WO2015145511A1 - Rubber composition, manufacturing method therefor, and tyre - Google Patents

Rubber composition, manufacturing method therefor, and tyre Download PDF

Info

Publication number
WO2015145511A1
WO2015145511A1 PCT/JP2014/006396 JP2014006396W WO2015145511A1 WO 2015145511 A1 WO2015145511 A1 WO 2015145511A1 JP 2014006396 W JP2014006396 W JP 2014006396W WO 2015145511 A1 WO2015145511 A1 WO 2015145511A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
parts
diene rubber
diene
Prior art date
Application number
PCT/JP2014/006396
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 三浦
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2015145511A1 publication Critical patent/WO2015145511A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2421/00Characterised by the use of unspecified rubbers

Definitions

  • the present invention relates to a rubber composition, a method for producing the same, and a tire.
  • the tire particularly its sidewall portion, is required to have both high resistance to repeated bending fatigue (high bending fatigue resistance) and high weather resistance such as ozone resistance due to its usage.
  • high bending fatigue resistance high bending fatigue resistance
  • high weather resistance such as ozone resistance due to its usage.
  • a rubber component of a rubber composition for a tire sidewall a blend rubber appropriately selected from natural rubber, rubber derived from conjugated dienes such as butadiene rubber and styrene-butadiene rubber, and the like is used. Bending fatigue resistance has been improved by use, and a method of improving weather resistance has been taken by adding a large amount of a compounding agent such as an amine-based antioxidant or a paraffinic wax to the rubber component.
  • this method has a problem that such a compounding agent blooms on the surface of the tire, and when it is exposed to ultraviolet rays, this color changes to brown and the appearance of the tire can be significantly impaired.
  • Patent Document 1 a rubber composition obtained by blending a specific ethylene-propylene-diene copolymer (EPDM) having a high ethylene content is used as the outermost layer of the sidewall portion of the tire, thereby providing high bending resistance.
  • EPDM ethylene-propylene-diene copolymer
  • JP-A-4-43106 Japanese Patent Application Laid-Open No. 2004-224952 JP 2005-272719 A
  • each of the rubber compositions obtained by each of the above methods has room for improvement in terms of improvement in fracture resistance in addition to improvement in weather resistance and crack growth resistance.
  • the present inventor has achieved high weather resistance, crack growth resistance and high resistance by optimizing the compounding materials used in the preparation of the rubber composition and the compounding ratio thereof.
  • the inventors have found that a rubber composition having destructive properties can be obtained, and have completed the present invention.
  • the rubber composition of the present invention comprises a diene rubber (A), a non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of the rubber component, and a rubber component.
  • A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1;
  • B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group].
  • the ratio of the diene rubber (A) is 20 to 90% by mass, and the ratio of the non-diene rubber (B) in the rubber component is 10 to 80% by mass.
  • Such a rubber composition has high weather resistance and crack growth resistance, and high fracture resistance.
  • the tire according to the present invention is characterized in that the rubber composition is applied to at least one of the tire members, and at least one of the tire members preferably includes a sidewall.
  • Such a tire is excellent in weather resistance, crack growth resistance and fracture resistance because the rubber composition is used.
  • the tire of the present invention preferably has a paint layer formed on the outer surface of a tire member to which the rubber composition is applied.
  • a tire is excellent in weather resistance, crack growth resistance and fracture resistance, and can be used while maintaining its appearance for a longer period of time.
  • the method for producing the rubber composition of the present invention comprises a diene rubber (A), a non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of the rubber component, and The following formulas (I) to (III) of 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the rubber component:
  • A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1;
  • B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group].
  • the method for producing a rubber composition in which the proportion of the diene rubber (A) is 20 to 90% by mass and the proportion of the non-diene rubber (B) is 10 to 80% by mass (1) a primary step of preparing a master batch by kneading the non-diene rubber (B) and 3 to 50 parts by mass of the carbon black (C) with respect to 100 parts by mass of a rubber component; and (2) The master batch is characterized by including a secondary step of adding and kneading the diene rubber (A), the compound (D) and the remaining carbon black (C).
  • the present invention it is possible to provide a rubber composition having high weather resistance, crack growth resistance and high fracture resistance, and a method for producing the same. Moreover, the tire excellent in a weather resistance, crack growth resistance, and destruction resistance can be provided by using this rubber composition for either of the tire members.
  • the rubber composition of the present invention contains diene rubber (A), non-diene rubber (B), and 10 to 120 parts by mass of carbon black (100 parts by mass with respect to 100 parts by mass of the rubber component). C) and 0.1 to 5.0 parts by mass of the compound (D) represented by any one of the above formulas (I) to (III) with respect to 100 parts by mass of the rubber component,
  • the proportion of the diene rubber (A) in the rubber component is 20 to 90% by mass
  • the proportion of the non-diene rubber (B) in the rubber component is 10 to 80% by mass.
  • the rubber composition of this invention has high weather resistance and crack growth resistance, and high fracture resistance. The reason for this will be described in detail below with reference to FIGS.
  • FIG. 1 and 2 are cross-sectional schematic diagrams showing the distribution of diene rubber, non-diene rubber and carbon black in the rubber composition
  • FIG. 1 relates to a conventional rubber composition which does not contain compound (D).
  • FIG. 2 relates to a rubber composition according to an embodiment of the present invention in which a predetermined amount of compound (D) is blended.
  • one rubber component for example, , Non-diene rubber
  • the other rubber component for example, diene rubber
  • the diene rubber and the non-diene rubber are more dispersed (the degree of continuation of the non-diene rubber portion is also reduced), so that the weather resistance and crack growth are high. And high fracture resistance can be achieved.
  • a diene rubber (A) is used as a rubber component.
  • the “diene rubber” is defined as a rubber other than the non-diene rubber described later.
  • the rubber is derived from a diene monomer in a monomer unit of natural rubber and synthetic rubber. Is defined as a rubber having a unit ratio of more than 5 mol%.
  • the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and the like.
  • examples of the non-diene monomer (non-diene monomer) constituting the synthetic rubber include ethylene, propylene, and isobutene.
  • examples of the diene rubber (A) include natural rubber (NR) and diene synthetic rubber.
  • Specific examples of the diene synthetic rubber include butadiene rubber (BR), styrene-butadiene rubber (SBR), Isoprene rubber (IR), chloroprene rubber (CR) and the like can be mentioned, and those obtained by appropriately modifying these rubbers are also included in the “diene rubber”.
  • the said diene rubber (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the proportion of the diene rubber (A) is required to be 20 to 90% by mass, preferably 30 to 70% by mass, and preferably 40 to 60% by mass. % Is more preferable. If the proportion of the diene rubber (A) is less than 20% by mass, the rubber composition cannot be provided with excellent crack growth resistance and fracture resistance, whereas if it exceeds 90% by mass, the weather resistance Is not sufficiently improved.
  • Non-diene rubber (B) In the rubber composition of the present invention, a non-diene rubber (B) is used as a rubber component.
  • “non-diene rubber” is defined as a rubber having a proportion of a unit derived from a diene monomer in a monomer unit of a synthetic rubber of 5 mol% or less.
  • Examples of the non-diene rubber (B) include ethylene-propylene-diene rubber (EPDM), ethylene-propylene rubber (EPM), butyl rubber (IIR), chlorinated butyl rubber (Cl-IIR), and brominated butyl rubber (Br-IIR).
  • EPDM ethylene-propylene-diene rubber
  • EPM ethylene-propylene rubber
  • IIR butyl rubber
  • Cl-IIR chlorinated butyl rubber
  • Br-IIR brominated butyl rubber
  • the rubber composition it is preferable to use ethylene-propylene-diene rubber and / or butyl rubber, more preferably to use ethylene-propylene-diene rubber and butyl rubber at the same time. From the viewpoint of property, it is preferable that the proportion of the unit derived from the diene monomer in the constituent monomer units is 0.1 mol% or more.
  • the non-diene rubber (B) may be used alone or in combination of two or more.
  • the proportion of the non-diene rubber (B) needs to be 10 to 80% by mass, preferably 15 to 70% by mass, and preferably 20 to 65%. More preferably, it is mass%.
  • the proportion of the non-diene rubber (B) is less than 10% by mass, the weather resistance derived from the non-diene rubber (B) cannot be sufficiently improved, while when it exceeds 80% by mass, the rubber composition The product cannot provide excellent crack growth resistance and fracture resistance.
  • Carbon black (C) is used for the rubber composition of the present invention.
  • carbon black (C) There is no restriction
  • the total amount of the carbon black (C) is required to be 10 to 120 parts by mass, preferably 15 to 80 parts by mass, and 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferable.
  • the nitrogen adsorption specific surface area (measured in accordance with N 2 SA, JIS K 6217-2: 2001) of the carbon black (C) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the rubber composition of the present invention includes compound (D), that is, the following formulas (I) to (III): Wherein A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1; B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group]. Such a compound reacts with the main chain of the diene rubber and has high affinity with carbon black.
  • Examples of the compound (D) represented by the formula (I) include phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, succinic acid dihydrazide, adipic acid
  • Examples include dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, eicosanedioic acid dihydrazide, 7,11-octadecadien-1,18-dicarbohydrazide, and oxalic hydrazide.
  • Examples of the compound (D) represented by the formula (II) include anthraniloyl hydrazine, salicylic acid hydrazide, 4-hydroxybenzoic acid hydrazide, 2-hydroxy-3-naphthoic acid hydrazide, 3-hydroxy-N ′-(1 , 3-dimethylbutylidene) -2-naphthoic acid hydrazide and the like.
  • Examples of the compound (D) represented by the formula (III) include isonicotinic acid hydrazide and carbodihydrazide.
  • isophthalic acid dihydrazide 2-hydroxy-3-naphthoic acid hydrazide, or 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2
  • naphthoic acid hydrazide it is preferred to use naphthoic acid hydrazide.
  • the said compound (D) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the compounding amount of the compound (D) is required to be 0.1 to 5.0 parts by weight, preferably 0.1 to 3.0 parts by weight, based on 100 parts by weight of the rubber component. More preferably, it is 2 to 1.5 parts by mass. When the compounding amount of the compound (D) is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component, sufficient improvement in crack growth resistance and fracture resistance may not be obtained. If the amount is more than part by mass, the compound (D) may inhibit the crosslinking reaction, thereby deteriorating the fracture resistance of the rubber.
  • components other than those described above can be used as necessary.
  • examples of such components include a crosslinking agent (vulcanizing agent), a crosslinking accelerator (vulcanization accelerator), a crosslinking aid (vulcanization aid), a vulcanization acceleration aid (vulcanization acceleration aid), and the carbon black.
  • the rubber composition of the present invention is particularly suitable as long as at least the diene rubber (A), the non-diene rubber (B), the carbon black (C), and the compound (D) are blended in the above blending ratio.
  • the diene rubber (A), the non-diene rubber (B), the carbon black (C), and the compound (D) are blended in the above blending ratio.
  • the tire of the present invention is not particularly limited as long as the above-described rubber composition of the present invention is applied to at least one of the tire members, and can be produced according to a conventional method.
  • the applicable tire member is not particularly limited and can be appropriately selected depending on the purpose.For example, a tread, a base tread, a sidewall, a side reinforcing rubber, a bead filler, and the like can be given. It is preferable to apply the rubber composition of the present invention to at least a sidewall exposed to repeated bending fatigue.
  • the tire of the present invention can be suitably used as a pneumatic tire, in particular, a pneumatic tire for passenger cars. Since the rubber composition of the present invention is used, the tire is excellent in weather resistance, crack growth resistance and fracture resistance.
  • the tire of the present invention preferably has a paint layer formed on the outer surface of a tire member to which the rubber composition is applied.
  • Such tires are excellent in weather resistance, crack growth resistance and fracture resistance regardless of the presence or absence of compounding agents such as amine-based anti-aging agents and paraffin-based waxes. Is possible.
  • limiting in particular as a coating material used for formation of a coating layer A well-known coating material can be selected according to the objective.
  • the production method of the present invention includes a diene rubber (A), a non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of the rubber component, and 100 parts by mass of the rubber component.
  • A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1;
  • B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group].
  • the method for producing a rubber composition in which the proportion of the diene rubber (A) is 20 to 90% by mass and the proportion of the non-diene rubber (B) is 10 to 80% by mass (1) a primary step of preparing a master batch by kneading the non-diene rubber (B) and 3 to 50 parts by mass of the carbon black (C) with respect to 100 parts by mass of a rubber component; and (2) The master batch is characterized by including a secondary step of adding and kneading the diene rubber (A), the compound (D) and the remaining carbon black (C).
  • the manufacturing method of this invention can be applied to manufacture of the rubber composition of this invention mentioned above.
  • the rubber composition which has high weather resistance and crack growth resistance, and high fracture resistance can be manufactured.
  • carbon black (C1) the carbon black blended in the primary process
  • carbon black (C2) the carbon black blended in the secondary process
  • FIG. 3 is a schematic cross-sectional view showing the distribution of diene rubber, non-diene rubber and carbon black in the rubber composition.
  • FIG. 3 (a) shows a predetermined amount of carbon black without using the compound (D).
  • FIG. 3B shows a rubber composition obtained by kneading (C1) and the non-diene rubber (B) in advance and then adding and kneading the diene rubber (A) and carbon black (C2).
  • carbon black is compatible when these are kneaded in a lump according to a conventional method, or when carbon black is charged in the latter half of the lump. It tends to be unevenly distributed in the vicinity of highly diene rubber. Further, as described above, since the diene rubber and the non-diene rubber are difficult to mix with each other, both have a certain area or more in the cross section of the rubber composition (FIG. 1). On the other hand, carbon black can be distributed in the non-diene rubber through a primary process in which a predetermined amount of carbon black (C1) and the non-diene rubber (B) are kneaded in advance (FIG. 3). (A)).
  • the rubber composition produced according to the production method of the present invention has a domain phase (X) made of non-diene rubber and a domain phase (Y) made of diene rubber as shown in FIG. 3 (b).
  • the domain phase (X) has a mode in which a domain phase (Y c ) made of a diene rubber having a closed region smaller than the domain phase (X) is formed. And it is thought by this aspect that the crack which passes a non-diene-type rubber part is stopped more effectively. In addition, the said aspect can be confirmed with the image etc. which reflected the cross section of the rubber composition manufactured according to the manufacturing method of this invention with the transmission electron microscope.
  • the diene rubber (A) is natural rubber and / or butadiene rubber
  • the ratio of the diene rubber (A) in the rubber component Is 20 to 90% by mass
  • the proportion of natural rubber in the diene rubber (A) is 10 to 70% by mass
  • the proportion of butadiene rubber in the rubber component is 10 to 40% by mass.
  • the tan ⁇ peak value is 0.90 to 1.20.
  • the tan ⁇ value at ⁇ 40 ° C. and the tan ⁇ at ⁇ 20 ° C. The slope (° C. ⁇ 1 ) of the line segment connecting with the value of ⁇ 0.0200 to ⁇ 0.0175 is obtained.
  • the tan ⁇ can be measured using a spectrometer, rheometer, or the like.
  • the amount of carbon black (C1) to be blended in the primary step needs to be 3 to 50 parts by mass with respect to 100 parts by mass of the rubber component, but it should be 4 to 40 parts by mass. More preferred is 5 to 30 parts by mass. Since the amount of carbon black (C1) blended in the primary process is 3 to 50 parts by mass with respect to 100 parts by mass of the rubber component, the reinforcing filler is contained in the non-diene rubber without deteriorating workability. Thus, the crack growth resistance and the fracture resistance can be sufficiently improved.
  • the remaining carbon black (C2) to be blended in the secondary step is composed of the total amount of carbon black (10 to 120 parts by mass with respect to 100 parts by mass of the rubber component) and carbon black ( It may be 0 as long as the blending amount of C1) satisfies the above requirements.
  • the crosslinking aid (vulcanization aid) and the crosslinking acceleration aid (vulcanization acceleration aid) used as necessary are preferably added in step (2). It is preferable to add a sulfurizing agent) and a crosslinking accelerator (vulcanization accelerator) after the step (2).
  • a known kneading apparatus such as a twin-screw extruder, a roll, or an intensive mixer can be used.
  • a twin-screw extruder such as a twin-screw extruder, a roll, or an intensive mixer.
  • the conditions for the secondary step are not particularly limited, but it is preferably performed at a maximum temperature of 145 ° C. or lower.
  • ⁇ Bending fatigue resistance> A test piece of a rubber composition having a length of 125 mm, a width of 25 mm, and a thickness of 5.5 mm was prepared, and bending was repeated at room temperature in accordance with JIS-K6260 “Bending crack generation test”. Then, the number of bendings until a crack of 2 mm or more occurred was measured. The number of bendings was indexed with the value of Comparative Example 1 being 100. The higher the index, the better the bending fatigue resistance.
  • ⁇ Weather resistance> A test piece of rubber composition having a length of 100 mm, a width of 10 mm, and a thickness of 2 mm is held for 96 hours in an ozone weather meter (manufactured by Suga Test Instruments Co., Ltd.) with an ozone concentration of 30 ppm and 40 ° C., and the rubber after holding The appearance of the composition was visually observed. The appearance was evaluated as ⁇ ⁇ when no ozone crack was confirmed, ⁇ when a small amount of ozone crack was confirmed, and x when very many ozone cracks were confirmed.
  • the rubber compositions of the examples of the present invention according to the specific compounding materials and compounding ratios described above have higher weather resistance and crack growth resistance and higher resistance to resistance than the rubber compositions of the comparative examples. It can be seen that it has breakability and is also excellent in bending fatigue resistance.
  • Non-diene rubber 1 Diene rubber 2 Non-diene rubber 3 Carbon black 4 Domain phase consisting of non-diene rubber (X) 5 Domain phase composed of diene rubber (Y) 5a Domain phase (Y c ) made of diene rubber and having a smaller closed region than domain phase (X)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Provided is a rubber composition having high weather resistance and crack growth resistance and having high fracture resistance. The rubber composition is characterised in that: at least a diene based rubber (A), a non-diene based rubber (B), 10-120 parts by mass of carbon black (C) relative to 100 parts by mass of the rubber components, and 0.1-5.0 parts by mass of a compound (D) represented by a specific formula relative to 100 parts by mass of the rubber components are combined therein; the ratio of the diene based rubber (A) in the rubber components is 20-90 mass%; and the ratio of the non-diene based rubber (B) in the rubber components is 10-80 mass%.

