電図信号ECG(τ)と、y軸の負方向に向かって胎児CBを見た場合における胎児心電図信号ECG(τ)と、回転角度θと、に基づいて、x軸の負方向を回転角度θだけ回転させた方向に向かって胎児CBを見た場合における胎児心電図信号ECGθ(τ)は、数式1のように表される。τは、時間を表す。胎児心電図信号は、胎児CBの心電図信号である。
Figure JPOXMLDOC01-appb-M000001
 ここで、胎児心電図信号ECG(τ)は、ベクトル心電図を胎児CBの左側面に射影した心電図を表す信号であると捉えられてもよい。また、胎児心電図信号ECG(τ)は、ベクトル心電図を胎児CBの正面に射影した心電図を表す信号であると捉えられてもよい。
 本例では、胎児心電図基礎信号を抽出するためにICA法を用いることから、回転角度推定部201により抽出された胎児心電図基礎信号uθ(τ)は、平均値が0となり、且つ、分散が1となるように正規化されている。
 回転角度推定部201は、胎児CBの心臓の拍動毎に、抽出された胎児心電図基礎信号uθ(τ)に基づいて当該拍動に対応する期間である拍動期間を推定する。
 先ず、回転角度推定部201は、胎児心電図基礎信号uθ(τ)の値(本例では、電位)の絶対値が所定の第1の閾値よりも小さい状態が、所定の第1の閾値時間よりも長く継続している期間内のある時点(例えば、当該期間の中間の時点)を境界時点として推定する。
 次いで、回転角度推定部201は、推定された境界時点のうちの、連続する2つの境界時点間の期間における、胎児心電図基礎信号uθ(τ)の値が最大となる時点である最大ピーク時点τmax0を取得する。
 そして、回転角度推定部201は、最大ピーク時点τmax0から拍動周期の半分の時間だけ前の時点から開始し、且つ、最大ピーク時点τmax0から拍動周期の半分の時間だけ後の時点にて終了する期間を拍動期間として推定する。例えば、拍動周期は、胎児心電図基礎信号uθ(τ)に対して自己相関を取得することにより取得されてよい。
 このようにして、回転角度推定部201は、胎児CBの心臓の拍動のそれぞれに対して、拍動期間を推定する。
 次いで、回転角度推定部201は、推定された拍動期間のそれぞれに対して、回転角度θを推定する。
 本例では、回転角度推定部201は、回転角度と信号特徴量との間の関係(第1の関係)を予め保持する。
 本例では、信号特徴量は、拍動期間のうちの、QRS波に対応する期間であるQRS波期間における、胎児心電図基礎信号の最大値及び最小値に基づいて算出されるパラメータである。QRS波は、Q波、R波、及び、S波からなる。
 本例では、信号特徴量R(θ)は、数式2により表される。ここで、τmax(θ)は、QRS波期間において、胎児心電図基礎信号が最大値を有する時点(QRS波期間最大ピーク時点)を表す。また、τmin(θ)は、QRS波期間において、胎児心電図基礎信号が最小値を有する時点(QRS波期間最小ピーク時点)を表す。QRS波期間は、対象期間の一例である。
Figure JPOXMLDOC01-appb-M000002
 本例では、QRS波期間最大ピーク時点τmax(θ)は、数式3により表され、QRS波期間最小ピーク時点τmin(θ)は、数式4により表される。ここで、TQRSは、QRS波期間の長さを表す。本例では、TQRSは、拍動周期に所定の係数(例えば、1/5)を乗じた値に設定される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 本例では、第1の関係は、数式5乃至数式7により表される、胎児心電図信号の基準信号(基準胎児心電図信号)に基づいて決定される。ECGx0(τ)は、x軸の負方向に向かって胎児CBを見た場合における基準胎児心電図信号を表す。ECGy0(τ)は、y軸の負方向に向かって胎児CBを見た場合における基準胎児心電図信号を表す。ECGz0(τ)は、z軸の負方向に向かって胎児CBを見た場合における基準胎児心電図信号を表す。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 本例では、数式5乃至数式7により表されるように、基準胎児心電図信号は、ガウス関数の和により表される。ここで、α 、τ 、b 、α 、τ 、b 、α 、τ 、及び、b は、ガウス関数を特定するパラメータである。本例では、図6乃至図8に示すように、非特許文献1(R.Sameni,G.D.Clifford,M.B.Shamsollahi,C.Jutten、”Multichannel ECG and noise modeling: Application to maternal and fetal ECG signals”、EURASIP Journal on Advances in Signal Processing、2007年、Article ID 43407)に記載の心電図信号が基準胎児心電図信号として用いられる。
 従って、上述した基準胎児心電図信号に対する第1の関係は、図9に示すように決定される。図9の(A)において、回転角度θとQRS波期間最大ピーク時点τmax(θ)との間の関係は、破線により表され、回転角度θとQRS波期間最小ピーク時点τmin(θ)との間の関係は、実線により表される。また、図9の(B)において、回転角度θと信号特徴量R(θ)との間の関係は、実線により表される。
 図9の(A)から分かるように、QRS波期間最大ピーク時点τmax(θ)がQRS波期間最小ピーク時点τmin(θ)よりも大きくなる回転角度θの範囲(最小ピーク先行範囲)θnpと、QRS波期間最大ピーク時点τmax(θ)がQRS波期間最小ピーク時点τmin(θ)よりも小さくなる回転角度θの範囲(最大ピーク先行範囲)θpnと、が存在する。