Description

ゴム組成物及びその製造方法、並びにタイヤRubber composition, method for producing the same, and tire 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2014-063983号(2014年3月26日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2014-063983 (filed on March 26, 2014), the entire disclosure of which is incorporated herein by reference.
 本発明は、ゴム組成物及びその製造方法、並びにタイヤに関する。 The present invention relates to a rubber composition, a method for producing the same, and a tire.
 タイヤ、特にそのサイドウォール部には、その使用態様から、繰り返しの屈曲疲労に対する高い耐性(高い耐屈曲疲労性)や、耐オゾン性等の耐候性が高いレベルで両立されていることが求められる。この要求を満たすため、従来より、タイヤのサイドウォール用ゴム組成物のゴム成分として、天然ゴムや、ブタジエンゴム及びスチレン-ブタジエンゴム等の共役ジエンに由来するゴム等から適宜選択されたブレンドゴムを用いることにより耐屈曲疲労性を向上させ、また、ゴム成分にアミン系老化防止剤やパラフィン系ワックス等の配合剤を多量に配合することにより、耐候性を向上させる方法が取られてきた。 The tire, particularly its sidewall portion, is required to have both high resistance to repeated bending fatigue (high bending fatigue resistance) and high weather resistance such as ozone resistance due to its usage. . In order to satisfy this requirement, conventionally, as a rubber component of a rubber composition for a tire sidewall, a blend rubber appropriately selected from natural rubber, rubber derived from conjugated dienes such as butadiene rubber and styrene-butadiene rubber, and the like is used. Bending fatigue resistance has been improved by use, and a method of improving weather resistance has been taken by adding a large amount of a compounding agent such as an amine-based antioxidant or a paraffinic wax to the rubber component.
 しかしながら、この方法では、かかる配合剤がタイヤ表面にブルームして、紫外線が当たることによってこれが茶褐色に変色し、タイヤの外観を著しく損ない得るという問題があった。 However, this method has a problem that such a compounding agent blooms on the surface of the tire, and when it is exposed to ultraviolet rays, this color changes to brown and the appearance of the tire can be significantly impaired.
 この問題への対処として、エチレン含有量が高い特定のエチレン-プロピレン-ジエン共重合体(EPDM)を配合してなるゴム組成物をタイヤのサイドウォール部の最外層に用いることにより、高い耐屈曲疲労性を得つつ、耐亀裂成長性を向上させるとともに、変色等による外観の悪化を改良した空気入りタイヤが提案されている(特許文献1)。また、水添スチレン-共役ジエン共重合体を配合することや、ブチルゴム、ジエン系ゴム、充填剤及び添加剤を混練してマスターバッチを作製した後にジエン系ゴムを混ぜて混練することによって、タイヤサイドウォール部の外観、耐候性や耐亀裂成長性を向上させるゴム組成物を得る方法も提案されている(特許文献2,3)。 As a countermeasure against this problem, a rubber composition obtained by blending a specific ethylene-propylene-diene copolymer (EPDM) having a high ethylene content is used as the outermost layer of the sidewall portion of the tire, thereby providing high bending resistance. There has been proposed a pneumatic tire that has improved fatigue resistance, improved crack growth resistance, and improved appearance deterioration due to discoloration (Patent Document 1). Also, by adding a hydrogenated styrene-conjugated diene copolymer, kneading butyl rubber, diene rubber, filler and additives to prepare a masterbatch, and then mixing and kneading the diene rubber, the tire There has also been proposed a method for obtaining a rubber composition that improves the appearance, weather resistance, and crack growth resistance of the sidewall portion (Patent Documents 2 and 3).
特開平4-43106号公報JP-A-4-43106 特開2004-224952号公報Japanese Patent Application Laid-Open No. 2004-224952 特開2005-272719号公報JP 2005-272719 A
 しかしながら、上記特定のEPDMは、天然ゴムや共役ジエンに由来するゴムとの相溶性が低いため、その機能を十分には発揮することができていなかった。さらに、上記の各方法により得られるゴム組成物のいずれも、耐候性及び耐亀裂成長性の向上に加えて、耐破壊性の向上という点について改善の余地があった。 However, since the specific EPDM has low compatibility with natural rubber and rubber derived from conjugated dienes, it has not been able to perform its function sufficiently. Furthermore, each of the rubber compositions obtained by each of the above methods has room for improvement in terms of improvement in fracture resistance in addition to improvement in weather resistance and crack growth resistance.
 そこで、本発明の目的は、高い耐候性及び耐亀裂成長性と高い耐破壊性とを有するゴム組成物、並びに、その製造方法を提供することにある。また、本発明の他の目的は、かかるゴム組成物を用い、耐候性、耐亀裂成長性及び耐破壊性に優れたタイヤを提供することにある。 Therefore, an object of the present invention is to provide a rubber composition having high weather resistance, crack growth resistance and high fracture resistance, and a method for producing the same. Another object of the present invention is to provide a tire excellent in weather resistance, crack growth resistance and fracture resistance using such a rubber composition.
 本発明者は、上記目的を達成するために鋭意検討した結果、ゴム組成物の調製に用いる配合材料及びその配合比の適正化を図ることにより、高い耐候性及び耐亀裂成長性と、高い耐破壊性とを有するゴム組成物が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventor has achieved high weather resistance, crack growth resistance and high resistance by optimizing the compounding materials used in the preparation of the rubber composition and the compounding ratio thereof. The inventors have found that a rubber composition having destructive properties can be obtained, and have completed the present invention.
 即ち、本発明のゴム組成物は、ジエン系ゴム(A)と、非ジエン系ゴム(B)と、ゴム成分100質量部に対して10~120質量部のカーボンブラック(C)と、ゴム成分100質量部に対して0.1~5.0質量部の下記式(I)~(III):
Figure JPOXMLDOC01-appb-C000001
[式中、Aは芳香族環、置換され若しくは置換されていないヒダントイン環、又は炭素原子数1~18の飽和若しくは不飽和の直鎖状炭化水素基であり、aは0又は1であり、Bは芳香族基であり、Xはヒドロキシ基又はアミノ基であり、Yはピリジル基又はヒドラジノ基である]のいずれかで表される化合物(D)とを少なくとも配合してなり、ゴム成分中の前記ジエン系ゴム(A)の割合が20~90質量%であり、ゴム成分中の前記非ジエン系ゴム(B)の割合が10~80質量%であることを特徴とする。かかるゴム組成物は、高い耐候性及び耐亀裂成長性と、高い耐破壊性とを有する。
That is, the rubber composition of the present invention comprises a diene rubber (A), a non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of the rubber component, and a rubber component. 0.1 to 5.0 parts by mass of the following formulas (I) to (III) with respect to 100 parts by mass:
Figure JPOXMLDOC01-appb-C000001
Wherein A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1; B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group]. The ratio of the diene rubber (A) is 20 to 90% by mass, and the ratio of the non-diene rubber (B) in the rubber component is 10 to 80% by mass. Such a rubber composition has high weather resistance and crack growth resistance, and high fracture resistance.
 本発明のタイヤは、上記ゴム組成物をタイヤ部材の少なくともいずれかに適用したことを特徴とし、前記タイヤ部材の少なくともいずれかが、サイドウォールを含むことが好ましい。かかるタイヤは、上記ゴム組成物が用いられているため、耐候性、耐亀裂成長性及び耐破壊性に優れる。 The tire according to the present invention is characterized in that the rubber composition is applied to at least one of the tire members, and at least one of the tire members preferably includes a sidewall. Such a tire is excellent in weather resistance, crack growth resistance and fracture resistance because the rubber composition is used.
 さらに、本発明のタイヤは、上記ゴム組成物を適用したタイヤ部材の外表面に塗料層が形成されていることも好ましい。かかるタイヤは、耐候性、耐亀裂成長性及び耐破壊性に優れ、より長期間その外観を維持して使用することが可能である。 Furthermore, the tire of the present invention preferably has a paint layer formed on the outer surface of a tire member to which the rubber composition is applied. Such a tire is excellent in weather resistance, crack growth resistance and fracture resistance, and can be used while maintaining its appearance for a longer period of time.
 また、本発明のゴム組成物の製造方法は、ジエン系ゴム(A)と、非ジエン系ゴム(B)と、ゴム成分100質量部に対して10~120質量部のカーボンブラック(C)と、ゴム成分100質量部に対して0.1~5.0質量部の下記式(I)~(III):
Figure JPOXMLDOC01-appb-C000002
[式中、Aは芳香族環、置換され若しくは置換されていないヒダントイン環、又は炭素原子数1~18の飽和若しくは不飽和の直鎖状炭化水素基であり、aは0又は1であり、Bは芳香族基であり、Xはヒドロキシ基又はアミノ基であり、Yはピリジル基又はヒドラジノ基である]のいずれかで表される化合物(D)とを少なくとも配合してなり、ゴム成分中の前記ジエン系ゴム(A)の割合が20~90質量%であり、前記非ジエン系ゴム(B)の割合が10~80質量%であるゴム組成物の製造方法であって、
 (1)前記非ジエン系ゴム(B)と、ゴム成分100質量部に対して3~50質量部の前記カーボンブラック(C)とを混練してマスターバッチを作製する一次工程、及び
 (2)前記マスターバッチに、前記ジエン系ゴム(A)、前記化合物(D)及び残りの前記カーボンブラック(C)を投入して混練する二次工程
 を含むことを特徴とする。かかる方法により、高い耐候性及び耐亀裂成長性と、高い耐破壊性とを有するゴム組成物を製造することができる。
The method for producing the rubber composition of the present invention comprises a diene rubber (A), a non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of the rubber component, and The following formulas (I) to (III) of 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the rubber component:
Figure JPOXMLDOC01-appb-C000002
Wherein A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1; B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group]. The method for producing a rubber composition in which the proportion of the diene rubber (A) is 20 to 90% by mass and the proportion of the non-diene rubber (B) is 10 to 80% by mass,
(1) a primary step of preparing a master batch by kneading the non-diene rubber (B) and 3 to 50 parts by mass of the carbon black (C) with respect to 100 parts by mass of a rubber component; and (2) The master batch is characterized by including a secondary step of adding and kneading the diene rubber (A), the compound (D) and the remaining carbon black (C). By such a method, a rubber composition having high weather resistance and crack growth resistance and high fracture resistance can be produced.
 本発明によれば、高い耐候性及び耐亀裂成長性と高い耐破壊性とを有するゴム組成物、並びに、その製造方法を提供することができる。また、かかるゴム組成物をタイヤ部材のいずれかに用いることで、耐候性、耐亀裂成長性及び耐破壊性に優れたタイヤを提供することができる。 According to the present invention, it is possible to provide a rubber composition having high weather resistance, crack growth resistance and high fracture resistance, and a method for producing the same. Moreover, the tire excellent in a weather resistance, crack growth resistance, and destruction resistance can be provided by using this rubber composition for either of the tire members.
従来の一例のゴム組成物における、ジエン系ゴム、非ジエン系ゴム及びカーボンブラックの分布を表す断面模式図である。It is a cross-sectional schematic diagram showing the distribution of diene rubber, non-diene rubber, and carbon black in a conventional rubber composition. 本発明の一実施形態に係るゴム組成物における、ジエン系ゴム、非ジエン系ゴム及びカーボンブラックの分布を表す断面模式図である。It is a cross-sectional schematic diagram showing distribution of diene rubber, non-diene rubber, and carbon black in the rubber composition according to an embodiment of the present invention. 本発明のゴム組成物の製造方法を説明するための、ゴム組成物におけるジエン系ゴム、非ジエン系ゴム及びカーボンブラックの分布を表す断面模式図である。It is a cross-sectional schematic diagram showing distribution of the diene rubber, non-diene rubber, and carbon black in a rubber composition for demonstrating the manufacturing method of the rubber composition of this invention.
(ゴム組成物)
 本発明のゴム組成物を、その実施形態を例示して詳細に説明する。
 本発明のゴム組成物は、上述の通り、配合材料として、ジエン系ゴム(A)と、非ジエン系ゴム(B)と、ゴム成分100質量部に対して10~120質量部のカーボンブラック(C)と、ゴム成分100質量部に対して0.1~5.0質量部の上記式(I)~(III)のいずれかで表される化合物(D)とを少なくとも配合してなり、また、ゴム成分中の前記ジエン系ゴム(A)の割合が20~90質量%であり、ゴム成分中の前記非ジエン系ゴム(B)の割合が10~80質量%である。そして、本発明のゴム組成物は、高い耐候性及び耐亀裂成長性と、高い耐破壊性とを有する。
 この理由について、以下、図1及び2を参照しながら詳細に説明する。
(Rubber composition)
The rubber composition of the present invention will be described in detail by exemplifying embodiments thereof.
As described above, the rubber composition of the present invention contains diene rubber (A), non-diene rubber (B), and 10 to 120 parts by mass of carbon black (100 parts by mass with respect to 100 parts by mass of the rubber component). C) and 0.1 to 5.0 parts by mass of the compound (D) represented by any one of the above formulas (I) to (III) with respect to 100 parts by mass of the rubber component, The proportion of the diene rubber (A) in the rubber component is 20 to 90% by mass, and the proportion of the non-diene rubber (B) in the rubber component is 10 to 80% by mass. And the rubber composition of this invention has high weather resistance and crack growth resistance, and high fracture resistance.
The reason for this will be described in detail below with reference to FIGS.
 図1及び2は、ゴム組成物におけるジエン系ゴム、非ジエン系ゴム及びカーボンブラックの分布を表す断面模式図であり、図1は、化合物(D)を配合しない従来の一例のゴム組成物に関し、図2は、所定量の化合物(D)を配合した本発明の一実施形態に係るゴム組成物に関するものである。一般に、ゴムマトリックス中にジエン系ゴムと非ジエン系ゴムとが混在する場合、これら両ゴムは互いに混ざり難いため、当該両ゴムを含む従来のゴム組成物の断面においては、一方のゴム成分(例えば、非ジエン系ゴム)が他方のゴム成分(例えば、ジエン系ゴム)中に一定以上の面積をもった態様で存在する(図1)。また、繰り返しの屈曲疲労等に起因する亀裂は、主に非ジエン系ゴム部分に発生し得るところ、非ジエン系ゴム部分の連なりが大きいゴム組成物は、その亀裂の程度も大きい。これに対し、所定量の化合物(D)を配合すると、かかる化合物(D)がジエン系ゴムの主鎖と反応する上、非ジエン系ゴムに入り込んでその中のカーボンブラックとも親和するため、非ジエン系ゴム中にミクロ分散したジエン系ゴムのドメイン相がもたらされる(図2)。このように、本発明に係るゴム組成物においては、ジエン系ゴムと非ジエン系ゴムとがより分散する(非ジエン系ゴム部分の連なりの程度も低減する)ため、高い耐候性及び耐亀裂成長性と、高い耐破壊性とを達成することができると考えられる。 1 and 2 are cross-sectional schematic diagrams showing the distribution of diene rubber, non-diene rubber and carbon black in the rubber composition, and FIG. 1 relates to a conventional rubber composition which does not contain compound (D). FIG. 2 relates to a rubber composition according to an embodiment of the present invention in which a predetermined amount of compound (D) is blended. In general, when a diene rubber and a non-diene rubber are mixed in a rubber matrix, these two rubbers are difficult to mix with each other. Therefore, in the cross section of a conventional rubber composition containing both rubbers, one rubber component (for example, , Non-diene rubber) is present in the other rubber component (for example, diene rubber) in a form having a certain area or more (FIG. 1). In addition, cracks caused by repeated bending fatigue or the like can occur mainly in non-diene rubber parts, but a rubber composition having a large series of non-diene rubber parts has a large degree of cracks. On the other hand, when a predetermined amount of the compound (D) is blended, the compound (D) reacts with the main chain of the diene rubber, and enters the non-diene rubber and has an affinity with the carbon black therein. This results in a domain phase of the diene rubber microdispersed in the diene rubber (FIG. 2). As described above, in the rubber composition according to the present invention, the diene rubber and the non-diene rubber are more dispersed (the degree of continuation of the non-diene rubber portion is also reduced), so that the weather resistance and crack growth are high. And high fracture resistance can be achieved.
[ジエン系ゴム(A)]
 本発明のゴム組成物には、ゴム成分としてジエン系ゴム(A)を用いる。ここで、本発明で「ジエン系ゴム」は、後述する非ジエン系ゴム以外のゴムと定義し、具体的には、天然ゴム、及び、合成ゴムのうち構成するモノマー単位中のジエン系モノマー由来の単位の割合が5mol%を超えるゴムと定義する。前記ジエン系モノマーとしては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン等が挙げられる。一方、合成ゴムを構成するジエン系以外のモノマー(非ジエン系モノマー)としては、エチレン、プロピレン、イソブテン等が挙げられる。前記ジエン系ゴム(A)としては、天然ゴム(NR)及びジエン系合成ゴムが挙げられ、該ジエン系合成ゴムとして、具体的には、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、イソプレンゴム(IR)、クロロプレンゴム(CR)等が挙げられ、また、これらの各ゴムを適宜変性させたものも「ジエン系ゴム」に含まれるものとする。これらの中でも、ゴム組成物の耐亀裂成長性をより向上させる観点から、天然ゴム、ブタジエンゴム及び/又はスチレン-ブタジエンゴムを用いることが好ましく、天然ゴム及び/又はブタジエンゴムを用いることがより好ましい。なお、前記ジエン系ゴム(A)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
[Diene rubber (A)]
In the rubber composition of the present invention, a diene rubber (A) is used as a rubber component. Here, in the present invention, the “diene rubber” is defined as a rubber other than the non-diene rubber described later. Specifically, the rubber is derived from a diene monomer in a monomer unit of natural rubber and synthetic rubber. Is defined as a rubber having a unit ratio of more than 5 mol%. Examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and the like. On the other hand, examples of the non-diene monomer (non-diene monomer) constituting the synthetic rubber include ethylene, propylene, and isobutene. Examples of the diene rubber (A) include natural rubber (NR) and diene synthetic rubber. Specific examples of the diene synthetic rubber include butadiene rubber (BR), styrene-butadiene rubber (SBR), Isoprene rubber (IR), chloroprene rubber (CR) and the like can be mentioned, and those obtained by appropriately modifying these rubbers are also included in the “diene rubber”. Among these, from the viewpoint of further improving the crack growth resistance of the rubber composition, it is preferable to use natural rubber, butadiene rubber and / or styrene-butadiene rubber, and it is more preferable to use natural rubber and / or butadiene rubber. . In addition, the said diene rubber (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
 本発明のゴム組成物に用いるゴム成分においては、前記ジエン系ゴム(A)の割合が20~90質量%であることを要し、30~70質量%であることが好ましく、40~60質量%であることがより好ましい。前記ジエン系ゴム(A)の割合が20質量%未満であると、ゴム組成物に優れた耐亀裂成長性及び耐破壊性をもたらすことができず、一方、90質量%を超えると、耐候性の向上が十分に得られない。 In the rubber component used in the rubber composition of the present invention, the proportion of the diene rubber (A) is required to be 20 to 90% by mass, preferably 30 to 70% by mass, and preferably 40 to 60% by mass. % Is more preferable. If the proportion of the diene rubber (A) is less than 20% by mass, the rubber composition cannot be provided with excellent crack growth resistance and fracture resistance, whereas if it exceeds 90% by mass, the weather resistance Is not sufficiently improved.
[非ジエン系ゴム(B)]
 本発明のゴム組成物には、ゴム成分として非ジエン系ゴム(B)を用いる。ここで、本発明において、「非ジエン系ゴム」は、合成ゴムのうち構成するモノマー単位中のジエン系モノマー由来の単位の割合が5mol%以下のゴムと定義する。前記非ジエン系ゴム(B)としては、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-プロピレンゴム(EPM)、ブチルゴム(IIR)、塩素化ブチルゴム(Cl-IIR)、臭素化ブチルゴム(Br-IIR)等が挙げられる。これらの中でも、ゴム組成物の耐候性をより向上させる観点から、エチレン-プロピレン-ジエンゴム及び/又はブチルゴムを用いるのが好ましく、エチレン-プロピレン-ジエンゴム及びブチルゴムを同時に用いるのがより好ましく、また、加工性の観点から、構成するモノマー単位中のジエン系モノマー由来の単位の割合は0.1mol%以上であることが好ましい。なお、前記非ジエン系ゴム(B)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
[Non-diene rubber (B)]
In the rubber composition of the present invention, a non-diene rubber (B) is used as a rubber component. Here, in the present invention, “non-diene rubber” is defined as a rubber having a proportion of a unit derived from a diene monomer in a monomer unit of a synthetic rubber of 5 mol% or less. Examples of the non-diene rubber (B) include ethylene-propylene-diene rubber (EPDM), ethylene-propylene rubber (EPM), butyl rubber (IIR), chlorinated butyl rubber (Cl-IIR), and brominated butyl rubber (Br-IIR). Etc. Among these, from the viewpoint of further improving the weather resistance of the rubber composition, it is preferable to use ethylene-propylene-diene rubber and / or butyl rubber, more preferably to use ethylene-propylene-diene rubber and butyl rubber at the same time. From the viewpoint of property, it is preferable that the proportion of the unit derived from the diene monomer in the constituent monomer units is 0.1 mol% or more. The non-diene rubber (B) may be used alone or in combination of two or more.