 また、図9の(B)から分かるように、最小ピーク先行範囲θnpにおいて、回転角度θと信号特徴量R(θ)とは、1対1に対応する。同様に、最大ピーク先行範囲θpnにおいても、回転角度θと信号特徴量R(θ)とは、1対1に対応する。
 なお、第1の関係は、経験則に基づいて決定されてもよい。
 回転角度推定部201は、推定された拍動期間のそれぞれに対して、胎児心電図基礎信号uθ(τ)に基づいて、QRS波期間最大ピーク時点τmax(θ)、及び、QRS波期間最小ピーク時点τmin(θ)を取得する。
 更に、回転角度推定部201は、推定された拍動期間のそれぞれに対して、取得されたQRS波期間最大ピーク時点τmax(θ)、及び、QRS波期間最小ピーク時点τmin(θ)と、胎児心電図基礎信号uθ(τ)と、に基づいて信号特徴量R(θ)を算出する。
 加えて、回転角度推定部201は、推定された拍動期間のそれぞれに対して、保持されている第1の関係と、算出された信号特徴量R(θ)と、に基づいて回転角度θを推定する。
 具体的には、回転角度推定部201は、取得されたQRS波期間最大ピーク時点τmax(θ)が、取得されたQRS波期間最小ピーク時点τmin(θ)よりも大きい場合、保持されている第1の関係のうちの、最小ピーク先行範囲θnpに対応する部分と、算出された信号特徴量R(θ)と、に基づいて回転角度θを推定する。また、回転角度推定部201は、取得されたQRS波期間最大ピーク時点τmax(θ)が、取得されたQRS波期間最小ピーク時点τmin(θ)よりも小さい場合、保持されている第1の関係のうちの、最大ピーク先行範囲θpnに対応する部分と、算出された信号特徴量R(θ)と、に基づいて回転角度θを推定する。
 このようにして、回転角度推定部201は、拍動期間毎に回転角度θの推定を行なう。
 上述したように、胎児心電図基礎信号における最大ピーク時点τmax0は、回転角度θに応じて変化する。図10において、破線の曲線C20は、回転角度が0である場合(x軸の負方向に向かって胎児CBを見た場合)における基準胎児心電図信号を表し、実線の曲線C21は、回転角度が0と異なる値である場合における基準胎児心電図信号を表す。このように、回転角度推定部201により推定された拍動期間の中心となる時点と、実際の拍動期間の中心となる時点と、の差は、比較的大きくなりやすい。
 そこで、胎動推定部202は、回転角度推定部201により推定された回転角度θに基づいて、推定された拍動期間のそれぞれに対して、当該拍動期間の中心となる時点を再び推定し、再推定された時点に基づいて拍動期間を再び推定する。図10において、点線の曲線C22は、拍動期間の中心となる時点の補正量だけ、曲線C21を時間軸において平行移動させた曲線である。
 拍動期間の中心となる時点の再推定について説明する。
 本例では、胎動推定部202は、回転角度と最大ピーク時点変化率との間の関係(第2の関係)を予め保持する。
 本例では、最大ピーク時点変化率は、回転角度がθである場合におけるQRS波期間最大ピーク時点τmax(θ)と、回転角度が0である場合におけるQRS波期間最大ピーク時点τmax(0)と、に基づいて算出されるパラメータである。本例では、最大ピーク時点変化率S(θ)は、数式8により表される。
Figure JPOXMLDOC01-appb-M000008
 本例では、第2の関係は、上記の数式5乃至数式7により表される基準胎児心電図信号に基づいて決定される。従って、第2の関係は、図11に示すように決定される。
 なお、第2の関係は、経験則に基づいて決定されてもよい。
 胎動推定部202は、回転角度推定部201により推定された拍動期間のそれぞれに対して、回転角度推定部201により推定された回転角度θと、保持されている第2の関係と、に基づいて最大ピーク時点変化率S(θ)を取得する。
 次いで、胎動推定部202は、回転角度推定部201により推定された拍動期間のそれぞれに対して、取得された最大ピーク時点変化率S(θ)と、数式9と、に基づいて、回転角度が0である場合におけるQRS波期間最大ピーク時点τmax(0)を算出する。QRS波期間最大ピーク時点τmax(0)は、最大値時点の一例である。
Figure JPOXMLDOC01-appb-M000009
 胎動推定部202は、回転角度推定部201により推定された拍動期間のそれぞれに対して、算出されたQRS波期間最大ピーク時点τmax(0)を、当該拍動期間の中心となる時点として推定する。
 このようにして、胎動推定部202は、拍動期間の中心となる時点の再推定を行なう。
 そして、胎動推定部202は、回転角度推定部201により推定された拍動期間のそれぞれに対して、QRS波期間最大ピーク時点τmax(0)から拍動周期の半分の時間だけ前の時点から開始し、且つ、QRS波期間最大ピーク時点τmax(0)から拍動周期の半分の時間だけ後の時点にて終了する期間を拍動期間として推定し直す。
 次いで、胎動推定部202は、再推定された拍動期間と、回転角度推定部201により推定された回転角度θと、胎児心電図基礎信号と、に基づいて、所定の基準回転角度に対する胎児CBの心電図信号(胎児心電図信号)を推定する。