 本発明のゴム組成物に用いるゴム成分においては、前記非ジエン系ゴム(B)の割合が10~80質量%であることを要し、15~70質量%であることが好ましく、20~65質量%であることがより好ましい。前記非ジエン系ゴム(B)の割合が10質量%未満であると、非ジエン系ゴム(B)由来の耐候性の向上が十分に得られず、一方、80質量%を超えると、ゴム組成物に優れた耐亀裂成長性及び耐破壊性をもたらすことができない。 In the rubber component used in the rubber composition of the present invention, the proportion of the non-diene rubber (B) needs to be 10 to 80% by mass, preferably 15 to 70% by mass, and preferably 20 to 65%. More preferably, it is mass%. When the proportion of the non-diene rubber (B) is less than 10% by mass, the weather resistance derived from the non-diene rubber (B) cannot be sufficiently improved, while when it exceeds 80% by mass, the rubber composition The product cannot provide excellent crack growth resistance and fracture resistance.
[カーボンブラック(C)]
 本発明のゴム組成物には、カーボンブラック(C)を用いる。前記カーボンブラック(C)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、FEF、GPF、SRF、HAF、ISAF、SAF、などが挙げられる。これらは、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 前記カーボンブラック(C)の総配合量は、ゴム成分100質量部に対して10~120質量部であることを要し、15~80質量部であることが好ましく、20~60質量部であることがより好ましい。前記カーボンブラック(C)の総配合量がゴム成分100質量部に対して10質量部未満であると、補強性向上の寄与が小さいこと、及び後述する化合物(D)との親和効果に起因するジエン系ゴム(A)と非ジエン系ゴム(B)との相溶化が十分に得られないことにより、亀裂成長性及び耐破壊性が十分に向上しない。また、前記カーボンブラック(C)の総配合量がゴム成分100質量部に対して120質量部を超えると、作業性が悪化する。
 前記カーボンブラック(C)の窒素吸着比表面積(N2SA、JIS K 6217-2:2001に準拠して測定する)としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム組成物の耐亀裂成長性、耐破壊性及び作業性を並立させる観点から、10~110m2/gが好ましく、20~90m2/gがより好ましい。前記カーボンブラック(C)の窒素吸着比表面積(N2SA)が10m2/g以上であると、得られるゴム組成物の耐亀裂成長性及び耐破壊性が十分に向上し、110m2/g以下であると、低ロス性を向上させつつ、作業性を良好に維持することができる。
[Carbon black (C)]
Carbon black (C) is used for the rubber composition of the present invention. There is no restriction | limiting in particular as said carbon black (C), According to the objective, it can select suitably, For example, FEF, GPF, SRF, HAF, ISAF, SAF etc. are mentioned. These may be used individually by 1 type, and may be used in combination of 2 or more type.
The total amount of the carbon black (C) is required to be 10 to 120 parts by mass, preferably 15 to 80 parts by mass, and 20 to 60 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferable. When the total compounding amount of the carbon black (C) is less than 10 parts by mass with respect to 100 parts by mass of the rubber component, the contribution of improving the reinforcing property is small and the affinity effect with the compound (D) described later is caused. Since the compatibilization of the diene rubber (A) and the non-diene rubber (B) is not sufficiently obtained, the crack growth property and the fracture resistance are not sufficiently improved. Moreover, workability will deteriorate when the total compounding quantity of the said carbon black (C) exceeds 120 mass parts with respect to 100 mass parts of rubber components.
The nitrogen adsorption specific surface area (measured in accordance with N 2 SA, JIS K 6217-2: 2001) of the carbon black (C) is not particularly limited and may be appropriately selected depending on the intended purpose. From the viewpoint of paralleling the crack growth resistance, fracture resistance and workability of the rubber composition, 10 to 110 m 2 / g is preferable, and 20 to 90 m 2 / g is more preferable. When the carbon black (C) has a nitrogen adsorption specific surface area (N 2 SA) of 10 m 2 / g or more, the resulting rubber composition has sufficiently improved crack growth resistance and fracture resistance, and 110 m 2 / g. When it is below, workability can be maintained well while improving low loss.
[化合物(D)]
 本発明のゴム組成物には、化合物(D)、すなわち下記式(I)~(III):
Figure JPOXMLDOC01-appb-C000003
[式中、Aは芳香族環、置換され若しくは置換されていないヒダントイン環、又は炭素原子数1~18の飽和若しくは不飽和の直鎖状炭化水素基であり、aは0又は1であり、Bは芳香族基であり、Xはヒドロキシ基又はアミノ基であり、Yはピリジル基又はヒドラジノ基である]のいずれかで表される化合物(D)を用いる。かかる化合物は、ジエン系ゴムの主鎖と反応し、また、カーボンブラックとの親和性が高い。
 式(I)で表される化合物(D)としては、フタル酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、エイコサン二酸ジヒドラジド、7,11-オクタデカジエン-1,18-ジカルボヒドラジド、シュウ酸ヒドラジド等が挙げられる。
 式(II)で表される化合物(D)としては、アントラニロイルヒドラジン、サリチル酸ヒドラジド、4-ヒドロキシベンゾイックアシドヒドラジド、2-ヒドロキシ-3-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド等が挙げられる。
 式(III)で表される化合物(D)としては、イソニコチン酸ヒドラジド、カルボジヒドラジド等が挙げられる。
 これらの中でも、ゴム組成物としての諸特性の向上の観点から、イソフタル酸ジヒドラジド、2-ヒドロキシ-3-ナフトエ酸ヒドラジド、又は3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジドを用いるのが好ましい。なお、前記化合物(D)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
[Compound (D)]
The rubber composition of the present invention includes compound (D), that is, the following formulas (I) to (III):
Figure JPOXMLDOC01-appb-C000003
Wherein A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1; B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group]. Such a compound reacts with the main chain of the diene rubber and has high affinity with carbon black.
Examples of the compound (D) represented by the formula (I) include phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, succinic acid dihydrazide, adipic acid Examples include dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, eicosanedioic acid dihydrazide, 7,11-octadecadien-1,18-dicarbohydrazide, and oxalic hydrazide.
Examples of the compound (D) represented by the formula (II) include anthraniloyl hydrazine, salicylic acid hydrazide, 4-hydroxybenzoic acid hydrazide, 2-hydroxy-3-naphthoic acid hydrazide, 3-hydroxy-N ′-(1 , 3-dimethylbutylidene) -2-naphthoic acid hydrazide and the like.
Examples of the compound (D) represented by the formula (III) include isonicotinic acid hydrazide and carbodihydrazide.
Among these, from the viewpoint of improving various properties as a rubber composition, isophthalic acid dihydrazide, 2-hydroxy-3-naphthoic acid hydrazide, or 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2 It is preferred to use naphthoic acid hydrazide. In addition, the said compound (D) may be used individually by 1 type, and may be used in combination of 2 or more type.
 前記化合物(D)の配合量は、ゴム成分100質量部に対して0.1~5.0質量部であることを要し、0.1~3.0質量部であることが好ましく、0.2~1.5質量部であることがより好ましい。前記化合物(D)の配合量がゴム成分100質量部に対して0.1質量部未満であると、耐亀裂成長性及び耐破壊性の十分な向上が得られないおそれがあり、5.0質量部を超えると、前記化合物(D)が架橋反応を阻害することによりゴムの耐破壊性が低下するおそれがある。 The compounding amount of the compound (D) is required to be 0.1 to 5.0 parts by weight, preferably 0.1 to 3.0 parts by weight, based on 100 parts by weight of the rubber component. More preferably, it is 2 to 1.5 parts by mass. When the compounding amount of the compound (D) is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component, sufficient improvement in crack growth resistance and fracture resistance may not be obtained. If the amount is more than part by mass, the compound (D) may inhibit the crosslinking reaction, thereby deteriorating the fracture resistance of the rubber.
[その他の成分]
 本発明のゴム組成物には、必要に応じて、上述した成分以外の成分を用いることができる。かかる成分としては、架橋剤(加硫剤)、架橋促進剤(加硫促進剤)、架橋助剤(加硫助剤)、加硫促進助剤(加硫促進助剤)、前記カーボンブラック以外の充填剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤等が挙げられ、その使用目的に応じて配合することができる。
[Other ingredients]
In the rubber composition of the present invention, components other than those described above can be used as necessary. Examples of such components include a crosslinking agent (vulcanizing agent), a crosslinking accelerator (vulcanization accelerator), a crosslinking aid (vulcanization aid), a vulcanization acceleration aid (vulcanization acceleration aid), and the carbon black. Fillers, colorants, flame retardants, lubricants, foaming agents, plasticizers, processing aids, antioxidants, scorch inhibitors, UV inhibitors, antistatic agents, anti-coloring agents, and other compounding agents. , Depending on the intended use.
[ゴム組成物の製造]
 また、本発明のゴム組成物は、少なくともジエン系ゴム(A)と、非ジエン系ゴム(B)と、カーボンブラック(C)と、化合物(D)とを上述の配合比で配合する限り特に制限はなく、常法に従って製造することができる。
[Production of rubber composition]
Further, the rubber composition of the present invention is particularly suitable as long as at least the diene rubber (A), the non-diene rubber (B), the carbon black (C), and the compound (D) are blended in the above blending ratio. There is no restriction | limiting, It can manufacture in accordance with a conventional method.
(タイヤ)
 本発明のタイヤは、上述した本発明のゴム組成物をタイヤ部材の少なくともいずれかに適用したものである限り、特に制限はなく、常法に従って製造することができる。適用可能なタイヤ部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラー等が挙げられるが、これらの中でも、本発明のゴム組成物を少なくとも、繰り返しの屈曲疲労にさらされるサイドウォールに適用することが好適である。本発明のタイヤは、空気入りタイヤ、特に乗用車用空気入りタイヤとして好適に用いることができ、本発明のゴム組成物が用いられているため、耐候性、耐亀裂成長性及び耐破壊性に優れる。
 さらに、本発明のタイヤは、上記ゴム組成物を適用したタイヤ部材の外表面に塗料層が形成されていることも好ましい。かかるタイヤは、アミン系老化防止剤やパラフィン系ワックス等の配合剤の有無にかかわらず耐候性、耐亀裂成長性及び耐破壊性に優れるため、より長期間その外観を維持して使用することが可能である。なお、塗料層の形成に用いられる塗料としては、特に制限はされず、公知の塗料を目的に応じて選択することができる。
(tire)
The tire of the present invention is not particularly limited as long as the above-described rubber composition of the present invention is applied to at least one of the tire members, and can be produced according to a conventional method. The applicable tire member is not particularly limited and can be appropriately selected depending on the purpose.For example, a tread, a base tread, a sidewall, a side reinforcing rubber, a bead filler, and the like can be given. It is preferable to apply the rubber composition of the present invention to at least a sidewall exposed to repeated bending fatigue. The tire of the present invention can be suitably used as a pneumatic tire, in particular, a pneumatic tire for passenger cars. Since the rubber composition of the present invention is used, the tire is excellent in weather resistance, crack growth resistance and fracture resistance. .
Furthermore, the tire of the present invention preferably has a paint layer formed on the outer surface of a tire member to which the rubber composition is applied. Such tires are excellent in weather resistance, crack growth resistance and fracture resistance regardless of the presence or absence of compounding agents such as amine-based anti-aging agents and paraffin-based waxes. Is possible. In addition, there is no restriction | limiting in particular as a coating material used for formation of a coating layer, A well-known coating material can be selected according to the objective.
(ゴム組成物の製造方法)
 次に、本発明のゴム組成物の製造方法(以下、「本発明の製造方法」と称することがある。)を、その実施形態を例示して詳細に説明する。
 本発明の製造方法は、ジエン系ゴム(A)と、非ジエン系ゴム(B)と、ゴム成分100質量部に対して10~120質量部のカーボンブラック(C)と、ゴム成分100質量部に対して0.1~5.0質量部の式(I)~(III):
Figure JPOXMLDOC01-appb-C000004
[式中、Aは芳香族環、置換され若しくは置換されていないヒダントイン環、又は炭素原子数1~18の飽和若しくは不飽和の直鎖状炭化水素基であり、aは0又は1であり、Bは芳香族基であり、Xはヒドロキシ基又はアミノ基であり、Yはピリジル基又はヒドラジノ基である]のいずれかで表される化合物(D)とを少なくとも配合してなり、ゴム成分中の前記ジエン系ゴム(A)の割合が20~90質量%であり、前記非ジエン系ゴム(B)の割合が10~80質量%であるゴム組成物の製造方法であって、
 (1)前記非ジエン系ゴム(B)と、ゴム成分100質量部に対して3~50質量部の前記カーボンブラック(C)とを混練してマスターバッチを作製する一次工程、及び
 (2)前記マスターバッチに、前記ジエン系ゴム(A)、前記化合物(D)及び残りの前記カーボンブラック(C)を投入して混練する二次工程
 を含むことを特徴とする。なお、本発明の製造方法は、上述した本発明のゴム組成物の製造に適用することが可能である。そして、本発明の製造方法によれば、高い耐候性及び耐亀裂成長性と、高い耐破壊性とを有するゴム組成物を製造することができる。
 この理由について、以下、図1及び3を参照しながら詳細に説明する。なお、簡略化のため、一次工程で配合するカーボンブラックを「カーボンブラック(C1)」と称し、二次工程で配合するカーボンブラックを「カーボンブラック(C2)」と称することとする。
(Method for producing rubber composition)
Next, a method for producing the rubber composition of the present invention (hereinafter sometimes referred to as “the production method of the present invention”) will be described in detail by exemplifying the embodiment.
The production method of the present invention includes a diene rubber (A), a non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of the rubber component, and 100 parts by mass of the rubber component. 0.1 to 5.0 parts by weight of the formulas (I) to (III):
Figure JPOXMLDOC01-appb-C000004
Wherein A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1; B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group]. The method for producing a rubber composition in which the proportion of the diene rubber (A) is 20 to 90% by mass and the proportion of the non-diene rubber (B) is 10 to 80% by mass,
(1) a primary step of preparing a master batch by kneading the non-diene rubber (B) and 3 to 50 parts by mass of the carbon black (C) with respect to 100 parts by mass of a rubber component; and (2) The master batch is characterized by including a secondary step of adding and kneading the diene rubber (A), the compound (D) and the remaining carbon black (C). In addition, the manufacturing method of this invention can be applied to manufacture of the rubber composition of this invention mentioned above. And according to the manufacturing method of this invention, the rubber composition which has high weather resistance and crack growth resistance, and high fracture resistance can be manufactured.
The reason for this will be described in detail below with reference to FIGS. For simplification, the carbon black blended in the primary process is referred to as “carbon black (C1)”, and the carbon black blended in the secondary process is referred to as “carbon black (C2)”.
 図3は、ゴム組成物におけるジエン系ゴム、非ジエン系ゴム及びカーボンブラックの分布を表す断面模式図であり、図3(a)は、化合物(D)を用いることなく、所定量のカーボンブラック(C1)と非ジエン系ゴム(B)とをあらかじめ混練した後、ジエン系ゴム(A)及びカーボンブラック(C2)を投入し混練して得たゴム組成物に関し、図3(b)は、所定量のカーボンブラック(C1)と非ジエン系ゴム(B)とをあらかじめ混練した後、ジエン系ゴム(A)、化合物(D)及びカーボンブラック(C2)を投入し混練して得たゴム組成物に関するものである。
 ジエン系ゴム、非ジエン系ゴム及びカーボンブラックを用いたゴム組成物の製造において、常法に従ってこれらを一括で混練するか、又はカーボンブラックを後半段階に一括投入する場合には、カーボンブラックは親和性の高いジエン系ゴム近傍に偏在し易い。また、上述した通り、ジエン系ゴム及び非ジエン系ゴムは互いに混ざり難いため、ゴム組成物の断面においては、いずれもが一定以上の面積をもっている(図1)。これに対し、あらかじめ所定量のカーボンブラック(C1)と非ジエン系ゴム(B)とを混練する一次工程を経れば、カーボンブラックは、非ジエン系ゴム中により分布できるようになる(図3(a))。さらに、上述の一次工程の後に所定量の化合物(D)を投入することにより、かかる化合物(D)がジエン系ゴムの主鎖と反応する上、非ジエン系ゴムに入り込んでカーボンブラックとも親和するため、非ジエン系ゴム中にミクロ分散したジエン系ゴムのドメイン相がもたらされる(図3(b))。こうして、本発明の製造方法に従って製造したゴム組成物は、図3(b)に示されるように、非ジエン系ゴムからなるドメイン相(X)及びジエン系ゴムからなるドメイン相(Y)が存在し、前記ドメイン相(X)中に、該ドメイン相(X)よりも小さな閉領域のジエン系ゴムからなるドメイン相(Yc)が形成された態様を有することとなる。そして、かかる態様により、非ジエン系ゴム部分を通る亀裂がより効果的に止められるものと考えられる。
 なお、上記態様は、本発明の製造方法に従って製造したゴム組成物の断面を、透過型電子顕微鏡により映した画像等で確認することができる。
FIG. 3 is a schematic cross-sectional view showing the distribution of diene rubber, non-diene rubber and carbon black in the rubber composition. FIG. 3 (a) shows a predetermined amount of carbon black without using the compound (D). FIG. 3B shows a rubber composition obtained by kneading (C1) and the non-diene rubber (B) in advance and then adding and kneading the diene rubber (A) and carbon black (C2). A rubber composition obtained by previously kneading a predetermined amount of carbon black (C1) and non-diene rubber (B) and then adding and kneading diene rubber (A), compound (D) and carbon black (C2). It is about things.
In the production of rubber compositions using diene rubbers, non-diene rubbers, and carbon black, carbon black is compatible when these are kneaded in a lump according to a conventional method, or when carbon black is charged in the latter half of the lump. It tends to be unevenly distributed in the vicinity of highly diene rubber. Further, as described above, since the diene rubber and the non-diene rubber are difficult to mix with each other, both have a certain area or more in the cross section of the rubber composition (FIG. 1). On the other hand, carbon black can be distributed in the non-diene rubber through a primary process in which a predetermined amount of carbon black (C1) and the non-diene rubber (B) are kneaded in advance (FIG. 3). (A)). Further, by introducing a predetermined amount of the compound (D) after the above-mentioned primary step, the compound (D) reacts with the main chain of the diene rubber, and enters the non-diene rubber and also has an affinity for carbon black. Therefore, the domain phase of the diene rubber micro-dispersed in the non-diene rubber is produced (FIG. 3B). Thus, the rubber composition produced according to the production method of the present invention has a domain phase (X) made of non-diene rubber and a domain phase (Y) made of diene rubber as shown in FIG. 3 (b). The domain phase (X) has a mode in which a domain phase (Y c ) made of a diene rubber having a closed region smaller than the domain phase (X) is formed. And it is thought by this aspect that the crack which passes a non-diene-type rubber part is stopped more effectively.
In addition, the said aspect can be confirmed with the image etc. which reflected the cross section of the rubber composition manufactured according to the manufacturing method of this invention with the transmission electron microscope.
 さらに、本発明の製造方法に従って製造したゴム組成物の一実施形態として、例えば、ジエン系ゴム(A)が天然ゴム及び/又はブタジエンゴムであり、ゴム成分中のジエン系ゴム(A)の割合が20~90質量%であり、ジエン系ゴム(A)中の天然ゴムの割合が10~70質量%であり、且つ、ゴム成分中のブタジエンゴムの割合が10~40質量%である場合においては、横軸にゴム組成物の温度(℃)、縦軸にゴム組成物の損失正接(tanδ)を取って作成したプロットから、以下が示され得ることが分かっている。
(1)前記tanδのピークが-43~-37℃に現れる
(2)前記tanδのピーク値が0.90~1.20である
(3)-40℃におけるtanδの値と-20℃におけるtanδの値とを結んだ線分の傾き(℃-1)が-0.0200~-0.0175である
 なお、前記tanδは、スペクトロメーター、レオメーター等を用いて測定することができる。
Furthermore, as one embodiment of the rubber composition manufactured according to the manufacturing method of the present invention, for example, the diene rubber (A) is natural rubber and / or butadiene rubber, and the ratio of the diene rubber (A) in the rubber component Is 20 to 90% by mass, the proportion of natural rubber in the diene rubber (A) is 10 to 70% by mass, and the proportion of butadiene rubber in the rubber component is 10 to 40% by mass. It is known that the following can be shown from a plot prepared by taking the temperature (° C.) of the rubber composition on the horizontal axis and the loss tangent (tan δ) of the rubber composition on the vertical axis.