 本例では、胎動推定部202は、回転角度が0である場合における第1の胎児心電図信号ECG(τ)と、回転角度が3π/2である場合における第2の胎児心電図信号ECG(τ)と、を推定する。第1の胎児心電図信号ECG(τ)は、第1の基準回転角度としての0に対する胎児CBの心電図信号の一例である。第2の胎児心電図信号ECG(τ)は、第2の基準回転角度としての3π/2に対する胎児CBの心電図信号の一例である。
 ところで、胎児心電図基礎信号において、再推定された拍動期間のそれぞれに含まれるp個の信号値は、p次元のベクトルであると解釈され得る。pは、自然数を表し、サンプル数とも呼ばれる。複数の拍動期間のそれぞれに含まれるp個の信号値は、p次元空間における1つの点により表される。従って、胎児心電図基礎信号は、p次元空間において、胎児心電図基礎信号に含まれる拍動期間の数と同数の点の集合を形成する。
 そこで、胎動推定部202は、p次元空間における、胎児心電図基礎信号を表す点の集合に対して、主成分分析を行なうことにより、互いに直交する、第1の主成分ベクトル、及び、第2の主成分ベクトルを取得する。
 次いで、胎動推定部202は、再推定された拍動期間のそれぞれに対して、当該拍動期間における胎児心電図基礎信号のうちの、第1主成分uθ1、及び、第2主成分uθ2を取得する。第1主成分uθ1は、拍動期間における胎児心電図基礎信号のうちの、第1の主成分ベクトルに沿った方向の成分である。第2主成分uθ2は、拍動期間における胎児心電図基礎信号のうちの、第2の主成分ベクトルに沿った方向の成分である。
 更に、胎動推定部202は、第1の主成分ベクトルに対応する第1の回転角度θと、第2の主成分ベクトルに対応する第2の回転角度θと、を推定する。本例では、胎動推定部202は、第1の主成分ベクトルが表す信号に対して、QRS波期間最大ピーク時点τmax(θ)、及び、QRS波期間最小ピーク時点τmin(θ)を取得し、QRS波期間最大ピーク時点τmax(θ)、及び、QRS波期間最小ピーク時点τmin(θ)に基づいて信号特徴量R(θ)を算出する。加えて、胎動推定部202は、保持されている第1の関係と、算出された信号特徴量R(θ)と、に基づいて第1の回転角度θを推定する。同様に、胎動推定部202は、第2の主成分ベクトルが表す信号に対して、第2の回転角度θを推定する。
 ところで、第1主成分uθ1、及び、第2主成分uθ2は、単位ベクトルを構成するように正規化されている。従って、胎動推定部202は、数式10及び数式11に基づいて、スケーリングを行なう。ここで、E[X]は、Xの平均を表す。V[X]は、Xの分散を表す。ECGθ10は、x軸の負方向を第1の回転角度θだけ回転させた方向に向かって胎児CBを見た場合における基準胎児心電図信号を表す。ECGθ20は、x軸の負方向を第2の回転角度θだけ回転させた方向に向かって胎児CBを見た場合における基準胎児心電図信号を表す。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 胎動推定部202は、スケーリング後の、第1主成分ECGθ1及び第2主成分ECGθ2と、推定された、第1の回転角度θ及び第2の回転角度θと、数式12と、に基づいて、第1の胎児心電図信号ECG(τ)及び第2の胎児心電図信号ECG(τ)を推定する。
Figure JPOXMLDOC01-appb-M000012
 更に、胎動推定部202は、胎児心電図基礎信号と、回転角度推定部201により推定された回転角度θと、に基づいて、胎児の運動である胎動を推定する。
 図12は、回転角度θの時間に対する変化の一例を示す。本例では、胎動推定部202は、所定の第1の判定時間を有する期間毎に、各拍動期間に対する回転角度θの分散を算出する。更に、胎動推定部202は、上記期間毎に、算出された分散が、所定の第1の分散閾値よりも大きい場合、当該期間において回転運動が行なわれたことを推定し、算出された分散が、当該第1の分散閾値よりも小さい場合、当該期間において回転運動が行なわれなかったことを推定する。なお、回転角度θの分散は、回転角度θの変動を表す第1の変動パラメータの一例である。また、第1の分散閾値は、第1の変動閾値の一例である。
 また、本例では、胎動推定部202は、胎児心電図基礎信号におけるR波のピークの大きさの変化に基づいて、胎動のうちの母体MBの腹壁に対する並進運動の有無を推定する。R波は、基準波の一例である。例えば、R波のピークの大きさは、胎児心電図基礎信号において、各拍動期間における最大値であることが多い。
 図13は、胎児心電図基礎信号の絶対値の時間に対する変化の一例を示す。図13に示すように、胎児心電図基礎信号の各拍動期間における最大値の変動が相対的に大きい期間T及び期間Tにおいては、並進運動が行なわれていることが多い。また、胎児心電図基礎信号の各拍動期間における最大値の変動が相対的に小さい期間Tにおいては、並進運動が行なわれていないことが多い。
 本例では、胎動推定部202は、所定の第2の判定時間を有する期間毎に、各拍動期間における胎児心電図基礎信号の最大値の分散を算出する。更に、胎動推定部202は、上記期間毎に、当該期間において回転運動が行なわれなかったことが推定され、且つ、算出された分散が、所定の第2の分散閾値よりも大きい場合、当該期間において並進運動が行なわれたことを推定し、一方、当該期間において回転運動が行なわれたことが推定された場合、及び、算出された分散が、当該第2の分散閾値よりも小さい場合、当該期間において並進運動が行なわれなかったことを推定する。なお、各拍動期間における胎児心電図基礎信号の最大値の分散は、基準波のピークの大きさの変動を表す第2の変動パラメータの一例である。また、第2の分散閾値は、第2の変動閾値の一例である。