(1) The tan δ peak appears at −43 to −37 ° C. (2) The tan δ peak value is 0.90 to 1.20. (3) The tan δ value at −40 ° C. and the tan δ at −20 ° C. The slope (° C. −1 ) of the line segment connecting with the value of −0.0200 to −0.0175 is obtained. The tan δ can be measured using a spectrometer, rheometer, or the like.
 本発明の製造方法において、一次工程で配合するカーボンブラック(C1)の量は、ゴム成分100質量部に対して3~50質量部であることを要するが、4~40質量部であることがより好ましく、5~30質量部であることが最も好ましい。一次工程で配合するカーボンブラック(C1)の量がゴム成分100質量部に対して3~50質量部であることにより、作業性が悪化することなく、補強性充填剤が非ジエン系ゴム中により分布するようになり、耐亀裂成長性及び耐破壊性の十分な向上が得られる。
 なお、二次工程で配合する残りのカーボンブラック(C2)の配合量は、カーボンブラックの総配合量(ゴム成分100質量部に対して10~120質量部)及び一次工程で配合するカーボンブラック(C1)の配合量が上記要件を満たす限り0であってもよい。
In the production method of the present invention, the amount of carbon black (C1) to be blended in the primary step needs to be 3 to 50 parts by mass with respect to 100 parts by mass of the rubber component, but it should be 4 to 40 parts by mass. More preferred is 5 to 30 parts by mass. Since the amount of carbon black (C1) blended in the primary process is 3 to 50 parts by mass with respect to 100 parts by mass of the rubber component, the reinforcing filler is contained in the non-diene rubber without deteriorating workability. Thus, the crack growth resistance and the fracture resistance can be sufficiently improved.
The remaining carbon black (C2) to be blended in the secondary step is composed of the total amount of carbon black (10 to 120 parts by mass with respect to 100 parts by mass of the rubber component) and carbon black ( It may be 0 as long as the blending amount of C1) satisfies the above requirements.
 本発明の製造方法において、必要に応じて用いる架橋助剤(加硫助剤)や架橋促進助剤(加硫促進助剤)は、工程(2)で投入することが好ましく、架橋剤(加硫剤)や架橋促進剤(加硫促進剤)は、工程(2)の後に投入することが好ましい。 In the production method of the present invention, the crosslinking aid (vulcanization aid) and the crosslinking acceleration aid (vulcanization acceleration aid) used as necessary are preferably added in step (2). It is preferable to add a sulfurizing agent) and a crosslinking accelerator (vulcanization accelerator) after the step (2).
 本発明の製造方法においては、二軸押出機、ロール、インテンシブミキサー等の公知の混練装置を使用することができる。
 前記一次工程の条件としては特に制限はない。また、前記二次工程の条件としては、特に制限はないが、最高温度145℃以下で行うことが好ましい。
In the production method of the present invention, a known kneading apparatus such as a twin-screw extruder, a roll, or an intensive mixer can be used.
There is no restriction | limiting in particular as conditions of the said primary process. The conditions for the secondary step are not particularly limited, but it is preferably performed at a maximum temperature of 145 ° C. or lower.
 以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
<ゴム組成物の調製>
 表1に示す配合処方(各数値は、ゴム成分100質量部に対する質量部数である)に従って、一次工程の混練、二次工程の混練(一部の例では、1回の混練のみ)及び最終工程の加硫を行い、ゴム組成物を調製した。ここで、一次工程の条件は、温度130℃で3分間とし、二次工程の条件は、温度130℃で1.5分間とした。さらに加硫条件は、温度160℃で15分間とした。
 得られたゴム組成物を用い、下記に示す各種測定を行った。結果を表1に示す。
<Preparation of rubber composition>
According to the formulation shown in Table 1 (each numerical value is the number of parts by mass relative to 100 parts by mass of the rubber component), kneading in the primary process, kneading in the secondary process (in some cases, only one kneading) and final process Was vulcanized to prepare a rubber composition. Here, the condition of the primary process was 3 minutes at a temperature of 130 ° C., and the condition of the secondary process was 1.5 minutes at a temperature of 130 ° C. Further, the vulcanization conditions were set at a temperature of 160 ° C. for 15 minutes.
Various measurements shown below were performed using the obtained rubber composition. The results are shown in Table 1.
<耐屈曲疲労性>
 長さ125mm、幅25mm、厚さ5.5mmのゴム組成物の試験片を準備し、JIS-K6260「屈曲き裂発生試験」に準じて、室温で屈曲を繰り返した。そして、2mm以上の亀裂が発生したときまでの屈曲回数を測定した。かかる屈曲回数について、比較例1の値を100として指数化した。指数が高いほど、耐屈曲疲労性に優れることを示す。
<Bending fatigue resistance>
A test piece of a rubber composition having a length of 125 mm, a width of 25 mm, and a thickness of 5.5 mm was prepared, and bending was repeated at room temperature in accordance with JIS-K6260 “Bending crack generation test”. Then, the number of bendings until a crack of 2 mm or more occurred was measured. The number of bendings was indexed with the value of Comparative Example 1 being 100. The higher the index, the better the bending fatigue resistance.
<耐亀裂成長性>
 初期亀裂を入れた長さ50mm、幅10mm、厚さ1.0mmの加硫ゴムサンプルに対し、60℃で30%の歪をかけ、進展回数に対してどれだけ亀裂が進展するか(mm)を測定した。かかる亀裂の進展について、比較例1の値を100として指数化した。指数が高いほど、耐亀裂成長性に優れることを示す。
<Crack growth resistance>
How much the crack progresses with respect to the number of progresses (30mm) by applying a strain of 30% at 60 ° C to a vulcanized rubber sample with an initial crack length of 50mm, width 10mm, and thickness 1.0mm. Was measured. The crack growth was indexed with the value of Comparative Example 1 being 100. The higher the index, the better the crack growth resistance.
<耐候性>
 オゾン濃度30ppm、40℃の条件としたオゾンウェザーメーター(スガ試験機社製)内で、長さ100mm、幅10mm、厚さ2mmのゴム組成物の試験片を96時間保持し、保持後のゴム組成物の外観を目視により観察した。かかる外観について、オゾンクラックが確認されなかった場合を◎とし、少量のオゾンクラックの発生が確認された場合を△とし、非常に多くのオゾンクラックが確認された場合を×として、評価した。
<Weather resistance>
A test piece of rubber composition having a length of 100 mm, a width of 10 mm, and a thickness of 2 mm is held for 96 hours in an ozone weather meter (manufactured by Suga Test Instruments Co., Ltd.) with an ozone concentration of 30 ppm and 40 ° C., and the rubber after holding The appearance of the composition was visually observed. The appearance was evaluated as 評 価 when no ozone crack was confirmed, △ when a small amount of ozone crack was confirmed, and x when very many ozone cracks were confirmed.
<耐破壊性>
 ゴム組成物からJIS#3サンプルを採取し、インストロン引張試験機により切断時伸びを測定した。かかる切断時伸びについて、比較例1の値を100として指数化した。指数が高いほど、耐破壊性に優れることを示す。
<Destruction resistance>
A JIS # 3 sample was taken from the rubber composition, and the elongation at break was measured with an Instron tensile tester. The elongation at break was indexed with the value of Comparative Example 1 being 100. The higher the index, the better the fracture resistance.
Figure JPOXMLDOC01-appb-T000001
*1 Br-IIR:臭素化ブチルゴム(日本ブチル株式会社製、2255)
*2 EPDM:エチレン-プロピレン-ジエンゴム(JSR株式会社製、EP25、第三成分量 ヨウ素価:17)
*3 カーボンブラック(東海カーボン株式会社製、シースト300)
*4 BR:ブタジエンゴム(JSR株式会社製、BR01、ジエン系モノマー由来の単位=100mol%)
*5 BMH:3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド(大塚化学株式会社製)
*6 ステアリン酸(加硫助剤)(新日本理化株式会社製、50S)
*7 亜鉛華(加硫促進助剤)(ハクスイテック株式会社製、酸化亜鉛華)
*8 老化防止剤:N-(1,3-ジメチルブチル)-N’-p-フェニレンジアミン(大内新興化学工業株式会社製、ノクラック6C)
*9 硫黄(加硫剤)(細井化学工業株式会社製、普通硫黄)
*10 加硫促進剤:シクロヘキシルベンゾチアジルスルフェンアミド(大内新興化学工業株式会社製、CZ)
Figure JPOXMLDOC01-appb-T000001
* 1 Br-IIR: Brominated butyl rubber (Nippon Butyl Co., Ltd., 2255)
* 2 EPDM: ethylene-propylene-diene rubber (manufactured by JSR Corporation, EP25, third component amount iodine value: 17)
* 3 Carbon black (Tokai Carbon Co., Ltd., Seast 300)
* 4 BR: Butadiene rubber (manufactured by JSR Corporation, BR01, unit derived from diene monomer = 100 mol%)
* 5 BMH: 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide (Otsuka Chemical Co., Ltd.)
* 6 Stearic acid (vulcanization aid) (manufactured by Shin Nippon Rika Co., Ltd., 50S)
* 7 Zinc Hana (Vulcanization Acceleration Auxiliary)
* 8 Anti-aging agent: N- (1,3-dimethylbutyl) -N′-p-phenylenediamine (Ouchi Shinsei Chemical Co., Ltd., NOCRACK 6C)
* 9 Sulfur (vulcanizing agent) (Hosoi Chemical Co., Ltd., ordinary sulfur)
* 10 Vulcanization accelerator: cyclohexyl benzothiazyl sulfenamide (CZ, manufactured by Ouchi Shinsei Chemical Co., Ltd.)
 表1の結果から、上述した特定の配合材料及び配合比に従った本発明の実施例のゴム組成物は、比較例のゴム組成物よりも、高い耐候性及び耐亀裂成長性と、高い耐破壊性とを有し、さらに、耐屈曲疲労性にも優れることが分かる。 From the results of Table 1, the rubber compositions of the examples of the present invention according to the specific compounding materials and compounding ratios described above have higher weather resistance and crack growth resistance and higher resistance to resistance than the rubber compositions of the comparative examples. It can be seen that it has breakability and is also excellent in bending fatigue resistance.
 1 ジエン系ゴム
 2 非ジエン系ゴム
 3 カーボンブラック
 4 非ジエン系ゴムからなるドメイン相(X)
 5 ジエン系ゴムからなるドメイン相(Y)
 5a ジエン系ゴムからなり、ドメイン相(X)よりも小さな閉領域のドメイン相(Yc
1 Diene rubber 2 Non-diene rubber 3 Carbon black 4 Domain phase consisting of non-diene rubber (X)
5 Domain phase composed of diene rubber (Y)
5a Domain phase (Y c ) made of diene rubber and having a smaller closed region than domain phase (X)

Claims (5)

  1.  ジエン系ゴム(A)と、非ジエン系ゴム(B)と、ゴム成分100質量部に対して10~120質量部のカーボンブラック(C)と、ゴム成分100質量部に対して0.1~5.0質量部の式(I)~(III):
    Figure JPOXMLDOC01-appb-C000005
    [式中、Aは芳香族環、置換され若しくは置換されていないヒダントイン環、又は炭素原子数1~18の飽和若しくは不飽和の直鎖状炭化水素基であり、aは0又は1であり、Bは芳香族基であり、Xはヒドロキシ基又はアミノ基であり、Yはピリジル基又はヒドラジノ基である]のいずれかで表される化合物(D)とを少なくとも配合してなり、ゴム成分中の前記ジエン系ゴム(A)の割合が20~90質量%であり、ゴム成分中の前記非ジエン系ゴム(B)の割合が10~80質量%であることを特徴とするゴム組成物。
    Diene rubber (A), non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of rubber component, and 0.1 to 0.1 parts with respect to 100 parts by mass of rubber component. 5.0 parts by weight of formulas (I) to (III):
    Figure JPOXMLDOC01-appb-C000005
    Wherein A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1; B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group]. The rubber composition is characterized in that the ratio of the diene rubber (A) is 20 to 90% by mass, and the ratio of the non-diene rubber (B) in the rubber component is 10 to 80% by mass.
  2.  請求項1に記載のゴム組成物をタイヤ部材の少なくともいずれかに適用したことを特徴とする、タイヤ。 A tire, wherein the rubber composition according to claim 1 is applied to at least one of tire members.
  3.  前記タイヤ部材の少なくともいずれかが、サイドウォールを含む、請求項2に記載のタイヤ。 The tire according to claim 2, wherein at least one of the tire members includes a sidewall.
  4.  前記ゴム組成物を適用した前記タイヤ部材の外表面に塗料層が形成された、請求項2又は3に記載のタイヤ。 The tire according to claim 2 or 3, wherein a paint layer is formed on an outer surface of the tire member to which the rubber composition is applied.
  5.  ジエン系ゴム(A)と、非ジエン系ゴム(B)と、ゴム成分100質量部に対して10~120質量部のカーボンブラック(C)と、ゴム成分100質量部に対して0.1~5.0質量部の式(I)~(III):
    Figure JPOXMLDOC01-appb-C000006
    [式中、Aは芳香族環、置換され若しくは置換されていないヒダントイン環、又は炭素原子数1~18の飽和若しくは不飽和の直鎖状炭化水素基であり、aは0又は1であり、Bは芳香族基であり、Xはヒドロキシ基又はアミノ基であり、Yはピリジル基又はヒドラジノ基である]のいずれかで表される化合物(D)とを少なくとも配合してなり、ゴム成分中の前記ジエン系ゴム(A)の割合が20~90質量%であり、前記非ジエン系ゴム(B)の割合が10~80質量%であるゴム組成物の製造方法であって、
     (1)前記非ジエン系ゴム(B)と、ゴム成分100質量部に対して3~50質量部の前記カーボンブラック(C)とを混練してマスターバッチを作製する一次工程、及び
     (2)前記マスターバッチに、前記ジエン系ゴム(A)、前記化合物(D)及び残りの前記カーボンブラック(C)を投入して混練する二次工程
     を含むことを特徴とするゴム組成物の製造方法。
    Diene rubber (A), non-diene rubber (B), 10 to 120 parts by mass of carbon black (C) with respect to 100 parts by mass of rubber component, and 0.1 to 0.1 parts with respect to 100 parts by mass of rubber component. 5.0 parts by weight of formulas (I) to (III):
    Figure JPOXMLDOC01-appb-C000006
    Wherein A is an aromatic ring, a substituted or unsubstituted hydantoin ring, or a saturated or unsaturated linear hydrocarbon group having 1 to 18 carbon atoms, a is 0 or 1; B is an aromatic group, X is a hydroxy group or an amino group, and Y is a pyridyl group or a hydrazino group]. The method for producing a rubber composition in which the proportion of the diene rubber (A) is 20 to 90% by mass and the proportion of the non-diene rubber (B) is 10 to 80% by mass,
    (1) a primary step of preparing a master batch by kneading the non-diene rubber (B) and 3 to 50 parts by mass of the carbon black (C) with respect to 100 parts by mass of a rubber component; and (2) A method for producing a rubber composition, comprising: a secondary step in which the diene rubber (A), the compound (D) and the remaining carbon black (C) are added to the master batch and kneaded.
PCT/JP2014/006396 2014-03-26 2014-12-22 Rubber composition, manufacturing method therefor, and tyre WO2015145511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014063983 2014-03-26
JP2014-063983 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015145511A1 true WO2015145511A1 (en) 2015-10-01