 なお、胎動推定部202は、R波に代えて、R波と異なる特定の波のピークの大きさの変化に基づいて、上記並進運動の有無を推定してもよい。
 また、胎動推定部202は、各拍動期間における胎児心電図基礎信号の最大値の変化量に基づいて、並進運動の強度を推定してもよい。
 また、胎動推定部202は、推定された第1の胎児心電図信号ECG(τ)と、推定された第2の胎児心電図信号ECG(τ)と、に基づいて、ベクトル心電図を生成してもよい。
 また、胎動推定部202は、胎児心電図基礎信号に基づいて並進運動の有無を推定していたが、第1の胎児心電図信号ECG(τ)又は第2の胎児心電図信号ECG(τ)等の所定の基準回転角度に対する胎児心電図信号に基づいて並進運動の有無を推定してもよい。
 出力部30は、回転角度推定部201により推定された回転角度θと、胎動推定部202により推定された回転運動の有無と、胎動推定部202により推定された並進運動の有無と、の時間に対する変化を表す情報(例えば、グラフ)を出力する(例えば、ディスプレイに表示する)。なお、出力部30は、上記情報の出力に加えて、又は、上記情報の出力に代えて、上記情報を記憶装置に記憶してもよい。
 なお、胎動推定部202は、第1の胎児心電図信号ECG(τ)及び第2の胎児心電図信号ECG(τ)を推定しなくてもよい。
(動作)
 次に、上述した胎児状態推定装置1の動作について図14を参照しながら説明する。
 先ず、各電極11~15が、妊娠中の母体MBの腹部の表面(例えば、皮膚)MBSに取り付けられる。
 胎児状態推定装置1は、独立成分分析法を用いることにより、測定部10により測定された生体電位信号から、胎児心電図基礎信号を抽出する(図14のステップS101)。
 次いで、胎児状態推定装置1は、境界時点を推定し、推定された境界時点のうちの、連続する2つの境界時点間の期間における、胎児心電図基礎信号uθ(τ)の値が最大となる時点である最大ピーク時点τmax0を取得する(図14のステップS102)。
 そして、胎児状態推定装置1は、最大ピーク時点τmax0から拍動周期の半分の時間だけ前の時点から開始し、且つ、最大ピーク時点τmax0から拍動周期の半分の時間だけ後の時点にて終了する期間を拍動期間として推定する(図14のステップS103)。
 次いで、胎児状態推定装置1は、推定された拍動期間のそれぞれに対して、QRS波期間最大ピーク時点τmax(θ)、及び、QRS波期間最小ピーク時点τmin(θ)を取得する。そして、胎児状態推定装置1は、推定された拍動期間のそれぞれに対して、取得されたQRS波期間最大ピーク時点τmax(θ)、及び、QRS波期間最小ピーク時点τmin(θ)と、胎児心電図基礎信号uθ(τ)と、に基づいて信号特徴量R(θ)を算出する(図14のステップS104)。
 次いで、胎児状態推定装置1は、推定された拍動期間のそれぞれに対して、保持されている第1の関係と、算出された信号特徴量R(θ)と、に基づいて回転角度θを推定する(図14のステップS105)。
 そして、胎児状態推定装置1は、推定された拍動期間のそれぞれに対して、推定された回転角度θと、保持されている第2の関係と、に基づいて最大ピーク時点変化率S(θ)を取得する。更に、胎児状態推定装置1は、推定された拍動期間のそれぞれに対して、取得された最大ピーク時点変化率S(θ)に基づいて、回転角度が0である場合におけるQRS波期間最大ピーク時点τmax(0)を算出する。次いで、胎児状態推定装置1は、算出されたQRS波期間最大ピーク時点τmax(0)を、当該拍動期間の中心となる時点として推定する(図14のステップS106)。
 そして、胎児状態推定装置1は、推定された拍動期間のそれぞれに対して、QRS波期間最大ピーク時点τmax(0)から拍動周期の半分の時間だけ前の時点から開始し、且つ、QRS波期間最大ピーク時点τmax(0)から拍動周期の半分の時間だけ後の時点にて終了する期間を拍動期間として推定し直す(図14のステップS107)。
 次いで、胎児状態推定装置1は、再推定された拍動期間と、推定された回転角度θと、抽出された胎児心電図基礎信号と、に基づいて、基準回転角度に対する胎児心電図信号を推定する(図14のステップS108)。本例では、胎児状態推定装置1は、第1の基準回転角度に対する第1の胎児心電図信号と、第2の基準回転角度に対する第2の胎児心電図信号と、を推定する。
 そして、胎児状態推定装置1は、推定された回転角度θに基づいて回転運動の有無を推定する。更に、胎児状態推定装置1は、推定された回転角度θと胎児心電図基礎信号とに基づいて並進運動の有無を推定する(図14のステップS109)。
 以上、説明したように、第1実施形態に係る胎児状態推定装置1は、母体MBの表面MBSにおける電位の変化を表す電位信号に基づいて、胎児CBの心臓の拍動毎の、胎児CBの母体MBに対する回転角度を推定する。更に、胎児状態推定装置1は、電位信号と推定された回転角度とに基づいて、胎児CBの運動である胎動を推定する。
 これによれば、胎動を高い精度にて推定することができる。例えば、胎動のうちの並進運動の有無を高い精度にて推定することができる。
 更に、第1実施形態に係る胎児状態推定装置1は、胎児CBの心臓の拍動に起因する心電図基礎信号を推定する。加えて、胎児状態推定装置1は、推定された心電図基礎信号における所定の基準波のピークの大きさと、推定された回転角度と、に基づいて、胎動のうちの母体MBの腹壁に対する並進運動の有無を推定する。
 特定の波のピークの大きさの変化は、母体MBの腹壁と胎児CBとの間の距離の変化をよく表す。従って、第1実施形態に係る胎児状態推定装置1によれば、胎動のうちの並進運動の有無を高い精度にて推定することができる。
 加えて、第1実施形態に係る胎児状態推定装置1は、胎児CBの心臓の拍動毎に、推定された心電図基礎信号の、所定の対象期間における最大値及び最小値に基づいて所定のパラメータを算出する。加えて、胎児状態推定装置1は、胎児CBの心臓の拍動毎に、算出されたパラメータに基づいて回転角度を推定する。
 胎児CBの心臓の拍動毎の、心電図基礎信号の所定の対象期間における最大値及び最小値の関係は、胎児CBの母体MBに対する回転角度をよく表す。従って、第1実施形態に係る胎児状態推定装置1によれば、胎児CBの母体MBに対する回転角度を高い精度にて推定することができる。
 更に、第1実施形態に係る胎児状態推定装置1は、胎児CBの心臓の拍動毎に、推定された心電図基礎信号が上記対象期間において最大値を有する時点と、推定された回転角度と、に基づいて、所定の基準回転角度に対する胎児CBの心電図信号が最大値を有する時点である最大値時点を推定する。加えて、胎児状態推定装置1は、推定された最大値時点と、推定された回転角度と、推定された心電図基礎信号と、に基づいて胎動を推定する。
 心電図基礎信号において、胎児CBの心起電力の変化が表れる態様は、胎児CBの母体MBに対する回転角度に応じて変化する。従って、第1実施形態に係る胎児状態推定装置1によれば、胎児CBの心臓の拍動毎に、心電図信号が最大値を有する最大値時点を高い精度にて推定することができる。その結果、推定された最大値時点に基づいて、回転運動が行なわれている期間を高い精度にて推定することができる。従って、胎動を高い精度にて推定することができる。
 加えて、第1実施形態に係る胎児状態推定装置1は、独立成分分析法により心電図基礎信号を推定する。
 これによれば、心電図基礎信号を高い精度にて推定することができる。
<第2実施形態>
 次に、本発明の第2実施形態に係る胎児状態推定装置について説明する。第2実施形態に係る胎児状態推定装置は、上記第1実施形態に係る胎児状態推定装置に対して、基準回転角度に対する胎児心電図信号を推定せずに胎動を推定する点において相違している。以下、かかる相違点を中心として説明する。なお、第2実施形態の説明において、上記第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
 第2実施形態に係る胎児状態推定装置1の胎動推定部202は、基準回転角度に対する胎児心電図信号を推定せずに、回転角度が0である場合におけるQRS波期間内の胎児心電図基礎信号の最大値を推定する。
 具体的には、胎動推定部202は、回転角度と最大値変化率との間の関係(第3の関係)を予め保持する。
 本例では、最大値変化率は、回転角度がθである場合におけるQRS波期間内の胎児心電図基礎信号の最大値uθ(τmax(θ))と、回転角度が0である場合におけるQRS波期間内の胎児心電図基礎信号の最大値u(τmax(0))と、に基づいて算出されるパラメータである。本例では、最大値変化率T(θ)は、数式13により表される。
Figure JPOXMLDOC01-appb-M000013
 本例では、第3の関係は、上記の数式5乃至数式7により表される基準胎児心電図信号に基づいて決定される。なお、第3の関係は、経験則に基づいて決定されてもよい。
 胎動推定部202は、回転角度推定部201により推定された拍動期間のそれぞれに対して、回転角度推定部201により推定された回転角度θと、保持されている第3の関係と、に基づいて最大値変化率T(θ)を取得する。
 次いで、胎動推定部202は、回転角度推定部201により推定された拍動期間のそれぞれに対して、取得された最大値変化率T(θ)と、回転角度がθである場合におけるQRS波期間内の胎児心電図基礎信号の最大値uθ(τmax(θ))と、回転角度がθである場合におけるQRS波期間内の胎児心電図基礎信号の最小値uθ(τmin(θ))と、数式14と、に基づいて、回転角度が0である場合におけるQRS波期間内の胎児心電図基礎信号の最大値u(τmax(0))を算出する。QRS波期間内の胎児心電図基礎信号の最大値u(τmax(0))は、R波のピークの大きさの一例である。R波は、基準波の一例である。
Figure JPOXMLDOC01-appb-M000014
 更に、胎動推定部202は、胎児心電図基礎信号におけるR波のピークの大きさの変化に代えて、算出された胎児心電図基礎信号の最大値u(τmax(0))の変化に基づいて、胎動のうちの母体MBの腹壁に対する並進運動の有無を推定する。
 第2実施形態に係る胎児状態推定装置1は、第1実施形態に係る胎児状態推定装置1と同様に動作する。従って、第2実施形態に係る胎児状態推定装置1は、第1実施形態に係る胎児状態推定装置1と同様の作用及び効果を奏することができる。
 以上、上記実施形態を参照して本発明を説明したが、本発明は、上述した実施形態に限定されるものではない。本発明の構成及び詳細に、本発明の範囲内において当業者が理解し得る様々な変更をすることができる。
 また、本発明の趣旨を逸脱しない範囲内において、上記実施形態の他の変形例として、上述した実施形態及び変形例の任意の組み合わせが採用されてもよい。
1   胎児状態推定装置
10  測定部
11~15 電極
20  処理部
201 回転角度推定部
202 胎動推定部
30  出力部
CB  胎児
MB  母体
MBS 表面

Claims (13)

  1.  母体の表面における電位の変化を表す電位信号に基づいて、前記母体内の胎児の状態を推定する胎児状態推定装置であって、
     前記電位信号に基づいて、前記胎児の心臓の拍動毎の、前記胎児の前記母体に対する回転角度を推定する回転角度推定部と、
     前記電位信号と前記推定された回転角度とに基づいて、前記胎児の運動である胎動を推定する胎動推定部と、
     を備える胎児状態推定装置。
  2.  請求項1に記載の胎児状態推定装置であって、
     前記回転角度推定部は、前記胎児の心臓の拍動に起因する心電図基礎信号を推定し、
     前記胎動推定部は、前記推定された心電図基礎信号における所定の基準波のピークの大きさと、前記推定された回転角度と、に基づいて、前記胎動のうちの前記母体の腹壁に対する並進運動の有無を推定する、胎児状態推定装置。
  3.  請求項2に記載の胎児状態推定装置であって、
     前記胎動推定部は、前記推定された回転角度の変動を表す第1の変動パラメータが所定の第1の変動閾値よりも小さく、且つ、前記ピークの大きさの変動を表す第2の変動パラメータが所定の第2の変動閾値よりも大きい期間において、前記胎動のうちの前記母体の腹壁に対する並進運動が行なわれていると推定する、胎児状態推定装置。
  4.  請求項1乃至請求項3のいずれか一項に記載の胎児状態推定装置であって、
     前記回転角度推定部は、
     前記胎児の心臓の拍動に起因する心電図基礎信号を推定し、
     前記胎児の心臓の拍動毎に、前記推定された心電図基礎信号の、所定の対象期間における最大値及び最小値に基づいて所定のパラメータを算出し、
     前記胎児の心臓の拍動毎に、前記算出されたパラメータに基づいて前記回転角度を推定する、胎児状態推定装置。
  5.  請求項4に記載の胎児状態推定装置であって、
     前記パラメータは、前記最大値から前記最小値を減じた値により、前記最大値を除した値である、胎児状態推定装置。
  6.  請求項4又は請求項5に記載の胎児状態推定装置であって、
     前記胎動推定部は、
     前記胎児の心臓の拍動毎に、前記推定された心電図基礎信号が前記対象期間において最大値を有する時点と、前記推定された回転角度と、に基づいて、所定の基準回転角度に対する前記胎児の心電図信号が最大値を有する時点である最大値時点を推定し、
     前記推定された最大値時点と、前記推定された回転角度と、前記推定された心電図基礎信号と、に基づいて前記胎動を推定する、胎児状態推定装置。
  7.  請求項4乃至請求項6のいずれか一項に記載の胎児状態推定装置であって、
     前記回転角度推定部は、独立成分分析法により前記心電図基礎信号を推定する、胎児状態推定装置。
  8.  母体の表面における電位の変化を表す電位信号に基づいて、前記母体内の胎児の状態を推定する胎児状態推定方法であって、
     前記電位信号に基づいて、前記胎児の心臓の拍動毎の、前記胎児の前記母体に対する回転角度を推定し、
     前記電位信号と前記推定された回転角度とに基づいて、前記胎児の運動である胎動を推定する、
     胎児状態推定方法。
  9.  請求項8に記載の胎児状態推定方法であって、
     前記回転角度の推定は、前記胎児の心臓の拍動に起因する心電図基礎信号を推定することを含み、
     前記胎動の推定は、前記推定された心電図基礎信号における所定の基準波のピークの大きさと、前記推定された回転角度と、に基づいて、前記胎動のうちの前記母体の腹壁に対する並進運動の有無を推定することを含む胎児状態推定方法。
  10.  請求項9に記載の胎児状態推定方法であって、
     前記胎動の推定は、前記推定された回転角度の変動を表す第1の変動パラメータが所定の第1の変動閾値よりも小さく、且つ、前記ピークの大きさの変動を表す第2の変動パラメータが所定の第2の変動閾値よりも大きい期間において、前記胎動のうちの前記母体の腹壁に対する並進運動が行なわれていると推定する、ことを含む胎児状態推定方法。
  11.  請求項8乃至請求項10のいずれか一項に記載の胎児状態推定方法であって、
     前記回転角度の推定は、
     前記胎児の心臓の拍動に起因する心電図基礎信号を推定し、
     前記胎児の心臓の拍動毎に、前記推定された心電図基礎信号の、所定の対象期間における最大値及び最小値に基づいて所定のパラメータを算出し、
     前記胎児の心臓の拍動毎に、前記算出されたパラメータに基づいて前記回転角度を推定する、ことを含む胎児状態推定方法。
  12.  請求項11に記載の胎児状態推定方法であって、
     前記胎動の推定は、
     前記胎児の心臓の拍動毎に、前記推定された心電図基礎信号が前記対象期間において最大値を有する時点と、前記推定された回転角度と、に基づいて、所定の基準回転角度に対する前記胎児の心電図信号が最大値を有する時点である最大値時点を推定し、
     前記推定された最大値時点と、前記推定された回転角度と、前記推定された心電図基礎信号と、に基づいて前記胎動を推定する、ことを含む胎児状態推定方法。
  13.  母体の表面における電位の変化を表す電位信号に基づいて、前記母体内の胎児の状態を推定する処理をコンピュータに実行させるための胎児状態推定プログラムであって、
     前記コンピュータに、
     前記電位信号に基づいて、前記胎児の心臓の拍動毎の、前記胎児の前記母体に対する回転角度を推定し、
     前記電位信号と前記推定された回転角度とに基づいて、前記胎児の運動である胎動を推定する、
     処理を実行させるための胎児状態推定プログラム。
PCT/JP2014/058586 2014-03-26 2014-03-26 胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム WO2015145624A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/058586 WO2015145624A1 (ja) 2014-03-26 2014-03-26 胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム
JP2016509716A JP6324490B2 (ja) 2014-03-26 2014-03-26 胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム
US15/273,985 US10278604B2 (en) 2014-03-26 2016-09-23 Fetal state estimation apparatus, fetal state estimating method, and non-transitory computer-readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058586 WO2015145624A1 (ja) 2014-03-26 2014-03-26 胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/273,985 Continuation US10278604B2 (en) 2014-03-26 2016-09-23 Fetal state estimation apparatus, fetal state estimating method, and non-transitory computer-readable medium

Publications (1)

Publication Number Publication Date
WO2015145624A1 true WO2015145624A1 (ja) 2015-10-01

Family

ID=54194221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058586 WO2015145624A1 (ja) 2014-03-26 2014-03-26 胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム

Country Status (3)

Country Link
US (1) US10278604B2 (ja)
JP (1) JP6324490B2 (ja)
WO (1) WO2015145624A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531744B (en) * 2014-10-28 2017-11-22 Chiaro Tech Ltd Method and apparatus for monitoring the pelvic floor muscles
US11826129B2 (en) 2019-10-07 2023-11-28 Owlet Baby Care, Inc. Heart rate prediction from a photoplethysmogram
US20230374186A1 (en) 2020-11-06 2023-11-23 Nippon Kayaku Kabushiki Kaisha Photosensitive resin composition, cured product thereof and multilayer material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538872A (ja) * 1999-03-15 2002-11-19 ザ ジョンズ ホプキンズ ユニバーシティ 非観血的、受動的に胎児心臓を監視する装置及び方法
US20070213627A1 (en) * 2003-10-14 2007-09-13 James David K Fetal surveillance
US20100185108A1 (en) * 2007-07-20 2010-07-22 Vullings Rik Fetal monitoring
US20110092837A1 (en) * 2009-10-21 2011-04-21 Industrial Technology Research Institute Apparatus and method for monitoring fetus in maternal body
JP2011516238A (ja) * 2008-04-15 2011-05-26 タフツ メディカル センター インコーポレイテッド 胎児ecgモニタリング

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590554B2 (ja) 2005-01-31 2010-12-01 国立大学法人東北大学 心電図信号処理方法および心電図信号処理装置
WO2007029485A1 (ja) * 2005-09-05 2007-03-15 Tohoku University 非線形状態空間射影法による非線形信号の分離方法
GB2471667B (en) 2009-07-06 2011-11-09 Monica Healthcare Ltd Monitoring uterine activity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538872A (ja) * 1999-03-15 2002-11-19 ザ ジョンズ ホプキンズ ユニバーシティ 非観血的、受動的に胎児心臓を監視する装置及び方法
US20070213627A1 (en) * 2003-10-14 2007-09-13 James David K Fetal surveillance
US20100185108A1 (en) * 2007-07-20 2010-07-22 Vullings Rik Fetal monitoring
JP2011516238A (ja) * 2008-04-15 2011-05-26 タフツ メディカル センター インコーポレイテッド 胎児ecgモニタリング
US20110092837A1 (en) * 2009-10-21 2011-04-21 Industrial Technology Research Institute Apparatus and method for monitoring fetus in maternal body

Also Published As

Publication number Publication date
US10278604B2 (en) 2019-05-07
US20170007143A1 (en) 2017-01-12
JP6324490B2 (ja) 2018-05-16
JPWO2015145624A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4590554B2 (ja) 心電図信号処理方法および心電図信号処理装置
JP5980720B2 (ja) 呼吸速度推定のためのビデオプロセッシング
JP5815705B2 (ja) 胎児モニタリング中に超音波信号の不明確性を削減する方法
JP2018000952A (ja) 実時間信号分割及び基準点整列フレームワークを提供するシステム及び方法
JP6043920B2 (ja) 胎児心電位信号抽出プログラム、胎児心電位信号判別装置及びこれを用いた妊婦見守りシステム
JP2016515846A5 (ja) ハンドヘルド・デバイスを用いた非侵襲的な脈波伝播時間の判定
JP2016531642A (ja) 妊娠モニタリングシステム及び方法
RU2712844C2 (ru) Обрабатывающее устройство, система и способ обработки сигналов акселерометра для использования при мониторинге жизненных показателей субъекта
JP6324490B2 (ja) 胎児状態推定装置、胎児状態推定方法、及び、胎児状態推定プログラム
JP2022169774A (ja) 超音波診断装置、医用画像診断装置、医用画像処理装置及び医用画像処理プログラム
JP2015159934A (ja) 超音波計測装置及び超音波計測方法
WO2018155384A1 (ja) 検出装置
JP2018507015A (ja) 装着可能ドプラ超音波ベースの心臓モニタリング
JP6647831B2 (ja) 信号処理装置、撮像装置及び信号処理方法
CN111031902B (zh) 多传感器心搏出量监测系统和分析法
JP6359084B2 (ja) 生体状態推定装置、生体状態推定装置の作動方法、及び、生体状態推定プログラム
CN107530051B (zh) 使用向量速度超声(us)对血管内压变化的无创估计
EP3501596A1 (en) Determination of cardiopulmonary resuscitation compression rate
Li et al. Robust adaptive fetal heart rate estimation for single-channel abdominal ECG recording
TW201622648A (zh) 用於偵測胎動之可穿戴裝置及其方法
KR101498581B1 (ko) 비침습적 심방신호 추정 시스템 및 방법
Zamrath et al. Robust and computationally efficient approach for Heart Rate monitoring using photoplethysmographic signals during intensive physical excercise
Alvarez et al. Noninvasive FECG for estimating the fetal heart rate
CN111989037B (zh) 运动强度估计方法、运动强度估计装置和程序
Mengko et al. Design and implementation of 12 Lead ECG signals interpretation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887000

Country of ref document: EP

Kind code of ref document: A1