Family

ID=54194113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006396 WO2015145511A1 (en) 2014-03-26 2014-12-22 Rubber composition, manufacturing method therefor, and tyre

Country Status (1)

Country Link
WO (1) WO2015145511A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128549A (en) * 2015-01-09 2016-07-14 住友ゴム工業株式会社 Coating rubber composition
JP2018203937A (en) * 2017-06-07 2018-12-27 株式会社ブリヂストン Rubber composition for tire, and tire
WO2019111467A1 (en) * 2017-12-04 2019-06-13 株式会社ブリヂストン Rubber composition for tires and tire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136048A (en) * 1990-09-27 1992-05-11 Bridgestone Corp Rubber composition
JPH0827315A (en) * 1994-07-15 1996-01-30 Bridgestone Corp Method for kneading rubber composition
JPH08283461A (en) * 1995-04-17 1996-10-29 Bridgestone Corp Rubber composition
JP2007131806A (en) * 2005-11-14 2007-05-31 Sumitomo Chemical Co Ltd Rubber composition
JP2008222891A (en) * 2007-03-14 2008-09-25 Nippon Zeon Co Ltd Crosslinkable nitrile rubber composition and rubber crosslinked product
JP2009096981A (en) * 2007-09-28 2009-05-07 Tokai Rubber Ind Ltd Method for producing vibration-proof rubber composition and vibration-proof rubber composition produced thereby and vibration-proof rubber
JP2014005381A (en) * 2012-06-25 2014-01-16 Bridgestone Corp Production method of rubber composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136048A (en) * 1990-09-27 1992-05-11 Bridgestone Corp Rubber composition
JPH0827315A (en) * 1994-07-15 1996-01-30 Bridgestone Corp Method for kneading rubber composition
JPH08283461A (en) * 1995-04-17 1996-10-29 Bridgestone Corp Rubber composition
JP2007131806A (en) * 2005-11-14 2007-05-31 Sumitomo Chemical Co Ltd Rubber composition
JP2008222891A (en) * 2007-03-14 2008-09-25 Nippon Zeon Co Ltd Crosslinkable nitrile rubber composition and rubber crosslinked product
JP2009096981A (en) * 2007-09-28 2009-05-07 Tokai Rubber Ind Ltd Method for producing vibration-proof rubber composition and vibration-proof rubber composition produced thereby and vibration-proof rubber
JP2014005381A (en) * 2012-06-25 2014-01-16 Bridgestone Corp Production method of rubber composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128549A (en) * 2015-01-09 2016-07-14 住友ゴム工業株式会社 Coating rubber composition
JP2018203937A (en) * 2017-06-07 2018-12-27 株式会社ブリヂストン Rubber composition for tire, and tire
CN110709460A (en) * 2017-06-07 2020-01-17 株式会社普利司通 Rubber composition for tire and tire
WO2019111467A1 (en) * 2017-12-04 2019-06-13 株式会社ブリヂストン Rubber composition for tires and tire
US11306201B2 (en) 2017-12-04 2022-04-19 Bridgestone Corporation Rubber composition for tires and tire

Similar Documents

Publication Publication Date Title
JP5459079B2 (en) Rubber composition for tire and tire
WO2014148453A9 (en) Rubber composition for tires and pneumatic tire
WO2015145511A1 (en) Rubber composition, manufacturing method therefor, and tyre
JP2011046858A (en) Vulcanized rubber and method of manufacturing the same
JP2008222845A (en) Rubber composition for tire
JP4227420B2 (en) Rubber composition and pneumatic radial tire for aircraft or linear motor car using the same
WO2015145513A1 (en) Rubber composition and tyre
JP6107252B2 (en) Method for producing rubber composition for tire
JP4608076B2 (en) Rubber composition
JP6099429B2 (en) Side rubber composition for tire and tire
WO2015145512A1 (en) Rubber composition and tyre
EP3530691B1 (en) Rubber composition and tire
JP2008095073A (en) Rubber composition for crawler, crawler tread using it or rubber crawler with crawler base
JP2008069199A (en) Rubber composition for coating fixed cord and tire having carcass and/or belt using the same
JP2008038028A (en) Rubber composition for tire inner liner and pneumatic tire using the same
JP4583023B2 (en) Rubber composition for tire sidewall
WO2024142541A1 (en) Rubber composition for conveyor belt, and conveyor belt
JP2020055969A (en) Tire rubber composition
JP2003165871A (en) Rubber composition for tire and tire using the rubber composition
JP5393049B2 (en) Rubber composition and air spring
JP2002256111A (en) Rubber composition for tire and tire using the same
JP2008044444A (en) Pneumatic tube
EP4382567A1 (en) Tire rubber composition, and tire
JP2004306730A (en) Pneumatic tire
JP6584925B2 (en) Rubber composition and pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP